
 

 

Fast and Accurate Computation using Stochastic Circuits 

Armin Alaghi and John P. Hayes 

Advanced Computer Architecture Laboratory 

Department of Electrical Engineering and Computer Science, University of Michigan 

Ann Arbor, MI, 48109, USA 

{alaghi, jhayes}@eecs.umich.edu   

 
Abstract—Stochastic computing (SC) is a low-cost design 

technique that has great promise in applications such as image 

processing. SC enables arithmetic operations to be performed 

on stochastic bit-streams using ultra-small and low-power 

circuitry. However, accurate computations tend to require 

long run-times due to the random fluctuations inherent in 

stochastic numbers (SNs). We present novel techniques for SN 

generation that lead to better accuracy/run-time trade-offs. 

First, we analyze a property called progressive precision (PP) 

which allows computational accuracy to grow systematically 

with run-time. Second, borrowing from Monte Carlo methods, 

we show that SC performance can be greatly improved by 

replacing the usual pseudo-random number sources by low-

discrepancy (LD) sequences that are predictably progressive. 

Finally, we evaluate the use of LD stochastic numbers in SC, 

and show they can produce significantly faster and more 

accurate results than existing stochastic designs.   

Keywords—Stochastic computing, Monte Carlo methods, 

Computer arithmetic, progressive precision.  

I. INTRODUCTION 

Some potentially beneficial applications of computer 

technology cannot be realized because they have extreme 

requirements for small size, high speed, or ultra-low power. 

Examples include real-time processing of sensory data for   

biomedical devices. An unconventional digital technology 

that is re-emerging as well-suited to such tasks is stochastic 

computing (SC) [5][1]. It has recently been successfully 

used to process images [2] and error-correcting codes [7], 

as well as to design artificial neural networks [3]. 

In its basic form, SC processes data in the form of long 

pseudo-random bit-streams that are treated as probabilities. 

It can implement arithmetic operations by means of tiny 

circuits, a feature it shares with analog computing. This 

allows SC to be used in parallel configurations to achieve 

high performance at very low area and power cost. Both 

analog and stochastic computing suffer from accuracy 

limitations. The accuracy of SC canat least in 

principlebe improved by increasing bit-stream length, 

which, of course, increases  run-time. The goal of both fast 

and accurate SC has remained elusive and poorly 

understood. We examine the speed-accuracy trade-off 

problem of SC, and propose several new solutions. 

To recap SC’s main features, it represents a number by an 

n-bit sequence called a stochastic number (SN) [1]. In the 

basic “unipolar” format, the numerical value    of the SN 

X is n1/n, where n1 is the number of 1s appearing in X. This  

xi,jxi+1,j+1
xi+1,j
xi,j+1

zi,j

Random 
input r = 0.5

0

1

(a) (b)

8

8

8

Abs. value
circuit 8

88

8

Adder
xi+1,j+1

xi,j

xi,j+1

xi+1,j

Subtracter

zi,j

Abs. value
circuit 

Mux

 

Figure 1. (a) Stochastic and (b) conventional edge detectors. 

coding scheme has an obvious stochastic interpretation:    

is the probability of a 1 appearing in X. It further hints that 

arithmetic operations can be performed on SNs via logical 

operations.  Figure 1a shows a small stochastic circuit [2] 

that implements the Roberts cross formula  

                                                       (1) 

for edge detection in visual images. A conventional non-SC 

or “binary” implementation of (1), as in Figure 1b, requires 

orders of magnitude more area and power. 

The main factor limiting the use of SC is a need for long 

bit-streams, and hence long run-times, to overcome the 

random fluctuations inherent in the bit-stream patterns, and 

to achieve adequate levels of precision and accuracy. The 

precision of an SN X of length n may be defined as log2 n 

bits, while the accuracy of X is its closeness to a target 

value denoted by   
 , which may be stated in terms of 

acceptable error bounds. To increase precision by 1 bit, an 

SN’s length must be doubled. Accuracy targets, however, 

may demand even longer bit-streams. 

Accuracy concerns have usually been addressed by ad hoc 

means [5][11]. A basic approach has been simply to 

increase SN length. This lowers performance and provides 

no guarantee of convergence to an acceptable result. A 

second approach is to use better stochastic number 

generators (SNGs) [9]. A typical SNG appears in Figure 2. 

The “random” number source is usually a linear feedback 

shift register (LFSR), which produces pseudo-random bit-

streams (m-sequences) with good randomness properties 

[6]. A stochastic circuit often needs many SNGs, making 

them a significant contributor to overall hardware cost 

Comparatork

A

B

A<B

Binary 

number pX

Random number  

source

k

Stochastic 

number X
Clock

 

Figure 2. Stochastic number generator: the “random” number 
source may be a finite-state machine with random-like behavior. 

978-3-9815370-2-4/DATE14/©2014 EDAA 



 

 

(a)

(b)

4 cycles 64 cycles 512 cycles

 
Figure 3. Progressive precision in edge detection at 4, 64 and 512 
cycles with (a) LD sequences (good PP); (b) bad PP sequences. 

[11].  These costs can be mitigated by sharing SNGs among 

different circuits, e.g., a few SNGs can be shared by many 

pixel processors in a vision chip [2]. 

This paper introduces a new method of accurate number 

generation for SC. It also analyzes, for the first time, an 

important property of SNs called progressive precision 

(PP), which enables accuracy to be traded for speed: if the 

first k < n result bits of an n-bit stochastic computation 

provide a sufficiently good approximation to a desired 

result, the computation can be stopped early.  

To exploit PP, we introduce a new class of random number 

sources that produce low-discrepancy (LD) sequences, in 

which 1’s and 0’s are uniformly spaced, so they do not 

suffer from random fluctuations.  They are widely used in 

quasi-Monte Carlo (QMC) sampling [10][4], but have not 

been previously applied to SC. Other benefits of LD 

include deterministic error bounds and fast convergence. 

We present circuits employing LD sequences that are faster 

and more accurate than existing SC designs. For example, 

in image edge detection using LD sequences with good PP, 

as shown in Figure 3a, many edges are detected after only 4 

clock cycles, so the computation can stop early in most 

cases, as opposed to full-scale computation with 512 clock 

cycles. But if bit-streams with bad PP are used, we get the 

output edges shown in Figure 3b, where many edges 

remain undetected even after 64 clock cycles. LFSR-based 

m-sequences often have poor PP because they have uneven 

spacing of 1’s and 0’s [6]. 

II. ACCURACY OF STOCHASTIC NUMBERS 

We first quantify the concepts of accuracy and error 

introduced informally above.  

Definition 1. Let X be a stochastic number of length n with 

value    and let   
  denote its exact value. Then the bit-

error of X is defined as            
  .  

The bit-error indicates how many bits    is away from   
  

for the precision level corresponding to n. Note that 1/n is 

the smallest non-zero SN that can be represented exactly.  

SNs can only rational represent numbers of the form n1/n 

exactly; irrational numbers are approximated by the closest 

rational number. The exact value   
  is often known from 

the  context.  For  instance, the output of a stochastic multi- 

pX

Sample source 1 X

Clock

r1

Sample source 2

Clock

Y

Z

A

B

A<B

pY

r2
A

B

A<B

 

Figure 4. SC multiplication viewed as a Monte Carlo problem. 

plier with inputs X and Y has the exact value   
       , 

which serves to measure the output error   . 

For example, let X = 0111 0100 and   
  = 6/8. Because pX = 

4/8, we have     |4/8  6/8| = 2. This error can be 

reduced to zero by changing two 0s of X to 1s, making pX = 

6/8. For the same X and   
  = 7/16, the error is    

                   implying that bit-flipping alone 

cannot eliminate the error. It can only be fixed by increas-

ing n to 16; e.g., by extending X to 0111 0100 0101 0100. 

A key insight of our approach is establishing a link between 

SC and Monte Carlo (MC). To illustrate  this, we interpret 

an SC circuit as a small MC problem. Consider the circuit 

C in  Figure 4 which is  a stochastic  multiplier  supplied by 

two inputs X and Y derived from SNGs like that of Figure 

2. The MC formulation of C is the following: given pX and 

pY, estimate   
       by applying independent uniform 

random samples to r1 and r2. The direct MC approach [8]  

to solving this problem is to generate n independent 

random samples at r1 and r2. It can be shown that the 

expected value of     is indeed   
       and its variance 

is   
      

    . The variance reflects the random 

fluctuations around   
 , and implies that    converges 

toward    
   at the rate    √  .  

Figure 5a depicts a set of 64 purely random samples 

applied to the circuit C of Figure 4. The dashed blue lines 

indicate pX and pY, and enclose a rectangle B of area 

  
        . The samples in B produce 1 at the output of 

C; other samples produce 0. We want to spread the samples 

evenly over the plane, so that the number of samples in B is 

proportional to its area. In fact, this property is desired for 

every possible rectangle with a corner at the origin. Clearly, 

the samples of Figure 5a are non-uniformly dispersed even 

though they come from a uniform distribution; such a 

sample set is said to have high discrepancy.  

The discrepancy of a sample set measures the uniformity of 

the distribution of samples, and is directly related to the 

sample set’s accuracy [10].   In general, the sample space 

has d dimensions, as opposed to the two dimensions in 

Figure 5a. To measure the discrepancy, we want to check 

whether, for every d-dimensional hyper-rectangle B with a 

corner at the origin, the number of points inside B is 

proportional to the d-dimensional volume of B.  

Definition 2: [10] Let S be a set of n samples in [   ] , and 

let   be the set of d-dimensional hyper-rectangles with a 

corner at the origin. The discrepancy of S is  



 

 

(a) (b) (c)
Ds1 = 0.17 Ds2 = 0.02 Ds3 = 0

pX

pY pY pY

pX pX

Figure 5. MC formulation of SC multiplication using (a) pure 
random, (b) pseudo-random, and (c) low-discrepancy samples. 

          
  

 
            

where           is the d-dimensional volume of B, and 

nB is the number of sample point lying in B.  

Figure 5a, shows a two-dimensional sample set S1 with 64 

sample points. The blue rectangle B is a member of the set 

  of possible rectangles whose area is          . In 

practice, the sizes of   and its members are limited by 

some specified precision. For example, if the maximum 

precision is log2 n*, then   only includes sub-spaces with 

sides of the form k*/n*. With n* = 8 for S1, Definition 2 

gives    = 0.17. This translates to the following statement: 

by applying sample set S1 to the circuit C of Figure 4, we 

expect a maximum absolute error of 0.17 or, equivalently, a 

maximum bit-error of 11. Figure 5b illustrates a pseudo-

random sample set S2 generated by LFSR m-sequences with 

discrepancy         , which is much better than S1. 

Finally, the sample set S3 of Figure 5c is an  ideal sample  

set with  discrepancy      , implying that, when used 

with the circuit C, no errors will be seen. These samples are 

generated by selecting evenly spread points. They are 

deterministic, but contrary to intuition, they give better 

accuracy in SC than random or pseudo-random sample sets. 

III. PROGRESSIVE PRECISION 

As noted, there is a strong connection between PP in SC 

and LD sequences in QMC. We examine this connection by 

comparing the PP properties of LD sequences with those of 

random and pseudo-random sequences. Many types of LD 

sequences are discussed in the QMC literature [10]. Most 

methods of generating them are software-based; hardware 

implementations are rare and unsuited to SC [4]. 

The SNG of Figure 2 produces a variable-length bit-stream 

X whose value    fluctuates initially, but eventually 

converges near   
 .  Precision and accuracy tend to improve 

over time, but random fluctuations in its bit-stream can 

cause X to temporarily diverge from   
 . If the divergence is 

minimized, then “good” PP behavior is obtained. For 

example, X = 0101 0101 0101 0101, with   
     has  

     
      and good PP. As X is generated, we see the 

subsequences 0, 01, 010, 0101, 01010, ... All the even-

length subsequences represent 1/2 exactly. At the other 

extreme, the initial subsequences of Y = 1111 1111 0000 

0000 give very poor approximations to   
  = 1/2, so this bit-

stream has poor PP.   

(b)

pX*

|p
X
 

 p
X
*

|

log2n
(a)

log2n

 
Figure 6. SN generation illustrating PP; (a) numerical value    for 

  
      , and (b) average absolute error       

   for all   
 s. 

Figure 6a illustrates the progressive precision behavior of 

three different types of stochastic numbers as they converge 

toward the target   
 . The SNs generated from random and 

pseudo-random (LFSR-based) sample sets converge slowly 

and fluctuate a lot before settling at or near the target value. 

These are examples of “bad” PP. The SN generated using 

low-discrepancy sequences, on the other hand, quickly and 

monotonically converges to the target value. To further 

illustrate the convergence behavior of the different SNs, we 

plot the average error of several SNs as their length 

increases;   see Figure 6b.   The error of the LD-based SNs 

drops much faster than the others. This implies that the 

initial subsequences of the LD case provide a good early 

estimate of the target value, implying good PP. 

Definition 3: An n-bit SN is k-PP if the bit-error of its 

initial sub-sequence of length 2
i
 is at most k for all i. 

For example, let X = 0111 1111 1111 0000 and let the exact 

value   
       . The initial sub-sequences of length 2, 4, 

8, and 16 are 01, 0111, 0111 1111, and  0111 1111 1111 

0000, respectively. The corresponding bit-errors of the sub-

sequences are, from Definition 1: 0.25, 0.5, 2 and 1, res-

pectively. This means that X is 2-PP because the maximum 

bit-error of its initial sub-sequences is 2. The number Y = 

0111 1101 1111 0000, on the other hand, is 1-PP because 

the bit-errors of the initial subsequences have values 0.25, 

0.5, 1 and 0, respectively. We say Y has better PP than X 

because the errors of its initial sub-sequences are lower.  

We propose to use Halton sequences for SC [10]. These are 

among the less complicated LD sequences, and they show 

good performance for problems like those posed by 

stochastic circuits. Figure 7 shows the structure of our 

Halton sequence generator. It consists of a binary-coded 

base-b counter, where b is a prime number. The order of 

the output digits is reversed and the resulting number is 

converted to a binary number so that it fits into the SNG 

framework of Figure 2. For example, for b = 3, the (binary-

coded ternary) counter generates the sequence: 

000, 001, 002, 010, 011, …, 220, 221, 222 

Then, the order of the digits is reversed thus: 

000, 100, 200, 010, 110, …, 022, 122, 222 

(which requires no logic) and the reordered digits are 

converted to equivalent binary numbers.  First, each base-3  



 

 

Mod-b

counter

Least 

significant 

digit

Mod-b

counter

Mod-b

counter

Most 

significant 

digit

Adder

Digit 

converter

Binary- 

coded base-

b counter

Digit 

converter
Digit 

converter

 

Figure 7. Design of the proposed Halton LD sequence generator. 

digit is converted using a digit converter, then the results 

are summed to generate the binary sequence 

00000, 01011, 10101, …, 10100, 11111 

When b = 2, Figure 7a reduces to a simple binary counter. 

For d inputs, we need d copies of the circuit of Figure 7a 

with different prime bases. The 2-input circuit of Figure 4, 

requires two Halton sequence generators having b = 2 and 

3. The output Z then becomes a 3-PP SN, in contrast with 

the 20-PP SNs produced by pseudo-random sequences.  

IV.  CASE STUDIES  

Next, we analyze three applications of SC and use PP to 

speed them up. Each has a computation step followed by a 

decision. With appropriate PP, the decision can be made 

early, thus reducing overall run-time. Higher-precision 

computations therefore happen only when needed.   

First, consider a 2-input multiplier circuit implementing 

 

For 8-bit precision, a non-stochastic design needs an 8-bit 

multiplier and a comparator to implement the decision 

  
     . It also computes F in one clock cycle. An SC 

version needs a circuit like that of Figure 4 with an AND-

gate multiplier and a decision circuit. Using m-sequences, 

the SC design would need 1,024 clock cycles to produce a 

satisfactory result with an error rate of less than 1%.  

Applying LD sequences to an SC multiplier produces an 

output Z with 3-PP, so the initial sub-sequences of Z are at 

most 3 bits away from the target result.  Suppose the initial 

sub-sequence of length 16 (<< 1,024) is Z16 = 0010 0001 

0000 1000, denoting     
 = 3/16. Because Z is 3-PP, the 

exact target value would be   
      , yielding F = 0. So 

the computation of F can stop after 16 clock cycles in this 

case, along with many similar cases. It turns out that for 

uniformly distributed values of pX and pY, the average run-

time per input of the design exploiting PP is only 59 cycles.  

We synthesized the proposed design and equivalent 

stochastic and non-stochastic versions of F using SIS and 

its generic 0.35m cell library; see Table I. The area 

reported does not include conversion units such as SNGs 

and counters, since their cost can be shared among parallel 

units. The delay of these units is considered in the run-time. 

TABLE I. COMPARISON OF THE THREE CASE STUDIES.  

Design 
Area 

(m
2
) 

Ave. run-
time (ns) 

Area×delay 

(m
2 
× ps) 

Multiplication 
circuit 

Non-stochastic 12,214 48 587 

SC without PP 35 6,871 242 

SC with PP 35 1,375 48 

4-input 
neuron 

Non-stochastic 54,727 86 4,714 

SC without PP 273 27,498 7,501 

SC with PP 273 12,598 3,437 

Edge 
detector 

Non-stochastic 6,943 26 181 

SC without PP 200 3,855 771 

SC with PP 200 332 66 

 

The average run-time is calculated by multiplying the min-

imum clock period of the circuit by the average number of 

cycles needed. The area-delay product is also reported, 

which shows that our new design is much more efficient 

than the conventional stochastic and non-stochastic des-

igns. Table I also compares different designs of a stochastic 

neuron [3] and the edge-detection circuit implementing (1). 
 

V. CONCLUSIONS 

This paper has addressed the central problem of stochastic 

computing, viz., accuracy limitations that lead to long run-

times. We showed that better accuracy can often be 

achieved using deterministic number sources instead of the 

usual pseudo-random ones. We devised a quantitative 

measure for progressive precision, along with practical 

ways to exploit it. We also identified useful connections 

between SC and QMC methods. In particular, we showed 

that low-discrepancy sequences provide very good PP, 

leading to fast and accurate stochastic circuits. Finally, we 

used the proposed ideas to obtain stochastic circuits with 

PP that significantly outperform conventional stochastic 

and non-stochastic designs in representative applications.  

ACKNOWLEDGEMENT 

This work was supported by Grant CCF-1318091 from the 

U.S. National Science Foundation.  

REFERENCES 

[1] Alaghi, A. and Hayes, J.P., “Survey of stochastic computing,” ACM 
Trans. Embedded Computing Sys., 12, pp. 92:1-92:19, 2013. 

[2] Alaghi, A. Li, C. and Hayes, J.P., “Stochastic circuits for real-time 
image-processing applications,”  Proc. DAC, paper 136, 2013. 

[3] Brown, B.D. and Card, H.C., “Stochastic neural computation I:  
computational elements,” IEEE Trans. Comp., 50, pp.891-905, 2001.  

[4] Dalal, I.L.et al.“Low discrepancy sequences for MC simulations on 
reconfigurable platforms,” Proc. ASAP, pp.108-113, 2008. 

[5] Gaines, B.R., “Stochastic computing systems,” Advances in 
Information Systems Science, 2, pp. 37-172, 1969.  

[6] Golomb, S.W. and Gong, G., Signal Design for Good Correlation, 
New York: Cambridge Univ. Press, 2004. 

[7] Gross, W.J., Gaudet, V.C. and Milner, A., “Stochastic implemen-
tation of LDPC decoders,” Proc. Asilomar Conf., pp. 713-717, 2005. 

[8] Hammersley, J.M. and Handscomb, D.C., Monte Carlo Methods. 
London: Methuen, 1964. 

[9] Jeavons, P. et al., “Generating binary sequences for stochastic 
computing,” IEEE Trans. Info. Theory, 40, pp. 716-720, 1994. 

[10] Niederreiter, H., Random Number Generation and Quasi-Monte 
Carlo Methods, SIAM Series in App. Math., 32, Philadelphia, 1992. 

[11] Qian, W. et al.,“An architecture for fault-tolerant computation with 
stochastic logic,” IEEE Trans. Computers,  60, pp. 93-105, 2011. 


