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ABSTRACT 
Monte Carlo (MC) simulation plays a key role in EDA as the gold 
standard against which heuristics are measured. It is also an 
important stand-alone technique for statistics-based tasks like 
power estimation and reliability analysis. Accurate simulation 
requires large sample sets and long runtimes, which can be hard to 
achieve with conventional MC. We propose an approach called 
Reduced-Ordered Monte Carlo (ROMC), which improves 
simulation efficiency, while still producing accurate results. 
ROMC takes advantage of the (partial) redundancy inherent in 
digital signals. It prioritizes input signals based on their 
observability at the outputs, and combines inputs based on a 
compatibility property that enables them to share samples. 
Experimental results are presented which demonstrate that the 
ROMC methodology can decrease simulation runtime by several 
orders of magnitude. 

Keywords 
Logic simulation, Monte Carlo simulation, redundancy, sampling 
methods, signal probability.  

1. Introduction 
Monte Carlo (MC) simulation is a widely-used technique in 
electronic design automation (EDA) that serves several purposes. 
It is used as an evaluation method when analytical approaches are 
infeasible, and it serves to validate heuristic problem-solving 
techniques. For example, Sauer et al. present a SAT-based timing 
analysis technique whose results are “validated by comparison to 
an exact (Monte Carlo) simulation approach” [15]. Other EDA 
tasks commonly validated by MC include testability and power 
estimation [13], circuit synthesis [3], and design verification [18]. 
In some cases, MC is central to the main solution methodology. 
As a statistical technique, it is naturally suited to inherently 
uncertain applications such as probabilistic circuit simulation [11] 
and variability analysis. For example, Chen et al. [3] observe that 
“Monte Carlo simulation must be used if one wants to consider 
the impact of component variability and uncertainty when 
designing a circuit.” 

To be effective, MC must achieve a proper balance between 
computational effort and accuracy. Too few samples provide 
insufficient accuracy, while too many lead to excessive runtime. 

In fact, the sample size for MC grows rapidly with increasing 
accuracy levels [7]. To enhance the scalability of MC, we explore 
the use of signal redundancy to reduce simulation runtime 
complexity for a given accuracy target. We do so for a generic 
EDA application, namely, signal probability estimation in digital 
circuits. Informally, the signal probability (SP) of a logic signal s 
is the probability of s being 1, and is denoted by p(s). SP carries 
information that can be used for a variety of purposes, ranging 
from power analysis [13] to reliability estimation [4]. 

Consider, for instance, the task of calculating the dynamic power 
consumption Pdyn of a gate [13][19]. This can be estimated from 
the equation Pdyn = 1/2CLV 2fα, where CL, V, f and α are the gate’s 
output capacitance, applied voltage, working frequency, and 
switching activity, respectively. Of these, the switching activity α 
is the most difficult to determine. Suppose, however, that all 
inputs are independent and G’s output signal is s. We can then use 
the variance of p(s), which is p(s)(1 − p(s)), to represent α, and 
hence calculate Pdyn [13] [19]. 

Signal probability is determined experimentally by applying N 
input vectors to an n-input circuit C, either physically or by 
simulation, and counting the number k of 1s produced on s, in 
which case, p(s) = k/N. This number is considered to be exact if it 
equals p*(s), where p*(s) is defined as the SP obtained when N = 
2n and the applied vectors are all different, i.e., when simulation is 
exhaustive. Clearly, p*(s) is the fraction of 1s in the truth table for 
s.  In Figure 1, p(z) = 0.5 since four of  z’s eight output values are 
1. As explained later, p*(z) is also 0.5 for this circuit, so the 
implied simulation of z by sampling half its 16 input vectors is 
exact. In general, non-exhaustive circuit simulation is inexact, 
either because the input sample set is inadequate, or logical 
correlations exist among signals due to reconvergent fanout.  

 

Figure 1. Circuit illustrating SP estimation via simulation. 

A straightforward way to calculate SPs analytically was intro-
duced by Parker and McCluskey for testability analysis [12]. 
Their method accounts for all correlations among logic signals 
and is exact. However, like exhaustive simulation, its complexity 
grows dramatically with circuit size, making it infeasible in 
practice. Various practical methods for approximating SP have 
been developed [4][5] some of which are based on simulation 
with MC-style statistical sampling. Recently, several interesting 
ways to improve sample accuracy have been proposed in the case 
of analog circuits [17]. For example, Singhee and Rutenbar apply 
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a quasi-Monte Carlo technique [17] to simulating process 
variation effects. However, their algorithms involve continuous 
functions and cannot be directly applied to digital circuits.  

This paper proposes ways to exploit a circuit’s redundancy 
properties to speed up SP estimation. To illustrate, consider again 
the circuit in Figure 1, which realizes z(a,b,c,d) = a′b + ac. Input d 
is redundant in the usual sense that z is independent of d, a fact 
that can be exploited to reduce sampling effort. While exhaustive 
simulation of a 4-input circuit requires 16 samples, the full 
redundancy of d reduces the circuit to a 3-input one that can be 
exhaustively simulated with only 8 samples. The sample input 
vectors shown apply all possible combinations to the non-
redundant inputs a, b and c, so the simulated value of p(z) is exact.  

Of course, fully redundant inputs such as d in the above example 
rarely occur in practice. We address a new type of partial 
redundancy where independence of input variables is conditional 
on specific values applied to other variables. For instance, z in 
Figure 1 becomes independent of b and c, when a = 1 and 0, 
respectively. Hence, b and c can be considered partially redundant 
with respect to a. Most of a circuit’s primary inputs (PIs) are 
partially redundant; however the degree of their redundancy varies 
widely. Some inputs become redundant much more often than 
others. We will show how such partial redundancies can be 
exploited to speed up simulation. 

This work proposes an extension to the MC approach we call 
Reduced-Ordered Monte Carlo (ROMC), which has better 
performance than conventional MC. It incorporates two main 
techniques to improve the quality of circuit simulation. The first 
technique orders and prioritizes the PIs according to their 
observability. For instance, consider the problem of estimating the 
SP of z1 in Figure 2. Some PIs such as x10 are more observable at 
z1 than others, and some, such as x2, are difficult to observe. Low-
observability PIs tend to become partially redundant due to other 
PIs’ assignments, while high-observability PIs are unlikely to 
become redundant. The concepts of observability and redundancy 
discussed here are related to the influence property of Boolean 
functions [9], and observability as used in the testing context [2]. 
We employ a modified version of the SCOAP testability 
measurement heuristic [2] to quickly find the most observable PIs.  

 
Figure 2. Ten-input two-output circuit; a multiplexer-like structure 

formed by G6, G7 and G9 is highlighted.  

The second technique involves finding compatible PIs, which 
have the property that only one of the PIs can affect certain 
primary outputs (POs) at any time. This relation among input 

variables can also be interpreted as a kind of partial redundancy. 
For example, x4 and x5 in Figure 2 are compatible PIs with respect 
to PO z1. If x3 = 1(0), then z1 becomes independent of x4 (x5). So 
both x4 and x5 are partially redundant PIs associated with x3, and 
they do not affect output z1 at the same time. Such behavior 
resembles that of a multiplexer, whose control (select) signals 
ensure that only one data input Di is connected to the 
multiplexer’s output at a time; the others are effectively masked. 
The data inputs {Di} are viewed as compatible. More generally, 
we find compatibility relations among the inputs of multiplexer-
like structures. One such structure is marked by dashed lines in 
Figure 2, where x1 and x8 are compatible with respect to x2, x5 and 
x6. We will show that compatible PIs can share resources, such as 
input samples or randomness sources that drive the samples. This 
can lead to large efficiency gains in SP estimation. 

Figure 3 illustrates the accuracy improvement from applying 
ROMC to the circuit in Figure 2. Here, accuracy is measured in 
terms of standard error [7], and refers to the difference between 
the exact probability p*(z) and the probability p(z) estimated by 
the simulation for various  sample  sizes;   the errors  are averaged 
over the two outputs z1 and z2. For a given accuracy level, ROMC 
is significantly faster than MC because it achieves the required 
accuracy with fewer samples. Furthermore, in this case, ROMC 
can produce exact signal probabilities with only 32 samples. 
 

 
Figure 3. Accuracy comparison between ROMC and a typical MC 

calculation of the average output SP for the circuit in Figure 2.  

The main contributions of this paper are: 1) Removing unneeded 
samples by identifying compatible PIs; 2) Improving sample 
accuracy by exploiting PI observability; and 3) Implementing and 
validating an MC algorithm for circuit simulation based on the 
foregoing concepts. 
 

 

2. Sampling Concepts  
This section reviews some basic concepts that are needed later. 
First, we formalize the SP estimation problem introduced in the 
previous section, and then discuss some basic properties of MC 
simulation. Lastly, we review the Boole-Shannon expansion. 

We formulate SP computation in general terms, so that it applies 
to many different EDA situations. The SP estimation problem 
may be stated as follows. Given a combinational circuit C 
(including the pseudo-combinational equivalent of a sequential 
circuit) with n PI and m PO signals, as well as a set of N sample 
input sequences, calculate the (average) SPs of the POs. Figure 1 
illustrates this for n = 4, m = 1, and N = 8. We make the usual 
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assumption [4] that each PI xi has SP p(xi) = 0.5 and is 
independent of all other PIs. This means that their joint 
probability distribution is the product of their individual 
distributions, and captures the informal notion of “random” 
sampling. It is possible to extend our methods to arbitrary input 
distributions, but that is beyond  the scope of this paper. 

Consider a n-input circuit C that implements the Boolean function 
z(x1,x2,…,xn), where the PIs have the same SP p(xi) = 0.5 and are 
all independent. The SP estimation problem for C is to determine 
p*(z). Since it is usually not feasible to find the exact value of p*(z) 
if C is large, we aim to find an estimator probability p(z) that 
provides a good estimate of p*(z).    

For a given estimator p(z), a bias β and a variance var[p(z)] are 
defined as follows [7]: 

 β = E[p(z) − p*(z)]                                    (1) 

 var[p(z)] = E[(p(z) − p*(z) − β)2]                     (2) 

where E[X] denotes the expected value of X. The square root of 
the variance of an estimator is its standard error (SE). It is usually 
desirable for an estimator to have β = 0, in which case it is called 
unbiased, and to have a small variance [7]. An unbiased estimator 
with variance zero is exact, that is, p (z) = p*(z). 

MC is a method of estimating p*(z) by applying N uniform and 
independent random samples to the PIs and collecting N samples 
at the output z. Let z(i) denote the ith value of z associated with the 
ith sample. The estimator p(z) can be defined as   

p(z) = (1/N)∑i z(i) 

It can be shown that p(z) in this case is unbiased [7] and that the 
variance of the estimation is  

var[p(z)] = (1/N) p*(z) (1 − p*(z))                      (3) 

So the variance and the SE of an MC simulation can be reduced 
by increasing the sample size N. However, reducing the SE by a 
factor of k requires the sample size to be increased by factor of k2 
making it impractical if a the desired error level is low. 
Consequently, many techniques for variance reduction without 
increasing N have been proposed [7][14]. The method proposed in 
this paper can be seen as another variance-reduction technique. 

Although the input samples for MC are usually assumed to be 
independent, which allows samples to be repeated, it is also 
possible to use MC with non-repeating samples [14]. We call the 
former MC with sample replacement (MCW) and the latter MC 
without sample replacement (MCWO). Like MCW, MCWO is an 
unbiased estimation method, but its variance follows that of a 
hypergeometric distribution [14]. For an MCWO estimator p(z)  

var[p(z)] = (1/N)p*(z)(1 − p*(z)) (2n − N)/(2n − 1) 

For a fixed sample size N, if the number of PIs n in C is reduced 
by some number, then the variance will become smaller. The 
change can be significant if N is comparable to 2n. This is not true 
in the case of MCW since its variance is independent of n. This 
fact turns out to be important in our proposed method since we 
aim at reducing the sample space of the MC, and can benefit from 
it only if we use non-repeating samples.  

Finally, we summarize the Boole-Shannon expansion and provide 
a compact version for later use. An n-variable Boolean function 
F(X) can be expanded around any variable xi as follows [8]: 

F(x1,x2,..,xi,..,xn) = xi ′.Fxi′ + xi .Fxi 

where Fxi′ = F(x1,x2,..,0,..,xn) and Fxi = F(x1, x2,..,1,..,xn) denote the 
negative and positive cofactors of F, respectively, for xi. 

For example, consider the function generated by G8 in Figure 2. It 
can be expanded around x3 thus: 

G8(x1,x2,x3,x4,x5,x6) = x3′((x1x2)′ + x4) + x3(x5x6)′ 

The negative and positive cofactors are (x1x2)′ + x4 and (x5x6)′, 
respectively. The variable x4 (x5) does not appear in the positive 
(negative) cofactor due to partial redundancy; the value of x3 
always blocks the propagation path from x4 (x5) to G8. As this 
example suggests, Boole-Shannon expansions and cofactors 
provide a tool for describing signal compatibility.  

We can also express signal probabilities in terms of cofactors: 

 ∑                          (4) 

It is also useful to define the Boole-Shannon expansion with 
respect to a product of k variables Xk ⊆ X. In this case, we are 
dealing with cube cofactors [8] such as Fx1′x2′…xk′ and Fx1x2…xk. 
With this notation, cofactors are awkward to write, so we denote 
Fx1′x2′…xk′ by F0, Fx1′x2′…xk by F1, and Fx1x2…xk by F2

k−1. The cube 
expansion around Xk can then be expressed compactly as 

       F(X) = x1′x2′…xk′F0 + x1′x2′…xkF1  +…  + x1x2…xk F2
k−1      (5) 

 

                    

3. Variable Ordering 
As discussed in Section 1, fully redundant PIs can be exploited to 
reduce the sample size for simulation simply by not wasting 
samples on them. Similarly, the partially redundant, or less 
observable, PIs that become redundant frequently can be ignored 
in favor of more observable ones. (Of course, we cannot ignore 
them completely like fully redundant PIs.)  

Accordingly, we propose the following sampling approach. 
Suppose we want to use  N = 2k samples to estimate the SP p(F) of 
function F with an n-member input set X. Select k variables Xk = 
x1,x2,...,xk  ⊆ X that are more observable than the others. Generate 
N samples that include every possible value of Xk exactly once, 
and assign random values to the remaining n −  k variables. The 
following samples illustrate this for k = 3 and n = 9. 

  x1 x2 x3   x4 x5 x6 x7 x8 x9  
  0  0  0     0  1  0  1  1  0 
  0  0  1     1  0  1  1  0  1 
  0  1  0     0  1  0  1  1  1 
  0  1  1     0  1  1  1  0  0 
  1  0  0     1  1  1  0  1  0 
  1  0  1     1  0  1  1  1  0 
  1  1  0     1  0  0  1  0  1 
  1  1  1     1  1  0  1  0  0 
 
Equation (5) enables us to express the above sampling scheme in 
the following way. Estimate the SP of each of the cofactors 
F0,F1,…,FN-1 with one sample and average the estimates. In 
practice, estimating the cofactors with one sample is sufficient. 
For instance, with a good variable ordering the cofactors will be 
close to 1 or 0, so a single sample provides a very good estimate. 

  p(F) = (1/N)( p(F0) + p(F1) + ⋅⋅⋅ + p(FN-1) )        (6) 

The average estimate p(F) is unbiased. Its variance is therefore 

var[p(F)] = (1/N 2)(var[p(F0)]+ var[p(F1)]+ ... + var[p(FN-1)])   (7) 
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The variance of each cofactor estimate p(Fi) is that of conven- 
tional MC with one sample, so  

var[p(Fi)] = p*(Fi)(1 − p*(Fi)) 

Now consider two exemplary cases. First, suppose that  
p*(Fi) = 0.5 for i = 0, 1, 2,..., N − 1; then var[p(Fi)] = 1/4. In this 
case, according to (7) we have var[p(F)] = 0.25N, which means 
that the proposed approach is no better than conventional MC. 
Next, suppose that p*(Fi) = 0 for i = 0, 1, 2,..., (N/2) − 1 and p*(Fi) 
= 1 for i = N/2, (N/2) + 1, (N/2) + 2,... , N − 1. This time we have 
var[p(Fi)] = 0, so var[p(F)] = 0 and the estimate  is exact.  

The difference between the two cases sketched above is that in the 
first one, x1, x2,..., xk  have high redundancy and low observability 
at the output F. This is why the corresponding cofactor has 
probability 0.5. In the second case, however, x1, x2,…, xk have 
high observability at F, and after assigning a value to them, 
completely determine the value of F.  

Thus, for a given function F, we need to look for k variables that 
minimize var[p(F)]. This means we have to consider the possible 
choices, calculate the probability of the corresponding cofactors, 
and calculate var[p(F)]. If all choices must be considered, this 
problem is more difficult than exhaustive simulation, and hence is 
not feasible. We therefore use heuristic observability evaluation 
methods to find the most observable variables. 

Consider the circuit in Figure 4. The output z has exact probability 
p*(z) = 0.5. If we try to estimate this value with a 4-sample 
simulation, the MC method yields a variance of 1/16 = 0.063 
according to (3). Now apply the proposed technique to this 
example. Since we have a total of four samples, we need to find 
the two most observable variables, which are obviously a and b. 
The variance var[p(F)] of the estimation is given by (7) thus: 

 (1/16)(var[p(Fa’b’)] + var[p(Fa’b)] + var[p(Fab’)] +var[p(Fab)])  

    = (1/16)( var[p(cd)] + var[p(1)] + var[p(c′+d′)] + var[p(0)])  

    = 6/256 = 0.023 

which implies that this technique yields a better estimate. 

 
Figure 4. Variable ordering; a and b are more observable than c and d. 

 

4. Sample Space Reduction 
Next, we introduce a technique to shrink a circuit’s sample space 
by converting it to another circuit with fewer PIs but the same 
output probabilities. As discussed in Section 2, this sample space 
reduction results in better SP estimates without the need to 
increase the sample size. 

Consider again the function z(a,b,c,d) = a′b + acd + acd′ of 
Figure 1 The redundant PI d allows the sample space to be 
reduced from 16 to 8. Such redundant PIs can be detected by their 
Boolean difference. The Boolean difference of z(x1, x2,⋅⋅⋅, xi, ⋅⋅⋅, xn) 
with respect to input xi is defined as 

   , , . . ,0, . . ,  ⊕ , , . . ,1, . . ,  

where ⊕ denotes XOR. It follows immediately [1] that xi is 
redundant if and only if 

    0                                       (8) 

Partially redundant PIs also reduce the sample size, and can be 
detected in a similar way. Consider again the partially redundant 
inputs in Figure 1. Input b (c) becomes redundant if a = 1 (0), so 
at least one of them is always redundant in the sense that b and c 
do not affect the output at the same time. Knowing this, we can 
further reduce z’s sample space by tying b and c together to form 
a single PI for simulation purposes. This reduces the number of 
samples for exhaustive simulation from eight to four, namely, 
abcd = 0000, 0110, 1000, 1110, while z’s SP remains unchanged. 
So just by obtaining the output values for these few samples, we 
can determine the exact SP p*(z). 

In general, two partially redundant inputs xi and xj of a function z 
that never affect z together have the following property: 

  .  0                                  (9) 

We call such inputs compatible. For example, inputs b and c of 
z(a,b,c,d)  = a′b + acd + acd′ are compatible because 

        . .  0 

Theorem: If two inputs xi and xj of an n-input function f(x1,x2,.., 
xi,..,xj,..,xn) are compatible, then the (n − 1)-input function g = 
f(x1,x2,.., xi,..,xi,..,xn)  obtained by equating xj and xi in f  has the 
same signal probability as f, that is, p*(g) = p*(f). 

Proof: Equation (9) implies that for all the possible values of the 
variables other than xi and xj, we have either 0 or  0. 

Hence, ′  or ′ . Applying Boole-Shannon expansion 
to these equations, yields ′  and ′ ′ ′ , or  ′

 and ′ ′ ′ . Therefore,  

′ ′ ′ ′  

Also, according to (4) we have: 14 ′ ′ ′ ′  

       ′ ′  

Since g is the same as f with xi and xj connected, we can write 
 and ′ ′ ′ . Consequently,  ′  ′ ′     □ 

So tying together a pair of compatible PIs yields a circuit with 
fewer inputs but the same SP. For example, tying the compatible 
PI pairs of Figure 2 yields the 5-input circuit of Figure 5 with the 
same SPs. More generally, an input set  of a function forms a 
compatible set, if all xi-xj pairs in  are compatible. All the 
members of   can be tied together without altering SP’s. This is 
an instance of a general compatibility relation [8], and so is 
reflexive, symmetric but not necessarily transitive. It can be 
shown that the ten PIs of Figure 2 include 18 compatible pairs and 
four compatible triples, but no larger ones.  
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Figure 5. Five-input circuit obtained from Figure 2 by connecting 
compatible PIs; the supergates of z2 are marked by dotted lines;  
p*/Pdyn denote the SP and dynamic power at each gate. 
 

Determining compatible sets with special properties is a difficult 
task that arises often in EDA, for example, in state minimization 
for finite state machines, and resource scheduling for high-level 
synthesis [8][10]. These problems can be modeled by 
compatibility graphs (or their complements, conflict graphs). The 
problem of interest here is finding a minimal number of 
compatible sets to cover all PIs and minimize the relevant sample 
space, where the chosen sets must form a disjoint cover (partition) 
of the PIs. This problem is related to the clique partitioning 
problem in graph theory [10].  

There is usually more than one optimum solution to our PI 
partitioning problem, and they all reduce the sample space equally. 
However, some partitions provide better simulation accuracy due 
to differences in their observability properties. For the circuit of 
Figure 2, ROMC selects the compatible sets {x1, x5},{x2, x8},{x3, 
x7},{x4, x6},{x9, x10}, which leads to a 5-input circuit with the 
same output SPs as the 10-input original; see Figure 5. Other 
nearly equivalent solutions exist such as: {x1,x5}, {x2,x6,x8}, 
{x3,x7}, {x4, x9}, {x10}. 

5. Implementation Issues 
This section presents our circuit sampling algorithm ROMC, 
which incorporates the variance and sample-space reduction 
techniques introduced in Sections 3 and 4. Figure 6 shows the 
pseudo-code for ROMC, as well as some of its main procedures.  

Given an n-input m-output circuit C and a sample size N = 2k, 
ROMC first finds an observability value for each PI via a 
modified SCOAP heuristic [2]. The modifications arise from 
differences between observability in the testing context and 
ROMC’s. First, a fanout stem’s SCOAP observability is the 
minimum value among its fanout branches; this is replaced by the 
average value of the branches’ observability. For testing purposes, 
observing a signal at one PO is enough, but for ROMC, a good 
observable signal is one that is observable at many POs. A second 
modification is that SCOAP calculates the worst-case 
observability for both the 0 and 1 values of a signal, whereas 
ROMC computes the average of these values.  

Next, ROMC determines compatibility relations among the PIs 
and constructs a PI compatibility graph. The Compatible_Pair_ 
Detection procedure searches for multiplexer-like structures in 
order to detect compatible PIs. These structures are naturally 
confined to the given circuit C’s supergates [16], which are 
subcircuits that encapsulate maximal fanout-reconvergence 
structures. The procedure partitions C into supergates and 

recursively searches them for compatible signals. For instance, 
there are three supergates for PO z2 in Figure 5, namely: SG(g11) = 
{g11}, SG(g9) = (g9, g7, g6), and SG(g4) = {g4}.  SG(g9) is actually 
a multiplexer, so some of its inputs are compatible. These 
compatibility relations are propagated toward the PIs and lead to 
the conclusion that x8 is compatible with x5 and x6.  

After constructing the compatibility graph G for the original PI set 
X, ROMC performs clique partitioning on G to find a reduced set 

 of  < n PIs that form a PI cover. Equivalently, one could 
construct the PI’s conflict graph , and solve the coloring 
problem for , i.e., find the minimum number of vertex colors 
such that all adjacent vertices have different colors [10].  There 
are many fast heuristic algorithms to solve this well-studied 
problem. Figure 7 shows the conflict graph of the circuit in Figure 
2 and its coloring solution. The PIs (vertices) with the same color 
label are those that are tied together in Figure 5.  

Next, ROMC sorts the PIs according to their observability. The 
observability value of each newly formed PI   is the sum of the 
observability values of the corresponding original PIs. For 
instance, in Figure 5, x9 and x10 of Figure 2 are replaced by a new 

 Figure 6. Pseudo-code for the ROMC simulation algorithm. 

ROMC(Circuit C, PIs X, Sample size N = 2k) { 
  // Returns estimated signal probabilities of the POs 
    Observability Values Xobs.= Observability_Evaluation(C, X) 
    Edge List E = Compatible_Pair_Detection(C, X) 
    Graph G = G(X, E)     // G is the compatibility graph of C; 
   vertices are PIs, edges connect compatible PIs 
    Reduced PI Set  = Clique_Partitioning(G) 
    Observability Values   = Add Xobs. of connected PIs in  
    Ordered List L = Sort PIs in  by their observability . 
    Sample Set S = All combinations of first k PIs in L, with   
                             random values assigned to remaining PIs 
    return Monte_Carlo(C, S)   // Returns SPs generated by   
                applying Monte-Carlo simulation to C with sample set S 
}  
Observability_Evaluation(Circuit C, PIs X){ 
 // Returns observability value of each PI 
     return Modified_SCOAP(C, X)    
}  
Compatible_Pair_Detection (Circuit C, PI X){ 
 // Returns list of compatible PI pairs 
    Supergate Partition SGP = Partition_to_Supergates(C) 
              // Partitions C into fanout-free network of subcircuits 
    if (SGP = C) then    // C cannot be further partitioned 
              for each PI pair (xi, xj) in X 
                        if (xi and xj are compatible) then 
                                     add (xi, xj) to list L 
              return L 
   else    // Recursive case 
              for each subcircuit C′ in SGP 
                      Li′  = Compatible_Pair_Detection(C′, X ′)  
                                 // Recursive call to supergate subcircuits 
                      for each pair (xi, xj) in Li′ 
                               propagate the relation to the PIs 
                               add compatible PIs to list L 
                  // Combine recursive results 
    return L 
}    
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PI , hence  ’s observability is the sum of those of x9 and x10. 
The new PIs are then ordered by observability; in the case of 
Figure 5, the ordering is     .   

At this point, ROMC generates samples based on its com-
patibility and observability figures. For the example (Figure 5), if 
the sample size N = 8, then PIs ,  and  are chosen as the 
most observable. ROMC applies all 8 combinations 000, 
001,...,111 to these three PIs, and assign random bit sequences to 

 and . It simulates the circuit with the resulting 8 samples.  

 
Figure 7. Conflict graph for the circuit in Figure 2; PIs with the same 

color labels are compatible and can share samples. 

6. Experimental Results 
To gauge the efficiency and accuracy of our approach, we applied 
ROMC to SP estimation for representative ISCAS-85 and LGSyn-
92 benchmark circuits. Accuracy was measured in the following 
way: For an n-input m-output circuit C, reference (gold) signal 
probabilities were generated for all m POs using conventional MC. 
If n ≤ 31, then C was exhaustively simulated; otherwise, C was 
simulated with 231 random samples. This sample size 231 produces 
results that accurate enough for verifying ROMC’s performance 
considering the relatively small size of the benchmark circuits. 
Then, for a fixed sample size N = 2k, ROMC and MC sample C 
100 times. The accuracy for N = 2k is measured in terms of the 
average standard errors of the estimated results [7]. 

Each circuit was simulated with sample sizes ranging from 27 to 
224. We found that ROMC can identify compatible PIs and 
determine each PI’s observability quickly, even in circuits 
containing over 3,600 gates. The runtime overhead for compatible 

 
signal identification and observability estimation was less than 2 
seconds on an Intel Quad-Core 2.35GHz, 64-bit PC with 4G RAM 
machine for all benchmarks.  

Figure 8 shows the runtime improvements for the representative 
benchmark circuits. The improvement at each accuracy level is 
measured by the ratio between the MC and ROMC sample sizes 
needed to achieve the required accuracy. From the figure, we see 
that ROMC can reduce runtimes by one to three orders of 
magnitude. The average runtime improvement for an estimated 
error of 10-4 is nearly three orders of magnitude. In addition, these 
simulation results also show that ROMC’s runtime improvement 
grows with increasing accuracy levels. In other words, ROMC can 
produce very accurate results with far fewer samples than MC. 
This suggests that ROMC is well-suited to applications that 
require highly accurate signal probabilities, such as power 
estimation [13]. 

We would like to emphasize that a variance reduction method 
might produce much worse results than the ones produced by MC 
if it is not designed carefully [7], and developing a variance 
reduction technique suitable for all kinds of circuits is a challenge. 
ROMC, however, produces no sample variance higher (worse) 
than the variances generated by MC, which suggests that it is a 
very broadly applicable method. As the results show, it is 
effective for various types of circuits such as the arithmetic and 
error detection circuits found in the ISCAS-85 and LGSyn-92 
benchmark sets [6]. 

Figure 9 compares MC and ROMC for the c1196 circuit where 
the standard error of ROMC falls dramatically with increasing 
sample size.  The big accuracy improvement from N = 18 to N = 
20 results from a combination of the compatibility and MCWO 
features of ROMC. The sample space of c1196 is reduced from 
223 to 221 due to the presence two compatible PI pairs. MCWO 
can reduce the sample variance exponentially when the sample 
size is close to that of the entire sample space, which is 221 in this 
case.    

Although ROMC does not produce negative results in any of the 
selected benchmarks, there are a few cases where ROMC makes 
insignificant runtime improvement. Figure 10 shows the runtime 
comparison for c499, which is an error-correction circuit [6]. The 
insignificant improvement is due to the fact that all PIs of such 
circuits tend to be equally important (of the same low redundancy) 
for all POs.  

 

 
Figure 8. Speed-up of ROMC over MC for the benchmark circuits at five accuracy levels defined by standard error. 
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Figure 9. Comparison between MC and ROMC for c1196. 

 

Finally, we noted in Section 1 that power estimation is a useful 
application of SP data. To illustrate, consider again the circuit of 
Figure 5. By computing the SP of the intermediate lines, we can 
evaluate the circuit’s overall switching activity, and hence its 
power consumption, using the relation 

Pdyn = 1/2CLV2f.p(s)(1 − p(s)) 

In Figure 5, gate output lines are marked with p*/Pdyn, where p* is 
the line’s exact SP and Pdyn is the gate’s dynamic power 
dissipation in microwatts, assuming an IBM 130-nm process with 
a 1.5 volt supply and a 1 GHz clock frequency. It is worth noting 
that ROMC estimates the power values with less than 1% error 
via only 16 samples, while MC has a 12% error with the same 
number of samples.  

7. Conclusions 
We have proposed an MC-based algorithm ROMC for digital 
circuit simulation, which aims to reduce simulation runtime 
and/or increase simulation accuracy. The simulation goal is SP 
calculation, which has many EDA applications. ROMC exploits 
two redundancy properties of logic signals (compatibility and 
observability) in novel ways to remove unnecessary samples and 
reduce sample variance. Hence, it is always faster⎯sometimes 
dramatically so⎯than conventional MC for a given accuracy level. 

We have also presented experimental results showing that the 
proposed approach reduces simulation time by as much as three 
orders of magnitude on benchmark circuits. In addition, it can 
reduce SP estimation errors for a given runtime budget. These two 
nice properties make ROMC particularly suitable for probability-
related EDA tasks such as switching activity measurement and 
soft-error analysis, topics we are continuing to explore.  
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