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Abstract

What is the least surface area of a shape that tiles R? under translations by Z?? Any such shape must
have volume 1 and hence surface area at least that of the volume-1 ball, namely Q(+v/d). Our main result is
a construction with surface area O(v/d), matching the lower bound up to a constant factor of 2,/27/e ~
The best previous tile known was only slightly better than the cube, having surface area on the order of d.

We generalize this to give a construction that tiles R? by translations of any full rank discrete lattice A
with surface area 2m ||V ~! Hfb, where V' is the matrix of basis vectors of A, and ||-||,, denotes the Frobenius
norm. We show that our bounds are optimal within constant factors for rectangular lattices. Our proof is
via a random tessellation process, following recent ideas of Raz [11] in the discrete setting.

Our construction gives an almost optimal noise-resistant rounding scheme to round points in R¢ to
rectangular lattice points.

1 Introduction

The d-dimensional unit cube tiles R¢ by Z¢. That is, its translations by vectors from Z? cover R?, and the
interiors of translations of it by different vectors from Z¢ are disjoint.

In this paper, we consider the problem of finding a body that tiles R? by Z?, and has the smallest possible
surface area. This kind of problem is called a foam problem, since foams are simply tilings of space that try
to minimize surface area. The best previous construction was based on the exact solution of the problem for
the case of d = 2 [3] (Figure 1.3), and gave surface area approximately 1.93d, only slightly better than 2d, the
surface area of the d-dimensional cube. For three or more dimensions, even potential candidates for the optimal
solution are not known. In this paper we define a distribution on bodies that tile R? by Z? and have expected
surface area at most 47v/d. This comes close to an obvious lower bound, the surface area of a ball of volume
one, which behaves asymptotically like v/27e - v/d. Our construction is thus asymptotically optimal up to a

factor of 24/2m/e.

Theorem 1.1. For all d > 0 there exists a body which tiles R? by Z¢, and has surface area at most 4mw\/d.
Moreover, this body is contained in (—1, 1)d, and it contains the origin.

The ideas for our proof originate in the study of parallel repetition of two player games. A connection
between the parallel repetition question and foams was observed recently in Feige et al. [5], where it was shown
that improving the upper bounds on the success probability of the repeated odd-cycle game would imply new
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lower-bounds on the surface area of bodies tiling R? by Z¢. Subsequently, Raz [11] gave an example showing
that the known upper bounds for the repeated odd-cycle game cannot be significantly improved. While it is not
known that any strategy for the repeated odd-cycle game can be translated into a foam with small surface area,
in this paper we give a continuous version of Raz’s example that does give a foam with optimal surface area.
Raz’s example was based crucially on a lemma of Holenstein’s [6, Lemma 8], that showed a certain sampling
algorithm. While Raz uses Holenstein’s lemma as a black box, the main idea in our construction is to get a
continuous and concrete version of the sampling algorithm of Holenstein, and use it as part of our construction.

1.1 Noise-resistant rounding

A rounding scheme is a random method of mapping each of the points in R? to a point in Z¢, and we say
that it is noise resistant if the probability that close by points are rounded to different lattice points is small.
Following is a formal definition.

Definition 1.2 (rounding scheme). A d-dimensional rounding scheme is a distribution over functions mapping
R? to Z4. A rounding scheme is a family containing one d-dimensional rounding scheme for each dimension d.
A rounding scheme is called proper if for some constant ¢, the £, distance between a point and its rounding is
uniformly bounded by c.

For any § > 0, the é-noise sensitivity of a rounding scheme is the maximum over all points z, 2’ € R? with
[z — 2’| < § of the probability that the rounding of z is different from the rounding of a’.

It turns out that along with the above mentioned foam construction, our techniques give a new rounding
scheme that is much better than what was previously known'. We think that the problem of finding noise-
resistant rounding schemes is natural and interesting, and we hope it will have applications in the future.

Theorem 1.3 (Proper rounding). There exists a proper rounding scheme of R% whose d-noise sensitivity is
bounded by O(J + exp(d)s?).

Our rounding scheme has the additional property of being periodic — each of the functions in our distribution
has a period of Z%, so how a vector is rounded only depends on its fractional part. We observe that any proper
rounding scheme must have ¢ noise sensitivity at least Q(d): consider an axis-parallel line segment of length
slightly more than 2 (its length will be the same both in ¢5 and in £+ norm). On one hand, the length of the
segment ensures that its endpoints are rounded to different lattice points. On the other hand, a proper rounding
scheme which has d-noise sensitivity smaller than /2 would round both endpoints to the same lattice point
with positive probability, as can be seen by breaking the segment into pieces of length at most § (we assume
d < 1 for convenience) and using a union bound argument.

As far as we know, no proper rounding scheme was known where the noise sensitivity is better that Q(é\/ﬁ),
which can be obtained just by rounding each coordinate independently. Our rounding scheme is better in the
regime where § < 27, As pointed out to us by Noga Alon?, using known techniques one can get a rounding
scheme whose J-noise sensitivity is also of order 6(J), and while it is not proper, it still ensures that a vector in
R? is within /o, distance at most v/d from its rounding.

Another somewhat similar result appears in [2], where a random partition of R? into bodies of volume at
most 1 and with diameter at most O(\/E) is shown, such that points of distance § end up in the same element
of the partition (giving a clustering scheme) with probability at most O(d). While the partition in [2] does not
give rise to a proper rounding scheme, it does share some ideas with our construction.

1.2 General Lattices

Let us discuss how to generalize our results for the case of the lattice Z% to arbitrary full-rank lattice in R,
Given any discrete, full-rank?® lattice A in R?, we consider bodies that tile R? by A — such a body is called a

LGiven a foam tiling R? with period Z¢, the construction of a corresponding rounding scheme is straightforward. However the
analysis of our rounding scheme requires more than just the properties of the foam stated in Theorem 1.1.

2The idea is to use an efficient tiling according to a well chosen volume 1 lattice A to round points to points in A. Hall’s theorem
then shows that there is a matching between points of A and Z% such that points of distance at most twice the diameter of the
tiles are matched to each other. This gives the rounding to Z<.

3Throughout, we assume lattices are always full-rank.



fundamental domain and is defined formally below. To avoid technical difficulties, we want to only consider
bodies that have nice smooth boundaries.

Definition 1.4. A set in R? is called a C' surface if it is the image of a compact set M C R?~! under a
differentiable function whose Jacobian matrix is of full rank (namely of rank d — 1) at each point in M. A set
is called piecewise C'! if it the union of C! surfaces.

Definition 1.5 (fundamental domain). A compact body K C R? is called a fundamental domain of a full-rank
lattice A, if it has a piecewise C! boundary, and in addition U,ea (K +v) = R? and the interiors of the elements
in this union are disjoint.

A spine of a torus. Another related object is a spine of the torus R?/A. This is a d— 1 dimensional surface in
R?/A that intersects every homotopically nontrivial cycle (a closed loop that cannot be continuously deformed
to a point) in the torus. In plainer words, it is a “wall” that blocks all paths that “wrap around” the torus.

We can ask the following essentially equivalent questions:
Question 1: What is the least boundary area of a fundamental domain of the torus 7 = R%/A?

Question 2: What is the least surface area of a piecewise C' spine in 77

The answer to Question 1 is at most twice the answer of Question 2, since any spine can be used to get a
fundamental domain whose boundary has at most twice the surface area of the spine (we omit a formal proof).

Definition 1.6. For a lattice A in R?, define
A(RY/A) = limsup{|dS| : S is a piecewise C spine for RY/A}.

Let us reformulate Theorem 1.1 using the new notation, where here and throughout the paper we write
T¢ = R9/Z4 for the cubic torus.

Theorem 1.7. For all d,
A(T4) < 27v/d.

We can generalize this result to other lattices. Given any basis v, ..., vq for the lattice A, let V' denote the

. . d .
matrix whose rows are the basis vectors. Let ||V, 2] \/2_i; vi; denote the Frobenius norm of V. Then we

can prove the following theorem:
Theorem 1.8. Let A be a volume 1 lattice in R? and let V be a matriz whose rows are a basis for A. Then

ARY/A) <27 [V,

In the case where A is rectangular, namely if it has an orthogonal basis, we give a matching lower bound:

Theorem 1.9 (Lower Bound for Rectangular Lattices). If V is a matriz whose rows are an orthogonal basis
for the lattice A and S C R/A is a spine, then
ARE/A) > |[V™

e

1.3 History of the problem

Foams were studied since as early as the 19th century (see [14]), they were extensively studied since by mathe-
maticians, and they also have a huge variety of applications in physics, chemistry, and engineering (see [12] for
some examples). A detailed account of the history of foam problems is thus beyond the scope of this paper.

We will, however, discuss some known upper bounds for A(R?/A) and some related results. But before
that, let us mention an easy lower bound for A(R?/A). Without loss of generality assume that A is a volume-1
lattice. Then any fundamental domain D for A has volume 1 and hence must have surface area at least that of
the volume-1 ball, by the Isoperimetric Inequality. Let us write x4 for (half of) this ball’s surface area, noting
that kg = ©(v/d). More precisely, we have:



Proposition 1.10.
ARI/A) > kg ~ \/7e/2Vd

for any volume-1 lattice A.

The most natural construction of a tiling of R by A is just to take the Voronoi cells of the points in A. If
these cells are to have small surface area — say, O(\/E) — then they should be “somewhat spherical”. This
leads one to consider lattices which give rise to good sphere-packings. It is not hard to show that if a volume-1
lattice has covering radius R and packing radius r then its Voronoi cells have surface area at most (R/r)kq. A
well-known result of Butler [1] shows the existence in d dimensions of lattices with R/r < 2+ o(1). Hence:

Proposition 1.11. There exist volume-1 lattices in R? satisfying
AR/A) < (2 + 0(1))ka < O(Vd).

Thus there exist lattices where we have a tight bound of ©(v/d). In general lattices, however, the Voronoi
cell construction can be arbitrarily far off from the Q(v/d) lower bound. In this paper we first show that the
surface area of the Voronoi cells of a lattice A can actually be far from the optimal ARI/A): for A = Z4 the
Voronoi cells are cubes, which have surface area d, while we show that A(R?/A) < /me/2V/d.

Even in two dimensions, the optimal spine of 'H‘2 R?/Z? is not one that corresponds to a Voronoi cell. As
proven in [3], the spine in Figure 1.3 gives the best solution. Here the fundamental domain is an “isosceles”
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Figure 1: Optimal two dimensional tiling.

J7/

hexagon in which all angles are 120°. The spine has total length (1 + v/3)/v/2 ~ 1.93, slightly better that the
Voronoi cell, namely the square, which gives a spine of length 2.

The question of determining the asymptotics of A(R?/A) was posed in Feige et al. [5], wherein special
emphasis was given to the simple case of the cubic torus T?. Feige et al.’s interest in the problem came from
showing that a “discretized” version of it plays an important role in the study of “Parallel Repetition” [4] in
Complexity Theory. Feige at al. observed that by constructing prisms based on the optimal solution in T? one
can show

A(TY) < (12+f (1)) d ~ .966d,

very slightly improving on the trivial upper bound of d. They left as an open problem the determination the
correct rate of growth, v/d vs. d. Raz [11] recently showed that ©(v/d) is the correct rate of growth for the
“discretized” version of the problem; the present paper is an extension of his result to the natural continuous case.

Although we are content to study the asymptotics of A(R?/A), the question of determining it precisely has
also been pursued. In 1989, responding to questions of Michael Freedman, Choe [3] considered Question 1 for
the case of general compact 3-manifolds. His main result was to show that there exists a fundamental domain
whose surface area is minimal among those with Lipschitz boundary. He also proved optimality of the above-
illustrated solution for T2, and gave the case of T? as an open problem. As far as we know, no one has even
conjectured an optimal solution for A(T?).  In our work, we resolve this problem up to a constant factor for
every d.



1.4 Subsequent work

Upon hearing a lecture on the results of this paper, Deligne asked the following natural question: “What is the
minimum ratio of surface area to volume, of a body contained in (—1,1)? ?” As is easy to see, the analysis
of one step (called the ”pre-bubble”) of our probabilistic tiling-construction implies the existence of a body in
(—1,1)% for which this ratio is O(v/d) — this ratio is optimal up to the implied constant.

Following Deligne’s question, Alon and Klartag [7] have expressed this isoperimetric problem as a Dirichlet
boundary problem, and showed that Cheeger’s inequality and known spectral estimates directly imply the
existence of such a body as well. Indeed, the appearance of the function II;sin?7z; in our sampling procedure
and its optimality gets perhaps a more straightforward explanation from their viewpoint.

We note that they also proceed to give a probabilistic construction of a periodic tiling via random shifts
of this body, in a similar fashion to our paper, and with a somewhat simpler analysis. Also, combining their
approach with known relations between the vertex expansion of a graph and its spectral properties, they also
gave similar results for some discrete graphs.

2 Proof Overview

In this section we shall reserve most of the discussion for the proof of Theorem 1.7. Suppose A C T? is an open
set. One way to define the surface area of A is to let f be its 0-1 characteristic function and consider
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where Vf denotes the gradient of f, and all integrals are taken over T unless otherwise specified. Of course,
this does not precisely make sense, since f is not differentiable. More formally, one can take the total variation
of f, or consider [ ||V f;| for sequences of smooth functions (f;) approaching f pointwise. We can thus think of
the problem of finding an open fundamental domain for T¢ with small surface area as follows:

Task 1: Find f: T4 — {0,1} such that:

L [f=1
2. The level set {z : f(z) = 0} is a spine for T<.

3. [IVf]l is as small as possible.

2.1 A randomized relaxation

The first idea in the proof of Theorem 1.7 is that we may relaz condition 1 above by taking f to be a continuous
density function rather than a 0, 1-valued function (and keeping the other conditions intact). Indeed we show
that given such a relaxed solution, there is a randomized construction of a spine with expected surface area
J IV f]l. Our construction will work by partitioning the R/A into color regions, with the guarantee that no color
region contains a homotopically nontrivial cycle. Once we have such a partition, we shall argue that the union
of the boundaries of the color regions form a spine. Assuming f is continuous and M = || f||, the construction
is as follows:

Construction:

1. Let all points in T¢ be “uncolored”.

2. For i =1,2,3,..., until all points are colored:
3. Choose a uniformly random “translate” Z € T<.
4. Choose a uniformly random “height” T € (0, M).



5. Let B; be the “pre-bubble” B; = {x € T?: f(x — Z) > T}.
6. Color all uncolored points in B; with color i. The colored points form a bubble.
7. Output the union of the boundaries of the color regions.
It is easy to check that with probability 1 the construction halts in finitely many rounds.
Proposition 2.1. Assuming f is continuous, the construction halts after finitely many rounds with probability 1.

Proof: Since f is nonnegative and [ f = 1, there must exist some positive ¢y > 0 such that P := {z € T :
f(z) > to} has positive measure n > 0. Since f is continuous, P is open, and so P contains a closed cube C of
positive measure 7.

Partition T¢ into subcubes of side length less than half that of C. We now have that there is some strictly
positive € > 0 such that each subcube ¢ has probability at least ¢ of being completely colored in any round
of the construction. This is because there is a vol(c) chance that the random translate Z will be in ¢, and
an independent to/M chance that the random height 7' is smaller than to; when both of these happen, c¢ is
completely contained in the pre-bubble defined by Z and T'.

We now have a finite number of events (each subcube being completely colored in a single round), each of
which occurs with some strictly positive probability in each round. It follows that all events eventually occur
after finitely many rounds, with probability 1. O

The idea behind this construction comes from Raz’s work [11] on the discretized version of A(T?); more
specifically, it comes from the proof of Holenstein’s Lemma [6, Lemma 8] (see also [10, Lemma 4.1]). Our analysis
of it does not follow from either work, however. The construction is strongly reminiscent of random tessellation
and crystallization processes; see, e.g., [9]. Also, as pointed to us by James Lee, a very similar construction
appeared in [2], except that balls were used there instead of our pre-bubbles, and R? was partitioned instead of
Te.

We observe here the correctness of the construction:

Proposition 2.2. The surface output by the construction is a spine for T%.

Proof: Suppose otherwise; then there is a homotopically nontrivial loop L entirely within one bubble, i.e., color
region. This L is contained in some single pre-bubble, {z € T¢ : f(z — z) > t}, where t > 0. Hence L can be
translated to a hotomopically nontrivial loop L’ contained in the set {x € T¢ : f(x) > t}. But f’s O-set is a
spine, by assumption, and thus must intersect L’. This is a contradiction. O

In Section 3 we analyze the expected surface area of the spine produced by the construction. Let V f denote
the vector of partial derivatives of f. Then we shall prove:

Definition 2.3. We say the function f : T¢ — RZ? is “nice” if it is C? and has the property that V f has only
finitely many zeros on the set {z : f(x) # 0}.

Theorem 2.4. Let f: T? — R20 satisfy | f = 1. Further, assume f is “nice” (see below). Then for the above
construction, the expected surface area of the boundary between bubbles is

JIi0

Given that our construction is randomized, it is an interesting open question to come up with an explicit
deterministic construction that matches its performance.

Any spine given by our construction leads to a rounding scheme in the natural way: use the spine to get a
tiling of R%, and then round points in every body to the unique lattice point that lies in the body. The fact
that the scheme obtained by our construction is proper follows from the fact that the body constructed by our
scheme has /., diameter at most 2.



Theorem 2.5. Let f : T4 — R20 satisfy [ f =1. Further, assume f is “nice”. Then for the above construction,
the §-noise sensitivity of the corresponding rounding scheme is at most

max 0(6-/|<Vf,u)|+W62>

ueSd—1

where W is an upperbound on the second derivatives of f.

2.2 Finding a good f

Given Theorem 2.4 and Theorem 1.3, we may equally well consider the more general task of finding a good
“density function” f. The second idea in the proof is that we may obtain a good solution even by fixing f’s
0-set to be the naive spine {z € [0,1)¢ : z; = 0 for some i}. Indeed, we will show that solving the following
problem gives a very good solution for Theorem 2.4.

Task 2: Find a (“nice”) f: T¢ — R2° such that:
L [f=1
2. f(x) =0if z; = 0 for some i.
3. [IVf]l is as small as possible.

In Task 2, the presence of |V f|| is analytically difficult. We can make it more tractable by expressing f = g2.
Then we have the constraint [ ¢ = 1, and

J15s1=2 [1a]-1¥9] < 2W7W

- / IVl (1)

where we used Cauchy-Schwarz. This helps because [ ||Vg||? is easier to work with. It remains to analyze
the following:

Task 3: Find g: T? — R such that:
L. [¢*=1

2. g(z) =0 if z; = 0 for some 7.

3. 24/ [ IVg||? is as small as possible.

So far these proof ideas all have analogues in Raz’s work. We give an improvement by solving Task 3
optimally:

Theorem 2.6. The minimizing g for Task 3, among piecewise C* functions, is
d
g(x) = H V2sin(rx;).
i=1

For this function, 2,/ [ |Vg||> = 2nVd (and also f = g* is “nice”).

The proof is an elementary use of the Fourier series and is given in Section 4. We note that the maximum
value obtained by the induced density function f is O(exp(d)). The expected volume of a pre-bubble chosen
according to this density function is exp(—d).

With regards to finding a proper rounding, it turns out that we can again use the Cauchy-Schwartz inequality
to get an upperbound:



Theorem 2.7. Set .
f(z) = H 2sin’ (7).
i=1
Then, max,cgi—1 [ [(V f,u)| = O(1), and the second derivatives of f are O(exp(d)).

2.3 Completing the proof

The proof of Theorem 1.7 follows immediately from Theorems 2.4 and 2.6 and the Cauchy-Schwarz argument (1).
An illustration of the construction in T? with f(z,y) = sin?(7x) sin®(7y) appears below.

Similarly, the proof of Theorem 1.3 follows from Theorem 2.5 and Theorem 2.7.
The proof of Theorem 1.8 for R?/VZ4 follows by applying the linear transformation V' to the random spine
constructed for T¢. The analysis is given in Section 5.

3 Analyzing the Construction in terms of f

In this section we prove Theorem 2.4. Assume throughout this section that f is “nice” as in Definition 2.3. We
begin with a straightforward observation:

Proposition 3.1. The spine output by the construction is a (d — 1)-dimensional surface which is piecewise C*.

Proof: It suffices to show this is true of the boundary of each pre-bubble. Since f is continuous, each pre-bubble
has boundary B = f~1(t) for some 0 < t < M. By “niceness”, Vf = 0 on at most finitely many points of
B. Finally, since f is C!, a general version of the Implicit Function Theorem implies that B is a piecewise C!
(d — 1)-dimensional surface. O

Given a piecewise C! surface in T¢, we can express its area via a “Buffon’s Needle” or Cauchy-Crofton-type
formula.

Definition 3.2. For a point a € T? and a direction u € S9!, we define the “needle” (line segment) £, 5, of
length 0 < 6 < 1 to be {a+ Au: A€ [0,6]} C T

The following result is from the Integral Geometry textbook of Santalé [13] (the d = 2 case is stated as
(8.11) therein; the extension to d dimensions is discussed on page 274):



Theorem 3.3. Let S be a piecewise C* surface in T?. Let £, 5, be a uniformly random needle of length §; i.e.,
a €T and u € ST are chosen uniformly and independently. Then

E [#(la,5uNS)] = Cq -6 - area(s),

a,u
where Cq =~ 1//d is the dimension-dependent constant

Ca= E [l

veSd—1
and # (g5, N S) denotes the number of points of intersection between the needle and the surface.

Our plan is to fix a short needle ¢, s, and estimate the expected number of intersections it makes with the
random spine. The main technical theorem we need is:

Theorem 3.4. Fiz a needle { = {, 5, of length & in T?. Let N be the random variable denoting the number of
intersections £ makes with the spine S output by the construction, #({ N S). Let W < oo be an upper bound
on the magnitude of f’s second-order partial derivatives (recall that f is C*). Then, if B = [|[(V f,u)| + W is
such that 8 < 1/9,

As should be expected, E[N] does not depend on a: the construction is translation-invariant in T¢. Given
Theorem 3.4, our main theorems Theorem 2.4 and Theorem 2.5 follow easily:
Proof: (Theorem 2.4) Let S denote the random spine output by the construction. Let 3 be as in Theorem 3.4.
Then for ¢ small enough, by Theorem 3.3,

Cyq -0 - Elarea(S)] =

IN

Taking 6 — 0, this gives us:

Elarea(S)] < (1/Cy) %im E g3

—0a,u

— wene| [
— /) [Blwsw]

i

Proof: (Theorem 2.5) Let £, 5, be a needle of length §. The probability that the end points of this needle are
rounded to different points by the rounding scheme is bounded by E[N], which, by Theorem 3.4, is at most
% = 0(66) = O(5 [ (Vf,u)| + W5?). This completes the proof of the theorem. O

a

Thus it remains to prove Theorem 3.4. The theorem follows immediately from Lemma 3.5 and Lemma 3.6
below.

Recall that the construction defines pre-bubbles By, Ba,. ... Let E; denote the event B; N £ # () and let M;
denote the random variable #(¢£ N JB;).



Lemma 3.5. Let k = E[M; | E1|. Then
K< 5-/|<Vf,u>| + W2
Lemma 3.6. Let k be as in Lemma 3.6, and assume k < 1. Then
5 < EN] < x/(1 - )

Proof: (Lemma 3.5) For completeness we begin by noting that Pr[E] is easily seen to be positive, as follows

from Proposition 2.1.
Recall that we have fixed a needle ¢ = ¢, s,, of length ¢ in T¢. Given z € T¢ we will let f, : [0, 8] — R=Y denote
the restriction of the function f(z — z) to the needle ¢. By definition,

Er=A{(z1):t <[[f:]loc}

My, = #{)‘ € [076] tfz(N) = T1}7

and hence
= E[M | E1]
_ f'ﬂ‘d 0IIleloo H#{IN€[0,8]: fo(\) =t} dtdz o)
fird | f2]loc dz
Let’s estimate the quantities in (2). First, we have

/Hfz||oodz>/ fla—2)d (3)

As for the main integrand in (2), using the fact that £, is C! we have

1= lloo 5
[ #e 0 = tpae= [ Irovan
0 0

This follows easily from considering the contribution of f, from small segments.
Since W bounds f,’s order-2 partial derivatives, we conclude that on the range [0, 4],

£z = [V a(a), w)| + Wo.
Thus we have
ll£2lloo
/Td/o #{A€10,0]: f.(\) =t}dtdz
g/ §- [V f.(a),u)| dz + W62, (4)
'ﬂ‘d
Combining (3) and (4) we conclude
k< 5/ (Vf.(a),u)| dz + W&
'H‘d

Since the above integral does not depend on a, we get the claim of the lemma. O

Proof: (Lemma 3.6) Recall that M; denotes the random variable #(¢ N 0B;). Let C; be the event that B;
completely encloses the needle, so C; = E; A (M; = 0). If UC; has not occurred after the construction ends,
continue choosing pre-bubbles until it does. Since Pr[F;] > 0 and E[N; | E;] = k < 1, each event C; has positive
probability and therefore UC; will occur after finitely many pre-bubbles, with probability 1. Let R denote the

10



least index such that C'r occurs.

Let M ,Mj ..., M}, denote the values of M; for those i such that E; occurs, up until M = 0, ie.,
jx = R. We claim
K
Mj SN <) M. (5)
k=1

The lower bound simply says that the needle has at least as many spine-intersections as it has intersections with
the first pre-bubble that touches it. The upper bound holds because once a pre-bubble completely encloses the
needle it will never make any more intersections with the spine, and because counting > #(¢ N dB;) can only
overcount #(¢ N S).

The distribution of each M is that of M; | £y and hence E[M] | = k. Thus if we take expectations in (5)
we get
k < E[N| < E[K]&,
using Wald’s Theorem in the upper bound. Now K is distributed as the least index for which a sequence

of i.i.d. random variables, M ..., M} , is 0. Since M is integer-valued, the probability it is 0 is at least

1 -E[M] | =1- k. Hence E[K] <1/(1 — &), the mean of a geometric random variable with parameter 1 — &.
The proof is complete. O

4 Finding a good density f

In this section we prove Theorem 2.6 and Theorem 2.7.
Suppose that g : T — R is piecewise C', Jg* =1, and g(z) = 0 whenever z; = 0 for some i. We shall first
show that the minimum possible value for [ ||Vg]||? is 72d, and occurs when

d
g(x) = H V2sin(rx;). (6)
i=1
Having shown this we only need to check that f = g% is “nice” in the sense of Definition 2.3.

4.1 Optimizing g for Surface Area

Expand g : [0,1)? — R in terms of its (multidimensional) Fourier sine series:

d
g(2) = " (@) [ Vasin(mwz). (7)

weNd i=1

where 4
J(w) = /g(:v) H V2sin(rw;z;).
i=1

We remark that we have pointwise convergence everywhere in (7), since g is piecewise C! and satisfies g(z) = 0
whenever x; € {0,1} (hence ¢’s odd extension is continuous). More crucially, these conditions also justify
term-by-term differentiation of g’s sine series. Let D; denote the jth partial derivative. Then we get the
expansion
Djg(z) = Z 7w, §(w) (V2 cos(mw;x;)) H V2sin(rw;z;). ()
wENd i#£]

We now apply Parseval’s Theorem for cosine series and sine series to both (7) and (8), obtaining

1:/92 = Z G(w)?, and (9)

weNd

11



d
/IIVgll2 =) Y mufiw)?=m ) JwlPaw)®. (10)

j=1 weNd weNd

It’s now clear that subject to (9), the expression in (10) is minimized when the Fourier sine spectrum is
concentrated on the frequency w with minimal ||w]||, namely w = (1,...,1). Hence (6) is indeed the minimizer,
as claimed, and the minimal value is 72d.

4.2 Bounding Noise Sensitivity using f

To prove Theorem 2.7, for every u € S?~!, we need to bound

[1wrai =/ [wrue

where the inequality is by applying Cauchy-Schwartz.
Let, p € {—1,+1}¢ be a uniformly random vector. Then we have the following derivation:

2
d

/(Vf,u)2 :/ ;uiélsin(wxi) cos(wwi)};[iQsiHQ(mvj)

d
= /Ep Z ud sin(mp;x;) cos(mp;z;) H 2sin®(mp; ;)
i=1 i
d

:/Ep Zuiélpisin(mvi)cos(mci)HQsinz(mcj)

i=1 j#i

2

d

= / Z u?16 sin?(mz; ) cos? (mx;) H 16 sin’ ()

i=1 j#i

The last equality follows from the fact that all the cross terms vanish under expectation. This integral is
easily seen to be bounded by O(3", u?) = O(1), which is optimal, by the lowerbound on the d-noise sensitivity
of any rounding scheme, as discussed in the introduction.

For this choice of f, the second derivatives f f are bounded by 2%poly(d) = O(exp(d)), which gives us the
bound we proved on the noise sensitivity.

4.3 f is “nice”

Note that g itself is not even globally C' as a function on the torus T%; it has kinks on its 0-set, since sin(7z)

)

is naturally periodic on [—1, 1] rather than [0, 1]. Nevertheless, a trigonometric identity implies
(V2sin(rx))? = 1 — cos(2nz),

and this is C*> on the circle T. Hence f is C*° and hence C? on T<.
Next, the set {x : f(x) # 0}, on which we need to consider the zeros of V£, is clearly (0,1)%. We calculate
that
D;f(z) = 2%2n sin(27z;) - Hsin(mci),
i
from which it follows that the only zero of V£ on (0,1)% is at (1/2,...,1/2). Hence we only have finitely many
zeros, as required for “niceness”.
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5 General lattices

In this section we consider the problem for other volume 1 lattices A besides Z¢. Let vy, ..., vq denote a ba-
sis for A, and arrange these vectors as columns in a matrix V. Let V* = (V1) T the matrix of dual basis vectors.

A natural way to construct a spine of low surface area for R%/A is simply to take our construction for R¢/Z4
and apply the linear transformation V. It’s clear that this indeed gives a spine. Regarding its surface area:

Theorem 5.1. The expected surface area of the spine formed in R?/A by running our construction and applying
the linear transformation V is
[ vl
Td

Proof: Although we stated Santalé’s Theorem 3.3 for T?, in fact it holds for any volume 1 lattice, so long as
the needle is short enough to fit completely inside the fundamental parallelepiped. Since we take § — 0, this is
not a concern.

Getting an analogue of Theorem 3.4 is easy. Instead of fixing a needle £ = £, s, in R?/A, choosing S via
the construction, and then looking at the expected value of #(¢ NVS), we can instead fix the preimage of the
needle V=1¢ in T¢ and look at the expected value of #(V =14 N S). Theorem 3.4 tells us this quantity equals

5 [ Awrvtl=s- [ vVl
Td Td
up to O(W?262). The remainder of the proof is unchanged. O

We again use the Cauchy-Schwarz argument (1) to upper-bound

L=z [ v,
T T

Finally, with our choice of g from (6), it is easy to see from (8) that

d
L vval = S W = vl == v,

i,7=1

Thus we get a spine for R?/A whose expected surface area is at most 27 HV
Theorem 1.8.

71Hfb’ completing the proof of

6 Lower Bounds

We have already observed an Q(v/d) lower bound on the surface area of any spine of R/Z¢ via the Isoperimetric
Inequality. In this section we generalize this to give a simple lower bound (Theorem 1.9) that applies to the
surface area of a spine of R/A for any volume 1 orthogonal lattice A. A lattice is orthogonal if it has an
orthogonal basis.

The theorem follows from the following simple generalization of Pythagoras’s theorem:

Theorem 6.1. Let vq,...,vq be orthogonal vectors. For each i, let F; denote the d— 1 dimensional facet whose
corners are the origin and all basis vectors not equal to v;. Let S be any piecewise continuous d— 1 dimensional
manifold such that for every i, the projection of S to F; covers F;. Then area(S)? = Z?:l area(F;)?.

Next, we prove Theorem 1.9:
Proof: (Proof of Theorem 1.9) Since the Frobenius norm is preserved under unitary transformations, it suffices
to prove the theorem for the case that matrix V is a diagonal matrix. Let the diagonal entries be aq, ..., aq.
Then note that for every 4, area(F;) = [[;; aj = 1/a;. The last inequality follows from the fact that det(V) = 1.
On the other hand, V1! is simply the diagonal matrix with 1/a; on the diagonal. Thus the square of the area

of the spine is at least Y% 1/a2 = HVﬁleb. O
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