
Scene Discovery by Matrix Factorization

Nicolas Loeff and Ali Farhadi

University of Illinois at Urbana-Champaign,
Urbana, IL, 61801

{loeff,afarhad2}@uiuc.edu

Abstract. What constitutes a scene? Defining a meaningful vocabulary for scene
discovery is a challenging problem that has important consequences for object
recognition. We consider scenes to depict correlated objects and present visual
similarity. We introduce a max-margin factorization model that finds a low di-
mensional subspace with high discriminative power for correlated annotations.
We postulate this space should allow us to discover a large number of scenes in
unsupervised data; we show scene discrimination results on par with supervised
approaches. This model also produces state of the art word prediction results in-
cluding good annotation completion.

1 Introduction

Classification of scenes has useful applications in content-based image indexing and re-
trieval and as an aid to object recognition (improving retrieval performance by removing
irrelevant images). Even though a significant amount of research has been devoted to
the topic, the questions of what constitutes a scene has not been addressed. The task
is ambiguous because of the diversity and variability of scenes but also mainly due to
the subjectivity of the task. Just like in other areas of computer vision such as activity
recognition, it is not simple to define the vocabulary to label scenes. Thus, most ap-
proaches have used the physical setting where the image was taken to define the scene
(e. g. beach, mountain, forest, etc.).

Previous work is focused on supervised approaches. It is common to use techniques
that do not share knowledge between scene types. For instance, In [12] Lazebnik pro-
poses a pyramid match kernel on top of SIFT features to measure image similarity and
applies it to classification of scenes using an SVM. Chapelle et al. [6] use global color
histograms and an SVM classifier.

Therefore other models build intermediate representations, usually as a bag of fea-
tures, in order to perform classification. Internal representations let classifiers share
features between scene classes. Quelhas and Odobez [19] propose a scene represen-
tation using mixtures of local features. Fei-Fei and Perona [13] use a modified Latent
Dirichlet Allocation model on bags of patches to create a topic representation of scenes.
Scenes are also directly labeled during training. Liu and Shah [14] use maximization
of mutual information between bags of features and intermediate concepts to create an
internal representation. These intermediate concepts are purely appearance based. On
top of it, they run a supervised SVM classifier. Bosch et al. [3] uses a pLSA model on
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top of bags of features to discover intermediate visual representations and a supervised
KNN classifier to identify scenes.

Other approaches first manually define a vocabulary for the internal representation
and then try to learn it. J. C. van Gemert et al. [22] describe scenes using “proto-
concepts” like vegetation, sky and water, and learning using image statistics and con-
text. Vogel and Schiele [24] manually label 9 different intermediate “concepts” (e. g.
water, sky, foliage) and learn a KNN classifier on top of this representation. Oliva and
Torralba [17] use global “gist” features and local spatial constraints, plus human la-
beled intermediate properties (such as “roughness” or “openness”) as an intermediate
representation.

We propose a different strategy. First, we aim to find scenes without supervision.
Second, we treat the building of the internal representation not as separate from a clas-
sification task, but as interdependent processes that must be learnt together.

What is a scene? In current methods, visual similarity is used to classify scenes into a
known set of types. We expect there are many types of scene, so that it will be hard to
write down a list of types in a straightforward way. We should like to build a vocabulary
of scene types from data. We believe that two images depict the same scene category if:

1. Objects that appear in one image could likely appear in the other
2. The images look similar under an appropriate metric.

This means one should be able to identify scenes by predicting the objects that are
likely to be in the image, or that tend to co-occur with objects that are in the image.
Thus, if we could estimate a list of all the annotations that could reasonably be attached
to the image, we could cluster using that list of annotations. The objects in this list of
annotations don’t actually have to be present – not all kitchens contain coffee makers –
but they need to be plausible hypotheses. We would like to predict hundreds of words
for each of thousands of images. To do so, we need stable features and it is useful to
exploit the fact that annotating words are correlated.

All this suggests a procedure akin to collaborative filtering. We should build a set of
classifiers, that, from a set of image features, can predict a set of word annotations that
are like the original annotations. For each image, the predicted annotations will include
words that annotators may have omitted, and we can cluster on the completed set of
annotations to obtain scenes. We show that, by exploiting natural regularization of this
problem, we obtain image features that are stable and good at word prediction. Clus-
tering with an appropriate metric in this space is equivalent to clustering on completed
annotations; and the clusters are scenes.

We will achieve this goal by using matrix factorization [21,1] to learn a word classi-
fier. Let Y be a matrix of word annotations per image, X the matrix of image features
per image, and W a linear classifier matrix, we will look for W to minimize

J(W ) = regularization(W ) + loss(Y, W tX) (1)

The regularization term will be constructed to minimize the rank of W , in order to im-
prove generalization by forcing word classifiers to share a low dimensional represen-
tation. As the name “matrix factorization” indicates, W is represented as the product
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Fig. 1. Matrix factorization for word prediction. Our proxy goal is to find a word classifier W
on image features X. W factorizes into the product W = FG. We regularize with the rank of
W ; this makes F tX a low-dimensional feature space that maximizes word predictive power.
In this space, where correlated words are mapped close, we learn the classifiers G.

between two matrices FG. This factorization learns a feature mapping (F ) with shared
characteristics between the different words. This latent representation should be a good
space to learn correlated word classifiers G (see figure 1).

Our problem is related to multi-task learning as clearly the problem of assigning one
word to an image is correlated with the other words. In a related approach [2] Ando
and Zhang learn multiple classifiers with a shared structure, alternating fixing the struc-
ture and learning SVM classifiers and fixing the classifiers to learn the structure using
SVD. Ando and Zhang propose an interesting insight into the problem: instead of do-
ing dimensionality reduction on the data space (like PCA), they do it in the classifier
space. This means the algorithm looks for low-dimensional structures with good pre-
dictive, rather than descriptive, power. This leads to an internal representation where the
tasks are easier to learn. This is a big conceptual difference with respect to approaches
like [14,3]. It is also different from the CRF framework of [20], where pairwise co-
occurrence frequencies are modeled.

Quattoni et al. [18] proposed a method for supervised classification of topics using
auxiliary tasks, following [2]. In contrast, our model we discover scenes without super-
vision. We also differ in that [18] first learns word classifiers, fixes them, and then finds
the space for the topic (scene) prediction. We learn both the internal structure and the
classifiers simultaneously, in a convex formulation. Thus our algorithm is able to use
correlation between words not only for the scene classification task but also for word
prediction. This results in improved word prediction performance. In section ?? we
show the model also produces better results than [18] for the scene task, even without
having the scene labels!

2 A Max-Margin Factorization Model

Consider a set of N images {xi}, each represented by a d-dimensional vector, and
M learning tasks which consist in predicting the word ym

i ∈ {−1, 1} for each image
using a linear classifier wt

mxi. This can be represented as Y ∼ W tX for a matrix
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Y ∈ {±1}M×N where each column is an image and each row a word, W ∈ R
d×M

is the classifier matrix and X ∈ R
d×N the observation matrix. We will initially con-

sider that the words are decoupled (as in regular SVMs), and use the L2 regularization∑
m ||wm||22 = ||W ||2F (known as the Frobenius norm of W ). A suitable loss for a

max-margin formulation is the hinge function h(z) = max(0, 1− z). The problem can
then be stated as

min
W

1
2
||W ||2F + C

N∑

i=1

M∑

m=1

Δ(ym
i )h(ym

i · (wt
mxi)) (2)

where C is the trade-off constant between data loss and regularization, and Δ is a slack
re-scaling term we introduce to penalize errors differently: false negatives Δ(1) = 1
and false positives Δ(−1) = ε < 1. The rationale is that missing word annotations are
much more common than wrong annotation for this problem.

Our word prediction formulation of the loss is different from [21] (a pure collabora-
tive filtering model) and [1] (a multi-class classifier), even though our tracenorm regu-
larization term is similar to theirs. Our formulation is, to the best of our knowledge, the
first application of the tracenorm regularization to a problem of these characteristics.
From [1] we took the optimization framework, although we are using different losses
and approximations and we are using BFGS to perform the minimization. Finally, we
introduce a unsupervised model on top of the internal representation this formulation
produces to discover scenes.

Matrix Factorization: In order to exploit correlations in the words, an alternative prob-
lem is to factor the matrix W = FG where F ∈ R

d×k can be interpreted as a mapping
of the features X into a k dimensional latent space and G ∈ R

k×M is a linear clas-
sifier on this space (i. e. Y ∼ Gt(F tX)). Regularization is provided by constraining
the dimensionality of the latent space (k) and penalizing the Frobenius norm of F and
G [21]. The minimization in F and G is unfortunately non-convex, and Rennie sug-
gested using the tracenorm (the minimum of the possible sum of Frobenius norms so
that W = FG) as an alternative regularization. As the tracenorm may also be written
as ||W ||Σ =

∑
l |γl| (where γl is the l−th singular value), tracenorm minimization

can be seen as minimizing the L1 norm of the singular values of W . This leads to a
low-rank solution, in which correlated words share features, while the Frobenius norm
of W (which minimizes the L2 norm of the singular values) assumes the words are
independent.

Minimization is now with respect to W directly, and the problem is convex. More-
over, the dimensionality k doesn’t have to be provided.

min
W

1
2
||W ||Σ + C

N∑

i=1

M∑

m=1

Δ(ym
i )h(ym

i · (wt
mxi)) (3)

Rennie [21] showed (3) can be recast as a Semidefinite Program (SDP). Unfortunately,
SDPs don’t scale nicely with the number of dimensions of the problem, making any
decent size problem intractable. Instead, he proposed gradient descent optimization.
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Fig. 2. Smooth approximations of the hinge function (left) and absolute value function (right),
used in the gradient descent optimization

2.1 Gradient Based Optimization

Equation 3 is not differentiable due to the hinge loss and the tracenorm, but the equation
can be approximated to arbitrary precision by a smoothed version. This allows to per-
form gradient based optimization. We will consider a smooth approximation hρ(z) of
the hinge loss h(z) that is exact for |1− z| ≥ ρ, and is twice differentiable everywhere:

h(1 − z) ≈ hρ(1 − z) =

⎧
⎨

⎩

z z > ρ
−z4

16ρ3 + 3z2

8ρ + 3z
2 + 3σ

16 |z| ≤ ρ

0 z < −ρ

(4)

For the tracenorm we use ||W ||Σ ≈ ||W ||S =
∑

l aσ(γl), where the smoothed absolute
value is again exact for |x| ≥ σ and is twice differentiable everywhere,

aσ(x) =
{ |x| |x| > σ

−z4

8σ3 + z2

4σ + 3σ
8 |x| ≤ σ

(5)

In our experiments we use ρ = σ = 10−7. Plots for both approximation are depicted in
figure 2.

We will then consider the smooth cost

J(W ; Y, X, σ, ρ) = JR(W ; σ) + C · JD(W ; Y, X, ρ) (6)

where the regularization cost is

JR(W, σ) = ||W ||S (7)

and the data loss term is

JD(W ; Y, X, ρ) =
N∑

i=1

M∑

m=1

Δ(ym
i )hρ(ym

i · (wt
mxi)) (8)

Using the SVD decomposition W = UDV t,

∂JR

∂W
= Ua′

σ(D)V t (9)
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The gradient of the data loss term is

∂JD

∂W
= −(Δ(Y ) · h′

ρ(Y · W tX))t(Y · X) (10)

where (A · B) is the Hadamard or element-wise product: (A · B)ij = aijbij . Exact
second order Newton methods cannot be used because of the size of the Hessian, so we
use limited-memory BFGS for minimization.

2.2 Kernelization

A interesting feature of problem 3 is that it admits a solution when high dimensional
features X are not available but instead the Gram matrix K = XtX is provided. Theo-
rem 1 in [1] can be applied with small modifications to prove that there exists a matrix
α ∈ R

M×N so that the minimizer of (3) is W = Xα. But instead of solving the dual
Lagrangian problem we will use this representation of W to minimize the primal prob-
lem (actually, it’s smoothed version) using gradient descent. The derivatives in terms of
K and α only become

∂JR

∂α
=

∂ ||Xα||S
∂α

=
Xt∂ ||Xα||S

∂Xα
= KαV D−1a′

σ(D)V t (11)

using that D(V V t)D−1 = I , Xα = UDV t, and that K = XtX . The gradient of the
data loss term is

∂JD

∂W
= −K ∗ (Δ(Y ) · h′

ρ(α
tKα) · Y ) (12)

3 Scene Discovery – Analysing the Latent Representation

Section 2.1 introduced a smooth approximation to the convex problem 3. After conver-
gence we obtain the classification matrix W . The solution does not provide the factor-
ization W = FG. Moreover, any decomposition W = FG is not unique as a full rank
transformation F̃ = FA, G̃ = A−1G will produce the same W .

What is a good factorization then? As discussed in the section 1 clustering in the
latent space should be similar to clustering the word predictions. Since we define scenes
as having correlated words, a good factorization of W should maximally transfer the
correlation between the predicted words

(
(W tX)t(W tX)

)
to the correlation in the

latent space
(
(AtF tX)t(AtF tX)

)
. Identifying terms, A = (GGt)1/2. In this space

(AtF tX), images with correlated words (i. e. belonging to the same scene category)
should cluster naturally.

For the factorization of W we will use a truncated SVD decomposition and then we
will use this A. We will measure their similarity of images in this space using the cosine
distance.

4 Experiments

To demonstrate the performance of our scene discovery model we need a dataset with
multiple object labels per image. We chose the standard subset of the Corel image
collection [7] as our benchmark dataset. This subset has been extensively used and
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consists of 5000 images grouped in 50 different sets (CDs). These images are separated
into 4500 training and 500 test images. The vocabulary size of this dataset is 374, out
of which 371 appear in train and 263 in test set. The annotation length varies from 1 to
5 words per image.

We employ features used in the PicSOM [23] image content analysis framework.
These features convey image information using 10 different, but not necessarily uncorre-
lated, feature extraction methods. Feature vector components include: DCT coefficients
of average color in 20x20 grid (analogous to MPEG-7 ColorLayout feature), CIE LAB
color coordinates of two dominant color clusters, 16 × 16 FFT of Sobel edge image,
MPEG-7 EdgeHistogram descriptor, Haar transform of quantised HSV color histogram,
three first central moments of color distribution in CIE LAB color space, average CIE
LAB color, co-occurence matrix of four Sobel edge directions, histogram of four Sobel
edge directions and texture feature based on relative brightness of neighboring pixels.

The final image descriptor is a 682 dimensonal vector. We append a constant value 1
to each vector to learn a threshold for our linear classifiers.

001 001 144 147 001 101 001

012 012 012 012 012 012 012

296 189 189 189 296 187 189

113 113 113 113 113 104 113

013 013 013 013 152 142 013

182 182 182 182 182 182 182

174 174 174 174 174 174 174

153 153 153 153 153 153 153

Fig. 3. Example clustering results on the Corel training set. Each row consists of the closest im-
ages to the centroid of a different cluster. The number on the right of each image is the Corel CD
label. The algorithm is able to discover scenes even when there is high visual variability in the
images (e. g. people cluster, swimmers, CD-174 cluster). Some of the scenes (e. g. sunsets, peo-
ple) clearly depict scenes, even if the images are come from different CDs. (For display purposes,
portrait images were resized)
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Scene discovery. First, we explore the latent space described in section 3. As mentioned
there, the cosine distance is natural to represent dissimilarity in this space. To be able
to use it for clustering we will employ graph-based methods. We expect scene clusters
to be compact and thus use complete link clustering. We look initially for many more
clusters than scene categories, and then remove clusters with a small number of images
allocated to them. We reassign those images to the remaining clusters using the closest
5 nearest neighbors. This produced approximately 1.5 clusters per CD label. For the test
set we use again the 5 nearest neighbors to assign images to the train clusters. As shown
in figure 3, the algorithm found highly plausible scene clusters, even in the presence of

034 034 034 034 010 010 103

231 046 001 017 001 001 118

276 276 276 276 276 276 148

153 153 153 120 153 153 012

113 113 113 113 113 113 108

022 101 171 384 101 384 022

161 161 161 161 161 161 161

021 021 021 021 021 021 021

119 147 119 119 147 119 119

189 187 147 201 189

Fig. 4. Example results on the Corel test set. Each row consists of the closest 7 test images to
each centroid found on the training set. The number on the right of each image is the Corel CD
label. Rows correspond to scenes, which would be hard to discover with pure visual clustering.
Because our method is able to predict word annotations while clustering scenes, it is able to
discount large but irrelevant visual differences. Despite this, some of mistakes are due to visual
similarity (e. g. the bird in the last image of the plane cluster, or the skyscraper in the last image
of the mountain cluster). (For displaying purposes, portrait images were resized).
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large visual variability. This is due to the fact that these images depict objects that
tend to appear together. The algorithm also generalizes well: when the clusters were
transfered to the test set it still produced a good output (see figure 4).

Word prediction. Our approach to scene discovery is based on the internal representa-
tion of the word classifier, so these promising results suggest a good word annotation
prediction performance. Table 1 shows the precision, recall and F1-measure of our word
prediction model is competitive with the best state-of-the-art methods using this dataset.
Changing the value of ε in equation 3 traces out the precision-recall curve; we show the
equal error rate (P = R) result. It is remarkable that the kernelized classifier does not
provide a substantial improvement over the linear classifier. The reason for this may lie
in the high dimensionality of the feature space, in which all points are roughly at the
same distance. In fact, using a standard RBF kernel produced significantly lower re-
sults; thus the sigmoid kernel, with a broarder support, performed much better. Because
to this and the higher computational complexity of the kernelized classifier, we will use
the linear classifier for the rest of the experiments.

The influence of the tracenorm regularization is clear when the results are com-
pared to independent linear SVMs on the same features (that corresponds to using the
Frobenius norm regularization, equation 2). The difference in performance indicates

Table 1. Comparison of the performance of our word annotation prediction method with that
of Co-occurance model (Co-occ), Translation Model (Trans), Cross-Media Relevance Model
(CMRM), Text space to image space (TSIS), Maximum Entropy model (MaxEnt), Continuous
Relevance Model (CRM), 3×3 grid of color and texture moments (CT-3×3), Inference Network
(InfNet), Multiple Bernoulli Relevance Models (MBRM), Mixture Hierarchies model (MixHier),
PicSOM with global features, and linear independent SVMs on the same features. The perfor-
mance of our model is provided for the linear and kernelized (sigmoid) classifiers.* Note: the
results of the PicSOM method are not directly comparable as they limit the annotation length to
be at most five (we do not place this limit as we aim to complete the annotations for each image).

Method P R F1 Ref
Co-occ 0.03 0.02 0.02 [16]
Trans 0.06 0.04 0.05 [7]

CMRM 0.10 0.09 0.10 [9]
TSIS 0.10 0.09 0.10 [5]

MaxEnt 0.09 0.12 0.10 [10]
CRM 0.16 0.19 0.17 [11]

CT-3×3 0.18 0.21 0.19 [25]
CRM-rect 0.22 0.23 0.23 [8]

InfNet 0.17 0.24 0.23 [15]
Independent SVMs 0.22 0.25 0.23

MBRM 0.24 0.25 0.25 [8]
MixHier 0.23 0.29 0.26 [4]

This work (Linear) 0.27 0.27 0.27
This work (Kernel) 0.29 0.29 0.29

PicSOM 0.35∗ 0.35∗ 0.35∗ [23]
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Fig. 5. Example word completion results. Correctly predicted words are below each image in
blue, predicted words not in the annotations (“False Positives”) are italic red, and words not
predicted but annotated (“False Negatives”) are in green. Missing annotations are not uncommon
in the Corel dataset. Our algorithm performs scene clustering by predicting all the words that
should be present on an image, as it learns correlated words (e. g. images with sun and plane
usually contain sky, and images with sand and water commonly depict beaches). Completed
word annotations are a good guide to scene categories while original annotations might not be;
this indicates visual information really matters.

the sharing of features among the word classifiers is beneficial. This is specially true for
words that are less common.

Annotation completion. The promising performance of the approach results from its
generalization ability; this in turn lets the algorithm predict words that are not anno-
tated in the training set but should have been. Figure 5 shows some examples of word
completion results. It should be noted that performance evaluation in the Corel dataset
is delicate, as missing words in the annotation are not uncommon.

Discriminative scene prediction. The Corel dataset is divided into sets (CDs) that do
not necessarily depict different scenes. As it can be observed in figure 3, some correctly
clustered scenes are spread among different CD labels (e. g. sunsets, people). In order
to evaluate our unsupervised scene discovery, we selected a subset of 10 out of the 50
CDs from the dataset so that the CD number can be used as a reliable proxy for scene
labels. The subset consists of CDs: 1 (sunsets), 21 (race cars), 34 (flying airplanes),
130 (african animals), 153 (swimming), 161 (egyptian ruins), 163 (birds and nests),
182 (trains), 276 (mountains and snow) and 384 (beaches). This subset has visually
very disimlar pictures with the same labels and visually similar images (but depicting
different objects) with different labels. The train/test split of [7] was preserved.

To evaluate the performance of the unsupervised scene discovery method, we label
each cluster with the most common CD label in the training set and then evaluate the
scene detection performance in the test set. We compare our results with the same clus-
tering thechnique on the image features directly. In this space the cosine distance losses
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Table 2. Comparison of the performance of our scene discovery on the latent space with another
unsupervised method and four supervised methods on image features directly. Our model pro-
duced significantly better results that the unsupervised method on the image features, and is only
surpassed by the supervised kernelized SVM. For both unsupervised methods, clustering is done
on the train set and performance is measured on the test set (see text for details).

Method Accuracy
Unsupervised Latent space (this work) 0.848
Unsupervised Image features clustering 0.697

Supervised Image features KNN 0.848
Supervised Image features SVM (linear) 0.798
Supervised Image features SVM (kernel) 0.948
Supervised ”structural learning” [2,18] 0.818

its meaning and thus we use the euclidean distance. We also computed the performance
of two supervised approaches on the image features: k nearest neighbors (KNN), sup-
port vector machines (SVM), and “structural learning” (introduced in [2] and used in a
vision application -Reuters image classification- in [18]). We use a one-vs-all approach
for the SVMs. Table 2 show the the latent space is indeed a suitable space for scene de-
tection: it clearly outperforms clustering on the original space, and only the supervised
SVM using a kernel provides an improvement over the performance of our method.

The difference with [18] deserves further exploration. Their algorithm classifies top-
ics (in our case scenes) by first learning a classification of auxiliary tasks (in this case
words), based in the framework introduced in [2]. [18] starts by building independent

Fig. 6. Dendrogram for our clustering method. Our scene discovery model produces 1.5 proto-
scenes per scene. Clusters belonging to the same scene are among the first to be merged
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Fig. 7. Future work includes unsupervised region annotation. Example images show promising
results for region labeling. Images are presegmented using normalized cuts (red lines), features
are computed in each region and fed to our classifier as if they were whole image features.

SVM classifiers on the auxiliary tasks/words. As we showed in table 1, this leads to
lower performance in word classification when compared to our correlated classifiers.
On top of this [18] runs an SVD to correlate the output of the classifiers. It is remarkable
that our algorithm provides a slight performance advantage despite the fact [18] is su-
pervised and learns the topic classifier directly, whereas our formulation is unsupervised
and does not use topic labels.

Figure 4 depicts a dendrogram of the complete-link clustering method applied to the
clusters found by our scene discovery algorithm. As expected clusters belonging to the
same scene are among the first to be merged together. The exception is a sunset cluster
that is merged with an airplane cluster before being merged with the rest of the sunset
clusters. The reason for this is that both cluster basically depict images where the sky
occupies most of the image. Is is pleasing that “scenery” clusters depicting mountains
and beaches are merged together with the train cluster (also depicts panoramic views);
the birds and animals clusters are also merged together.

5 Conclusions

Scene discovery and classification is an important and challenging task that has impor-
tant applications in object recognition. We have introduced a principled way of defining
a meaningful vocabulary of what constitutes a scene. We consider scenes to depict cor-
related objects and present visual similarity. We introduced a max-margin factorization
model to learn these correlations. The algorithm allows for scene discovery on par with
supervised approaches even without explicitly labeling scenes, producing highly plausi-
ble scene clusters. This model also produced state of the art word annotation prediction
results including good annotation completion.

Future work will include using our classifier for weakly supervised region annota-
tion/labeling. For a given image, we use normalized cuts to produce a segmentation.
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Using our classifier, we know what words describe the image. We then restrict our clas-
sifier to these word subsets and to the features in each of the regions. Figure 7 depicts
examples of such annotations. These are promising preliminary results; since quantita-
tive evaluation of this procedure requires having a ground truth labels for each segment,
we only show qualitative results.
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