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Abstract—Stochastic computing (SC) acts on data encoded
by bit-streams, and is an attractive, low-cost and error-tolerant
alternative to conventional binary circuits in some important
applications such as image processing and communications. We
study the use of energy reduction techniques such as voltage
or frequency scaling in SC circuits. We show that due to
their inherent error-tolerance, SC circuits operate satisfactorily
without significant accuracy loss even with aggressive scaling
that improves their energy efficiency by orders of magnitude.
To find the minimum-energy operating point of an SC circuit, we
propose a Markov chain model that allows us to quickly explore
the space of operating points. We also investigate opportunities
to optimize SC circuits under such aggressive scaling. We
find that logical and physical design techniques can be used
to significantly expand the already powerful accuracy-energy
tradeoff possibilities in SC circuits. Our simulation results show
that our optimized SC circuits can tolerate aggressive voltage
scaling with no significant SNR degradation after 40% supply
voltage reduction (1V to 0.6V), leading to 66% energy saving
(20.7pJ to 6.9pJ). Similarly, a 100% frequency boosting (400ps
to 200ps) of the optimized circuits leads to no significant SNR
degradation for several representative circuits.

I. INTRODUCTION

Energy and power constraints have become a major challenge
to IC design in recent years. Many embedded systems
such as wearable devices and medical implants have strict
power and energy requirements due to battery capacity and
physiological limitations [20]. For example, body tissue may
be damaged by excessive power dissipation in a poorly
designed implantable circuit [10]. Various approaches have
been proposed to overcome such energy/power problems.
Notably, embedded systems are usually designed for specific
applications; this allows designers to use dedicated hardware
with more desirable physical and/or logical characteristics
than conventional designs.

Stochastic computing (SC) [12] has been proposed as
an alternative low-power computing technique for important
applications such as error correction [19], image processing
[3] [21], and neural networks [5]. SC circuits perform
complex computations on (pseudo) random bit-streams by
means of simple logic gates. Figure 1 shows an SC circuit
implementing the function Z = 1

4 + 1
2X1X2. The number

represented by each bit-stream is the probability of seeing a
1 in it. For example, the stochastic numbers (SNs) X1, X2, Z
appearing at x1, x2, z are 9

12 , 8
12 , 6

12 , respectively.1 The main
benefit of SC, as evident from Figure 1, is that simple
logic gates implement complicated arithmetic functions. For
example, a single AND gate implements multiplication.
Furthermore, SC circuits are error-tolerant because errors of
bit-flip type have minimal effect on the numerical value of
a long bit-stream and tend to cancel each other out. Finally,
SC circuits provide a natural energy-accuracy tradeoff: the

1The circuit has two primary inputs x1 and x2, and two auxiliary inputs
r1 and r2. The auxiliary inputs are constant SNs of value 1

2
. The NAND

gate of Figure 1 implements the stochastic function Y1 = 1−X1X2, which
involves multiplication and subtraction. The OR gate implements Y2 =
R1 +R2−R1R2, and since R1 = R2 = 1

2
, we have Y2 = 3

4
. Finally, the

XOR gate implements the function Z = Y1 +Y2−2Y1Y2 = 1
4

+ 1
2
X1X2.
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Fig. 1: Stochastic computing circuit implementing the
function Z = 1

4+ 1
2X1X2. The stochastic number represented

by each bit-stream is the probability of seeing a 1 in a
randomly chosen position.

bit-stream length N , i.e., the number of clock cycles an SC
circuit uses to perform a computation, directly affects its
energy consumption and its accuracy.

In this paper, we investigate the application of low-power
techniques, such as voltage scaling, to SC with the goal
of obtaining circuits with ultra-low energy needs. Voltage
scaling, i.e., reducing the supply voltage of a circuit, reduces
the circuit’s energy consumption but increases its latency.
If latency overhead is allowable by the application context,
aggressive voltage scaling can be applied at the cost of
occasionally erroneous results. Thus, voltage scaling allows
designers to trade accuracy for energy. This approach has
been extensively studied in the non-SC literature [15] [16]
[18], and methods of tolerating and/or correcting timing
errors have been proposed. However, the probability of
timing violations increases rapidly with voltage scaling,
necessitating complicated error-correcting methods. Our
work reported here shows that SC circuits can tolerate
up to 40% voltage reduction with no significant error.
To our knowledge, this is the first time such techniques
have been applied to SC circuits. Note that the term
“stochastic computing” has been also used (more recently)
to describe conventional circuits involving probabilistic
behavior, including scenarios with voltage/frequency scaling
[24] [25]. What we refer to as SC is the computation
technique that has been around since the 1960s [12], and
that is unrelated to the concepts used in [24] and [25].

Figure 2 compares images generated by conventional
binary and SC circuits at different supply voltage levels. It
can be seen that while the SC circuits tolerate aggressive
voltage scaling, the binary circuits’ output quality quickly
drops, even with modest voltage changes. This enables
significant energy savings in SC circuits. In the example
of Figure 2, the SC circuit at Vdd = 0.6V achieves the
same accuracy as the conventional circuit at Vdd = 1V,
thus the SC circuits consume about 44% less energy. To
analyze SC behavior under voltage scaling, we develop a
method of accuracy and error evaluation based on Markov
chains. This method is then used to find the minimum-
energy operating point of an SC circuit for a given accuracy
metric. Furthermore, we present synthesis and physical
design techniques that can improve SC’s accuracy-power
tradeoff possibilities.
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Fig. 2: Voltage scaling results of gamma correction (design obtained from [23]) executed by conventional and stochastic
circuits (both implemented in 28nm FDSOI technology). After applying our proposed optimization techniques, the stochastic
circuits show better tolerance against aggressive voltage scaling. The SNR of SC is not monotonic when the voltages are
scaled. This is because the random bit-stream sensitizes different paths when delays scale.

This paper is organized as follows. Section II gives a brief
review of SC and its error tolerance. In addition, two related
problems are defined in this section. Section III discusses our
proposed method of finding the minimum-energy operating
point of an SC circuit for a desired accuracy level. Section
IV shows the opportunities and the proposed methods of
optimizing SC circuits at different voltage levels. Section
V presents experimental results and finally, conclusions are
given in Section VI.

II. ERROR TOLERANCE IN STOCHASTIC COMPUTING

Recall that a stochastic circuit C is a logic circuit that
operates on (pseudo) random bit-streams, called stochastic
numbers (SNs). Each wire xi of C carries an SN Xi. The
information conveyed by Xi, also conveniently denoted by
Xi when no confusion is possible, is the rate or frequency of
its 1-pulses and is independent of bit-stream length. Formally,
a bit-stream of length N with N1 1’s and N−N1 0’s is called
an SN with value or magnitude Xi = N1/N . This is usually
interpreted as the probability of seeing a 1 in a randomly
chosen position of the bit-stream [2]. SN values range over
the unit interval [0, 1], and their precision is determined by N .

The inherent error tolerance of SC circuits stems from the
fact that a bit-flip in an SN of length N alters its magnitude
by 1/N , which is insignificant when N is sufficiently large.
For example, the SN at the output of the circuit in Figure 1,
where N = 12, represents Z = 6

12 . If one of the 1’s or
0’s of the bit-stream changes due to an error, the erroneous
SN is Z∗ = Z ± 1

12 , a minimal change. Furthermore,
multiple errors tend to cancel each other out if they occur in
opposite directions, since it is the number of 1’s, but not their
positions, that determines the magnitude of an SN [8]. The
probabilistic nature of SC circuits, along with the cancellation
possibilities, makes it difficult to evaluate the accuracy of
SC circuits.

To quantify the accuracy of a circuit, several error metrics,
such as maximum error, mean square error, etc. can be
employed. We use the “average error” metric

err = mean(|Z − Z∗|)
where Z is the exact or “golden” value of the circuit output
and Z∗ is the erroneous output. The difference between Z
and Z∗ is averaged over all possible inputs. This average
error metric will be used to measure the accuracy of both SC
and conventional binary circuits. It is important to note that
the general approach that we propose below is not limited
to a specific error metric. However, due to the probabilistic

nature of SC circuits, all the deduced error bounds will be
probabilistic.

Our work investigates the application of voltage and
frequency scaling to SC circuits. By voltage scaling, we refer
to the the systematic reduction of the power supply voltage
(i.e., “undervolting”), which is a standard technique used
to reduce power consumption of digital circuits. However,
such scaling tends to produce timing violations that may
cause output errors. Overly aggressive voltage scaling can
induce many timing errors in conventional binary circuits
and the resulting degradation of computational correctness
can be catastrophic. By frequency scaling, we refer to the
clocking of the circuit at a speed higher than its nominal
speed, at the cost of timing errors. It is possible to use
design methods such as Razor [11] to make conventional
circuits more resilient to timing errors that are induced
by frequency scaling. However, these techniques are only
effective when the error rate is relatively low. SC circuits,
on the other hand, have the potential to achieve graceful
degradation of computation correctness when the voltage (or
frequency) scaling is extremely aggressive and the error rate
is relatively high.

While SC circuits easily tolerate errors of the bit-flip
type, they are also tolerant of timing errors induced by
voltage/frequency scaling. Timing errors may occur in an
SN Z when a transition from 0 to 1 is delayed, in which
case the 1 will not be captured in time, and the magnitude of
Z will be reduced by 1

N , where N is the bit-stream length.
Similarly, on a 1-to-0 transition, the 0 may be missed because
of a timing error, and the magnitude of Z will increase by
1
N . Since the numbers of 0-to-1 and 1-to-0 transitions are
almost the same for any bit-stream, these timing errors tend
to cancel each other out. This error cancellation is maximized
if the rates of 0-to-1 and 1-to-0 errors are exactly the same.
Figure 3 shows the average error on an SN (e.g., the output of
an SC circuit) for different rates of 0-to-1 and 1-to-0 timing
errors on that signal. It can be seen that the error magnitude
is reduced when the rates of delay errors are the same.

The length N of the SNs used in a stochastic computation
controls the accuracy and the total energy consumed by
the circuit. Thus, by decreasing N , one can trade away
accuracy for energy or power savings. This natural tradeoff
has been successfully used in the past [3]. Our work here
shows that voltage/frequency scaling adds new dimensions
to the accuracy-power tradeoff possibilities for SC circuits.
In effect, SC circuits have three control knobs – (i) supply
voltage Vdd, (ii) clock frequency f , and (iii) bit-stream
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Fig. 3: Error in the magnitude of an SN for different 0-to-1
and 1-to-0 timing error rates.

length N (or, equivalently, clock cycle count) – that control
their accuracy and energy/power consumption. Finding the
best operating point for a circuit is thus a new and
challenging problem.

Here we pose and answer the following question: “Given
an SC circuit, what is the lowest energy required for
computation with an average error of errgoal?” Previous
methods search for the minimum N for which the average
error is less than errgoal. However, as discussed, it is
possible to adjust all three parameters (supply voltage Vdd,
clock frequency f , and SN length N ) concurrently in
order to find the best answer to the question. We will
refer to the triplet (Vdd, f, N) as an operating point of an
SC circuit. Now we formalize the above question in the
following problem statement.

Minimum-Energy Operating Point (MEOP) Problem.
Given an SC circuit, find the operating point (Vdd, f, N)
that has minimum energy consumption while satisfying the
accuracy requirement of average error ≤ errgoal.

In addition to providing a solution to the MEOP problem,
which we do in the next section, we also consider the
optimization of SC circuits so that their error behavior
improves under voltage scaling conditions. Excessive supply-
voltage downscaling and/or increase of the operating
frequency can result in the misalignment of signal actual
arrival times (AAT) at output z with respect to the clock
capture phase. Without loss of generality, for any pair of
timing paths from inputs xi and xj to output z in an SC
circuit, we assume the corresponding arrival times at z are
AATi and AATj , respectively, such that ki · T ≤ AATi ≤
(ki + 1) · T and kj · T ≤ AATj ≤ (kj + 1) · T , where T
is the clock period. We say these two timing paths exhibit
arrival time misalignment if ki 6= kj . In other words, the
two signals cannot be captured in the same clock cycle. We
will show that the arrival time misalignment has significant
impact on computation accuracy for SC circuits. Figure 4
shows one example of two timing paths (arcs) to illustrate
that arrival time alignment matters. In the example, Case
(a) assumes no timing violation for both paths. This case
generates the correct output sequence of 1, 0, 1. Case (b)
has timing violations on both timing paths. However, the
two arrival times are captured within the same clock cycle
(i.e., T2). Therefore, there is no arrival time misalignment.
Although both signals are delayed by one cycle, the output

T1 T2 T3 

x1 

x0 z 

T4 T1 T2 T3 T4 T1 T2 T3 T4 

x1 

x2 

z 
1 0 1 1 0 1 

1 1 1 

(a) (b) (c) 

Fig. 4: Misalignment of arrival times at z with respect to
clock capture phase can lead to a computation error.

sequence at z is still correct i.e., it is 1, 0, 1.2 In Case (c),
due to unbalanced path delay, signals from x1 and x2 arrive at
z in two different cycles. Thus, Case (c) has an arrival time
misalignment which leads to computation error, as shown
by the red-dotted oval in Figure 4. Moreover, the output
sequence cannot be recovered by adjusting the capture phase.

Motivated by the discussion above, we propose to employ
logical and physical design techniques to align the arrival
times at the output of a given SC circuit. Based on the
observation made in Figure 3, our goal will be to balance
the 0-to-1 and 1-to-0 error rates, thus minimizing the error.
Accordingly, we define the following problem statement,
whose solution is discussed in Section IV.
SC Circuit Optimization (SCOpt) Problem. Given a
stochastic function and a range of supply voltages, find a
circuit implementation that has the minimum average error
across the given supply voltage range.

III. ERROR-ACCURACY TRADEOFF IN SC

We now present our solution to the MEOP problem defined
in the previous section. Briefly, given an SC circuit, we want
to find the most energy-efficient operating point (Vdd, f , N )
for a given accuracy metric. Our approach to this problem is
a straightforward search within the operating-point space. In
other words, we will try different operating points and, for
each, evaluate the accuracy and energy of the corresponding
circuit. We will then choose the point that has the lowest
energy while satisfying the accuracy requirements.

Unlike conventional binary circuits, errors in SC circuits
tend to cancel each other out. In addition, SC circuits have a
non-deterministic nature, i.e., their behavior can be described
by probabilities. For these reasons, evaluating the accuracy of
SC circuits is not trivial. Exhaustive simulation can be used
to evaluate the accuracy of small stochastic circuits. However,
for larger circuits it is impractical to perform exhaustive
simulation for every operating point. With this in mind, we
propose to estimate the accuracy of the circuit by creating a
Markov chain (MC) model [13].

Our proposed MC model assumes that the SC circuit
involving timing errors can be in correct or incorrect states.
In a correct state, the circuit is producing the same output as
the circuit with no timing errors. Since there are two possible
output values, we have two correct states: C0 in which the
output is 0, and C1 in which the output is 1 (Figure 5). In
addition to the correct states, there are four incorrect ones.
In an incorrect state, the SC circuit is producing an incorrect
result due to a timing violation. Timing violations appear in

2In Case (b), the output at the first cycle, i.e., T1, can be incorrect.
However, the corresponding impact on computation accuracy is negligible
given that N is typically large, e.g., N = 4,096.
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TABLE I: Description of each state in the MC model.
Term Meaning
C0 Output is 0 and is correct
C1 Output is 1 and is correct
D0 Output is 0 and is incorrect due to a timing delay error
D1 Output is 1 and is incorrect due to a timing delay error
G0 Output is 0 and is incorrect due to a timing glitch
G1 Output is 1 and is incorrect due to a timing glitch

C0 C1

pe2

D0 D1

G0 G1

pe1
pe3 pe4

pe5

pe6

pe7 pe8

pe9 pe10

pe11 pe12

Fig. 5: Markov chain (MC) model for the proposed error
estimation approach. The description of each state is given
in Table I.
two forms: (i) delay errors that appear when a 0-to-1 or 1-
to-0 transition is missed at the output, and (ii) glitches that
appear when the output was not supposed to have a transition.
We distinguish between these two error types and allocate
different states to them. State Di (i ∈ {0, 1}) is a state in
which the output is the incorrect value i due to a delay fault,
and Gi is a state caused by a glitch in the output signal.
Table I summarizes the MC model states.

The edges of the MC model indicate the transition
probabilities between the states. For simplicity, we only
show edges for the error cases and assume that the output
magnitude is 0.5. In general, the magnitude of the output
also affects the transition probabilities. Furthermore, there are
implicit edges that are the complements of the shown edges
and they land on correct states. For instance, the implicit edge
that goes from C0 to C1 is the complement of the edge that
goes from C0 to D0, i.e., with transition probability 1− pe1.
As an example, let us assume that pe1 = 0.1. This means
that if the circuit is in state C0, and the next output is going
to be 1, there is a 10% chance that the output transition is
not captured due to a delay error, and hence the circuit lands
in D0 with probability pe1. The other 90% of the time, the
transition is successfully made and the circuit goes to the
correct state C1.

If the transition probabilities are known, we can find the
equilibrium probability (i.e., stationary) distribution of the
MC, and then evaluate the accuracy of the circuit in question.
We do this by calculating the probability of seeing a 1 at
the output of the circuit, i.e., the probability of being in
states C1, D1, or G1, and comparing it with the correct
output probability. To construct the MC model of a given
circuit, we obtain the transition probabilities by generating a
small input sample set and simulating the circuit. We then
gather statistics of the transition rates between the states. We
continue the simulation and incrementally increase the input

sample sizes until these transition probabilities converge (i.e.,
when the difference between predicted errors in consecutive
simulations is small). Once the transition probabilities are
estimated, we plug them into the MC model of Figure 5
and evaluate the accuracy of the circuit. We note that the
MC model construction is performed only once for each
(design, operating point) combination. Further, design space
exploration with our MC model is less time-consuming since
it avoids exhaustive simulations.

We verify our modeling flow by comparing the average
error values predicted by the MC model and by post-layout
simulation. We use the gamma correction circuit [23] as the
testcase for this verification. (A complete list of testcases
that we use in our studies is given in Section V below.)
After logic synthesis, placement and routing (SP&R), the
circuit is simulated in Cadence NC-Verilog [6] with delays
that are annotated from the SP&R flow results. To show the
ability of the MC model to predict errors under aggressive
voltage and frequency scaling, the circuit is signed off at
Vdd = 1.0V, worst process corner, 125◦C, and clock period
= 400ps; it is then operated at lower voltages (Vdd =
{0.7, 0.68, ...0.6}V) and boosted clock frequencies (clock
period = {400, 350, ..., 200}ps).

Figure 6 shows that the predicted average errors are well-
correlated to the post-layout simulation when the errors are
relatively large (> 0.1). For small errors, the MC model’s
prediction becomes pessimistic. Applying a margin allows
the MC model to guardband accuracy for larger errors, but
makes the MC model more pessimistic for the small errors.
Since quickly exploring the space of operating points is more
important when the error is large, the MC model’s prediction
becomes more important in large-error cases. We therefore
apply a margin (e.g., 10%) in our experiments.

IV. CIRCUIT-LEVEL OPTIMIZATION

The previous section dealt with a scenario in which the SC
circuit is already implemented and we can only choose an
operating point for it, i.e., the MEOP problem defined in
Section II. In this section, we consider a scenario where
we can optimize the SC circuit, using logic synthesis and
physical design techniques to improve its energy efficiency
(the SCOpt problem). We first discuss the timing behavior of
SC circuits and highlight the main causes of errors, as well
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Fig. 6: Plot showing good correlation between the errors
estimated by the Markov chain (MC) model and the errors
obtained from post-layout simulations. A 10% margin added
to the MC estimated errors is sufficient to guard against small
discrepancies.
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as the opportunities to eliminate them (Section IV-A). We
then discuss proposed optimization methods (Section IV-B).

A. Arrival Time Misalignment Matters
To examine the impact of arrival time misalignment on
computation accuracy in an SC circuit, we insert and
incrementally increase the input delays at the circuit’s inputs
from 0ps to 450ps, i.e., 3× the clock period, with a step size
of 15ps. We record the change in the average computation
error. We perform this experiment on two implementations
of testcase PolySmall, where one implementation uses the
conventional P&R flow and the other is optimized to have
more balanced path delays. Figure 7(a) shows the path
delay distribution of the two implementations. Note that the
initial designs have the maximum path delay around 140ps.
Therefore, the designs will have timing violations due to the
inserted input delays.

The results in Figure 7(b) show that changing the input
delay results in periodic fluctuation of computation accuracy,
which indicates the impact of arrival time misalignment with
respect to the capture phase. More specifically, when a large
number of paths exhibit arrival time misalignment, e.g., when
the delay ranges between 15ps to 65ps for the balanced
case, the corresponding computation error is large. On the
other hand, when there is no arrival time misalignment,
e.g., when the delay ranges between 60ps to 150ps for
the balanced case, although the design has larger timing
violations, the computation error is small. Further, due to
a wider range of path delays in the unbalanced case, the
unbalanced implementation shows more data points with non-
minimum average error (as seen in Figure 7(b)). Therefore,
to reduce the likelihood of the misalignment of arrival times
and to minimize the computation error, we propose some
circuit optimization methods to minimize input-output path
delay differences in SC circuits.

B. Optimization Methodologies
To resolve the arrival time misalignment issue and reduce
the computation errors at a low supply voltage or with an
overscaled frequency, we perform optimization during SC
circuit implementation (i.e., SP&R) to balance a circuit’s
path delays.

First, we examine two major SC design styles: those based
on the STRAUSS (Spectral TRAnsform Use in Stochastic
circuit Synthesis) method [1], and those based on the ReSC
(Reconfigurable Stochastic Computing) architecture [23]. We
then compare their path delays and computation errors for a

Fig. 7: Design: PolySmall. Technology: 28nm FDSOI.
Clock period = 150ps. (a) Path delay distributions of two
implementations. (b) Computation error changes with an
increase of the input delay.

Fig. 8: Path delays (left) and average computation errors
(right) at supply voltages ranging from 0.72V to 0.98V for
testcase PolySmall at 28nm FDSOI. Each trace in (a)(c)(e)
denotes a timing path with unique combination of rise/fall
transitions. (a-b) STRAUSS [4]; (c-d) ReSC [23]; and (e-f)
optimized circuit using our proposed MILP-based method.

given range of supply voltages. Figure 8 compares STRAUSS
and ReSC for testcase PolySmall in 28nm FDSOI technology.
We observe that the SC circuit implemented with ReSC
tends to have more balanced path delays and smaller errors
than STRAUSS. The ReSC architecture, which consists of
an adder and a multiplexer, is very symmetric with respect
to the primary inputs of the circuit. The STRAUSS-based
circuits, on the other hand, have a less symmetric structure,
which makes them smaller than the ReSC circuits, but leads
to unbalanced path delays, and hence greater sensitivity
to timing errors. We therefore only implement SC circuit
designs based on ReSC in the experiments reported in
Section V.

We further perform buffer insertion and/or route detouring
at the post-routing stage to balance path delays. Various
mathematical programming methods have been applied in
the previous literature to guide the buffer insertion and wire
sizing/route detouring for minimization of clock skew or
data path delay [9] [14]. Given that SC circuits typically
have small sizes3, we formulate a Mixed Integer Linear
Program (MILP) to search for the optimal buffer insertion
and/or route detouring solution based on a given set of
buffering candidates. Figures 8(e-f) show the resultant path
delays and computation errors of the optimized SC circuit; we

3Typical image-processing SC circuits have only around 20 gates [3];
and to our knowledge the largest SC circuits have no more than 1,250 gate
instances [21].
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TABLE II: Description of notations used in the MILP.
Term Meaning
Vk Supply voltage, (1 ≤ k ≤ K; VK is the highest voltage)
Pi Timing path, (1 ≤ i ≤ M )
Dk

i Path delay of Pi at Vk

U Upper bound on maximum normalized delay difference
Gk Leakage power of the design at Vk

nr Wiring net (1 ≤ r ≤ R)
dk

j Delay increase due to buffer insertion and/or routing at Vk , (1 ≤ j ≤ Q)
gk

j Leakage power penalty of buffer insertion choice at Vk , (1 ≤ j ≤ Q)
crj Indicator of buffer insertion and/or routing detour on nr

observe significant improvement over both the unoptimized
STRAUSS and ReSC implementations.

We formulate our MILP as follows. The objective of the
optimization is to minimize the normalized maximum delay
difference (denoted by U ) among timing paths of a design
across a given range of supply voltages. Constraints are
upper bounds on the maximum path delay and design leakage
power. (The notations used in our formulation are given in
Table II.)

Minimize U (1)

subject to D′k
i = Dk

i +
∑

1≤i≤M,1≤j≤Q

crj · dk
j (2)∑

1≤j≤Q

crj ≤ 1, ∀ 1 ≤ r ≤ R (3)

Dk
max = max

1≤i≤M
Dk

i , ∀ 1 ≤ k ≤ K (4)

α ·Dk
max ≥ D′k

i , ∀ 1 ≤ i ≤ M, 1 ≤ k ≤ K (5)

D′k
max ≥ D′k

i , ∀ 1 ≤ i ≤ M, 1 ≤ k ≤ J (6)

D′k
min ≤ D′k

i , ∀ 1 ≤ i ≤ M, 1 ≤ k ≤ K (7)

U ≥ DK
max

Dk
max

· (D′k
max −D′k

min) (8)

β ·Gk ≥
∑

1≤r≤R,1≤j≤Q

crj · gk
j , 1 ≤ k ≤ K (9)

where D′k
i is the optimized path delay of path Pi, with

buffer insertion and/or routing detour solution indicated by
crj . D′k

max and D′k
min are respectively the maximum and

minimum path delays at supply voltage Vk with buffer
insertion and routing detour. U is the upper bound on the
normalized path delay difference at all supply voltages. The
MILP model minimizes U , thus minimizing the maximum
normalized path delay difference at all supply voltages. In
addition, Gk is the leakage power of the original design.
The parameter gk

j is the leakage power penalty of buffer
insertion at supply voltage Vk. Our formulation constrains the
optimization not to lead to more than α times the original
maximum path delay and more than β times the original
leakage power at each supply voltage. We use the empirical
values α = 1.1 and β = 1.2 in the experiments.

To ensure the feasibility of ECOs (engineering change
orders), we characterize lookup tables (LUTs) based on
buffer insertion and/or routing detour candidates with
different input slew and load capacitance values, which are
needed for the MILP formulation. We formulate our MILP
and optimize circuits based on the characterized LUTs. The
approach is similar to what is applied in [14]. To balance path
delays at a range of supply voltages and minimize the MILP

Fig. 9: Applied buffering styles: a single-stage non-inverting
buffer, and an inverter pair with routing detour.

runtime, we select buffer insertion and/or routing detour
candidates such that they cover a wide range of delay-voltage
tradeoffs, but with a small set of choices. We study the delay-
voltage tradeoffs with various gate types, gate sizes, threshold
voltages, and wirelengths. We observe that the delay-voltage
tradeoff is greatly affected by threshold voltage, gate size
and wirelength, which matches the observations made in [7].
Therefore, we apply two buffering styles—a single-stage non-
inverting buffer, and an inverter pair with routing detour in
between—as shown in Figure 9. Our approach selects from
buffers and inverters of various sizes based on the delay
requirements. We use both low Vt (LVT) and regular Vt

(RVT) cells. The detoured wirelength, L, ranges from 10µm
to 50µm with a step size of 10µm. Based on the LUTs,
we further extend the buffering candidates with multiple
cell stages (e.g., five stages of X100 buffer) to cover a
wide range of delays. However, a large number of buffering
candidates can significantly increase the runtime of a MILP.
We therefore prune the candidates such that for a range
of delay and delay-voltage tradeoffs, we uniformly divide
the solution space into 4×4 sub-regions. We then select the
buffering solution with minimum leakage power from each
sub-region. Figure 10(a) shows the solution space with up to
five stages of buffering candidates. Figure 10(b) shows the
pruned buffering candidates with delay ranges from 20ps to
120ps. Our experiments show that the pruning significantly
reduces the runtime, while leading to negligible degradation
in solution quality.4

Using the MILP solution, we perform buffer insertion and
routing detour as ECO steps. Given that single-stage non-
inverting buffer insertion is trivial, we use ECO commands
from the P&R tools to perform buffer insertion and placement
legalization. For insertion of an inverter pair with routing
detour, we perform the ECO steps described in Algorithm 1.
In the design flow, we first insert the first inverter. We then
legalize the location of the inserted inverter so that there is
enough space for wire detour, e.g., to move the inverter away
from the die boundary, and to ensure there is no overlap with
previous routing detours. We then insert the second inverter
such that the distance is 25 sites in the horizontal direction
and two rows in the vertical direction with respect to the
first inverter. Last, we perform routing detour with the 1W2S
(single-width double-spacing) routing rule on layers M3 and
M4, between two inverters. An example of detoured routing
is shown in Figure 11.

Algorithm 1 Insertion flow of inverter pairs.

1: Place first inverter
2: Legalize the location of the first inverter
3: Insert second inverter such that its distance to the first inverter

is 25 sites and two rows in horizontal and vertical directions
4: Perform routing detour with 1W2S

4For the largest design with ∼500 gate instances, the MILP runtime is
less than 20 seconds on a 24-core 2.5GHz Intel Xeon server.
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(a) Buffering solution space.

(b) Pruned buffering candidates.

Fig. 10: (a) Buffering solution space, i.e., delay range
and delay-voltage tradeoff range, with multiple stages of
buffers/inverter pairs. The colors of circles denote different
numbers of stages of buffers/inverter pairs. (b) Pruned
buffering candidates.

V. EXPERIMENTAL RESULTS

Our experiments are implemented in foundry 28nm FDSOI
technology. We synthesize our designs using Synopsys
Design Compiler vH2013.03-SP3 [26], and place and route
them using Synopsys IC Compiler vI-2013.12-SP1 [27]. We
use Synopsys PrimeTime vH-2013.06-SP2 [28] and Synopsys
PT-PX vH-2013.06-SP2 for timing and power analyses,
respectively. We perform gate-level simulation using Cadence
NC-Verilog v8.2 [6]. We construct the Markov chain model
using MATLAB R2013a [22]. The MILP solver used in our
optimization flow is CPLEX v12.5 [17]. Our testcases (see
Table III) are representative circuits, obtained from the SC
literature and employed in typical applications such as image
processing and neural network design.

To evaluate the effectiveness of our optimization methods,
we apply them to the testcases and compare the results
with those of the unoptimized circuits. Figure 12 shows

TABLE III: Summary of testcases.
Testcase # of cells Description

GammaCorrection ∼100
A common image

processing task [23]

EdgeDetection ∼5
A common image
processing task [3]

PolySmall ∼20
A simple polynomial of

degree 3 implemented using
methods of [1] and [23]

Neuron ∼500 A 128-input neuron [5]

Fig. 11: Layout of routing detour (in red). The detoured
wirelength is 40µm. Shaded blocks are standard cells.

the minimum energy required for each design to meet a
given average error constraint errgoal. In spite of the power
overhead due to added buffers and wires, the improved
accuracy of the optimized circuits allows more aggressive
voltage scaling to achieve lower circuit power. We see that
when the error constraints are tight, the optimized circuits can
meet the constraints at a lower Vdd, leading to significant
energy savings. For example, up to 43% energy reduction
occurs in the GammaCorrection testcase with errgoal = 0.07.
When the error constraints are loose, or when the design
is fairly balanced, e.g., EdgeDetection [3], the unoptimized
circuits can also perform satisfactorily at low supply voltages.
In such cases, optimizing the circuit is not as efficient because
the inserted buffers increase the overall energy consumption.
Studying the tradeoff between the cost (power overhead) of
buffer insertion versus its benefits (i.e., the fact that it allows
voltage downscaling) is among our future tasks.

To gauge the effectiveness of our MC model, we perform
an energy-accuracy comparison between the operating points
selected by the MC-based flow versus the points selected by
exhaustive simulation; see Figure 13. We observe that when
the average error is relatively large (greater than 0.1), the
MC model estimates the error correctly, and hence selects

Fig. 12: Energy comparison for different accuracy
requirements (errgoal) between unoptimized implementation
(blue solid line) and our optimized circuit (green dashed
line). Operating points are selected based on exhaustive
simulation. The Vdd range is 0.7V to 1.0V. A cross sign (×)
indicates that no suitable operating point was found for the
given errgoal.
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Fig. 13: Energy comparison between operating points from
MC model-based search flow (green dashed line) versus
exhaustive search (blue solid line) for different accuracy
requirements (errgoal). A cross sign (×) indicates that no
suitable operating point was found. Runtimes of MC-based
searching and exhaustive simulation for each testcase are
shown in Table IV.

TABLE IV: Runtime comparison between exhaustive
simulation and MC model-based search.

#Cycles (Ex.) #Cycles (MC)
GammaCorr 1024 10
EdgeDetection∗ 1000 10
Polysmall 256 10
Neuron∗ 100 10

∗Due to the large number of possible inputs, which makes exhaustive
simulation infeasible, we utilize a smaller sample set for the MC model-
based flow.

an operating point that is very similar to the one selected
by the exhaustive simulation. In such cases, the MC-based
flow runs much faster than the exhaustive simulation, while
achieving the same result. However, when the average error
is low, the MC model’s error estimation becomes pessimistic,
leading to a suboptimal operation point selection. This has
been observed and discussed in Section III.

VI. CONCLUSIONS

In this paper we present novel methods of exploiting
accuracy-energy tradeoffs in SC circuits. We employ voltage
and frequency scaling to reduce energy consumption at the
cost of timing errors. We show, for the first time, that SC
circuits are very tolerant of timing errors, and hence can
tolerate aggressive voltage/frequency scaling without much
loss of accuracy, unlike most conventional binary circuits.
Based on this result, we define and solve the problem
of finding the minimum-energy operating point of an SC
circuit for a desired accuracy level. To quickly explore the
operating point space, we propose a Markov chain model
for SC circuits. Furthermore, we observe that the accuracy
of SC circuits, under scaled conditions, can be improved by
balancing the path delays. Accordingly, we propose methods
of optimizing SC circuits during the logical and the physical
design steps. Our proposed methods have been successfully

applied to several representative SC circuits, achieving
substantial energy reduction without significant accuracy
loss. Our future work will include studying the tradeoffs
among computation latency, process variation, temperature
fluctuation and voltage/frequency scaling, and considering
these tradeoffs in our optimization process. We also plan to
study reliability issues (e.g., aging) in SC circuits.
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