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Abstract
We study the relationship between communication and information in 2-party communication
protocols when the information is asymmetric. If IA denotes the number of bits of information
revealed by the first party, IB denotes the information revealed by the second party, and C is
the number of bits of communication in the protocol, we show that

one can simulate the protocol using order IA + 4
√
C3 · IB · logC +

√
C · IB · logC bits of

communication,
one can simulate the protocol using order IA · 2O(IB) bits of communication

The first result gives the best known bound on the complexity of a simulation when IA � IB , C3/4.
The second gives the best known bound when IB � logC. In addition we show that if a function
is computed by a protocol with asymmetric information complexity, then the inputs must have
a large, nearly monochromatic rectangle of the right dimensions, a fact that is useful for proving
lower bounds on lopsided communication problems.
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1 Introduction

Can one compress the communication in 2-party communication protocols when the informa-
tion revealed by the messages of the protocol is small? This has been a central question in
communication complexity in recent years. Interest in the question is fueled by applications
to proving lower bounds in communication complexity, which in turn yield lower bounds
for streaming algorithms and data structures among other models. In this work, we obtain
stronger results when one party reveals much less information than the other, a case that
often arises when studying data structures.

Throughout this discussion we assume that there is a known distribution on inputs to a
communication protocol. The question of compressing protocols was posed by Chakrabarti,
Shi, Wirth and Yao [10] (see also [3, 1, 21]), who defined the information cost of the protocol
as the mutual information between the inputs and the messages of the protocol. Barak,
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2 How to Compress Asymmetric Communication

Braverman, Chen and Rao [4] called this measure the external information cost of a protocol,
and proved that if the protocol π has external information cost Iext

π and communication
Cπ, then one can simulate the protocol with O(Iext

π logCπ) bits of communication, which is
optimal upto the factor of logCπ. In addition, [4] identified another measure of information
called the internal information cost of the protocol. This is the amount of information that
is revealed by the parties of the protocol: let IAπ denote the information revealed by the
first party, and IBπ denote the information revealed by the second party. Then the internal
information cost is defined to be Iπ = IAπ + IBπ . Since each of the parties already knows one
of the inputs, the internal information cost is never more than the external information cost,
with equality when the inputs to the parties are independent of each other. This quantity
turns out to be the most interesting for applications to lower bounds. Indeed, Braverman
and Rao [8] showed that the internal information cost required to compute a function is
exactly equal to the amortized communication complexity of the function, so this quantity
has a very natural interpretation, seemingly independent of information theory.

[4] showed that any protocol π can be simulated inO(
√
IπCπ logCπ) bits of communication.

If we wish the simulation to not have a dependence on the communication of the original
protocol, Braverman [6] showed that one can carry out the simulation using communication
complexity 2O(Iπ) (see also [9, 13]), a result that was subsequently proven to be tight by
Ganor, Kol and Raz [11]. In addition, Braverman and Weinstein [9] (see also [13]) showed that
if a function is computed by π, then the space of inputs must contain a nearly monochromatic
rectangle of density 2−O(Iπ), a fact that can be used to prove lower bounds on the information
complexity of computing functions.

In the setting of bounded round communication, Braverman and Rao [8] showed that
a single message can be compressed to its internal information, giving a protocol that
can simulate any r-round protocol with internal information cost I using I +O(r) bits of
communication.

In this work, we generalize and strengthen several of these results, in the case that
IB � IA, C. This case is interesting in part because many lower bounds for data structures
involve proving lower bounds on so called lopsided problems, problems where the optimal
lower bound on communication for one party is much smaller than for the other party(see [15],
[18], [2], [17], [16], [5], [12], [19]). Indeed, our techniques allow us to reprove an important
and well known theorem of Patrascu [18] giving a tight lower bound on the communication
complexity of lopsided disjointness.

Our first theorem is somewhat analogous to the result of [4]. We show

I Theorem 1.1. Every protocol π can be ε-simulated by a protocol with expected communica-
tion O

(
IAπ + 4

√
‖π‖3 · IBπ · log(1/ε) + 4

√
‖π‖3 · IBπ · log ‖π‖+

√
‖π‖ · IBπ · log ‖π‖

)
.

We prove Theorem 1.1 in Section 3. At a high level, we first show that π can be simulated
by a bounded round protocol, and then use the ideas of [8] to get the final simulation.

Our second result is an analogue of [6]:

I Theorem 1.2. π can be simulated in communication complexity IAπ · 2O(IBπ ).

Theorem 1.2 shows that when the information revealed by one of the parties is a constant,
the communication is within a constant factor of the information. We prove Theorem 1.2 in
Section 4. As a corollary to Theorem 1.2, we show the following,

I Corollary 1.3. If π computes f(x, y), then there exists a rectangle S × T and a constant c
such that

Pr[x ∈ S] ≥ 2−O(IAπ ), Pr[y ∈ T |x ∈ S] ≥ 2−O(IBπ )
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and

Pr[f(x, y) = c|(x, y) ∈ S × T ] ≥ 2/3.

One can view Corollary 1.3 as defining an asymmetric notion of discrepancy, and showing
that if the information complexity is small, then the discrepancy must be large. Corollary1.3
is a useful tool to prove lower bounds on lopsided problems. We illustrate this by using the
ideas going into Corollary 1.3 to give optimal lower bounds on the communication complexity
of lopsided disjointness (a bound first proved by Patrascu [18]).

Table 1 summarizes all of the simulation results discussed in this introduction.

Reference Communication Complexity of the Simulation

[4] O
(√

(IA + IB)C logC
)

[4] O
(
(IA + IB) logC

)
(when inputs are independent)

[6] 2O(IA+IB)

[8] IA + IB +O
(√

r · (IA + IB) + 1
)

+ r log(1/ε)

Theorem 1.1 O
(
IAπ + 4

√
‖π‖3 · IBπ · log(1/ε) + 4

√
‖π‖3 · IBπ · log ‖π‖+

√
‖π‖ · IBπ · log ‖π‖

)
Theorem 1.2 IA · 2O(IB)

Table 1 Known bounds on the complexity of simulating r-round protocols with communication
C and information IA, IB

2 Preliminaries

Unless otherwise stated, logarithms in this text are computed base two. Random variables
are denoted by capital letters and values they attain are denoted by lower-case letters. For
example, A may be a random variable and then a denotes a value A may attain and we may
consider the event A = a. Given a = a1, a2, . . . , an, we write a≤i to denote a1, . . . , ai. We
define a>i and a≤i similarly. [`] denotes the set {1, 2, . . . , `}.

We use the notation p(a) to denote both the distribution on the variable a, and the
number Prp[A = a]. The meaning will be clear from context. We write p(a|b) to denote
either the distribution of A conditioned on the event B = b, or the number Pr[A = a|B = b].
Again, the meaning will be clear from context. Given a distribution p(a, b, c, d), we write
p(a, b, c) to denote the marginal distribution on the variables a, b, c (or the corresponding
probability). We often write p(ab) instead of p(a, b) for conciseness of notation. If W is an
event, we write p(W ) to denote its probability according to p. We denote by Ep(a) [g(a)] the
expected value of g(a) with respect to a distributed according to p.

For two distributions p, q, we write |p(a)− q(a)| to denote the `1 distance between the
distributions p and q. We write p ε

≈ q if |p− q| ≤ ε.

I Proposition 2.1. Let p(x), q(x) be two distributions and F be an event such that p(x|F ) ε
≈

q(x). Then if p(F ) ≥ 1− γ, we have p(x)
ε+2γ
≈ q(x).

Proof. The `1 distance between p, q can be expressed as 2 maxT (p(T ) − q(T )), where the
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4 How to Compress Asymmetric Communication

maximum is taken over all subsets of the support of p(x). Let T be the maximizer. Then

|p(x)− q(x)| = 2(p(T )− q(T ))
= (2(p(T |F )p(F ) + p(¬F )p(T |¬F ))− q(T ))
≤ 2(p(T |F )− q(T )) + 2p(¬F )
≤ ε+ 2γ,

as required. J

I Proposition 2.2. Let p(x), q(x) be two distributions and F be an event such that p(x) ε
≈ q(x).

Then if p(F ) ≥ 1− γ ≥ 3/4, we have p(x|F )
ε+4γ
≈ q(x).

Proof. The `1 distance between p(x|F ), q(x) can be expressed as 2 maxT p(T |F ) − q(T ),
where the maximum is taken over all subsets of the support of p(x). Let T be the maximizer.
Then

|p(x|F )− q(x)| = 2(p(T |F )− q(T ))
= 2(p(T, F )/p(F )− q(T ))
≤ 2(p(T )/p(F )− q(T ))
≤ 2(p(T )/(1− γ)− q(T ))
≤ 2(p(T )(1 + 2γ)− q(T ))
≤ ε+ 4γ,

as required. J

The entropy of a random variable A, conditioned on B is defined to be

Hp(A|B) =
∑
a,b

p(ab) log 1
p(a|b)

For a binary random variable A, we denote the entropy of A to be

h(p(0)) = − [p(0) log p(0) + (1− p(0)) log(1− p(0))]

The divergence between two distributions is defined to be

D

(
p

q

)
=
∑
a

p(a) log p(a)
q(a)

The mutual information between two random variables A,B, conditioned on C is defined
to be

Ip(A;B|C) =
∑
a,b,c

p(abc) log p(abc)
p(a|c)p(b|c) .

This is always a non-negative quantity, and is at most log |Supp(A)|. When the underlying
distribution p is clear from the context, we sometimes omit it from the notation. The mutual
information satisfies the chain rule:
I Proposition 2.3 (Chain Rule). I(A1A2;B|C) = I(A1;B|C) + I(A2;B|A1C).

Pinsker’s inequality bounds the `1 distance in terms of the divergence:
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I Proposition 2.4 (Pinsker). D

(
p

q

)
≥ |p− q|2.

An alternate formulation is as follows:
I Proposition 2.5 (Alternate Pinsker). Ep(bc) [|p(a|bc)− p(a|c)|] ≤

√
I(A;B|C).

The chain rule easily gives the following inequality:
I Proposition 2.6 (Data Processing Inequality). If the random variable A determines B, then
I(A;C) ≥ I(B;C).
I Proposition 2.7 ([11]). Let p(ab) be a distribution and q(a) be another. Then

E
p(b)

[
D

(
p(a|b)
p(a)

)]
≤ E
p(b)

[
D

(
p(a|b)
q(a)

)]
.

We shall sometimes deal with distribution on strings of variable length. We have the
following proposition, which follows from Shannon’s source coding theorem:
I Proposition 2.8. Suppose A is a random variable supported on binary strings of length up
to n, such that no string in the support of A is a prefix of another string in the support of A.
Then I(A;B|C) ≤ E [|A|] .

2.1 Communication Complexity
For a more involved introduction to communication complexity, we refer the reader to the
book [14]. Given a protocol π that operates on inputs x, y drawn from a distribution µ using
public randomness1 r and messages m, we write π(xymr) to denote the joint distribution
of these variables. We write ‖π‖ to denote the communication complexity of π, namely the
maximum number of bits that may be exchanged by the protocol in any execution. The
maximum number of alternations between messages sent by Alice and those sent by Bob is
called the number of rounds of the protocol.

Let q(x, y, a) be an arbitrary distribution. We say that a protocol π δ-simulates q, if
there is a function g and a function h such that

π(x, y, g(x, r,m), h(y, r,m)) δ
≈ q(x, y, a, a),

where q(x, y, a, a) is the distribution on 4-tuples (x, y, a, a) where (x, y, a) are distributed
according to q. Thus if π δ-simulates q, the protocol allows the parties to sample a according
to q(a|xy).

If λ is a protocol with inputs x, y, public randomness r′ and messages m′, we say that π
δ-simulates λ if π δ-simulates λ(x, y, (r′,m′)). We say that π simulates λ if π 0-simulates λ.

We say that π computes
a function f(x, y) with success probability 1− δ, if π δ-simulates π(x, y, f(x, y)).
We shall sometimes refer to the expected communication, or expected number of rounds of

a protocol π. We note here that one can always use a bound on the expected communication
or number of rounds to get a bound on the worst case communication, via the following
proposition:

1 In our paper we define protocols where the public randomness is sampled from a continuous (i.e.
non-discrete) set. Nevertheless, we often treat the randomness as if it were supported on a discrete
set, for example by taking the sum over the set rather than the integral. This simplifies notation
throughout our proofs, and does not affect correctness in any way, since all of our public randomness
can be approximated to arbitrary accuracy by sufficiently dense finite sets.
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6 How to Compress Asymmetric Communication

I Proposition 2.9. If π has expected communication c, then it can be γ-simulated by a
protocol with communication c/γ.

Our work relies on ways to measure the information complexity of a protocol (see [4, 7]
and references within for a more detailed overview). The internal information cost [4] of π is
defined to be Iπ(X;M |Y R) + Iπ(Y ;M |XR). This quantity is the sum of the information
learnt by Alice about Bob’s input, IBπ = Iπ(Y ;M |XR), and the information learnt by Bob
about Alice’s input, IAπ = Iπ(X;M |Y R). We will sometimes say that the internal information
is (IA, IB) when we want to consider the values of both quantities instead of the sum.

2.1.1 Results from prior work
I Theorem 2.10 ([8]). For every ε > 0, if π is an a protocol with internal information
cost I and r rounds in expectation, then π can be ε-simulated with expected communication
I +O(

√
r · I + 1) + r log(1/ε).

I Theorem 2.11 ([8]). For any f, µ, ε, let π be the protocol computing f on n independent
pairs of inputs, each drawn from the distribution µ and probability of error is at most ε on each
pair, then there exists a protocol τ computing f on a single input pair with communication
||τ || = ||π|| and information IAτ ≤

IAπ
n , IBτ ≤

IBπ
n

3 Compresing Protocols with Asymmetric Information - I

In this section, we show how to compress protocols to take advantage of situations where the
information learnt by one party is significantly larger than the information revealed by the
other party. We shall prove Theorem 1.1.

We compress the given protocol in two steps. In the first step, we convert the protocol
into a bounded round protocol, while controlling its internal information cost. In the second
step, we apply Theorem 2.10 to conclude the proof. The first step is captured by the following
theorem:

I Theorem 3.1 (Bounded round simulation). Given any protocol π and a parameter k, there
exists a protocol that simulates π with

√
IBπ · ‖π‖+ ‖π‖/k number of rounds in expectation,

and internal information at most ‖π‖ log ‖π‖
k + k

√
IBπ · ‖π‖+ IAπ + 2 log ‖π‖

√
‖π‖ · IBπ + 3.

We use the protocol τ given in figure 12 to simulate π.
Let M denote the output of τ . Then we claim that the distribution of m is correct:

I Lemma 3.2. τ(xyrm) = π(xyrm).

Proof. It is clear that τ(xyr) = π(xyr). For each i ∈ [‖π‖], if mi is to be sent by Alice
in π, then mi = 1 exactly when ρi < π(mi|xrm<i), and if mi is to be sent by Bob in π,
then mi = 1 exactly when ρi < π(mi|yrm<i). Thus, if mi is to be sent by Alice in π,
τ(mi|xyrm<i) = π(mi|xrm≤i) = π(mi|xyrm≤i). On the other hand, if mi is to be sent by
Bob in π, then τ(mi|xyrm<i) = π(mi|yrm<i) = π(mi|xyrm<i). Thus

τ(xyrm) = τ(xyr) ·
‖π‖∏
i=1

τ(mi|xyrm<i) = π(xyr) ·
‖π‖∏
i=1

π(mi|xyrm<i) = π(xyrm).

J

2 Here we do not bother optimizing the communication of τ , since the communication will be eventually
optimized via Theorem 2.10.
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Input: x, y, the inputs to π. A parameter k.
Output: m, r distributed according to π(mr|xy).
Public Randomness: The public randomness r of π, as well as an additional

sequence of uniformly random numbers
r′ = ρ1, . . . , ρ‖π‖ ∈ [0, 1].

Let m be the empty string;
while |m| < ‖π‖ do

Set t = |m|;
for i = t+ 1, . . . ,min{k + t, ‖π‖} do

if mi is sent by Bob in π then Alice checks if ρi < π(mi = 1|xrm<i), and sets
mi = 1 if this is the case. Otherwise she sets mi = 0;
else Alice samples mi privately according to the distribution π(mi|xrm<i);

end
Alice sends the current transcript m to Bob;
Bob computes the smallest index j ∈ [min{k + t, ‖π‖}] such that mj would have
been sent by Bob in π and ρj lies in the interval between π(mj = 1|xrm<j) and
π(mj = 1|yrm<j). Bob can check this using ρj ,m, y, r;
Bob sends j to Alice, or reports that there is no such j;
Alice corrects m if such j is found, by flipping the bit mj , and truncating m = m≤j ;

end
return m;

Figure 1 Protocol τ simulating π

Let L denote the number of mistake indices j reported to Alice by Bob in τ . Then we
have:

I Lemma 3.3. The number of rounds in τ is at most ‖π‖/k + L = 4
√
‖π‖3 · IBπ + L.

Proof. There are L rounds where Alice needs to truncate m. In every other round, at least k
new bits of the messages of π are sampled, so there can be at most ‖π‖/k additional rounds
of communication. J

Given the last lemma, we can bound the number of rounds in the protocol by bounding
L:

I Lemma 3.4. E [L] ≤
√
IBπ · ‖π‖.

Proof. Let Li denote the indicator random variable for the event that the i’th index of the
message is corrected by Bob in τ , so L =

∑‖π‖
i=1 Li. If the i’th message is sent by Alice, then

Li = 0. On the other hand, if it is sent by Bob, by Proposition 2.5, we get

τ(Li = 1) = E
xyrm<i

[|π(mi|xrm<i)− π(mi|yrm<i)|]

= E
xyrm<i

[|π(mi|xrm<i)− π(mi|xyrm<i)|]

≤
√
I(Mi;Y |XRM<i).

The penultimate inequality is true since mi is sampled by Bob in π, hence is independent of
x conditioned on y, r,m<i.

CCC 2015



8 How to Compress Asymmetric Communication

Thus by linearity of expectation and the Cauchy Schwartz inequality, we get

E [L] ≤
‖π‖∑
i=1

√
I(Mi;Y |XRM<i)

≤

√√√√‖π‖ · ‖π‖∑
i=1

I(Mi;Y |XRM<i)

=
√
‖π‖ · I(M ;Y |XR),

where here we used the chain rule (Proposition 2.3) in the last step. J

Lemma 3.4 and Lemma 3.3 together imply that the expected number of rounds in τ is at
most

√
IBπ · ‖π‖+ ‖π‖/k. It only remains to bound the internal information of τ :

I Lemma 3.5. The internal information of τ is at most

‖π‖ log ‖π‖
k

+ k
√
IBπ · ‖π‖+ IAπ + 2 log ‖π‖

√
‖π‖ · IBπ + 3

Proof. Recall that R′ denotes the sequence of numbers ρ1, . . . , ρ‖π‖. The public randomness
of τ consists of R,R′. Let Z denote the messages exchanged in the protocol τ . Let ZA denote
the bits sent by Alice, and ZB denote the bits sent by Bob. Then the information learnt by
Alice can be expressed as

Iτ (ZAZB ;Y |XRR′) = Iτ (ZB ;Y |XRR′) + Iτ (ZA;Y |XRR′ZB), (1)

by the chain rule. The the second term of (1) is 0, since Alice’s messages are independent of
Y , given Bob’s messages and Alice’s inputs. For the first term, we use Proposition 2.8 to
bound it by E [|ZB |]. The total number of rounds of the protocol is at most L+ ‖π‖/k, since
every round where there is no mistake must simulate at least k messages from the protocol.
Thus E [|ZB |] ≤ (E [L] + ‖π‖/k) log ‖π‖ ≤

√
IBπ · ‖π‖ log ‖π‖+ ‖π‖ log ‖π‖

k , by Lemma 3.4.
Next we bound the information learnt by Bob in τ . This can be written

Iτ (Z;X|Y RR′) =
|Z|∑
i=1

Iτ (Zi;X|Z<iY RR′) = E
xyrr′z

 |z|∑
i=1

D

(
zi|xyrr′z<i
zi|yrr′z<i

) (2)

by the chain rule.
I Claim 3.6. For x ∈ [0, 1/2] log(1/(1− x)) ≤ 3x

Proof. Let T = ln(1/(1− x)). The Taylor expansion of ln(1/(1− x)) gives,

T = ln(1/(1− x)) = x+ x2/2 + x3/3 + · · ·
= x+ x(x/2 + x2/3 + x3/4 + · · · )
≤ x+ x · T.

This implies, T ≤ x/(1− x). Since, x ≤ 1/2, T ≤ 2x. Now,

log(1/(1− x)) = ln(1/(1− x))/ln(2) ≤ 1.5ln(1/(1− x)) ≤ 3x,

which follows from the fact that 1/ln(2) ≤ 1.5 J
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I Claim 3.7. If m<j represents the messages of π sampled by the simulation τ at the point
the messages z<i were sent, then

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]



= 0 if Bob sends zi,
≤ 1 if zi is discarded,

≤ D

 π(mj |xyrm<j)

π(mj |yrm<j)

 if Alice sends mj ,

≤

√√√√√D

 π(mj |xyrm<j)

π(mj |xrm<j)

 log ‖π‖+ 3
‖π‖

if Bob sends mj .

Proof. When zi is sent by Bob, both distributions are the same, so the divergence is 0.
To prove the remaining cases, we apply Proposition 2.7. When zi is to be discarded, set

q(zi|yrr′z<i) to be the uniform distribution on bits. When q is the uniform distribution on

the bits, D
(
p

q

)
= 1− h(p(0)) ≤ 1. Since D

(
p

q

)
≤ 1 for any p, the bound follows using

Proposition 2.7. When mj is sent by Alice in π, observe that the distribution of τ(zi|xyrr′z<i)
is exactly the same as the distribution of π(mj |xyrm<j). Set q(zi|yrr′z<i) = π(mj |yrm<j).
The bound follows by Proposition 2.7. For the last case, observe that in τ , zi is determined
by xyrr′m<j , since zi = 1 exactly when ρi < π(mj = 1|xrm<j). Set

b(ρi, y, r, r′,m<j) =
{

1 if ρi < π(mj = 1|yrm<j),
0 otherwise

and

q(zi|yrr′z<i) =
{

1− 1/‖π‖ if b(ρi, y, r, r′,m<j) = zi,
1/‖π‖ otherwise.

When ρi is in between π(mj = 1|yrm<j) and π(mj = 1|xrm<j),

D

(
τ(zi|xyrr′z<i)
q(zi|yrr′z<i))

)
= log(1/(1/‖π‖)) = log ‖π‖,

for all zi with positive probability. When ρi is not in between those two quantities,

D

(
τ(zi|xyrr′z<i)
q(zi|yrr′z<i))

)
≤ log 1

1− 1/‖π‖ ≤ 3/‖π‖.

which follows from Claim 3.6 and the assumption that ‖π‖ > 2. It is safe to assume that
‖π‖ > 2, as the compression is trivial for protocols with communication at most 2.

The probability of the first case is at most

√√√√D

(
π(mj |xyrm<j)
π(mj |yrm<j)

)
, by Proposition 2.4. J

Now given Z, call i good if the message Zi does not correspond to a mistake and is not
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10 How to Compress Asymmetric Communication

discarded by the simulation. Let G denote the set of good indices. We have,

E
xyrr′z

 |z|∑
i=1

D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)
= E
xyrz

 |z|∑
i=1

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]
= E
xyrz

[∑
i∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]

+ E
xyrz

[∑
i/∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]

For every Z, at most k · L indices are discarded. This is because, at most k indices are
discarded for every round with a mistake. Then by Claim 3.7,

E
xyrz

[∑
i/∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]
≤ kE [L]

For every index i ∈ G, by Claim 3.7

E
xyrz

[∑
i∈G

E
r′|xyrz<i

[
D

(
τ(zi|xyrr′z<i)
τ(zi|yrr′z<i)

)]]

≤ E
π(mxyr)

[
D

(
π(mj |xyrm<j)
π(mj |yrm<j)

)]

+ E
π(mxyr)

‖π‖∑
j=1

√√√√D

(
π(mj |xyrm<j)
π(mj |xrm<j)

)
log ‖π‖+ 3

‖π‖


= E
π(mxyr)

[
D

(
π(mj |xyrm<j)
π(mj |yrm<j)

)]
+ log ‖π‖ E

π(mxyr)

‖π‖∑
j=1

√√√√D

(
π(mj |xyr)
π(mj |xr)

)+ 3

≤ E
π(mxyr)

[
D

(
π(mj |xyrm<j)
π(mj |yrm<j)

)]

+ log ‖π‖

√√√√√‖π‖ · E
π(mxyr)

‖π‖∑
j=1

D

(
π(mj |xyr)
π(mj |xr)

)+ 3

= IAπ + log ‖π‖
√
‖π‖ · IBπ + 3,

where the penultimate inequality follows from an application of Cauchy Schwartz inequality,
and the last inequality follows from the definition of IAπ , IBπ . J

I Corollary 3.8. Given any protocol π, there exists a protocol that simulates π with 2 ·
4
√
‖π‖3 · IBπ number of rounds in expectation, and internal information at most

IAπ + 4
√
‖π‖3 · IBπ + 4

√
‖π‖3 · IBπ · log ‖π‖+ 2 ·

√
‖π‖ · IBπ · log ‖π‖+ 3.

Proof. Set k = 4
√
‖π‖/IBπ . By Theorem 3.1, we get that the expected number of rounds

of the simulation is at most
√
IBπ · ‖π‖+ 4

√
‖π‖3 · IBπ ≤ 2 4

√
‖π‖3 · IBπ ( since IBπ ≤ ‖π‖) and
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the internal information is at most IAπ + 4
√
‖π‖3 · IBπ + 4

√
‖π‖3 · IBπ · log ‖π‖+ 2 ·

√
‖π‖ · IBπ ·

log ‖π‖+ 3 J

Applying Theorem 2.10 to the simulation guaranteed by Corollary 3.8, gives a simulation
with communication bounded by

O

(
IAπ + 4

√
‖π‖3 · IBπ · log(1/ε) + 4

√
‖π‖3 · IBπ · log ‖π‖+

√
‖π‖ · IBπ · log ‖π‖

)
,

as required in Theorem 1.1.

4 Compresing Protocols with Asymmetric Information - II

In this section, we prove Theorem 1.2, (i.e) we show how to simulate π with communication
IAπ · 2O(IBπ ).

I Theorem 4.1. Let U be a finite set. Let pA, pB , qA, qB : U → [0, 1] be such that ∀z ∈ U ,
µ(z) = pA(z)qB(z), p(z) = pA(z)pB(z) and q(z) = qA(z)qB(z) are distributions. There exists
a randomized protocol with inputs pA, pB to Alice and qA, qB to Bob, such that

Both Alice and Bob either accept and compute (possibly different) samples z ∈ U , or abort
the protocol.

Pr[Both parties accept] ≥ 2
−O

(
D

(
µ

q

)
+1

)
.

Given that both parties accept, the distribution of their samples is 0.35-close in `1 distance
to the distribution where both parties sample the same sample from µ(z).

Simulation π

Public randomness: A sequence of L = 10·|U |·220(IA+1) tuples (zi, ai, bi) ∈ U×
[
0, 220(IA+1)

]
×[

0, 220(IB+1)
]
, for i = 1, 2, . . . , L, and a random function h : [L]→

[
240(IA+1)

]
.

1. Alice computes the set A =
{
i

∣∣∣ai ≤ pA(zi), bi ≤ pB(zi) · 220(IB+1)
}
, and Bob computes the

set B =
{
i
∣∣∣ai ≤ qA(zi) · 220(IA+1), bi ≤ qB(zi)

}
.

2. Alice computes i∗, the the smallest element of A.
3. Alice sends h(i∗) to Bob.
4. If there is a unique i ∈ B such that h(i) = h(i∗), Bob accepts and assumes that the outcome

of the protocol is zi. Otherwise Bob aborts.

Figure 2 The sampling procedure

Let IB = D

(
µ

p

)
and IA = D

(
µ

q

)
. Figure 2 describes the randomized protocol

promised by the lemma. Let

G =
{
z
∣∣∣220(IB+1) · p(z) ≥ µ(z), 220(IA+1) · q(z) ≥ µ(z)

}
.

We need the following simple claim, which was proved in [6].
I Claim 4.2. µ(G) ≥ 9

10 .

CCC 2015



12 How to Compress Asymmetric Communication

We proceed with the analysis of the simulation.

I Lemma 4.3. Pr[i∗is defined] ≥ 1− e−11.

Proof. For each i, we have

Pr[i ∈ A] =
∑
z∈U

pA(z)pB(z)
|U | · 220(IA+1)

= 1
|U | · 220(IA+1)

∑
z∈U

pA(z)pB(z)

= 1
|U | · 220(IA+1) . (since p is a distribution)

The probability that i∗ is not defined is exactly equal to the probability that i /∈ A for all
1 ≤ i ≤ L. Thus,

Pr[i∗ not defined] =
(

1− 1
|U | · 220(IA+1)

)L
≤ e−L/|U |·2

20(IA+1)
. (using (1− x)n ≤ e−xn, x ≥ 0)

≤ e−10.

J

I Lemma 4.4. For z ∈ U ,

Pr[zi∗ = z & i∗ ∈ B|i∗ is defined] ≤ µ(z)
220(IB+1) ,

with equality when z ∈ G.

Proof.

Pr[zi∗ = z & i∗ ∈ B|i∗ is defined] = Pr[zi∗ = z|i∗ is defined] · Pr[i∗ ∈ B|zi∗ = z]. (3)

We have

Pr[zi∗ = z|i∗ is defined] = pA(z)pB(z)2−20(IA+1)∑
z∈U pA(z)pB(z)2−20(IA+1)

= pA(z)pB(z). (4)

Let us now analyze Pr[i∗ ∈ B|zi∗ = z]. If zi∗ = z, we have ai∗ ≤ pA(z), bi∗ ≤ pB(z)220(IB+1).
Thus Pr[i∗ ∈ B|zi∗ = z] is exactly

Pr[i∗ ∈ B|z∗i = z] = min
{

qB(z)
220(IB+1)pB(z)

, 1
}
·min

{
220(IA+1)qA(z)

pA(z) , 1
}

≤ qB(z)
220(IB+1)pB(z)

. (5)

Equality holds in (5) when z ∈ G, since for such z, qB(z)
220(IB+1)pB(z)

≤ 1 and 220(IA+1)qA(z)
pA(z) ≥ 1.

Therefore, using (4),(5),(3)

Pr[zi∗ = z & i∗ ∈ B] ≤ pA(z)pB(z) · qB(z)
220(IB+1)pB(z)

= µ(z)/220(IB+1),

with equality for z ∈ G. J
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When i∗ is defined, let E denote the event that i∗ is the only possible index that is in B
and consistent with the message Bob receives, namely: ∀i 6= i∗, i ∈ B ⇒ h(i) 6= h(i∗). Then
we have

I Lemma 4.5. Pr[¬E|i∗ is defined] ≤ L2−40(IA+1)−20(IB+1)

|U |Pr[i∗ is defined] .

Proof. Given that i∗ is defined, probability that i ∈ B and h(i) = h(i∗) is at most
Pr[i∈B]·2−40(IA+1)

Pr[i∗ is defined] . Thus,

Pr[i ∈ B] · 2−40(IA+1)

Pr[i∗ is defined] = 1
|U | · Pr[i∗ is defined] ·

∑
z∈U

qA(z) · 2−20(IB+1)qB(z)2−40(IA+1)

≤ 2−40(IA+1)−20(IB+1)

|U | · Pr[i∗ is defined] .

Thus, by the union bound, the probability than any such i is accepted by Bob is at most
L2−40(IA+1)−20(IB+1)

|U |Pr[i∗ is defined] J

I Lemma 4.6. Pr[i∗ ∈ B|i∗ is defined] ≥ µ(G) · 2−20(IB+1)

Proof.

Pr[i∗ ∈ B|i∗ is defined] =
∑
z∈|U |

Pr[zi∗ = z, i∗ ∈ B|i∗ is defined]

≥
∑
z∈G

µ(z)/220(IB+1) (by Lemma 4.4)

= µ(G) · 2−20(IB+1). (by Lemma 4.3)

J

I Lemma 4.7. Pr[Both parties accept|i∗is defined] ≥ 8
10 · 2

−20(IB+1)

Proof.

Pr[Both parties accept|i∗is defined]
≥ Pr[i∗ ∈ B|i∗ is defined]− Pr[¬E|i∗is defined]

≥ µ(G)/220(IB+1) − Pr[¬E|i∗is defined] (by Lemma 4.6)

≥ 9
10 · 2

−20(IB+1) − 10
1− e−10 · 2

−20(IA+1)−20(IB+1) (by Lemma 4.5, Claim 4.2)

>
8
10 · 2

−20(IB+1).

where the last inequality follows from IA ≥ 0. J

I Lemma 4.8. Pr[Both parties accept] ≥ 7
10 · 2

−20(IB+1).

Proof.

Pr[Both parties accept] = Pr[i∗is defined] Pr[Both parties accept|i∗is defined]

≥ 8(1− e−10)
10 · 220(IB+1) >

7
10 · 2

−20(IB+1),

which follows from Lemma 4.7 and Lemma 4.3. J

CCC 2015
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I Lemma 4.9. |π(zi∗ = z|i∗ ∈ B)− µ(z)| ≤ 2(1− µ(G))/µ(G).

Proof. By Lemma 4.4,

Pr[i∗ ∈ B|i∗ is defined] · Pr[zi∗ = z|i∗ ∈ B] ≤ µ(z) · 2−20(IB+1).

Combining the above inequality and Lemma 4.6,

Pr[zi∗ = z|i∗ ∈ B] ≤ µ(z)/µ(G).

For any set T ⊆ U ,∑
z∈T

π(zi∗ = z|i∗ ∈ B)− µ(z) ≤
∑
z∈T

µ(z)/µ(G)− µ(z) ≤ (1− µ(G))/µ(G),

where the last inequality follows from µ being a distribution. Therefore,

|π(zi∗ = z|i∗ ∈ B)− µ(z)| = 2 max
T

(∑
z∈T

π(zi∗ = z|i∗ ∈ B)− µ(z)
)
≤ 2(1− µ(G))/µ(G).

J

I Lemma 4.10.

Pr[¬E|i∗ ∈ B] < 0.01, Pr[¬E|Both parties accept] < 0.01

Proof. We have,

Pr[¬E|i∗ ∈ B] = Pr[¬E|i∗ ∈ B, i∗ is defined]

= Pr[¬E & i∗ ∈ B|i∗ is defined]
Pr[i∗ ∈ B|i∗ is defined]

≤ Pr[¬E|i∗is defined]
Pr[i∗ ∈ B|i∗ is defined]

≤ 10
µ(G)(1− e−10) · 2

−20(IA+1)

< 0.01.

The penultimate inequality follows from Lemmas 4.5, 4.6. Similarly,

Pr[¬E|Both parties accept] = Pr[¬E|Both parties accept, i∗ is defined]

= Pr[¬E & Both parties accept|i∗is defined]
Pr[Both parties accept|i∗is defined]

≤ Pr[¬E|i∗is defined]
Pr[Both parties accept|i∗is defined]

≤ 100
8(1− e−10) · 2

−20(IA+1)

< 0.01.

The penultimate inequality follows from Lemmas 4.5, 4.7. J

I Lemma 4.11. |µ(z)− π(z|Both parties accept)| < 0.35
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Proof. Applying Proposition 2.2 twice gives,

|µ(z)− π(z|Both parties accept)|
≤ |π(zi∗ = z|i∗ ∈ B, E)− µ(z)|+ 4 Pr[¬E|Both parties accept]
≤ |π(zi∗ = z|i∗ ∈ B)− µ(z)|+ 4 Pr[¬E|i∗ ∈ B] + 4 Pr[¬E|Both parties accept].

Applying Lemmas 4.9, 4.10 give,

|µ(z)− π(z|Both parties accept)| < 2(1− µ(G))/µ(G) + 0.04 + 0.04 < 0.35,

as required. J

In Theorem 4.1, property 2 is guaranteed by Lemma 4.8 and property 3 is guaranteed by
Lemma 4.11.

4.1 Proof of Theorem 1.2
Define U to be the set of all transcripts of protocol π. For every m ∈ U , define πx(m) =
π(m|x), πy(m) = π(m|y), πxy(m) = π(m|xy). We have,

Iπ(X;M |Y R) = Exyr

[
D

(
πxy(m|r)
πy(m|r)

)]
.

Define Γ =
{

(x, y, r)

∣∣∣∣∣D
(
πxy(m|r)
πy(m|r)

)
≤ 50 · IAπ ,D

(
πxy(m|r)
πx(m|r)

)
≤ 50 · IBπ

}
. By an

union bound and Markov’s inequality,

Pr[(x, y, r) ∈ Γ] ≥ 24
25 (6)

The following observations are useful.

π(m|xyr) =
∏

i:mi sent by Alice
π(mi|xyrm<i) ·

∏
i:mi sent by Bob

π(mi|xyrm<i)

=
∏

i:mi sent by Alice
π(mi|xrm<i) ·

∏
i:mi sent by Bob

π(mi|yrm<i),

where the last inequality follows from the fact that Alice’s messages depend only on x, the
public randomness and the previous messages and Bob’s messages depend only on y, public
randomness and the previous messages. Similar expressions can be written for π(m|xr) and
π(m|yr).

We can now apply Theorem 4.1, with µ(m) = πxy(m|r), p(m) = πx(m|r), q(m) = πy(m|r).
The theorem implies that for every (x, y, r) ∈ Γ, there exists a constant c and a randomized
protocol τ with communication O(IAπ ) that samples a a transcript m such that

|π(m)− τ(m|Both parties accept)| < 0.35,Pr[Both parties accept in τ ] ≥ 2−c(I
B
π +1) (7)

I Lemma 4.12. Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)| < 1
25 + 0.35

Proof. τ guarantees that for (x, y, r) ∈ Γ, |π(m|xyr)−τ(m|xyr,Both parties accept)| < 0.35.
Therefore,

Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)|
≤ Pr[(x, y, r) ∈ Γ] max

(x,y,r)∈Γ
|π(z|xyr)− τ(z|xyr,Both parties accept)|+ Pr[(x, y, r) /∈ Γ]

< 0.35 + 1
25 ,

where the last inequality follows from (6). J

CCC 2015
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Input: x, y, the inputs to π. A parameter t.
Public Randomness: Sequence of strings L1, · · · , Lt, r. A random transcript m′.
i=1;
while i ≤ t do

Run protocol τ with Li as the public random tape;
if τ Accepts then return the output of τ ;
else i=i+1;

end
return m′;

Figure 3 Protocol Σ simulating π

We now show a simulation of π. Run Σ shown in Figure 3 with parameter t = 10 ·2c(IB+1).
We have,

CC(Σ) ≤ t · CC(τ) = 10 · IA2c(I
B+1).

Let J be the value of i at the time of termination of Σ.

I Lemma 4.13. Pr[J = t+ 1] ≤ 1/25 + e−10

Proof. Conditioned on (x, y) ∈ Γ, the probability that τ does not accept in iteration i equals
1− Pr[Both parties accepts]. Therefore,

Pr[J = t+ 1|(x, y, r) ∈ Γ]

= (1− Pr[Both party accepts in τ ])t

≤
(

1− 2−c(I
B+1)

)t
(by (7))

≤ e−10 ((1− x)n ≤ e−xn, x > 0). (8)

Now,

Pr[J = t+ 1]
= Pr[(x, y, r) ∈ Γ] · Pr[J = t+ 1|(x, y, r) ∈ Γ]

+ Pr[(x, y, r) /∈ Γ] · Pr[J = t+ 1|(x, y, r) /∈ Γ]
≤ e−10 + 1/25,

where the last inequality follows from (6), (8). J

Let us now analyze the `1 distance between Σ and π.

I Lemma 4.14. |Σ− π| < 3/25 + 2e−10 + 0.35

Proof. Conditioning on J ≤ t, we know that Σ’s output corresponds to the output of τ .
Therefore,

|π(m)− Σ(m|J ≤ t)| = Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)|

By Proposition 2.1 and Lemma 4.13,

|Σ− π| ≤ 2 Pr[J = t+ 1] + |π(z)− Σ(z|J ≤ t)|
= 2 Pr[J = t+ 1] + Eπ(xyr)|π(m|xyr)− τ(m|xyr,Both parties accept)
< 2/25 + 2e−10 + 1/25 + 0.35,

where the last inequality follows from Lemma 4.13 and Lemma 4.12. J
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This concludes the proof of Theorem 1.2.

4.2 A Rectangle Lower Bound
In this subsection, we show a corollary to Theorem 1.2. The simulation of Theorem 1.2
shows the existence of almost monochromatic rectangles of the right dimension.

I Corollary 4.15. Given a protocol π with internal information (IA, IB) and inputs drawn
from µ, there exists a zero communication protocol for sampling a message m such that,

µ(Alice Accepts) = 2−O(IA)

µ(Bob Accepts|Alice Accepts) ≥ 2−O(IB)

Moreover, given that both parties accept, the distribution of their samples is δ−close in `1
distance to the distribution where both parties sample consistently from π(m).

Proof. First we wish to fix the public randomness of π, such that the internal information
and the error bound are within limit. We have,

IA = E
r

[I(M ;X|Y r)] , IB = E
r

[I(M ;Y |Xr)] , E
r

[µ(π(x, y) 6= f(x, y)|r)] ≤ ε

By Markov’s inequality,

Pr
r

[I(M ;X|Y r) > 3IA] < 1/3

Pr
r

[I(M ;Y |Xr) > 3IB ] < 1/3

Pr
r

[µ(π(x, y) 6= f(x, y)|r) > 3ε] < 1/3.

Therefore, by an union bound, there exits an r such that

I(M ;X|Y r) ≤ 3IA, I(M ;Y |Xr) ≤ 3IB , µ(π(x, y) 6= f(x, y)|r) ≤ 3ε

After fixing r, we now have a protocol with internal information at most (3IA, 3IB) and error
at most 3ε and no public randomness.

The following observations are useful.

π(m|xy) =
∏

i:mi sent by Alice
π(mi|xym<i) ·

∏
i:mi sent by Bob

π(mi|xym<i)

=
∏

i:mi sent by Alice
π(mi|xm<i) ·

∏
i:mi sent by Bob

π(mi|ym<i),

where the last inequality follows from the fact that Alice’s messages depend only on x, the
public randomness and the previous messages and Bob’s messages depend only on y, public
randomness and the previous messages.

Define,

πA(m|x) =
∏

i:mi sent by Alice
π(mi|xm<i); πB(m|y) =

∏
i:mi sent by Bob

π(mi|ym<i)

In a similar fashion define,

π′A(m|x) =
∏

i:mi sent by Bob
π(mi|ym<i); π′B(m|y) =

∏
i:mi sent by Alice

π(mi|ym<i)

We are now in a position to describe the simulation. Consider the simulation τ in Figure
4(take c to be a large constant):

Let L denote the sequence of L tuples in the public tape. Theorem 1.2 implies,

CCC 2015
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Simulation

Public randomness: A sequence of L = 10·|U |·2c(IA+1) tuples (zi, ai, bi) ∈M×
[
0, 2c(IA+1)

]
×[

0, 2c(IB+1)
]
, for i = 1, 2, . . . , L, r and a random function h : [L]→

[
22c(IA+1)

]
, whereM is the

set of all transcripts of π.

1. Alice computes the set A =
{
i

∣∣∣ai ≤ πA(zi|xr), bi ≤ π′A(zi|xr) · 2c(IB+1)
}
, and Bob computes

the set B =
{
i

∣∣∣ai ≤ π′B(zi|yr) · 2c(IA+1), bi ≤ πB(zi|yr)
}
.

2. Alice computes i∗, the the smallest element of A.

3. Alice accepts if h(i∗) = 02c(IA+1).

4. If there is a unique i ∈ B such that h(i) = 02c(IA+1), Bob accepts and assumes that the
outcome of the protocol is zi. Otherwise Bob aborts.

Figure 4 The sampling procedure

EL,h [µ(Alice Accepts)] ≥ 2−O(IA) (this follows from h being a random hash function)
EL,h [µ(Bob Accepts|Alice Accepts)] ≥ 2−O(IB)

Given both parties accept, the distribution of the samples is δ/3−close in `1 distance to
the distribution where both parties sample the same from π(x, y), for all constants δ > 0.

The third condition translates to, EL,h [|π(m|xy)− τ(m|xy,Both parties accept)|] ≤ δ/3.
This implies that there exists a fixing of L, h such that

µ(Alice Accepts) ≥ 2−O(IA), µ(Bob Accepts|Alice Accepts) ≥ 2−O(IB)

|π(m|xy)− τ(m|xy,Both parties accept)| ≤ δ.

(the argument is similar to the one used for fixing of public randomness of π. One applies 3
Markov inequalities followed by an union bound) This completes the proof of the corollary. J

I Corollary 4.16 (Restated). Given any randomized protocol π computing a boolean function
f , with internal information (IA, IB), there exists sets S, T and z ∈ {0, 1} such that

µ(x ∈ S) ≥ 2−O(IA), µ(y ∈ T |x ∈ S) ≥ 2−O(IB)

µ(f(x, y) 6= z|S × T ) ≤ 3ε+ δ,

where ε is the error incurred by π under µ and δ > 0 being any constant.

Proof. The protocol in Corollary 4.15 is deterministic. Any transcript in a deterministic
protocol corresponds to a rectangle. Therefore, when both parties accepting, it exactly
corresponds to a rectangle S × T with

µ(x ∈ S) ≥ 2−O(IA), µ(y ∈ T |x ∈ S) ≥ 2−O(IB).

In addition, conditioning on the event that both parties accept, the output z ∈ {0, 1} of
the protocol (the value of the function that both parties agree on) has the property that
µ(f(x, y) 6= z) ≤ 3ε+ δ, where ε is the error incurred by the the protocol π under µ. J
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4.2.1 Application - Lower Bounds for Lopsided Set Disjointness
In this subsection, we use the rectangle lower bound to reprove the well known lower bound
for lopsided set disjointness by Pǎtraşcu in [18]. The problem of lopsided set disjointness is
defined as follows,

I Definition 4.17. The set disjointness function on sets x, y ⊆ [NB] is

SD(x, y) =
{

1 if x ∩ y = ∅,
0 otherwise.

Lopsided set disjointness(LSD) is a restricted version of the problem where we are promised
that x, y ⊆ [NB] and |x| = N . The following bound proved by Patrascu [18] has found many
applications to proving data structure lower bounds. The bound was shown to be tight by
Saglam [20].

I Theorem 4.18 ([18]). For any protocol computing LSD with error probability ε, one of the
following holds,

Alice communicates at least γN logB bits.
Bob communicates at least NB1−cγ bits.

where c = c1 + 1 + 1
γ logB (log 2c1 − log (1− h(12ε+ δ))), for a constant c1 and B = Ω(1).

Here we give a slightly different proof of Theorem 4.18, using Corollary 4.15. The universe
is taken to be

(
2[B])N , the cartesian product of N power sets of [B]. (x, y) ∈

(
2[B], 2[B]) is

restricted tuples with |x| = 1 and y takes exactly one element from the pair (2k, 2k + 1), for
all 2k, 2k + 1 ∈ [B]. We define two distributions ψ and µ on (x, y) as follows,

ψ is a uniform distribution on all such pairs (x, y), with LSD(x, y) = 1.
µ is a uniform distribution on all such pairs (x, y).

The hard distribution for disjointness µh is one where i ∈ [N ] chosen at random, with (xi, yi)
drawn from distribution µ and rest of the coordinates (xj , yj), for j ∈ [N ] \ {i} is drawn i.i.d
from ψ.

Having described the hard distribution, we are all set to describe the proof of Theorem
4.18.

Proof. We assume the contrary that there exists a protocol π computing LSD(x, y) on
the distribution µh with Alice communicating a < γN logB bits and Bob communicating
b < NB1−cγ bits.

We now use protocol π to compute LSD on a single block. Consider the case when
the inputs (x, y) is drawn according to the distribution ψ. We know that protocol π
computes LSD on inputs drawn i.i.d in ψ with information

(
IA, IB

)
<
(
γN logB,NB1−cγ).

By Theorem 2.11, there exist a protocol τ computing LSD(x, y) on ψ with information(
IAτ , I

B
τ

)
≤
(
γ logB,B1−cγ).

DefineM = {m|µ(LSD(x, y) 6= τ(x, y)|m) ≤ 4ε}, a subset of all transcripts of τ . Note
that µ(M) ≥ 1 − 1

4 = 3
4 , using the fact that µ(LSD(x, y) 6= τ(x, y)) ≤ ε. Therefore,

ψ(M) ≥ 1− 2
4 = 1

2 , since density of Supp(ψ) under µ is one half.
First observe that Corollary 4.15 holds when the transcripts are restricted to the setM.

Now, Corollary 4.16 shows the existence of constant c1 and sets S, T such that ψ(x ∈ S) ≥
2−c1(IA) ≥ 2−c1(γ logB) and ψ(y ∈ T |x ∈ S) ≥ 2−c1(IB) ≥ 2−c1(B1−4γ) We used with upper
bounds on information (IA, IB) under ψ.

Since restricted to m ∈M, µ(LSD(x, y) 6= 1|S × T ) ≤ 3× 4ε+ δ, where the factor 3 is an
outcome of an averaging argument(see Corollary 4.16) and δ corresponds to the `1 distance
between the simulation in Corollary 4.15 and the actual protocol.
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The marginal distribution in x being the same on µ and ψ imply,

µ(x ∈ S) ≥ 2−c1(γ logB)

Also, µ(y) ≥ 1
2 · ψ(y) since ψ(x, y) = µ(x, y|x ∩ y = ∅) and µ(x ∩ y = ∅) = 1

2 . Therefore,

µ(y ∈ T ) ≥ 1
2 · ψ(y ∈ T ) ≥ 2−c1(γ logB+B1−cγ)−1.

From here on, we work only with the distribution µ. The bounds on probabilities imply
the following bounds on the corresponding entropy,

H(X|S) ≥ (1− c1γ) logB (9)

H(Y |T ) ≥ B

2 − c1γ logB − c1B1−cγ − 1. (10)

The error bound implies,

∀x ∈ S, µ(Yx = 1|T ) ≤ µ(π(x, y) 6= 1|S × T ) ≤ 12ε+ δ. (11)

Note that Yx is the projection of the vector Y (the indicator random variable for the subset
in {0, 1}B) onto the coordinate indexed by x. This implies, ∀x ∈ S H(Yx|T ) ≤ h(12ε+ δ).

Using subadditivity of entropy, we upper bound H(Y |T ) by H(YS |T ) + H(YS̄ |T ), where
S̄ is the complement of the set S. YS , YS̄ are projections of vector Y onto coordinates
indexed by elements of sets S and S̄ The first term in the expression can be simplified(using
subadditivity of entropy) as follows,

H(YS |T ) ≤ h (12ε+ δ) · |S|

where the inequality follows from subadditivity of entropy and (11).
The second term yields,

H(YS̄ |T ) ≤ B

2 − |S|,

by an application of subadditivity of entropy and upper bounding binary entropy by 1.
(9) implies |S| ≥ B1−c1γ . Therefore

H(Y |T ) ≤ B

2 − (1− [h(12ε+ δ)])B1−c1γ .

Equation (10) implies,

H(Y |T ) ≥ B

2 − c1γ logB − c1B1−cγ − 1

This yields a contradiction, as c > c1 + 1
γ logB (log 2c1 − log (1− h(12ε+ δ))) and B = Ω(1)

imply,

B

2 − (1− [h(12ε+ δ)])B1−c1γ <
B

2 − c1γ logB − c1B1−cγ − 1.

This concludes the proof of the theorem. J
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