
Scalable Sampling Methodology for Logic Simulation:
Reduced-Ordered Monte Carlo
Chien-Chih Yu, Armin Alaghi and John P. Hayes

Advanced Computer Architecture Laboratory
Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI, 48109, USA
{ccyu, alaghi, jhayes}@eecs.umich.edu

ABSTRACT
Monte Carlo (MC) simulation plays a key role in EDA as the gold
standard against which heuristics are measured. It is also an
important stand-alone technique for statistics-based tasks like
power estimation and reliability analysis. Accurate simulation
requires large sample sets and long runtimes, which can be hard to
achieve with conventional MC. We propose an approach called
Reduced-Ordered Monte Carlo (ROMC), which improves
simulation efficiency, while still producing accurate results.
ROMC takes advantage of the (partial) redundancy inherent in
digital signals. It prioritizes input signals based on their
observability at the outputs, and combines inputs based on a
compatibility property that enables them to share samples.
Experimental results are presented which demonstrate that the
ROMC methodology can decrease simulation runtime by several
orders of magnitude.

Keywords
Logic simulation, Monte Carlo simulation, redundancy, sampling
methods, signal probability.

1. Introduction
Monte Carlo (MC) simulation is a widely-used technique in
electronic design automation (EDA) that serves several purposes.
It is used as an evaluation method when analytical approaches are
infeasible, and it serves to validate heuristic problem-solving
techniques. For example, Sauer et al. present a SAT-based timing
analysis technique whose results are “validated by comparison to
an exact (Monte Carlo) simulation approach” [15]. Other EDA
tasks commonly validated by MC include testability and power
estimation [13], circuit synthesis [3], and design verification [18].
In some cases, MC is central to the main solution methodology.
As a statistical technique, it is naturally suited to inherently
uncertain applications such as probabilistic circuit simulation [11]
and variability analysis. For example, Chen et al. [3] observe that
“Monte Carlo simulation must be used if one wants to consider
the impact of component variability and uncertainty when
designing a circuit.”

To be effective, MC must achieve a proper balance between
computational effort and accuracy. Too few samples provide
insufficient accuracy, while too many lead to excessive runtime.

In fact, the sample size for MC grows rapidly with increasing
accuracy levels [7]. To enhance the scalability of MC, we explore
the use of signal redundancy to reduce simulation runtime
complexity for a given accuracy target. We do so for a generic
EDA application, namely, signal probability estimation in digital
circuits. Informally, the signal probability (SP) of a logic signal s
is the probability of s being 1, and is denoted by p(s). SP carries
information that can be used for a variety of purposes, ranging
from power analysis [13] to reliability estimation [4].

Consider, for instance, the task of calculating the dynamic power
consumption Pdyn of a gate [13][19]. This can be estimated from
the equation Pdyn = 1/2CLV 2fα, where CL, V, f and α are the gate’s
output capacitance, applied voltage, working frequency, and
switching activity, respectively. Of these, the switching activity α
is the most difficult to determine. Suppose, however, that all
inputs are independent and G’s output signal is s. We can then use
the variance of p(s), which is p(s)(1 − p(s)), to represent α, and
hence calculate Pdyn [13] [19].

Signal probability is determined experimentally by applying N
input vectors to an n-input circuit C, either physically or by
simulation, and counting the number k of 1s produced on s, in
which case, p(s) = k/N. This number is considered to be exact if it
equals p*(s), where p*(s) is defined as the SP obtained when N =
2n and the applied vectors are all different, i.e., when simulation is
exhaustive. Clearly, p*(s) is the fraction of 1s in the truth table for
s. In Figure 1, p(z) = 0.5 since four of z’s eight output values are
1. As explained later, p*(z) is also 0.5 for this circuit, so the
implied simulation of z by sampling half its 16 input vectors is
exact. In general, non-exhaustive circuit simulation is inexact,
either because the input sample set is inadequate, or logical
correlations exist among signals due to reconvergent fanout.

Figure 1. Circuit illustrating SP estimation via simulation.

A straightforward way to calculate SPs analytically was intro-
duced by Parker and McCluskey for testability analysis [12].
Their method accounts for all correlations among logic signals
and is exact. However, like exhaustive simulation, its complexity
grows dramatically with circuit size, making it infeasible in
practice. Various practical methods for approximating SP have
been developed [4][5] some of which are based on simulation
with MC-style statistical sampling. Recently, several interesting
ways to improve sample accuracy have been proposed in the case
of analog circuits [17]. For example, Singhee and Rutenbar apply

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD) 2012, November 5-8, 2012, San Jose, California, USA.
Copyright © 2012 ACM 978-1-4503-1573-9/12/11... $15.00.

p(z) = p*(z) = 4/8

195

a quasi-Monte Carlo technique [17] to simulating process
variation effects. However, their algorithms involve continuous
functions and cannot be directly applied to digital circuits.

This paper proposes ways to exploit a circuit’s redundancy
properties to speed up SP estimation. To illustrate, consider again
the circuit in Figure 1, which realizes z(a,b,c,d) = a′b + ac. Input d
is redundant in the usual sense that z is independent of d, a fact
that can be exploited to reduce sampling effort. While exhaustive
simulation of a 4-input circuit requires 16 samples, the full
redundancy of d reduces the circuit to a 3-input one that can be
exhaustively simulated with only 8 samples. The sample input
vectors shown apply all possible combinations to the non-
redundant inputs a, b and c, so the simulated value of p(z) is exact.

Of course, fully redundant inputs such as d in the above example
rarely occur in practice. We address a new type of partial
redundancy where independence of input variables is conditional
on specific values applied to other variables. For instance, z in
Figure 1 becomes independent of b and c, when a = 1 and 0,
respectively. Hence, b and c can be considered partially redundant
with respect to a. Most of a circuit’s primary inputs (PIs) are
partially redundant; however the degree of their redundancy varies
widely. Some inputs become redundant much more often than
others. We will show how such partial redundancies can be
exploited to speed up simulation.

This work proposes an extension to the MC approach we call
Reduced-Ordered Monte Carlo (ROMC), which has better
performance than conventional MC. It incorporates two main
techniques to improve the quality of circuit simulation. The first
technique orders and prioritizes the PIs according to their
observability. For instance, consider the problem of estimating the
SP of z1 in Figure 2. Some PIs such as x10 are more observable at
z1 than others, and some, such as x2, are difficult to observe. Low-
observability PIs tend to become partially redundant due to other
PIs’ assignments, while high-observability PIs are unlikely to
become redundant. The concepts of observability and redundancy
discussed here are related to the influence property of Boolean
functions [9], and observability as used in the testing context [2].
We employ a modified version of the SCOAP testability
measurement heuristic [2] to quickly find the most observable PIs.

Figure 2. Ten-input two-output circuit; a multiplexer-like structure

formed by G6, G7 and G9 is highlighted.

The second technique involves finding compatible PIs, which
have the property that only one of the PIs can affect certain
primary outputs (POs) at any time. This relation among input

variables can also be interpreted as a kind of partial redundancy.
For example, x4 and x5 in Figure 2 are compatible PIs with respect
to PO z1. If x3 = 1(0), then z1 becomes independent of x4 (x5). So
both x4 and x5 are partially redundant PIs associated with x3, and
they do not affect output z1 at the same time. Such behavior
resembles that of a multiplexer, whose control (select) signals
ensure that only one data input Di is connected to the
multiplexer’s output at a time; the others are effectively masked.
The data inputs {Di} are viewed as compatible. More generally,
we find compatibility relations among the inputs of multiplexer-
like structures. One such structure is marked by dashed lines in
Figure 2, where x1 and x8 are compatible with respect to x2, x5 and
x6. We will show that compatible PIs can share resources, such as
input samples or randomness sources that drive the samples. This
can lead to large efficiency gains in SP estimation.

Figure 3 illustrates the accuracy improvement from applying
ROMC to the circuit in Figure 2. Here, accuracy is measured in
terms of standard error [7], and refers to the difference between
the exact probability p*(z) and the probability p(z) estimated by
the simulation for various sample sizes; the errors are averaged
over the two outputs z1 and z2. For a given accuracy level, ROMC
is significantly faster than MC because it achieves the required
accuracy with fewer samples. Furthermore, in this case, ROMC
can produce exact signal probabilities with only 32 samples.

Figure 3. Accuracy comparison between ROMC and a typical MC

calculation of the average output SP for the circuit in Figure 2.

The main contributions of this paper are: 1) Removing unneeded
samples by identifying compatible PIs; 2) Improving sample
accuracy by exploiting PI observability; and 3) Implementing and
validating an MC algorithm for circuit simulation based on the
foregoing concepts.

2. Sampling Concepts
This section reviews some basic concepts that are needed later.
First, we formalize the SP estimation problem introduced in the
previous section, and then discuss some basic properties of MC
simulation. Lastly, we review the Boole-Shannon expansion.

We formulate SP computation in general terms, so that it applies
to many different EDA situations. The SP estimation problem
may be stated as follows. Given a combinational circuit C
(including the pseudo-combinational equivalent of a sequential
circuit) with n PI and m PO signals, as well as a set of N sample
input sequences, calculate the (average) SPs of the POs. Figure 1
illustrates this for n = 4, m = 1, and N = 8. We make the usual

196

assumption [4] that each PI xi has SP p(xi) = 0.5 and is
independent of all other PIs. This means that their joint
probability distribution is the product of their individual
distributions, and captures the informal notion of “random”
sampling. It is possible to extend our methods to arbitrary input
distributions, but that is beyond the scope of this paper.

Consider a n-input circuit C that implements the Boolean function
z(x1,x2,…,xn), where the PIs have the same SP p(xi) = 0.5 and are
all independent. The SP estimation problem for C is to determine
p*(z). Since it is usually not feasible to find the exact value of p*(z)
if C is large, we aim to find an estimator probability p(z) that
provides a good estimate of p*(z).

For a given estimator p(z), a bias β and a variance var[p(z)] are
defined as follows [7]:

 β = E[p(z) − p*(z)] (1)

 var[p(z)] = E[(p(z) − p*(z) − β)2] (2)

where E[X] denotes the expected value of X. The square root of
the variance of an estimator is its standard error (SE). It is usually
desirable for an estimator to have β = 0, in which case it is called
unbiased, and to have a small variance [7]. An unbiased estimator
with variance zero is exact, that is, p (z) = p*(z).

MC is a method of estimating p*(z) by applying N uniform and
independent random samples to the PIs and collecting N samples
at the output z. Let z(i) denote the ith value of z associated with the
ith sample. The estimator p(z) can be defined as

p(z) = (1/N)∑i z(i)

It can be shown that p(z) in this case is unbiased [7] and that the
variance of the estimation is

var[p(z)] = (1/N) p*(z) (1 − p*(z)) (3)

So the variance and the SE of an MC simulation can be reduced
by increasing the sample size N. However, reducing the SE by a
factor of k requires the sample size to be increased by factor of k2
making it impractical if a the desired error level is low.
Consequently, many techniques for variance reduction without
increasing N have been proposed [7][14]. The method proposed in
this paper can be seen as another variance-reduction technique.

Although the input samples for MC are usually assumed to be
independent, which allows samples to be repeated, it is also
possible to use MC with non-repeating samples [14]. We call the
former MC with sample replacement (MCW) and the latter MC
without sample replacement (MCWO). Like MCW, MCWO is an
unbiased estimation method, but its variance follows that of a
hypergeometric distribution [14]. For an MCWO estimator p(z)

var[p(z)] = (1/N)p*(z)(1 − p*(z)) (2n − N)/(2n − 1)

For a fixed sample size N, if the number of PIs n in C is reduced
by some number, then the variance will become smaller. The
change can be significant if N is comparable to 2n. This is not true
in the case of MCW since its variance is independent of n. This
fact turns out to be important in our proposed method since we
aim at reducing the sample space of the MC, and can benefit from
it only if we use non-repeating samples.

Finally, we summarize the Boole-Shannon expansion and provide
a compact version for later use. An n-variable Boolean function
F(X) can be expanded around any variable xi as follows [8]:

F(x1,x2,..,xi,..,xn) = xi ′.Fxi′ + xi .Fxi

where Fxi′ = F(x1,x2,..,0,..,xn) and Fxi = F(x1, x2,..,1,..,xn) denote the
negative and positive cofactors of F, respectively, for xi.

For example, consider the function generated by G8 in Figure 2. It
can be expanded around x3 thus:

G8(x1,x2,x3,x4,x5,x6) = x3′((x1x2)′ + x4) + x3(x5x6)′

The negative and positive cofactors are (x1x2)′ + x4 and (x5x6)′,
respectively. The variable x4 (x5) does not appear in the positive
(negative) cofactor due to partial redundancy; the value of x3
always blocks the propagation path from x4 (x5) to G8. As this
example suggests, Boole-Shannon expansions and cofactors
provide a tool for describing signal compatibility.

We can also express signal probabilities in terms of cofactors:

 ∑ (4)

It is also useful to define the Boole-Shannon expansion with
respect to a product of k variables Xk ⊆ X. In this case, we are
dealing with cube cofactors [8] such as Fx1′x2′…xk′ and Fx1x2…xk.
With this notation, cofactors are awkward to write, so we denote
Fx1′x2′…xk′ by F0, Fx1′x2′…xk by F1, and Fx1x2…xk by F2

k−1. The cube
expansion around Xk can then be expressed compactly as

 F(X) = x1′x2′…xk′F0 + x1′x2′…xkF1 +… + x1x2…xk F2
k−1 (5)

3. Variable Ordering
As discussed in Section 1, fully redundant PIs can be exploited to
reduce the sample size for simulation simply by not wasting
samples on them. Similarly, the partially redundant, or less
observable, PIs that become redundant frequently can be ignored
in favor of more observable ones. (Of course, we cannot ignore
them completely like fully redundant PIs.)

Accordingly, we propose the following sampling approach.
Suppose we want to use N = 2k samples to estimate the SP p(F) of
function F with an n-member input set X. Select k variables Xk =
x1,x2,...,xk ⊆ X that are more observable than the others. Generate
N samples that include every possible value of Xk exactly once,
and assign random values to the remaining n − k variables. The
following samples illustrate this for k = 3 and n = 9.

 x1 x2 x3 x4 x5 x6 x7 x8 x9
 0 0 0 0 1 0 1 1 0
 0 0 1 1 0 1 1 0 1
 0 1 0 0 1 0 1 1 1
 0 1 1 0 1 1 1 0 0
 1 0 0 1 1 1 0 1 0
 1 0 1 1 0 1 1 1 0
 1 1 0 1 0 0 1 0 1
 1 1 1 1 1 0 1 0 0

Equation (5) enables us to express the above sampling scheme in
the following way. Estimate the SP of each of the cofactors
F0,F1,…,FN-1 with one sample and average the estimates. In
practice, estimating the cofactors with one sample is sufficient.
For instance, with a good variable ordering the cofactors will be
close to 1 or 0, so a single sample provides a very good estimate.

 p(F) = (1/N)(p(F0) + p(F1) + ⋅⋅⋅ + p(FN-1)) (6)

The average estimate p(F) is unbiased. Its variance is therefore

var[p(F)] = (1/N 2)(var[p(F0)]+ var[p(F1)]+ ... + var[p(FN-1)]) (7)

197

The variance of each cofactor estimate p(Fi) is that of conven-
tional MC with one sample, so

var[p(Fi)] = p*(Fi)(1 − p*(Fi))

Now consider two exemplary cases. First, suppose that
p*(Fi) = 0.5 for i = 0, 1, 2,..., N − 1; then var[p(Fi)] = 1/4. In this
case, according to (7) we have var[p(F)] = 0.25N, which means
that the proposed approach is no better than conventional MC.
Next, suppose that p*(Fi) = 0 for i = 0, 1, 2,..., (N/2) − 1 and p*(Fi)
= 1 for i = N/2, (N/2) + 1, (N/2) + 2,... , N − 1. This time we have
var[p(Fi)] = 0, so var[p(F)] = 0 and the estimate is exact.

The difference between the two cases sketched above is that in the
first one, x1, x2,..., xk have high redundancy and low observability
at the output F. This is why the corresponding cofactor has
probability 0.5. In the second case, however, x1, x2,…, xk have
high observability at F, and after assigning a value to them,
completely determine the value of F.

Thus, for a given function F, we need to look for k variables that
minimize var[p(F)]. This means we have to consider the possible
choices, calculate the probability of the corresponding cofactors,
and calculate var[p(F)]. If all choices must be considered, this
problem is more difficult than exhaustive simulation, and hence is
not feasible. We therefore use heuristic observability evaluation
methods to find the most observable variables.

Consider the circuit in Figure 4. The output z has exact probability
p*(z) = 0.5. If we try to estimate this value with a 4-sample
simulation, the MC method yields a variance of 1/16 = 0.063
according to (3). Now apply the proposed technique to this
example. Since we have a total of four samples, we need to find
the two most observable variables, which are obviously a and b.
The variance var[p(F)] of the estimation is given by (7) thus:

 (1/16)(var[p(Fa’b’)] + var[p(Fa’b)] + var[p(Fab’)] +var[p(Fab)])

 = (1/16)(var[p(cd)] + var[p(1)] + var[p(c′+d′)] + var[p(0)])

 = 6/256 = 0.023

which implies that this technique yields a better estimate.

Figure 4. Variable ordering; a and b are more observable than c and d.

4. Sample Space Reduction
Next, we introduce a technique to shrink a circuit’s sample space
by converting it to another circuit with fewer PIs but the same
output probabilities. As discussed in Section 2, this sample space
reduction results in better SP estimates without the need to
increase the sample size.

Consider again the function z(a,b,c,d) = a′b + acd + acd′ of
Figure 1 The redundant PI d allows the sample space to be
reduced from 16 to 8. Such redundant PIs can be detected by their
Boolean difference. The Boolean difference of z(x1, x2,⋅⋅⋅, xi, ⋅⋅⋅, xn)
with respect to input xi is defined as

 , , . . ,0, . . , ⊕ , , . . ,1, . . ,

where ⊕ denotes XOR. It follows immediately [1] that xi is
redundant if and only if

 0 (8)

Partially redundant PIs also reduce the sample size, and can be
detected in a similar way. Consider again the partially redundant
inputs in Figure 1. Input b (c) becomes redundant if a = 1 (0), so
at least one of them is always redundant in the sense that b and c
do not affect the output at the same time. Knowing this, we can
further reduce z’s sample space by tying b and c together to form
a single PI for simulation purposes. This reduces the number of
samples for exhaustive simulation from eight to four, namely,
abcd = 0000, 0110, 1000, 1110, while z’s SP remains unchanged.
So just by obtaining the output values for these few samples, we
can determine the exact SP p*(z).

In general, two partially redundant inputs xi and xj of a function z
that never affect z together have the following property:

 . 0 (9)

We call such inputs compatible. For example, inputs b and c of
z(a,b,c,d) = a′b + acd + acd′ are compatible because

 . . 0

Theorem: If two inputs xi and xj of an n-input function f(x1,x2,..,
xi,..,xj,..,xn) are compatible, then the (n − 1)-input function g =
f(x1,x2,.., xi,..,xi,..,xn) obtained by equating xj and xi in f has the
same signal probability as f, that is, p*(g) = p*(f).

Proof: Equation (9) implies that for all the possible values of the
variables other than xi and xj, we have either 0 or 0.

Hence, ′ or ′ . Applying Boole-Shannon expansion
to these equations, yields ′ and ′ ′ ′ , or ′

 and ′ ′ ′ . Therefore,

′ ′ ′ ′

Also, according to (4) we have: 14 ′ ′ ′ ′

 ′ ′

Since g is the same as f with xi and xj connected, we can write
 and ′ ′ ′ . Consequently, ′ ′ ′ □

So tying together a pair of compatible PIs yields a circuit with
fewer inputs but the same SP. For example, tying the compatible
PI pairs of Figure 2 yields the 5-input circuit of Figure 5 with the
same SPs. More generally, an input set of a function forms a
compatible set, if all xi-xj pairs in are compatible. All the
members of can be tied together without altering SP’s. This is
an instance of a general compatibility relation [8], and so is
reflexive, symmetric but not necessarily transitive. It can be
shown that the ten PIs of Figure 2 include 18 compatible pairs and
four compatible triples, but no larger ones.

198

Figure 5. Five-input circuit obtained from Figure 2 by connecting
compatible PIs; the supergates of z2 are marked by dotted lines;
p*/Pdyn denote the SP and dynamic power at each gate.

Determining compatible sets with special properties is a difficult
task that arises often in EDA, for example, in state minimization
for finite state machines, and resource scheduling for high-level
synthesis [8][10]. These problems can be modeled by
compatibility graphs (or their complements, conflict graphs). The
problem of interest here is finding a minimal number of
compatible sets to cover all PIs and minimize the relevant sample
space, where the chosen sets must form a disjoint cover (partition)
of the PIs. This problem is related to the clique partitioning
problem in graph theory [10].

There is usually more than one optimum solution to our PI
partitioning problem, and they all reduce the sample space equally.
However, some partitions provide better simulation accuracy due
to differences in their observability properties. For the circuit of
Figure 2, ROMC selects the compatible sets {x1, x5},{x2, x8},{x3,
x7},{x4, x6},{x9, x10}, which leads to a 5-input circuit with the
same output SPs as the 10-input original; see Figure 5. Other
nearly equivalent solutions exist such as: {x1,x5}, {x2,x6,x8},
{x3,x7}, {x4, x9}, {x10}.

5. Implementation Issues
This section presents our circuit sampling algorithm ROMC,
which incorporates the variance and sample-space reduction
techniques introduced in Sections 3 and 4. Figure 6 shows the
pseudo-code for ROMC, as well as some of its main procedures.

Given an n-input m-output circuit C and a sample size N = 2k,
ROMC first finds an observability value for each PI via a
modified SCOAP heuristic [2]. The modifications arise from
differences between observability in the testing context and
ROMC’s. First, a fanout stem’s SCOAP observability is the
minimum value among its fanout branches; this is replaced by the
average value of the branches’ observability. For testing purposes,
observing a signal at one PO is enough, but for ROMC, a good
observable signal is one that is observable at many POs. A second
modification is that SCOAP calculates the worst-case
observability for both the 0 and 1 values of a signal, whereas
ROMC computes the average of these values.

Next, ROMC determines compatibility relations among the PIs
and constructs a PI compatibility graph. The Compatible_Pair_
Detection procedure searches for multiplexer-like structures in
order to detect compatible PIs. These structures are naturally
confined to the given circuit C’s supergates [16], which are
subcircuits that encapsulate maximal fanout-reconvergence
structures. The procedure partitions C into supergates and

recursively searches them for compatible signals. For instance,
there are three supergates for PO z2 in Figure 5, namely: SG(g11) =
{g11}, SG(g9) = (g9, g7, g6), and SG(g4) = {g4}. SG(g9) is actually
a multiplexer, so some of its inputs are compatible. These
compatibility relations are propagated toward the PIs and lead to
the conclusion that x8 is compatible with x5 and x6.

After constructing the compatibility graph G for the original PI set
X, ROMC performs clique partitioning on G to find a reduced set

 of < n PIs that form a PI cover. Equivalently, one could
construct the PI’s conflict graph , and solve the coloring
problem for , i.e., find the minimum number of vertex colors
such that all adjacent vertices have different colors [10]. There
are many fast heuristic algorithms to solve this well-studied
problem. Figure 7 shows the conflict graph of the circuit in Figure
2 and its coloring solution. The PIs (vertices) with the same color
label are those that are tied together in Figure 5.

Next, ROMC sorts the PIs according to their observability. The
observability value of each newly formed PI is the sum of the
observability values of the corresponding original PIs. For
instance, in Figure 5, x9 and x10 of Figure 2 are replaced by a new

 Figure 6. Pseudo-code for the ROMC simulation algorithm.

ROMC(Circuit C, PIs X, Sample size N = 2k) {
 // Returns estimated signal probabilities of the POs
 Observability Values Xobs.= Observability_Evaluation(C, X)
 Edge List E = Compatible_Pair_Detection(C, X)
 Graph G = G(X, E) // G is the compatibility graph of C;
 vertices are PIs, edges connect compatible PIs
 Reduced PI Set = Clique_Partitioning(G)
 Observability Values = Add Xobs. of connected PIs in
 Ordered List L = Sort PIs in by their observability .
 Sample Set S = All combinations of first k PIs in L, with
 random values assigned to remaining PIs
 return Monte_Carlo(C, S) // Returns SPs generated by
 applying Monte-Carlo simulation to C with sample set S
}
Observability_Evaluation(Circuit C, PIs X){
 // Returns observability value of each PI
 return Modified_SCOAP(C, X)
}
Compatible_Pair_Detection (Circuit C, PI X){
 // Returns list of compatible PI pairs
 Supergate Partition SGP = Partition_to_Supergates(C)
 // Partitions C into fanout-free network of subcircuits
 if (SGP = C) then // C cannot be further partitioned
 for each PI pair (xi, xj) in X
 if (xi and xj are compatible) then
 add (xi, xj) to list L
 return L
 else // Recursive case
 for each subcircuit C′ in SGP
 Li′ = Compatible_Pair_Detection(C′, X ′)
 // Recursive call to supergate subcircuits
 for each pair (xi, xj) in Li′
 propagate the relation to the PIs
 add compatible PIs to list L
 // Combine recursive results
 return L
}

199

PI , hence ’s observability is the sum of those of x9 and x10.
The new PIs are then ordered by observability; in the case of
Figure 5, the ordering is .

At this point, ROMC generates samples based on its com-
patibility and observability figures. For the example (Figure 5), if
the sample size N = 8, then PIs , and are chosen as the
most observable. ROMC applies all 8 combinations 000,
001,...,111 to these three PIs, and assign random bit sequences to

 and . It simulates the circuit with the resulting 8 samples.

Figure 7. Conflict graph for the circuit in Figure 2; PIs with the same

color labels are compatible and can share samples.

6. Experimental Results
To gauge the efficiency and accuracy of our approach, we applied
ROMC to SP estimation for representative ISCAS-85 and LGSyn-
92 benchmark circuits. Accuracy was measured in the following
way: For an n-input m-output circuit C, reference (gold) signal
probabilities were generated for all m POs using conventional MC.
If n ≤ 31, then C was exhaustively simulated; otherwise, C was
simulated with 231 random samples. This sample size 231 produces
results that accurate enough for verifying ROMC’s performance
considering the relatively small size of the benchmark circuits.
Then, for a fixed sample size N = 2k, ROMC and MC sample C
100 times. The accuracy for N = 2k is measured in terms of the
average standard errors of the estimated results [7].

Each circuit was simulated with sample sizes ranging from 27 to
224. We found that ROMC can identify compatible PIs and
determine each PI’s observability quickly, even in circuits
containing over 3,600 gates. The runtime overhead for compatible

signal identification and observability estimation was less than 2
seconds on an Intel Quad-Core 2.35GHz, 64-bit PC with 4G RAM
machine for all benchmarks.

Figure 8 shows the runtime improvements for the representative
benchmark circuits. The improvement at each accuracy level is
measured by the ratio between the MC and ROMC sample sizes
needed to achieve the required accuracy. From the figure, we see
that ROMC can reduce runtimes by one to three orders of
magnitude. The average runtime improvement for an estimated
error of 10-4 is nearly three orders of magnitude. In addition, these
simulation results also show that ROMC’s runtime improvement
grows with increasing accuracy levels. In other words, ROMC can
produce very accurate results with far fewer samples than MC.
This suggests that ROMC is well-suited to applications that
require highly accurate signal probabilities, such as power
estimation [13].

We would like to emphasize that a variance reduction method
might produce much worse results than the ones produced by MC
if it is not designed carefully [7], and developing a variance
reduction technique suitable for all kinds of circuits is a challenge.
ROMC, however, produces no sample variance higher (worse)
than the variances generated by MC, which suggests that it is a
very broadly applicable method. As the results show, it is
effective for various types of circuits such as the arithmetic and
error detection circuits found in the ISCAS-85 and LGSyn-92
benchmark sets [6].

Figure 9 compares MC and ROMC for the c1196 circuit where
the standard error of ROMC falls dramatically with increasing
sample size. The big accuracy improvement from N = 18 to N =
20 results from a combination of the compatibility and MCWO
features of ROMC. The sample space of c1196 is reduced from
223 to 221 due to the presence two compatible PI pairs. MCWO
can reduce the sample variance exponentially when the sample
size is close to that of the entire sample space, which is 221 in this
case.

Although ROMC does not produce negative results in any of the
selected benchmarks, there are a few cases where ROMC makes
insignificant runtime improvement. Figure 10 shows the runtime
comparison for c499, which is an error-correction circuit [6]. The
insignificant improvement is due to the fact that all PIs of such
circuits tend to be equally important (of the same low redundancy)
for all POs.

Figure 8. Speed-up of ROMC over MC for the benchmark circuits at five accuracy levels defined by standard error.

200

Figure 9. Comparison between MC and ROMC for c1196.

Finally, we noted in Section 1 that power estimation is a useful
application of SP data. To illustrate, consider again the circuit of
Figure 5. By computing the SP of the intermediate lines, we can
evaluate the circuit’s overall switching activity, and hence its
power consumption, using the relation

Pdyn = 1/2CLV2f.p(s)(1 − p(s))

In Figure 5, gate output lines are marked with p*/Pdyn, where p* is
the line’s exact SP and Pdyn is the gate’s dynamic power
dissipation in microwatts, assuming an IBM 130-nm process with
a 1.5 volt supply and a 1 GHz clock frequency. It is worth noting
that ROMC estimates the power values with less than 1% error
via only 16 samples, while MC has a 12% error with the same
number of samples.

7. Conclusions
We have proposed an MC-based algorithm ROMC for digital
circuit simulation, which aims to reduce simulation runtime
and/or increase simulation accuracy. The simulation goal is SP
calculation, which has many EDA applications. ROMC exploits
two redundancy properties of logic signals (compatibility and
observability) in novel ways to remove unnecessary samples and
reduce sample variance. Hence, it is always faster⎯sometimes
dramatically so⎯than conventional MC for a given accuracy level.

We have also presented experimental results showing that the
proposed approach reduces simulation time by as much as three
orders of magnitude on benchmark circuits. In addition, it can
reduce SP estimation errors for a given runtime budget. These two
nice properties make ROMC particularly suitable for probability-
related EDA tasks such as switching activity measurement and
soft-error analysis, topics we are continuing to explore.

Acknowledgement: This work was supported by Grant CCF-
1017142 from the U.S. National Science Foundation.

References
[1] S. B. Akers, Jr., 1959. On a theory of Boolean functions.

Jour. SIAM, pp. 487-498.
[2] M. L. Bushnell and V.D. Agrawal, 2000. Essentials of

Electron. Testing. Springer.

Figure 10. Comparison between MC and ROMC for c499.

[3] C-H. Chen et al., 2001. Efficient approach for Monte Carlo
simulation experiments and its applications to circuit systems
design. Proc. Simulation Symp., pp. 65-71.

[4] M. R. Choudhury and K. Mohanram, 2007. Accurate and
scalable reliability analysis of logic circuits. Proc. DATE, pp.
1-6.

[5] S. Ercolani el al., 1989. Estimate of signal probability in
combinational logic networks. Proc. ETC, pp.132-138.

[6] M. C. Hansen et al., 1999. Unveiling the ISCAS-85 bench-
marks: a case study in reverse engineering. IEEE Design &
Test, vol. 16, no. 3, pp.72-80.

[7] J. M. Hammersley and D. C. Handscomb, 1964. Monte Carlo
Methods. London: Methuen.

[8] G. D. Hachtel and F. Somenzi, 1996. Logic Synthesis and
Verification Algorithms. Kluwer Academic Publishers.

[9] J. Kahn et al., 1988. The influence of variables on Boolean
functions. Proc. FOCS, pp. 68-80.

[10] G. De Micheli, 1994. Synthesis and Optimization of Digital
Circuits. McGraw-Hill.

[11] A. Paler et al., 2011. Tomographic testing and validation of
probabilistic circuits. Proc. ETS, 63-68.

[12] K. P. Parker and E. J. McCluskey, 1975. Probabilistic
treatment of general combinational networks. IEEE Trans.
Computers, pp. 668-670.

[13] M. Pedram, 1994. Power estimation and optimization at the
logic level. Jour. High Speed Electron. & Syst. pp. 179-202.

[14] S. M. Ross, 1990. A Course in Simulation. Prentice Hall.
[15] M. Sauer et al., 2011. Estimation of component criticality in

early design steps. Proc. IOLTS, pp. 104-110.
[16] S. C. Seth and V. D. Agrawal, 1989. A new model for

computation of probabilistic testability in combinational
circuits. Jour. VLSI Integration, pp. 49-75.

[17] A. Singhee and R. A. Rutenbar, 2010. Why Quasi-Monte
Carlo is better than Monte Carlo or Latin Hypercube
sampling for statistical circuit analysis. IEEE Trans. CAD,
pp. 1763-1776.

[18] S. Tasiran et al., 2001. A functional validation technique:
biased-random simulation guided by observability-based
coverage. Proc. ICCAD, pp. 82–88.

[19] Q. Wu et al., 1997. A note on the relationship between signal
probability and switching activity. Proc. DAC, pp. 117-120.

201

