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ANTICONCENTRATION AND THE EXACT GAP-HAMMING
PROBLEM\ast 

ANUP RAO\dagger AND AMIR YEHUDAYOFF\ddagger 

Abstract. We prove anticoncentration bounds for the inner product of two independent ran-
dom vectors and use these bounds to prove lower bounds in communication complexity. We show
that if A,B are subsets of the cube \{ \pm 1\} n with | A| \cdot | B| \geq 21.01n, and X \in A and Y \in B are
sampled independently and uniformly, then the inner product \langle X,Y \rangle takes on any fixed value with
probability at most O(1/

\surd 
n). In fact, we prove the following stronger ``smoothness"" statement:

maxk
\bigm| \bigm| Pr[\langle X,Y \rangle = k] - Pr[\langle X,Y \rangle = k + 4]

\bigm| \bigm| \leq O(1/n). We use these results to prove that the exact
gap-hamming problem requires linear communication, resolving an open problem in communication
complexity. We also conclude anticoncentration for structured distributions with low entropy. If
x \in \BbbZ n has no zero coordinates, and B \subseteq \{ \pm 1\} n corresponds to a subspace of \BbbF n

2 of dimension

0.51n, then maxk Pr[\langle x, Y \rangle = k] \leq O(
\sqrt{} 

ln(n)/n).
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1. Introduction. Anticoncentration bounds establish that the distribution of
outcomes of a random process is not concentrated in any small region. No single out-
come is obtained too often. Anticoncentration plays an important role in mathematics
and computer science. It is used in the study of roots of random polynomials [19],
random matrix theory [15, 27], communication complexity [6, 29, 22], quantum com-
putation [1], and more. In particular, as we discuss below, anticoncentration bounds
are very useful to understand the communication complexity of the gap-hamming
function.

A well-known context in which anticoncentration has been studied extensively is
the sum of independent and identically distributed random variables. If Y \in \{ \pm 1\} n
is uniformly distributed, then the probability that

\sum n
j=1 Yj takes any specific value

is at most
\bigl( 

n
\lceil n/2\rceil 

\bigr) 
/2n = O( 1\surd 

n
). This was studied and generalized by Littlewood and

Offord [19], Erd\"os [7], and many others. The classical Littlewood--Offord problem is
about understanding the anticoncentration of the inner product \langle x, Y \rangle =

\sum n
j=1 xjYj

for arbitrary x \in \BbbR n and Y \in \{ \pm 1\} n chosen uniformly. For example, Erd\"os proved
that if x has no zero coordinates, then maxk Pr[\langle x, Y \rangle = k] \leq 

\bigl( 
n

\lceil n/2\rceil 
\bigr) 
/2n = O( 1\surd 

n
).

It is interesting to understand the most general conditions under which such anti-
concentration holds. Various generalizations were studied by Frankl and F\"uredi [10],
Hal\'asz [11], and others (see [25] and references within). These results show that
stronger bounds can be proved when the vector x satisfies stronger conditions. In
this past work, the vector Y is typically assumed to be uniformly distributed; indeed,
anticoncentration fails when the entries of Y are not independent. For example, if
Y is sampled uniformly from the set of strings with exactly \lceil n/2\rceil entries that are 1,
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then for x = 1n we have that \langle x, Y \rangle is always the same. Can we somehow recover
anticoncentration when Y is not uniform?

We show that if extra structure holds, then anticoncentration is still recovered
although the entropy is small. For example, if we identify \{ \pm 1\} n with the vector
space \BbbF n

2 , by associating  - 1 with 1 and 1 with 0, then our results imply the following.

Theorem 1. There exists a constant C > 0 so that the following holds. If x \in \BbbZ n

has no zero coordinates, B \subseteq \{ \pm 1\} n corresponds to a subspace of \BbbF n
2 of dimension

0.51n, and Y \in B is uniformly distributed, then

max
k\in \BbbZ 

Pr[\langle x, Y \rangle = k] \leq C
\sqrt{} 

lnn
n .

Theorem 1 is a direct consequence of Theorem 4 below.

Remark. Theorem 1 and similar results can be used as a black box to prove the
same bounds when x is a real-valued vector. To see this, think of the relevant real
numbers as vectors in a finite dimensional vector space over the rationals. We omit
the details here.

Another natural setting is to consider the inner product \langle X,Y \rangle of two independent
variables, neither of which may be uniform. Recent work has proved some interest-
ing results under the assumption that X,Y have nice structure [28, 13], but what
if the only assumption is that X,Y are uniformly distributed on large sets? The
following theorem, proved by Chakrabarti and Regev [6] along the way to proving
new lower bounds in communication complexity, shows that this does recover some
anticoncentration.

Theorem (Chakrabarti and Regev [6]). There is a constant c > 0 such that
if A,B \subseteq \{ \pm 1\} n are each of size at least 2(1 - c)n and X \in A, Y \in B are sampled
uniformly and independently, then

Pr[| \langle X,Y \rangle | \leq c
\surd 
n] \leq 1 - c.

Alternate proofs of the same bound were subsequently given in [29, 22]. The
theorem shows that \langle X,Y \rangle does not land in an interval of length much smaller than\surd 
n with high probability. The strongest anticoncentration bounds give pointwise

estimates. We would like to control the concentration probability

max
k\in \BbbZ 

Pr[\langle X,Y \rangle = k];

see [27] and references within.
In our work, we prove a sharp bound on the pointwise concentration probability

that holds for an overwhelming majority of directions x.

Theorem 2. For every \beta > 0 and \delta > 0, there exists C > 0 such that the
following holds. If B \subseteq \{ \pm 1\} n is of size 2\beta n, and Y \in B is uniformly distributed,
then for all but 2n(1 - \beta +\delta ) directions x \in \{ \pm 1\} n,

max
k\in \BbbZ 

Pr
Y
[\langle x, Y \rangle = k] \leq C\surd 

n
.

In particular, if X is independent of Y and uniformly distributed in a set A of size
2n(1 - \beta +2\delta ), then

max
k\in \BbbZ 

Pr
Y
[\langle X,Y \rangle = k] \leq C\surd 

n
+ 2 - \delta n.
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Our bound implies the result of Chakrabarti and Regev, but it is strictly stronger.
It is also tight in the following senses. As mentioned above, the O( 1\surd 

n
) bound is

tight even when A and B are \{ \pm 1\} n. To see that the bound on the number of bad
directions is sharp,1 observe that if B \subset \{ \pm 1\} n is the set of y's with

\sum n
j=1 yj = 0,

and A \subset \{ \pm 1\} n is the set of x's with
\sum n

j=1 xj = (1 - 2\epsilon )n for some small \epsilon > 0, then

| B| \approx 1\surd 
n
2n \& | A| \approx 2h(\epsilon )n,

where h(\epsilon ) is the binary entropy function. Yet for every x \in A,

Pr[| \langle x, Y \rangle | \leq 1] \geq \Omega ( 1\surd 
\epsilon n
).

The sets A,B do not satisfy the conclusions of Theorem 2, even though | A| \cdot | B| \approx 
2(1+h(\epsilon ))n.

Our methods lead to even stronger conclusions about the distribution of \langle x, Y \rangle .
We prove the following smoothness result.

Theorem 3. For every \beta , \epsilon > 0, there is C > 0 so that the following holds.
Suppose B \subseteq \{ \pm 1\} n is a set with | B| = 2\beta n and Y \in B is uniformly distributed.
Then for all but 2(1 - \beta +\epsilon )n choices of x \in \{ \pm 1\} n, we have

max
k\in \BbbZ 

\bigm| \bigm| Pr[\langle x, Y \rangle = k] - Pr[\langle x, Y \rangle = k + 4
\bigm| \bigm| \leq C

n
.

In particular, if X is independent of Y and uniformly distributed in a set A of size
2(1 - \beta +2\epsilon )n, then

max
k\in \BbbZ 

\bigm| \bigm| Pr[\langle X,Y \rangle = k] - Pr[\langle X,Y \rangle = k + 4
\bigm| \bigm| \leq C

n
+ 2 - \epsilon n.

Theorem 2 is implied by Theorem 3. Indeed, if x is such that

max
k\in \BbbZ 

\bigm| \bigm| Pr[\langle x, Y \rangle = k] - Pr[\langle x, Y \rangle = k + 4
\bigm| \bigm| \leq C

n
,

then for all k and j \leq m,

Pr[\langle x, Y \rangle = k] \leq Pr[\langle x, Y \rangle = k + 4j] +
Cm

n
.

But then we must have (for m \approx 
\surd 
n)

Pr[\langle x, Y \rangle = k] \leq Cm

n
+

1

m
\cdot 

m\sum 
j=1

Pr[\langle x, Y \rangle = k + 4j] \leq Cm

n
+

1

m
\lesssim 

1\surd 
n
.

Theorem 3 is proved in section 4. It is sharp in the following two senses. First,
even for the case A = B = \{ \pm 1\} n, there is a k so that2

| Pr[\langle X,Y \rangle = k] - Pr[\langle X,Y \rangle = k + 4| \geq \Omega ( 1n ).

So, O( 1n ) is the best upper bound possible. Second, if A = \{ x \in \{ \pm 1\} n : n - 
\sum n

j=1 xj =

0\sansm \sanso \sansd 4\} and B = \{ y \in \{ \pm 1\} n : n - 
\sum n

j=1 yj = 0\sansm \sanso \sansd 4\} , then because n = \langle x, y\rangle \sansm \sanso \sansd 2

1This example is due to an anonymous reviewer.
2For an integer k = n

2
 - 

\surd 
n, we have

\bigl( n
k+1

\bigr) 
 - 

\bigl( n
k

\bigr) 
=

\bigl( n
k+1

\bigr) 
n - 2k - 1

n - k
\gtrsim 2n

n
.
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for all x, y \in \{ \pm 1\} n, \langle x, y\rangle \sansm \sanso \sansd 4 is the same for every pair x \in A, y \in B. Thus, there
are sets A,B with | A| = | B| = 2n - 1 so that for all j \in \{ 1, 2, 3\} ,

| Pr[\langle X,Y \rangle = 0] - Pr[\langle X,Y \rangle = j]| = Pr[\langle X,Y \rangle = 0] = \Omega ( 1\surd 
n
).

So, 4 is the minimum gap for which an O( 1n ) upper bound holds.
Our proof builds a flexible framework for proving anticoncentration results in

discrete domains. We use this framework to show that anticoncentration holds in
a wide variety of settings. As we explain below, we show that bounds similar to
those proved in [8, 21, 23, 11] apply even when the underlying distribution is not
uniform. When Y is uniformly distributed, the additive structure of the entries in
the direction vector x controls anticoncentration [10]. If x is unstructured, we get
even stronger anticoncentration bounds for \langle x, Y \rangle . This idea is instrumental when
analyzing random matrices [15, 27].

We choose the direction x from sets of the following form. We call a set A \subset \BbbZ n a
two-cube if A = A1\times A2\times \cdot \cdot \cdot \times An, where each Aj = \{ uj , vj\} consists of two distinct
integers. The differences of A are the numbers dj = uj  - vj for j \in [n].

The following theorem describes three cases that yield different anticoncentration
bounds. It shows that the additive structure of A is deeply related to the bounds
we obtain. The less structured A is, the stronger the bounds are. The first bound
in the theorem holds for arbitrary two-cubes. The second bound holds when all the
differences d1, . . . , dn are distinct. The third bound applies in more general settings
where the set of differences is unstructured. This is captured by the following defini-
tion. A set S \subset \BbbN of size n is called a Sidon set, or a Golomb ruler, if the number of
solutions to the equation s1 + s2 = s3 + s4 for s1, s2, s3, s4 \in S is 4 \cdot 

\bigl( 
n
2

\bigr) 
+ n. In other

words, every pair of integers has a distinct sum. Sidon sets were defined by Erd\"os
and Tur\'an [9] and have been studied by many others since. We say that S \subset \BbbZ is a
weak Sidon set if the number of solutions to the equation \epsilon 1s1 + \epsilon 2s2 = \epsilon 3s3 + \epsilon 4s4
for \epsilon 1, . . . , \epsilon 4 \in \{ \pm 1\} and s1, . . . , s4 \in S is at most 100n2. The number 100 can be
replaced by any other constant; we use it here just to be concrete.

Theorem 4. For every \beta > 0 and \delta > 0, there exists C > 0 such that the
following holds. Let A \subset \BbbZ n be a two-cube with differences d1, . . . , dn. Let B \subseteq \{ \pm 1\} n
be of size 2\beta n and Y be uniformly distributed in B:

1. For all but 2n(1 - \beta +\delta ) directions x \in A,

max
k\in \BbbZ 

Pr
Y

[\langle x, Y \rangle = k] \leq C

\sqrt{} 
ln(n)
n .

2. If d1, . . . , dn are distinct, then for all but 2n(1 - \beta +\delta ) directions x \in A,

max
k\in \BbbZ 

Pr
Y

[\langle x, Y \rangle = k] \leq C

\sqrt{} 
ln(n)
n3 .

3. If \{ d1, . . . , dn\} is a weak Sidon set of size n, then for all but 2n(1 - \beta +\delta ) direc-
tions x \in A,

max
k\in \BbbZ 

Pr
Y

[\langle x, Y \rangle = k] \leq C

\sqrt{} 
ln(n)
n5 .

To see why this is a generalization of past work, observe that if Y \in \{ \pm 1\} n is
uniformly distributed, then for any x \in \BbbZ n, the distribution of \langle x, Y \rangle is identical to
the distribution of \langle X,Y \rangle , where X is obtained by picking uniformly random signs
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for the coordinates of x. The number of directions in the support of X is 2n, and the
theorem above can be applied.

A similar idea proves Theorem 1. The key point is the assumption that B corre-
sponds to a subspace of \BbbF n

2 . Every element of B corresponds to a signing of x that
gives the same distribution for \langle x, Y \rangle . We thus obtained a set A of distinct directions
of size | A| = | B| . Because | A| \cdot | B| \geq 21.02n, we can apply Theorem 4 to prove Theorem
1.

The proof of Theorem 4 is given in section 5. The first bound in Theorem 4
nearly implies Theorem 2. It is weaker by a factor of

\sqrt{} 
ln(n). However, it holds

for all two-cubes, not just the hypercube \{ \pm 1\} n. The second bound almost matches
the sharp O(1/n1.5) bound that holds when (uj , vj) = (j, - j) for each j and Y is

uniform in the hypercube [21, 23]. We believe that the
\sqrt{} 

ln(n) factor is not needed,
but we were not able to eliminate it. The theorem is, in fact, part of a more general
phenomenon. We postpone the full technical description to section 5.

An application to communication complexity. These kinds of anticoncen-
tration bounds are intimately connected to understanding the communication com-
plexity of the gap-hamming function. The gap-hamming function \sansG \sansH = \sansG \sansH n,k :
\{ \pm 1\} n \rightarrow \{ 0, 1,  \star \} is defined by

\sansG \sansH (x, y) =

\left\{     
1, \langle x, y\rangle \geq k,

0, \langle x, y\rangle \leq  - k,

 \star otherwise.

Note that the Hamming distance between x and y is n - \langle x,y\rangle 
2 . This problem is

well studied in communication complexity; for background and definitions, see the
books [18, 20]. Alice gets x, Bob gets y, and their goal is to compute \sansG \sansH (x, y). It
is a promise problem; the protocol is allowed to compute any value when the input
corresponds to a  \star , and it needs to be correct only on the remaining inputs. The
standard choice for k is \lceil 

\surd 
n\rceil , so we write \sansG \sansH n to denote \sansG \sansH n,\lceil 

\surd 
n\rceil .

The gap-hamming problem was introduced by Indyk and Woodruff in the context
of streaming algorithms [12] and was subsequently studied and used in many works
and in various contexts (see [14, 30, 3, 4, 5] and references within). Proving a sharp
\Omega (n) lower bound on its randomized communication complexity was a central open
problem for almost 10 years, until Chakrabarti and Regev [6] solved it using the
anticoncentration bound mentioned above. Later, Vidick [29] and Sherstov [22] found
simpler proofs. The difficulties in proving this lower bound are explained in [6, 22].

The exact gap-hamming function is defined by

\sansE \sansG \sansH n,k(x, y) =

\left\{     
1, \langle x, y\rangle = k,

0, \langle x, y\rangle =  - k,

 \star otherwise.

As before, we write \sansE \sansG \sansH n to denote \sansE \sansG \sansH n,\lceil 
\surd 
n\rceil . The exact gap-hamming function is

easier to compute than gap-hamming; the protocol only needs to worry about inputs
whose inner product has magnitude exactly k. Proving a sharp lower bound on the
randomized communication complexity of \sansE \sansG \sansH was left as an open problem.

One of the difficulties in proving a lower bound for \sansE \sansG \sansH is the following somewhat
surprising property: for infinitely many values of n, the deterministic communication
complexity of \sansE \sansG \sansH n is 2. The reason is that there is a simple deterministic protocol
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of length 2 that computes \langle x, y\rangle \sansm \sanso \sansd 4 for all n. This protocol corresponds to the sets
A,B discussed with regard to Theorem 3 above. The players announce the parities of

their inputs
n - 

\sum n
j=1 xj

2 \sansm \sanso \sansd 2 and
n - 

\sum n
j=1 yj

2 \sansm \sanso \sansd 2. These bits determine \langle x, y\rangle \sansm \sanso \sansd 4.

Indeed, flipping a bit in x changes
n - 

\sum n
j=1 xj

2 \sansm \sanso \sansd 2, and changes \langle x, y\rangle by +2\sansm \sanso \sansd 4.
For example, this deterministic protocol computes \sansE \sansG \sansH n when

\surd 
n is an odd integer,

because then we have  - 
\surd 
n \not =

\surd 
n\sansm \sanso \sansd 4.

We overcome this difficulty and show that \sansE \sansG \sansH is extraordinary in that although it
is a natural problem with communication complexity O(1) for infinitely many values of
n, the randomized communication complexity of \sansE \sansG \sansH n is at least \Omega (n) for infinitely
many values of n. Denote by Un,k the uniform distribution over the set of pairs
(x, y) \in \{ \pm 1\} n \times \{ \pm 1\} n so that \langle x, y\rangle \in \{ \pm k\} .

Theorem 5. There is universal constant \alpha > 0 such that for infinitely many
values of n, any protocol that computes \sansE \sansG \sansH n over inputs from Un,\lceil 

\surd 
n\rceil with success

probability 2/3 must have communication complexity at least \alpha n.

There is a natural reduction between different parameters n, k and from random-
ized protocols to distributional protocols. It turns out that the following theorem is
stronger.

Theorem 6. For every \beta > 0, there are constants n0 > 0 and \alpha > 0 so that
the following holds. Let n, k be positive even integers so that n > n0 and k < \alpha 

\surd 
n.

Any protocol that computes \sansE \sansG \sansH n,k over inputs from Un,k with success probability 2/3
must have communication complexity at least (1 - \beta )n.

Theorems 5 and 6 are proved in section 6. The results are sharp in the following
two senses. First, if k \not = n\sansm \sanso \sansd 2, then \sansE \sansG \sansH n,k is trivial, and if k is odd, then the
deterministic communication complexity of \sansE \sansG \sansH n,k is 2. Second, for every \alpha > 0,
there is \beta > 0 so that if k > \alpha 

\surd 
n, then the randomized communication complexity

of \sansE \sansG \sansH n,k is at most (1  - \beta )n. We sketch a randomized protocol for this here. In
the randomized protocol, Alice gets x, Bob gets y, and the public randomness is a
sequence I1, I2, . . . , Im of independent and identically distributed uniform elements
in [n] for m \leq O( n

\alpha 2 ). Although m is a constant factor larger than n, a standard
coupon collector argument shows that the number of (distinct) elements in the set
S = \{ I1, . . . , Im\} is at most (1 - \beta )n - 1 with probability at least 5

6 . If | S| > (1 - \beta )n - 1,
the parties ``abort,"" and otherwise Alice sends to Bob the value of xs for all s \in S.
Bob uses this data to compute z = 1+ \sanss \sansi \sansg \sansn 

\bigl( \sum m
j=1 xIjyIj

\bigr) 
/2. Bob sends the output of

the protocol z to Alice. Chernoff's bound says that if \sansE \sansG \sansH n,k(x, y) \not =  \star , then Pr[z =
\sansE \sansG \sansH n,k(x, y)] \geq 5

6 . The union bound implies that the overall success probability is at
least 2

3 .

An application to additive combinatorics. Additive combinatorics studies
the behavior of sets under algebraic operations [26]. It has many deep results, and
connections to other areas of mathematics, as well as many applications in computer
science. Our main result can be interpreted as showing that Hamming spheres are
far from being sum-sets. Our results give quantitative bounds on the size of the
intersection of any Hamming sphere with a sum-set.

Replace \{ \pm 1\} by the field \BbbF 2 with two elements. The sum-set of A \subseteq \BbbF n
2 and

B \subseteq \BbbF n
2 is

A+B = \{ x+ y : x \in A, y \in B\} .

If X and Y are sampled uniformly at random from A and B, then X+Y is supported
on A+B.
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The cube \BbbF n
2 is endowed with a natural metric---the Hamming distance \Delta (x, y).

The sphere around 0 is the collection of all vectors with a fixed number of ones in them
(a.k.a. a slice). The inner product I =

\sum 
j( - 1)Xj ( - 1)Yj is similar to the inner product

studied above (here Xj , Yj \in \{ 0, 1\} ). The inner product is related to the Hamming
distance by I(X,Y ) = n  - 2\Delta (X,Y ). We saw that if | A| \cdot | B| > 21.01n, then I is
anticoncentrated. We can conclude that the distribution of the Hamming distance of
X+Y is anticoncentrated. The set A+B is far from any slice. In particular, our results
imply that for almost all choices of a \in A, we have that | (a + B) \cap S| \leq O(| B| /

\surd 
n)

for any slice S.

Techniques. Chakrabarti and Regev's proof uses the deep connection between
the discrete cube and Gaussian space. They proved a geometric correlation inequality
in Gaussian space and then translated it to the cube. Vidick [29] later simplified part
of their argument but stayed in the geometric setting. Sherstov [22] found a third
proof that uses Talagrand's inequality from convex geometry [24] and the ideas of
Babai, Frankl, and Simon from communication complexity [2].

There are several differences between our argument and the ones in [6, 29, 22].
The main difference is that the arguments from [6, 29, 22] are based, in one way
or another, on the geometry of Euclidean space. The arguments in [6, 29] prove a
correlation inequality in Gaussian space and translate it to the discrete world. It
seems that such an argument cannot yield pointwise bounds on the concentration
probability. A common ingredient in [6, 22] is a step showing that every set of large
enough measure contains many almost orthogonal vectors (this is called ``identifying
the hard core"" in [22]). In [29], this part of the argument is replaced by a statement
about a relevant matrix. Our argument does not contain such steps.

Let us briefly discuss our proof at a high level. The proof is based on harmonic
analysis (section 2). The argument consists of two parts. In the first part, we analyze
the Fourier behavior of \langle x, Y \rangle for x fixed and Y random. We are able to identify
a collection of good x's for which the Fourier spectrum of the distribution of \langle x, Y \rangle 
decays rapidly. In the second part, we show that the number of bad x's is small by
giving an explicit encoding of all of them.

Although the proofs of Theorems 3 and 4 follow similar strategies, we were not
able to completely merge them.

2. Harmonic analysis. We are interested in proving anticoncentration for
integer-valued random variables. Harmonic analysis is a natural framework for study-
ing such random variables [11]. Let Y be distributed in \{ \pm 1\} n. Let x \in \BbbZ n be a
direction. Let \theta be uniformly distributed in [0, 1], independently of Y . The idea is to
use

Pr
Y
[\langle x, Y \rangle = k] = \BbbE 

Y

\biggl[ 
\BbbE 
\theta 
[exp(2\pi i\theta \cdot (\langle x, Y \rangle  - k))]

\biggr] 
to bound

max
k\in \BbbZ 

Pr
Y
[\langle x, Y \rangle = k] \leq \BbbE 

\theta 

\biggl[ \bigm| \bigm| \bigm| \BbbE 
Y
[exp(2\pi i\theta \cdot \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \biggr] .( \star )

This inequality is useful for two reasons. First, the left-hand side is a maximum over
k, while the right-hand side is not. So, there is one less quantifier to worry about.
Second, the right-hand side lives in the Fourier world, where it is easier to argue about
the underlying operators. For example, when the coordinates of Y are independent,
the expectation over Y breaks into a product of n simple terms.
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3. The main technical theorem. Our main technical bound is proved in this
section. The following theorem controls the Fourier coefficients in most directions.

Theorem 7. For every \beta > 0 and \delta > 0, there is c > 0 so that the following
holds. Let B \subseteq \{ \pm 1\} n be of size 2\beta n. For each \theta \in [0, 1], for all but 2n(1 - \beta +\delta )

directions x \in \{ \pm 1\} n,\bigm| \bigm| \bigm| \bigm| \BbbE 
Y
[exp(2\pi i\theta \cdot \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \bigm| < 2 exp( - cn sin2(4\pi \theta )).

The rest of this section is devoted to proving the theorem.

3.1. A single direction. In this section, we analyze the behavior of \langle x, Y \rangle for a
single direction x \in \BbbZ n. We also focus on a single Fourier coefficient \BbbE Y [exp(i\eta \langle x, Y \rangle )]
for a fixed angle \eta \in [0, 2\pi ].

We reveal the entropy of Y coordinate by coordinate. To keep track of this
entropy, define the following functions \gamma 1, . . . , \gamma n from B = supp(Y ) to \BbbR . For each
j \in [n], let

\gamma j(y) = \gamma j(y<j) = min
\epsilon \in \{ \pm 1\} 

Pr[Yj = \epsilon | Y<j = y<j ].

To understand the interaction between x and y, we use the following n mea-
surements. For j \in [n  - 1], define \phi j(x, y) to be half of the phase of the complex
number

\BbbE 
Y>j | Yj=1,Y<j=y<j

[exp(i\eta \langle x>j , Y>j\rangle )] \cdot \BbbE 
Y>j | Yj= - 1,Y<j=y<j

[exp(i\eta \langle x>j , Y>j\rangle )].

This quantity is not defined when \gamma j(y) = 0. In this case, set \phi j(x, y) to be zero.
Define \phi n(x, y) to be zero. The number \phi j(x, y) is determined by y<j and x>j .

In the following, we think of x as fixed and of \gamma j and \phi j as random variables that
are determined by the random variable Y .

Lemma 8. For each x \in \BbbR n, every random variable Y over \{ \pm 1\} n, and every
angle \eta \in \BbbR , \bigm| \bigm| \bigm| \bigm| \BbbE 

Y
[exp(i\eta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \bigm| 2 \leq \BbbE 
Y

\left[  \prod 
j\in [n]

(1 - \gamma j sin
2(\phi j + xj\eta ))

\right]  .

Proof. The proof is by induction on n. We prove the base case of the induction
and the inductive step simultaneously. Express\bigm| \bigm| \bigm| \bigm| \BbbE 

Y
[exp(i\eta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \bigm| 2 =

\bigm| \bigm| \bigm| \bigm| \BbbE 
Y1

\biggl[ 
exp(i\eta x1Y1) \cdot \BbbE 

Y>1| Y1

[exp(i\eta \langle x>1, Y>1\rangle )]
\biggr] \bigm| \bigm| \bigm| \bigm| 2

= | p1 exp(i\eta x1)Z1 + p - 1 exp( - i\eta x1)Z - 1| 2 ,

where for \epsilon \in \{ \pm 1\} ,

p\epsilon = Pr[Y1 = \epsilon ] \& Z\epsilon = \BbbE 
Y | Y1=\epsilon 

[exp(i\eta \langle x>1, Y>1\rangle )] .

When n = 1, we have Z1 = Z - 1 = 1. Rearranging,

| p1 exp(i\eta x1)Z1 + p - 1 exp( - i\eta x1)Z - 1| 2

= p21| Z1| 2 + p2 - 1| Z - 1| 2 + p1p - 1(Z1Z - 1 exp(i2\eta x1) + Z1Z - 1 exp( - i2\eta x1))

= p21| Z1| 2 + p2 - 1| Z - 1| 2 + 2p1p - 1| Z1| | Z - 1| cos(2\phi 1 + 2x1\eta ).
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The last equality holds by the definition of \phi 1.
There are two cases to consider. When cos(2\phi 1+2x1\eta ) < 0, we continue to bound

< p21| Z1| 2 + p2 - 1| Z - 1| 2

\leq (p1| Z1| 2 + p - 1| Z - 1| 2)(1 - \gamma 1)

\leq (p1| Z1| 2 + p - 1| Z - 1| 2)(1 - \gamma 1 sin
2(\phi 1 + x1\eta )).

Recall that \gamma 1 and \phi 1 do not depend on Y . When cos(2\phi 1 + 2x1\eta ) \geq 0, using the
inequality a2 + b2 \geq 2ab, we bound

\leq p21| Z1| 2 + p2 - 1| Z - 1| 2 + p1p - 1(| Z1| 2 + | Z - 1| 2) cos(2\phi 1 + 2x1\eta )

= p1| Z1| 2(p1 + p - 1 cos(2\phi + 2x1\eta )) + p - 1| Z - 1| 2(p - 1 + p1 cos(2\phi 1 + 2x1\eta ))

\leq (p1| Z1| 2 + p - 1| Z - 1| 2)(1 - \gamma 1 + \gamma 1 cos(2\phi 1 + 2x1\eta ))

= \BbbE 
Y1

\bigl[ 
| ZY1 | 2

\bigr] 
(1 - 2\gamma 1 sin

2(\phi 1 + x1\eta )).

When n = 1, we have proved the base case of the induction. When n > 1, apply
induction on | Z\epsilon | 2.

3.2. A few bad directions. Lemma 8 suggests proving that the expression\sum 
j

\gamma j sin
2(\phi j + xj\eta )

is typically large. Namely, we aim to show that there are usually many coordinates j
for which both \gamma j and sin2(\phi j + xj\eta ) are bounded away from zero. Our approach is
to explicitly encode the cases where this fails to hold.

Recall that Y is uniformly distributed in a set B of size | B| = 2\beta n. Let 1 \geq \lambda >
1/n be a parameter. Set 0 < \kappa < 1

2 and 1 \geq \tau > 0 to be parameters satisfying the
conditions

H
\Bigl( 

1
log(1/\kappa )

\Bigr) 
= \tau +H (\tau ) = \lambda ,(3.1)

where H is the binary entropy function:

H(\xi ) = \xi log(1/\xi ) + (1 - \xi ) log(1/(1 - \xi )).

The encoding is based on the following two sets:

J(y) = JB,\kappa (y) = \{ j \in [n] : \gamma j(y) \geq \kappa \} 

and

G(x, y) = GB,\kappa ,\theta (x, y) =
\Bigl\{ 
j \in J(y) : sin2(\phi j(x, y) + xj\eta ) \geq sin2(2\eta )

4

\Bigr\} 
.

We start by showing that there are few y's for which | J(y)| is small.

Lemma 9. The number of y \in B with | J(y)| \leq n(\beta  - 3\lambda ) is at most 2n(\beta  - 2\lambda ).

Proof. If 3\lambda > \beta , the statement is trivially true. So, in the rest of the proof,
assume that 3\lambda \leq \beta . Each y \in B with | J(y)| \leq n(\beta  - 3\lambda ) can be uniquely encoded
by the following data:

-- a vector q \in \{ \pm 1\} t with t = \lfloor n(\beta  - 3\lambda )\rfloor and
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-- a subset S \subseteq [n] of size | S| \leq n
log(1/\kappa ) .

Let us describe the encoding. The vector q encodes the values taken by y in the
coordinates J(y). We do not encode J(y) itself, only the values of y in the coordinates
corresponding to J(y). The set S includes j \in [n] if and only if

Pr[Yj = yj | Y<j = y<j ] < \kappa .

Each string y \in B has probability at least 2 - n. This implies that \kappa | S| \geq 2 - n.
We can reconstruct y from q and S by iteratively computing y1, then y2, and so

on, until we get to yn. Whether or not 1 \in J(y) is determined even before we know y.
If 1 \in J(y), then q tells us what y1 is. If 1 \not \in J(y) and 1 \in S, then y1 is the less likely
value between \pm 1. If 1 \not \in J(y) and 1 \not \in S, then y1 is the more likely value. Given the
value of y1, we can continue in the same way to compute the rest of y.

The number of choices for q is at most 2n(\beta  - 3\lambda ). The number of choices for S is
at most 2nH(1/ log(1/\kappa )) = 2\lambda n.

Next, we argue that there are few x's for which there are many y's with small
G(x, y).

Lemma 10. The number of x \in A for which

Pr
Y
[| G(x, Y )| \leq \tau n] \geq 2 - \lambda n

is at most 2n(1 - \beta +6\lambda ).

Proof. The lemma is proved by double-counting the edges in a bipartite graph.
Let \scrX be the set in which we are interested:

\scrX =
\bigl\{ 
x : Pr

Y
[| G(x, Y )| \leq \tau n] \geq 2 - \lambda n

\bigr\} 
.

The left side of the bipartite graph is \scrX , and the right side is B. Connect x \in \scrX to
y \in B by an edge if and only if G(x, y) \leq \tau n. Let E denote the set of edges in this
graph.

First, we bound the number of edges from below. The number of edges that touch
each x \in \scrX is at least 2 - \lambda n| B| . It follows that

| E| \geq 2 - \lambda n \cdot | \scrX | \cdot | B| .

Next, we bound the number of edges from above. By Lemma 9, the number of
y \in B so that | J(y)| \leq n(\beta  - 3\lambda ) is at most 2 - 2\lambda n| B| . We shall prove that the number
of edges that touch each y with | J(y)| > n(\beta  - 3\lambda ) is at most 2n(1 - \beta +4\lambda ). It follows
that

| E| \leq 2 - 2\lambda n \cdot | \scrX | \cdot | B| + | B| \cdot 2n(1 - \beta +4\lambda ).

We can conclude that

2 - \lambda n \cdot | \scrX | \cdot | B| \leq 2 - 2\lambda n \cdot | \scrX | \cdot | B| + | B| \cdot 2n(1 - \beta +4\lambda )

\Rightarrow | \scrX | \leq 2n(1 - \beta +6\lambda ),

since \lambda n > 1.
It remains to fix y so that | J(y)| > n(\beta  - 3\lambda ) and bound its degree from above.

This too is achieved by an encoding argument. Encode each x that is connected to y
by an edge using the following data:
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-- a vector q \in \{ \pm 1\} t with t = \lfloor n(1 - \beta + 3\lambda )\rfloor ,
-- the set G(x, y), and
-- a vector r \in \{ \pm 1\} s with s = \lfloor \tau n\rfloor .

Let us describe the encoding. The vector q specifies the values of x on coordinates
not in J(y). There are at most n - n(\beta  - 3\lambda ) = n(1 - \beta + 3\lambda ) such coordinates. The
size of G(x, y) is at most \tau n. The vector r specifies the values of x in the coordinates
of G(x, y), written in descending order.

The decoding of x from q, S, and r is done as follows. Decode the coordinates of
x in descending order from n to 1. If n \not \in J(y), then we read the value of xn from q.
If n \in J(y) and n \in G(x, y), we decode xn by reading its value from r. If n \in J(y)
and n /\in G(x, y), then

sin2(\phi n(x, y) + xn\eta ) \leq sin2(2\eta )
4 .

The number \phi n(x, y) does not depend on x. The following claim implies that there is
at most one value of xn that satisfies this property.

Claim 11. For all \varphi \in \BbbR and u, v \in \BbbZ ,

max\{ | sin(\varphi + \eta u)| , | sin(\varphi + \eta v)| \} \geq | sin(\eta (u - v))| 
2 .

Proof. We wish to show that the two points on the unit circle of phase \varphi + \eta u
and \varphi + \eta v cannot both be very close to the real line in general. Consider the map

\varphi \mapsto \rightarrow g(\varphi ) = max\{ | sin(\varphi + \eta u)| , | sin(\varphi + \eta v)| \} .

Observe that the minimum of this map is attained when

| sin(\varphi + \eta u)| = | sin(\varphi + \eta v)| ,

since if this is not the case, we can change \varphi by a little to reduce the larger of the two
magnitudes. Now, | sin(\alpha )| = | sin(\beta )| when \alpha +\beta is an integer multiple of \pi /2. Thus,

the two magnitudes are equal exactly when \varphi =  - \eta (u+v)
2 + t\pi /2 for some integer t.

By symmetry, it is enough to consider t \in \{ 0, 1\} , so we obtain that

g(\varphi ) \geq min\{ g( - \eta (u+ v)/2), g( - \eta (u+ v)/2 + \pi /2)\} 
\geq | g( - \eta (u+ v)/2) \cdot g( - \eta (u+ v)/2 + \pi /2)| 
\geq | sin(\eta (u - v)/2) \cdot cos(\eta (u - v)/2)| 

=
| sin(\eta (u - v))| 

2
.

The claim implies that we can indeed reconstruct xn. Given xn, we can similarly
reconstruct xn - 1, since \phi n - 1 depends only on y and xn. Continuing in this way,
we can reconstruct xn - 2, . . . , x1. The total number of choices for q, S, r is at most
2n(1 - \beta +3\lambda )+nH(\tau )+\tau n = 2n(1 - \beta +4\lambda ).

Proof of Theorem 7. Set \lambda = \delta 
6 . By Lemma 8,

\bigm| \bigm| \bigm| \bigm| \BbbE 
Y
[exp(2\pi i\theta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \bigm| \leq 
\sqrt{}     \BbbE 

Y

\left[  exp
\left(   - 

n\sum 
j=1

\gamma j sin
2(\phi j + 2\pi \theta xj)

\right)  \right]  .

Whenever x is such that

Pr
Y
[G(x, Y ) \leq \tau n] < 2 - \lambda n,(3.2)
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we can bound

\BbbE 
Y

\left[  exp
\left(   - 

n\sum 
j=1

\gamma j sin
2(\phi j + 2\pi \theta xj)

\right)  \right]  \leq exp( - \kappa 
4n\tau sin

2(4\pi \theta )) + 2 - \lambda n.

Since
\surd 
a+ b \leq 

\surd 
a+

\surd 
b for a, b \geq 0, for such an x we can bound\bigm| \bigm| \bigm| \bigm| \BbbE 

Y
[exp(2\pi i\theta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \bigm| \leq exp( - \kappa 
8n\tau sin

2(4\pi \theta )) + 2 - \lambda n/2

\leq 2 exp( - cn sin2(4\pi \theta )).

Lemma 10 promises that there are at most 2n(1 - \beta +\delta ) choices for x that does not
satisfy (3.2).

4. Smoothness. To prove smoothness, we use Theorem 7. The constant 4\pi on
the right-hand side of the bound in the theorem corresponds to a step size of 4.

Proof of Theorem 3. Theorem 7 with \delta = \epsilon 
2 promises that for each \theta \in [0, 1], the

size of

A\theta =
\Bigl\{ 
x \in \{ \pm 1\} n :

\bigm| \bigm| \bigm| \BbbE 
Y
[exp(2\pi i\theta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| > 2 exp( - cn sin2(4\pi \theta ))
\Bigr\} 

is at most 2n(1 - \beta +\delta ). For each x, define Sx = \{ \theta \in [0, 1] : x \in A\theta \} .
Fix x such that | Sx| \leq 2 - \delta n. Bound\bigm| \bigm| Pr

Y
[\langle x, Y \rangle = k] - Pr

Y
[\langle x, Y \rangle = k + 4]

\bigm| \bigm| 
=

\bigm| \bigm| \bigm| \BbbE 
Y

\Bigl[ \int 1

0

exp(2\pi i\theta (\langle x, Y \rangle  - k)) - exp(2\pi i\theta (\langle x, Y \rangle  - k  - 4)) d\theta 
\Bigr] \bigm| \bigm| \bigm| 

\leq 
\int 1

0

| exp(4\pi i\theta ) - exp( - 4\pi i\theta )| \cdot 
\bigm| \bigm| \bigm| \BbbE 
Y
[exp(2\pi i\theta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| d\theta 
\leq 2

\int 1

0

| sin(4\pi \theta )| \cdot 
\bigm| \bigm| \bigm| \BbbE 
Y
[exp(2\pi i\theta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| d\theta .
Continue to bound\int 1

0

| sin(4\pi \theta )| \cdot 
\bigm| \bigm| \bigm| \BbbE 
Y
[exp(2\pi i\theta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| d\theta 
\leq 2 - \delta n + 2

\int 1

0

| sin(4\pi \theta )| \cdot exp( - cn sin2(4\pi \theta )) d\theta .

The integral goes around the circle twice, and it is identical in each quadrant. So,\int 1

0

| sin(4\pi \theta )| \cdot exp( - cn sin2(4\pi \theta )) d\theta 

= 8

\int 1/8

0

sin(4\pi \theta ) \cdot exp( - cn sin2(4\pi \theta )) d\theta 

\leq 32\pi 

\int \infty 

0

\theta \cdot exp( - 16cn\theta 2) d\theta 

\leq c1
n

\int \infty 

0

\phi \cdot exp( - \phi 2) d\phi \leq C
n ,



ANTICONCENTRATION AND THE EXACT GAP-HAMMING PROBLEM 1083

where c1, C > 0 depend on \epsilon , and we used \eta 
\pi \leq sin(\eta ) \leq \eta for 0 \leq \eta \leq \pi 

2 .
Finally, because

\BbbE 
x
| Sx| = \BbbE 

\theta 

| A\theta | 
2n \leq 2n( - \beta +\delta ),

by Markov's inequality, the number of x \in \{ \pm 1\} n for which | Sx| > 2 - \delta n is at most
2(1 - \beta +2\delta )n = 2(1 - \beta +\epsilon )n.

5. Anticoncentration in general two-cubes. Now, we move to the setting
where the direction x is chosen from an arbitrary two-cube A \subset \BbbZ n with differences
d1, . . . , dn; our goal is to prove Theorem 4.

The way we measure the structure of A follows the ideas of Hal\'asz [11]. For an
integer \ell > 0, define r\ell (A) to be the number of elements (\epsilon , j) \in \{ \pm 1\} 2\ell \times [n]2\ell that
satisfy

\epsilon 1 \cdot dj1 + \cdot \cdot \cdot + \epsilon 2\ell \cdot dj2\ell = 0.

The smaller r\ell (A) is, the less structured A is.
The theorem below shows that r\ell (A) allows us to control the concentration prob-

ability. More concretely, for C > 0 and \ell > 0, define

RC,\ell (A) =
C\ell r\ell (A)

n2\ell +1/2
+ exp( - n

C ).

Define
RC(A) = inf\{ RC,\ell (A) : \ell \in \BbbN \} .

This is essentially the bound on the concentration probability that Hal\'asz obtained
in [11] when Y is uniform in \{ \pm 1\} n. Our upper bounds are slightly weaker. Let

\mu C(A) = inf
\Bigl\{ 
\mu \in [0, 1] : \exists \nu \in (0, 1] \mu (1+\nu )2 \geq 3 exp( - \nu n

C ) + RC(A)
50

\surd 
\nu 

\Bigr\} 
,

where we adopt the convention that the infimum of the empty set is 1. Before stating
the theorem, let us go over the three examples from Theorem 4:

1. For arbitrary A, since r1(A) \leq O(n2), we get3 \mu C(A) \leq O(
\surd 
lnn\surd 
n

) with \nu =
1

ln(1/RC,1(A)) .

2. When all the differences are distinct, since r1(A) \leq O(n), we get \mu C(A) \leq 
O(n - 1.5

\surd 
lnn) with \nu = 1

ln(1/RC,1(A)) .

3. When \{ \pm d1, . . . ,\pm dn\} is a Sidon set, since r2(A) \leq O(n2), we get \mu C(A) \leq 
O(n - 2.5

\surd 
lnn) with \nu = 1

ln(1/RC,2(A)) .

More generally, when RC(A) is bound from below by some polynomial in 1
n , then

\mu C(A) is at most O(RC(A)
\sqrt{} 

log(4/RC(A))).

Theorem 12. For every \beta > 0 and \delta > 0, there is C > 0 so that the following
holds. Let B \subseteq \{ \pm 1\} n be of size 2\beta n. Let Y be uniformly distributed in B. Let
A \subset \BbbZ n be a two-cube. Then for all but 2n(1 - \beta +\delta ) directions x \in A,

\BbbE 
\theta 

\biggl[ \bigm| \bigm| \bigm| \bigm| \BbbE 
Y
[exp(2\pi i\theta \cdot \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \bigm| \biggr] \leq \mu C(A).

Before moving on, we discuss a fourth extreme example. When Aj = \{ 2j , - 2j\} for
each j \in [n], we have r\ell (A) \leq (2\ell n)\ell . In this case, setting \ell = \Omega (n) gives exponentially

3Here and below, the big O notation hides a constant that may depend on C.
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small anticoncentration with \nu = 1. This result is trivial, but it illustrates that the
mechanism underlying the proof yields strong bounds in many settings.

By ( \star ) from section 2 and the explanation above, we see that Theorem 12 implies
Theorem 4. The rest of this section is devoted to the proof of Theorem 12. The
high-level structure of the proof is similar to that of Theorem 7. However, there are
several new technical challenges that we need to overcome.

The main technical challenge that needs to be overcome has to do with the def-
inition of the set G. The G defined in the previous section depends on the angle \theta .
This is problematic for the proof in the generality we are working with now. So, we
need to find a different set of good coordinates, one that depends only on x and y.
Our solution is based on the following claim, which quantifies the strict convexity of
the map \zeta \mapsto \rightarrow \zeta 1+\nu for \nu > 0. We defer the proof to Appendix A.

Claim 13. For every \kappa > 0, there is a constant c1 > 0 so that the following holds.
For every random variable W \in \{ \pm 1\} such that

min
\bigl\{ 
Pr[W = 1],Pr[W =  - 1]

\bigr\} 
\geq \kappa ,

for every \alpha 1 \geq 2\alpha  - 1 \geq 0, and for every 0 < \nu \leq 1,

\BbbE [\alpha W ]
1+\nu \leq (1 - c1\nu )\BbbE 

\bigl[ 
\alpha 1+\nu 
W

\bigr] 
.

5.1. A single direction. The following lemma generalizes Lemma 8. Recall the
definition of \gamma j , \phi j , and J(y) from sections 3.1 and 3.2.

Lemma 14. For every \kappa > 0, there is a constant c0 > 0 so that the following
holds. For every 0 < \nu \leq 1, every angle \eta \in \BbbR , every direction x \in \BbbZ n, and every
random variable Y over \{ \pm 1\} n,

\bigm| \bigm| \bigm| \bigm| \BbbE 
Y
[exp(i\eta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \bigm| 1+\nu 

\leq \BbbE 
Y

\left[  \prod 
j\in J

(1 - c0\nu sin
2(\phi j + xj\eta )

\right]  .

Proof. The proof is by induction on n. If 1 /\in J , the proof holds by induction.
The base case of n = 1 is trivial. So assume that 1 \in J . Express

\BbbE 
Y
[exp(i\eta \langle x, Y \rangle )] = p1 exp(i\eta x1)Z1 + p - 1 exp( - i\eta x1)Z - 1,

where for \epsilon \in \{ \pm 1\} ,

p\epsilon = Pr[Y1 = \epsilon ] \& Z\epsilon = \BbbE 
Y | Y1=\epsilon 

[exp(i\eta \langle x>1, Y>1\rangle )] .

When n = 1, we have Z1 = Z - 1 = 1. Using the definition of \phi 1,

| p1 exp(i\eta x1)Z1 + p - 1 exp( - i\eta x1)Z - 1| 2

= p21| Z1| 2 + p2 - 1| Z - 1| 2 + p1p - 1(Z1Z - 1 exp(i2\eta x1) + Z1Z - 1 exp( - i2\eta x1))

= p21| Z1| 2 + p2 - 1| Z - 1| 2 + 2p1p - 1| Z1| | Z - 1| cos(2\phi 1 + 2x1\eta )

= p21| Z1| 2 + p2 - 1| Z - 1| 2 + 2p1p - 1| Z1| | Z - 1| 
 - 2p1p - 1| Z1| | Z - 1| (1 - cos(2\phi 1 + 2x1\eta ))

= \BbbE [| ZY1 | ]
2  - 4p1p - 1| Z1| | Z - 1| sin2(\phi 1 + x1\eta ).
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Without loss of generality, assume that | Z1| \geq | Z - 1| . There are two cases to consider.
The first case is that Z1 and Z - 1 are comparable in magnitude: | Z1| \leq 2| Z - 1| . In
this case, we can continue the bound by

\leq \BbbE [| ZY1
| ]2  - 2p1p - 1| Z1| 2 sin2(\phi 1 + x1\eta )

\leq \BbbE [| ZY1
| ]2 (1 - 2\kappa (1 - \kappa ) sin2(\phi 1 + x1\eta )),

since 1 \in J . This gives

| p1 exp(i\eta x1)Z1 + p - 1 exp( - i\eta x1)Z - 1| 1+\nu 

\leq \BbbE [| ZY1
| ]1+\nu 

(1 - 2\kappa (1 - \kappa ) sin2(\phi 1 + x1\eta ))
(1+\nu )/2

\leq \BbbE 
\bigl[ 
| ZY1 | 1+\nu 

\bigr] 
(1 - \kappa (1 - \kappa ) sin2(\phi 1 + x1\eta )),

since the map \zeta \mapsto \rightarrow \zeta 1+\nu is convex.
The second case is when | Z1| > 2| Z - 1| . Recall that we have already shown

| p1 exp(i\eta x1)Z1 + p - 1 exp( - i\eta x1)Z - 1| 2

= \BbbE [| ZY1
| ]2  - 4p1p - 1| Z1| | Z - 1| sin2(\phi 1 + x1\eta )

\leq \BbbE [| ZY1
| ]2 .

Claim 13 implies that

| p1 exp(i\eta x1)Z1 + p - 1 exp( - i\eta x1)Z - 1| 1+\nu 

\leq \BbbE [| ZY1
| ]1+\nu 

\leq (1 - c1\nu ) \cdot \BbbE 
\bigl[ 
| ZY1

| 1+\nu 
\bigr] 

\leq (1 - c1\nu sin
2(\phi j + xj\eta )) \cdot \BbbE 

\bigl[ 
| ZY1

| 1+\nu 
\bigr] 
.

Finally, setting c0 = min\{ c1, \kappa (1 - \kappa )\} , we get a bound that applies in both cases:\bigm| \bigm| \bigm| \bigm| \BbbE 
Y
[exp(i\eta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \bigm| 1+\nu 

\leq (1 - c0\nu sin
2(\phi j + xj\eta )) \cdot \BbbE 

\bigl[ 
| ZY1

| 1+\nu 
\bigr] 
.

This proves the base case of the induction and also allows us to perform the inductive
step.

5.2. An average direction. In this section, we analyze the bound from the
previous section for an average direction X in a two-cube A \subset \BbbZ n. This step has
no analogy in the proof of Theorem 7. To compute the expectation over an average
direction, we reveal the entropy of X coordinate by coordinate in reverse order (from
the nth coordinate to the first one).

In analogy with \gamma 1, . . . , \gamma n, define the functions \mu 1, . . . , \mu n. For each j \in [n], let

\mu j(x) = \mu j(x>j) = min
\epsilon \in Aj

Pr[Xj = \epsilon | X>j = x>j ];

this is well-defined for x in A = supp(X). In analogy with the definition of J(y), let

J \prime (x) = \{ j \in [n] : \mu j(x) \geq \kappa \} .

In this section, we define the set G differently but use the same notation. Let

G(x, y) = GA,B,\kappa (x, y) = J \prime (x) \cap J(y).
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Recall that \gamma j , \phi j , and J(\cdot ) depend on the set B, on y \in B, and on x \in \BbbZ n. In the
following lemma, we fix an arbitrary y \in B and take the expectation over a random
X \in A. We allow G to be a random set that depends on X and let \phi j be a random
variable that depends on X>j .

Lemma 15. For every \kappa > 0 and 0 < c0 \leq 1, there is a constant c > 0 so that
the following holds. For every 0 < \nu \leq 1, every angle \eta \in \BbbR , every B \subseteq \{ \pm 1\} n,
every y \in B, and every random variable X taking values in a two-cube A \subseteq \BbbZ n with
differences dj = uj  - vj,

\BbbE 
X

\left[  \prod 
j\in J

(1 - c0\nu sin
2(\phi j +Xj\eta ))

\right]  1+\nu 

\leq \BbbE 
X

\left[  exp\Bigl(  - c\nu 
\sum 
j\in G

sin2(dj\eta )
\Bigr) \right]  .

Proof. The proof is by induction on n. Recall that \phi j and \mu j are determined by
x>j . In particular, whether or not n \in G(x, y) does not depend on x. If n /\in G(x, y),
the proof holds by induction or is trivially true for n = 1. So assume that n \in G(x).
Start with

\BbbE 
X

\left[  \prod 
j\in J

(1 - c0\zeta sin
2(\phi j +Xj\eta ))

\right]  
= \BbbE 

Xn

\bigl[ 
(1 - c0\zeta sin

2(\phi n +Xn\eta ))ZXn

\bigr] 
,

where for a \in An := \{ un, vn\} ,

Za = \BbbE 
X| Xn=a

\left[  \prod 
j\in J:j<n

(1 - c0 sin
2(\phi j +Xj\eta ))

\right]  .

If n = 1, then Zu = Zv = 1. Assume without loss of generality that Zu \geq Zv. There
are two cases to consider. The first case is that Zu > 2Zv. In this case, Claim 13
implies

\BbbE 
X

\left[  \prod 
j\in J

(1 - c0\nu sin
2(\phi j +Xj\eta ))

\right]  1+\nu 

\leq \BbbE [ZXn ]
1+\nu 

\leq (1 - c1\nu )\BbbE 
\bigl[ 
Z1+\nu 
Xn

\bigr] 
\leq exp( - c1\nu )\BbbE 

\bigl[ 
Z1+\nu 
Xn

\bigr] 
.

The second case is when Zu \leq 2Zv. By Claim 11,

max
\bigl\{ 
| sin(\phi n + u\eta )| , | sin(\phi n + v\eta )| 

\bigr\} 
\geq sin(dn\eta )

2 .

Since \mu n(x) \geq \kappa ,

\BbbE 
Xn

\bigl[ 
(1 - c0\nu sin

2(\phi n +Xn\eta ))ZXn

\bigr] 1+\nu 

\leq ( \BbbE 
Xn

[ZXn
] - \kappa c0\nu 

sin2(dn\eta )
4

Zu

2 )1+\nu 

\leq ( \BbbE 
Xn

[ZXn ] (1 - \kappa c0\nu 
8 sin2(dn\eta )))

1+\nu 

\leq \BbbE 
Xn

\bigl[ 
Z1+\nu 
Xn

\bigr] 
exp( - c0\kappa \nu 

8 sin2(dn\eta )).
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In both cases,

\BbbE 
X

\left[  \prod 
j\in J

(1 - c0 sin
2(\phi j +Xj\eta ))

\right]  1+\nu 

\leq exp( - c\nu sin2(dn\eta )) \BbbE 
Xn

\bigl[ 
Z1+\nu 
Xn

\bigr] 
for some constant c(\kappa , c0) > 0. This proves the base case of the induction and also
allows us to perform the inductive step.

5.3. Putting it together.
Proof of Theorem 12. Let \mu > 0 and 0 < \nu \leq 1 be so that

\mu (1+\nu )2 \geq 3 exp( - \nu n
C ) + RC(A)

50
\surd 
\nu 
;

if no such \mu , \nu exist, then the theorem is trivially true. Let

A0 =

\biggl\{ 
x \in A : \BbbE 

\theta 

\biggl[ \bigm| \bigm| \bigm| \BbbE 
Y
[exp(2\pi i\theta \cdot \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \biggr] \geq \mu 

\biggr\} 
.

Denote the size of A0 by 2\alpha n. Assume towards a contradiction that \alpha + \beta \geq 1 + \delta .
Let X be uniformly distributed in A0, independently of Y and \theta . Let \lambda = \delta 

7 , and let
\kappa be as in (3.1). By Lemma 14,

\BbbE 
X,\theta 

\biggl[ \bigm| \bigm| \bigm| \BbbE 
Y
[exp(i2\pi \theta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| \biggr] (1+\nu )2

\leq \BbbE 
X,\theta 

\biggl[ \bigm| \bigm| \bigm| \BbbE 
Y
[exp(i2\pi \theta \langle x, Y \rangle )]

\bigm| \bigm| \bigm| 1+\nu 
\biggr] 1+\nu 

\leq \BbbE 
X,\theta 

\left[  \BbbE 
Y

\left[  \prod 
j\in J

(1 - c0\nu sin
2(\phi j + xj2\pi \theta )

\right]  \right]  1+\nu 

.

By Lemma 15, we can continue

= \BbbE 
Y,\theta 

\left[  \BbbE 
X

\left[  \prod 
j\in J

(1 - c0\nu sin
2(\phi j + xj2\pi \theta )

\right]  \right]  1+\nu 

\leq \BbbE 
Y,\theta 

\left[   \BbbE 
X

\left[  \prod 
j\in J

(1 - c0\nu sin
2(\phi j + xj2\pi \theta )

\right]  1+\nu 
\right]   

\leq \BbbE 
X,Y,\theta 

[exp( - c\nu D(\theta ))] ,

where
D(\theta ) = Dx,y(\theta ) =

\sum 
j\in G(x,y)

sin2(2\pi \theta dj).

By Lemma 9, | J(y)| > n(\beta  - 3\lambda ) for all but 2n(\beta  - 2\lambda ) choices for y. Similarly, | J \prime (x)| >
n(\alpha  - 3\lambda ) for all but 2n(\alpha  - 2\lambda ) choices of x. By assumption, \beta  - 3\lambda + \alpha  - 3\lambda \geq \lambda .
Since | G(x, y)| \geq | J(y)| + | J \prime (x)|  - n,

Pr[| G(X,Y )| \leq \lambda n]

\leq Pr[| J(Y )| \leq n(\beta  - 3\lambda )] + Pr[| J \prime (X)| \leq n(\alpha  - 3\lambda )]

\leq 2 - 2\lambda n + 2 - 2\lambda n.
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Next, we need a claim that is essentially identical to the one used in the standard
proof of the Hal\'asz inequality [26].

Claim. Let x, y be so that G(x, y) \geq \lambda n. For every 0 \leq \rho \leq \lambda n
4 and integer

\ell > 0,

Pr
\theta 
[D(\theta ) < \rho ] \leq 4r\ell (A)

(\lambda n)2\ell +1/2

\surd 
\rho .

Given the claim, for every x, y so that G(x, y) \geq \lambda n and \ell > 0,

\BbbE 
\theta 
[exp( - c\nu D(\theta ))]

=

\int 1

0

Pr
\theta 
[exp( - c\nu D(\theta )) > t] dt

\leq exp( - c\nu \lambda n
4 ) +

\int 1

exp( - c\nu \lambda n/4)

Pr
\theta 
[D(\theta ) <  - ln t

c\nu ] dt

\leq exp( - c\nu \lambda n
4 ) +

4r\ell (A)

(\lambda n)2\ell +1/2

\int 1

0

\sqrt{} 
 - ln t

c\nu dt.

The integral
\int 1

0

\surd 
 - ln tdt \leq 1 converges to a constant. For an appropriate C =

C(\beta , \delta ) > 0 and \ell > 0, we get the desired contradiction:

\mu (1+\nu )2 \leq 2 \cdot 2 - 2\lambda n + exp( - c\nu \lambda n
4 ) +

4r\ell (A)\surd 
c\nu (\lambda n)2\ell +1/2

< 3 exp( - \nu n
C ) + RC(A)

50
\surd 
\nu 
.

Proof of claim. Let G = G(x, y). Observe that

\BbbE 
\theta 

\bigl[ 
(| G|  - 2D(\theta ))2\ell 

\bigr] 
= \BbbE 

\theta 

\left[  \Bigl( \sum 
j\in G

cos(4\pi dj\theta )
\Bigr) 2\ell 

\right]  
= 2 - 2\ell \BbbE 

\theta 

\left[  \Bigl( \sum 
j\in G

exp(4\pi idj\theta ) + exp( - 4\pi idj\theta )
\Bigr) 2\ell 

\right]  
\leq 2 - 2\ell r\ell (A);

the last equality follows from the fact that of the \leq (2| G| )2\ell terms in the expansion,
the only ones that survive are the ones with phase 0. There are at most r\ell (A) such
terms, and each contributes 1.

By Markov's inequality, since | G| \geq \lambda n,

Pr
\theta 
[D(\theta ) \leq \lambda n

4 ] \leq Pr
\theta 

\Bigl[ 
(| G|  - 2D(\theta ))2\ell \geq (\lambda n2 )2\ell 

\Bigr] 
\leq 2 - 2\ell r\ell (A)

(\lambda n/2)2\ell 
=

r\ell (A)

(\lambda n)2\ell 
.

This proves the claim for \rho = \lambda n
4 .

It remains to prove the claim for \rho < \lambda n
4 . This part uses Kemperman's theo-

rem [16] from group theory (in fact, Kneser's theorem [17] for abelian groups suffices).
Kemperman's theorem says that if a group is endowed with Haar measure \mu , then for
any compact subsets A,B of the group, \mu (AB) \geq min\{ \mu (A) + \mu (B), 1\} .
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Think of [0, 1) as the group \BbbR /\BbbZ . Let

S\rho = \{ \theta \in \BbbR /\BbbZ : D(\theta ) \leq \rho \} .

We claim that the m-fold sum S\rho + S\rho + \cdot \cdot \cdot + S\rho \subseteq \BbbR /\BbbZ is contained in S\rho m2 .
Indeed,

| sin(\eta 1 + \eta 2)| = | sin(\eta 1) cos(\eta 2) + sin(\eta 2) cos(\eta 1)| 
\leq | sin(\eta 1)| + | sin(\eta 2)| ,

and so

sin2(\eta 1 + \cdot \cdot \cdot + \eta m) \leq (| sin(\eta 1)| + \cdot \cdot \cdot + | sin(\eta m)| )2

\leq m(sin2(\eta 1) + \cdot \cdot \cdot + sin2(\eta m)).

It follows that

D(\theta 1 + \theta 2 + \cdot \cdot \cdot + \theta m) \leq m(D(\theta 1) +D(\theta 2) + \cdot \cdot \cdot +D(\theta m))

\leq m2 max\{ D(\theta 1), D(\theta 2), . . . , D(\theta m)\} .

Kemperman's theorem thus implies that

| S\rho m2 | \geq | S\rho + \cdot \cdot \cdot + S\rho | \geq m| S\rho | ,

as long as S\rho m2 is not all of \BbbR /\BbbZ . Since

\BbbE 
\theta 
[D(\theta )] =

\sum 
j\in G

\BbbE 
\theta 

\bigl[ 
sin2(2\pi \theta dj)

\bigr] 
=

| G| 
2

,

we can deduce that | S\lambda n/4| = Pr\theta [D(\theta ) \leq \lambda n
4 ] is strictly less than one. Hence, S\lambda n/4

is not the full group \BbbR /\BbbZ . Setting m to be the largest integer so that m2\rho \leq \lambda n
4 , we

can conclude that

Pr
\theta 
[D(\theta ) \leq \rho ] \leq 1

m Pr
\theta 
[D(\theta ) \leq \rho m2] \leq 1

m Pr
\theta 
[D(\theta ) \leq \lambda n

4 ].

The proofs of the claim and Theorem 12 are complete.

6. The lower bound for \bfsansE \bfsansG \bfsansH . First, we show how to use Theorem 6 to prove
Theorem 5.

Proof of Theorem 5. The main observation is that for every integer t, from a
protocol that solves \sansE \sansG \sansH tn,tk over the distribution Utn,tk, we get a randomized pro-
tocol that solves \sansE \sansG \sansH n,k. The reduction is constructed as follows. Given inputs
x, y \in \{ \pm 1\} n, first they repeat each input bit t times to obtain x\prime , y\prime \in \{ \pm 1\} tn. Then
they sample a uniformly random z \in \{ \pm 1\} tn using shared randomness and compute
x\prime \prime , y\prime \prime \in \{ \pm 1\} tn by setting x\prime \prime 

j = x\prime 
jzj and y\prime \prime j = y\prime jzj for all j \in [n]. Finally, they ran-

domly permute the coordinates of x\prime \prime , y\prime \prime to obtain x\prime \prime \prime , y\prime \prime \prime . The result is that x\prime \prime \prime , y\prime \prime \prime 

are uniformly distributed among all inputs with inner product that is equal to t times
the inner product of x, y. The pair (x\prime \prime \prime , y\prime \prime \prime ) was generated with no communication.
Finally, they run the protocol for \sansE \sansG \sansH tn,tk on x\prime \prime \prime , y\prime \prime \prime .

Now, let \alpha , n0 be the constants from Theorem 6. Let t > 0 and n > n0 be integers
so that both n/t and k =

\surd 
n/t are even and k \leq \alpha 

\sqrt{} 
n/t. By Theorem 6, any protocol

for \sansE \sansG \sansH n/t,k over Un/t,k requires \Omega (n/t) communication. By the reduction above, any
protocol for \sansE \sansG \sansH n = \sansE \sansG \sansH n,

\surd 
n yields a protocol for \sansE \sansG \sansH n/t,k.
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Proof of Theorem 6. Suppose the assertion of the theorem is false. By a standard
argument in communication complexity, the space of inputs can be partitioned into
rectangles R1, . . . , RL with L \leq 2(1 - \beta )n, where the output of the protocol on each R\ell 

is fixed.
Let X,Y be independently and identically distributed uniformly at random in

\{ \pm 1\} n. Let E denote the event that | \langle X,Y \rangle | = k. Define the collection of ``typical""
rectangles as

\BbbT =
\Bigl\{ 
\ell \in [L] : Pr

X,Y
[E| R\ell ] \geq PrX,Y [E]

10 \& Pr
X,Y

[R\ell ] \geq 2 - 
\bigl( 
1 - \beta 

2

\bigr) 
n
\Bigr\} 
.

For \alpha \leq 2, because k = n\sansm \sanso \sansd 2, we have PrX,Y [E] \geq p\surd 
n
for some universal constant

p > 0. The contribution of nontypical rectangles is small:\sum 
\ell \not \in \BbbT 

Pr
X,Y

[R\ell | E] = 1
PrX,Y [E]

\sum 
\ell \not \in \BbbT 

Pr
X,Y

[R\ell ] Pr
X,Y

[E| R\ell ]

< 1
PrX,Y [E]

\Bigl( 
L2 - 

\bigl( 
1 - \beta 

2

\bigr) 
n +

PrX,Y [E]
10

\Bigr) 
< 1

5

for n large enough. Because k =  - k\sansm \sanso \sansd 4 and | k| < \alpha 
\surd 
n, for each \ell \in \BbbT , Theorem 3

with \epsilon \geq \beta 
2 implies that

| Pr
X,Y

[\langle X,Y \rangle = k| R\ell \wedge E] - Pr
X,Y

[\langle X,Y \rangle =  - k| R\ell \wedge E]| 

= | Pr
X,Y

[\langle X,Y \rangle = k| Rj ] - Pr
X,Y

[\langle X,Y \rangle =  - k| Rj ]| \cdot 1
PrX,Y [E| Rj ]

\leq \alpha 
\surd 
n c0

n \cdot 10
\surd 
n

p < 1
6

for \alpha small enough. So, the probability of error conditioned on R\ell for \ell \in \BbbT is at least
5
12 . The total probability of error is at least\sum 

\ell \in \BbbT 
Pr
X,Y

[R\ell | E] \cdot 5
12 > 4

5 \cdot 5
12 = 1

3 .

This contradicts the correctness of the protocol.

Appendix A. Strict convexity.
Proof of Claim 13. If \alpha 1 = 0, then the claim is trivially true. So, assume that

\alpha 1 > 0. Without loss of generality, we may also assume that \kappa > 0 is small enough
so that 4\kappa > exp(\kappa + \kappa 2).

Let p = Pr[W = 1] \in [\kappa , 1 - \kappa ] and \xi = \alpha  - 1

\alpha 1
\in [0, 1

2 ]. So,

\BbbE [\alpha W ]
1+\nu 

\BbbE 
\bigl[ 
\alpha 1+\nu 
W

\bigr] =
(p+ (1 - p)\xi )1+\nu 

p+ (1 - p)\xi 1+\nu 
.

We need to upper bound this ratio by 1 - c1\nu for some constant c1 that depends only
on \kappa . Let

\Phi (\xi , p, \nu ) = (p+ (1 - p)\xi 1+\nu ) - (p+ (1 - p)\xi )1+\nu .

We shall argue that there is a constant c1 = c1(\kappa ) > 0 such that \Phi (\xi , p, \nu ) \geq c1\nu .
This completes the proof, since

(p+ (1 - p)\xi )1+\nu 

(p+ (1 - p)\xi 1+\nu )
= 1 - \Phi (\xi , p, \nu )

(p+ (1 - p)\xi 1+\nu )
< 1 - c1\nu .
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First, we show that for every \nu and \xi , the function \Phi (\xi , p, \nu ) is minimized when
p = \kappa . Consider

\partial \Phi 

\partial p
= 1 - \xi 1+\nu  - (1 + \nu )(p+ (1 - p)\xi )\nu (1 - \xi )

\geq 1 - \xi 1+\nu  - (1 + \nu )(1 - \xi )

\geq \xi (1 + \nu  - \xi \nu ) > 0,

since \xi \nu < 1. So, the minimum is achieved when p = \kappa .
Second, we claim that for every \nu and p, the function \Phi (\xi , p, \nu ) is minimized when

\xi = 1
2 . Consider

\partial \Phi 

\partial \xi 
= (1 - p)(1 + \nu )\xi \nu  - (1 + \nu )(p+ (1 - p)\xi )\nu (1 - p)

= (1 - p)(1 + \nu )(\xi \nu  - (p+ (1 - p)\xi )\nu ) < 0,

since p+ (1 - p)\xi > \xi . So, the minimum is achieved when \xi = 1/2.
Third, we control the derivative with respect to \nu for \xi = 1

2 and p = \kappa . Consider

\partial \Phi 

\partial \nu 
( 12 , \kappa , \nu ) = (1 - \kappa ) ln( 12 )(

1
2 )

1+\nu  - ln( 1+\kappa 
2 )( 1+\kappa 

2 )1+\nu 

\geq ( 12 )
2((1 - \kappa ) ln( 12 ) - ln( 1+\kappa 

2 )(1 + \kappa )1+\nu ),

since \nu \leq 1. The expression

(1 - \kappa ) ln( 12 ) - ln( 1+\kappa 
2 )(1 + \kappa )1+\nu 

only increases with \nu . When \nu = 0, this expression is

ln( 22\kappa 

(1+\kappa )1+\kappa ) \geq ln( 4\kappa 

exp(\kappa (1+\kappa )) ) > 0,

since 4\kappa > exp(\kappa +\kappa 2). This proves that \partial \Phi 
\partial \nu (

1
2 , \kappa , \nu ) > c1 for some constant c1(\kappa ) > 0.

Finally,

\Phi (\xi , p, \nu ) \geq \Phi ( 12 , \kappa , \nu ) =

\int \nu 

0

\partial \Phi 

\partial \nu 
( 12 , \kappa , \zeta ) d\zeta \geq 

\int \nu 

0

c1 d\zeta = c1\nu .

This completes the proof.
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