

Exploiting Correlation in Stochastic Circuit Design

Armin Alaghi and John P. Hayes

Advanced Computer Architecture Laboratory

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, MI, 48109, USA

{alaghi, jhayes}@eecs.umich.edu

Abstract—Stochastic computing (SC) is a re-emerging computing

paradigm which enables ultra-low power and massive parallel-

ism in important applications like real-time image processing. It

is characterized by its use of pseudo-random numbers

implemented by 0-1 sequences called stochastic numbers (SNs)

and interpreted as probabilities. Accuracy is usually assumed to

depend on the interacting SNs being highly independent or

uncorrelated in a loosely specified way. This paper introduces a

new and rigorous SC correlation (SCC) measure for SNs, and

shows that, contrary to intuition, correlation can be exploited as

a resource in SC design. We propose a general framework for

analyzing and designing combinational circuits with correlated

inputs, and demonstrate that such circuits can be significantly

more efficient and more accurate than traditional SC circuits.

We also provide a method of analyzing stochastic sequential

circuits, which tend to have inherently correlated state variables

and have proven very hard to analyze.

Keywords—Stochastic computing; signal correlation; low-power

design; stochastic circuit design.

I. INTRODUCTION

Stochastic computing (SC) was introduced in the 1960s as a

way to implement complex computing tasks at low hardware

cost ‎[2]‎[6]‎[17]. Its key feature is the use of long random bit-

streams called stochastic numbers (SNs) to represent the data

being processed. Fig. 1a shows how a single AND gate can

multiply two n-bit SNs in n clock cycles. Here x, y, z denote

logic functions, and the 8-bit sequences X, Y, Z denote the

corresponding SNs with their probability values pX, pY, pZ in

parenthesis. The probability pZ of 1 appearing on z is equal to

the probability pX of 1 on x, multiplied by the probability pY of

a 1 on y, assuming that the input signals are independent or

uncorrelated. SC has seen little use in practice because it

involves complex and poorly understood trade-offs among

circuit size, computation time, and accuracy. There has been a

recent resurgence of interest in SC as it has been shown to be

very cost-effective in some useful applications, notably low-

density parity check (LDPC) decoding ‎[9]‎[16] and image

processing ‎[3]‎[13]. Stochastic circuits have other nice

properties such as very low power and high error tolerance.

 On the other hand, SC has several drawbacks that need to

be addressed to obtain practical circuits. In particular,

independent inputs have been seen as necessary for SC

because correlated inputs can produce inaccurate results ‎[2].

This is illustrated by Fig. 1b where the bit-streams X and Y are

identical, and so are maximally correlated. The output Z now

has the value pX instead of the desired product .

Z = 0 1 0 0 1 0 0 0 (2/8)

Z = 0 1 0 0 1 1 1 0 (4/8)

X = 0 1 1 0 1 0 0 1 (4/8)

Y = 0 1 0 0 1 1 1 0 (4/8)
x

(a)
y

z

X = 0 1 0 0 1 1 1 0 (4/8)

Y = 0 1 0 0 1 1 1 0 (4/8)
x

(b)
y

z

Figure 1. Stochastic multiplication; (a) accurate result with

uncorrelated inputs; (b) inaccurate result due to correlated inputs.

 Fig. 2 shows some basic components for constructing

stochastic circuits. Addition is implemented by a two-way

multiplexer in the scaled form (pX + pY)/2, which ensures that

the sum of two SNs lies in the probability interval [0,1]. Note

that the scaling factor is supplied by an independent SN W of

fixed value 0.5, i.e., a purely random bit-stream. The remain-

ing two circuits convert numbers between ordinary‎ “binary”‎

form N and stochastic form X with pX = N/2
k
. The (pseudo)

random number generator in Fig. 2c is typically implemented

by a linear feedback shift register (LFSR) ‎[10]. Signed

numbers can be handled by bipolar notation, which maps the

SN range from [0,1] to [1,1]. If X is an SN with (unipolar)

value pX, its corresponding bipolar value is ̂ . The

circuits of Fig. 2 require very minor modification to handle

bipolar numbers. For example, an XNOR gate performs the

bipolar multiplication ̂ ̂ ̂ , while the multiplexer of

Fig. 2b continues to serve as a scaled adder for bipolar SNs.

Most SC circuits designed so far do not behave

satisfactorily when their inputs are even moderately

correlated. The general solution to this problem has been to

avoid correlation as much as possible, either by using

independent sources for all input SNs, or else by selectively

re-randomizing correlated SNs. The latter involves first

Comparatork
x

y

0

1

A

B

A<B

Binary

number N

(b)

(a) (c)
Random no.

generator

Multiplexer

k

AND

(d)
Binary

counter

k

z

x

y

z

Random number W

Stochastic

number X

Stochastic

number X
Binary

number N

Clock

Clock

Figure 2. Unipolar SC components: (a) multiplier (b) scaled adder

(c) binary-to-stochastic converter (d) stochastic-to-binary converter.

0 1 1 0 1 0 0 1 (4/8)

1 1 0 1 1 0 1 1 (6/8)

1 1 1 0 1 0 0 1 (5/8)
0

1

w
1 1 0 0 1 1 0 0 (4/8)

0 1 1 0 0 1 1 0 (4/8)

(a)

(b)

x

z

y

1 1 0 1 1 0 1 1 (6/8)

1 1 1 0 1 0 1 0 (5/8)
0

1

w
1 1 0 0 1 1 0 0 (4/8)

x

z

y

Figure 3. Stochastic addition showing accurate results with (a)

uncorrelated and (b) correlated inputs X and Y.

converting an SN to binary form and then converting it back

to stochastic form via circuits like those of Fig. 2c-d. These

steps come at high cost, imposing as much as 80% area

overhead on one stochastic image-processing circuit ‎[18]. In

an iterative LPDC decoder ‎[16], SNs must be re-randomized

in every iteration to avoid deadlocks.

Correlation is poorly understood in the SC context, in

contrast with areas such as communications theory ‎[10]. The

only relevant study we know of is due to Jeavons et al. ‎[11],

who do not provide any measure of correlation among bit-

streams or its impact on SC behavior. They define SNs X and

Y to be independent if , where is the SN

obtained by ANDing X and Y. This, in effect, says that a

stochastic‎multiplier’s‎ inputs‎ are‎uncorrelated‎ if‎ the‎output‎ is‎

accurate. It gives no hint of what happens with correlation

present. Ma et al. ‎[15] discuss the propagation of inaccuracy

through stochastic circuits under the assumption of

independent inputs, and do not analyze correlated inputs.

 This paper introduces a rigorous measure of correlation

among SNs, and shows how to analyze circuits with correlated

inputs. It leads to an interesting conclusion: contrary to

general belief, correlation is not always harmful in SC. In

fact, it can even be exploited to design better circuits! Fig. 3

gives a motivating example. The multiplexer implements

 () which, with = 0.5, is the scaled

sum () . If all inputs are independent as in Fig.

3a, the circuit performs the add operation accurately. In Fig.

3b, every 0 of X coincides with a 1 from Y, implying

that X and Y are (negatively) correlated, but the circuit still

computes accurately. This will be explained in Sec. II.

The next example illustrates a situation where, counter to

most intuition, correlation is actually beneficial. The absolute-

valued subtraction function is useful in image

processing ‎[3]. If it is implemented under the usual

assumption of independent inputs, a large stochastic circuit is

needed ‎[13]. However, it can also be implemented by a single

XOR gate fed with highly correlated inputs in which there is

maximum overlap of 1s and 0s between the two input SNs. In

that case, the probability of getting two 1s (or two 0s) on x and

y is () (or ()), implying that the

probability of different values on x and y becomes if

0 1 1 0 1 1 1 0 (5/8)

0 1 0 0 1 1 1 0 (4/8)
0 0 1 0 0 0 0 0 (1/8)x

y
z

Figure 4. XOR gate with correlated inputs implementing absolute-

valued subtraction.

 , as in Fig. 4, or else if . In other

words, the output represents . Note that an XOR fed

with independent SNs X and Y implements an entirely

different function, namely, () ().

These examples demonstrate correlation’s‎significance in

SC, and suggest that advantage can be taken of correlation in

certain cases. We introduce here a measure of correlation for

SC and a method of analyzing SC circuits based on the

probabilistic transfer matrix (PTM) methodology ‎[12]. We

also develop a method of synthesizing combinational circuits

that work in the presence of correlation. Finally, we discuss

the analysis of sequential stochastic circuits, which is very

poorly understood at present. Prior work is limited to a few

special cases with regular structures ‎[4]‎[14]. General

sequential circuits are difficult to analyze because of

correlation among the state variables. The correlation analysis

of this paper provides a way to tackle these circuits.

The main contributions of this paper are

 A new correlation measure SCC for SNs

 Use of PTMs to analyze stochastic circuits

 A study of combinational circuits with correlated

inputs and their application to some useful SC designs

 Analysis of general sequential stochastic circuits

 The paper is organized as follows. Sec. II discusses PTMs

and their role in SC. A rigorous analysis of correlation in the

SC context is presented in Sec. III. Then Sec. IV deals with

combinational stochastic circuits, while Sec. V addresses

sequential circuits. Some conclusions are drawn in Sec.VI.

II. PROBABILISTIC TRANSFER MATRICES

The probabilistic transfer matrix (PTM) ‎[12] has proven

valuable in the probabilistic analysis of logic circuits, such as

circuits subject to soft errors. Here we show that PTMs are

also useful for analyzing correlation in stochastic circuits. In

the usual SC scenario, a circuit with m inputs, x1,x2,…‎ ,xm is

analyzed using the probability values of m bit-streams applied

to its input lines, assuming that these bit-streams are

independent. In the PTM formulation, the same input data is

represented by a stochastic vector V of size 2
m
. The elements

of V are the probabilities of the possible input combinations of

x1x2…xm, which can vary from‎00…0‎to‎11…1.‎For‎example,‎

V1 = [1/2 0 0 1/2] is the PTM corresponding to two inputs x

and y, when the probability of xy = 00 and xy = 11 is 1/2 and

the other probabilities are zero. The PTM has more

information than conditional probability valuesit also

implicitly contains correlation information. For example, V1 =

[1/2 0 0 1/2] indicates that SNs X and Y are highly correlated

because the probability of having different values on x and y is

always zero. The vector V2 = [1/4 1/4 1/4 1/4], on the other

hand, represents two completely uncorrelated SNs.

Every logic circuit has a PTM representing its error-free

function. This is a matrix of size 2
m
 2

l
, where m and l are the

numbers of inputs and outputs of the circuit, respectively. The

PTM of an AND gate implementing z = x  y is

The entry pi,j is the (conditional) probability of input i

producing output j. Multiplying an input PTM by a circuit

PTM yields an output PTM, which for a single-output gate is a

vector [o0 o1] where o0 and o1 are the probabilities of 0 and 1,

respectively, appearing at the output. For example, the SC

operation performed by the XOR circuit of Fig. 4 is described

by the PTM calculation

[] [

] []

 It was stated earlier that the adder of Fig. 3 has input SNs

X and Y which can be correlated without causing inaccuracy.

We now prove this via PTM analysis. The input vector has the

form I = [i0 i1 i2 i3], in which i0, i1, i2 and i3 denote the

probability of xy being 00, 01, 10 and 11, respectively. The

input SN W is a constant of value 1/2 and so is omitted from

the PTM. The adder’s‎PTM is therefore

[

]

The corresponding output vector is given by

[] [

] [

]

Note that and always holds, whether

X and Y are independent or correlated. Hence, (
). The input vectors [1/8 3/8 1/8 3/8] and [0 1/2 1/4 1/4]

corresponding to the inputs X and Y of Figs. 3a and 3b,

respectively, both lead to the same output vector [3/8 5/8].

III. CORRELATION OF STOCHASTIC NUMBERS

Correlation refers to statistical similarity between two

phenomena. As discussed in detail in ‎[10], the correlation of

two sequences (bit-streams) is measured by some form of

covariance or dot-product operation. With appropriate

normalization, a correlation value of +1 means maximum

similarity, a correlation value 1 means minimum similarity

(maximum difference), and a correlation of 0 means the

sequences are uncorrelated. While many measures of

similarity exist ‎[5], they are not very useful in the SC context.

The standard definition of correlation (also known as the

Pearson correlation ‎[5]) (), in particular, is unsuitable

because it imposes constraints on the expected value of the

bit-streams. For example, implies that the bit-streams

must be identical. A suitable similarity measure should be

independent of, or orthogonal to, the data values; in other

words, it should not impose constraints on the data. We

therefore propose a new correlation measure defined as

follows.

Definition 1: The SC correlation SCC(X, Y) of two SNs X and

Y is given by

 () {

 ()

 ()

 ()

 The starting point in constructing SCC(X, Y) is obtaining

the bit-wise AND function (a kind of dot-product) of

the SNs, that is, finding . This is then centralized by the

uncorrelated value yielding Finally, the

centralized value is normalized by dividing it by the maximum

possible values. The centralization makes SCC consistent with

the definition of independence in ‎[11] when () ,
i.e., when . The normalization guarantees

that for two maximally similar (or different) SNs X and Y, we

get () (or 1). Unlike the standard correlation

measure (), SCC does not vary with the SN values. All

the intermediate values of SCC are linearly interpolated

between the independent case and the maximum similarity (or

difference) case. For example, () means that

is half-way between , i.e., the independent case, and

 (), i.e., the maximum overlap case.

 We can also define SCC using the notation of ‎[5], which

allows easy comparison with other correlation concepts. For

two n-bit SNs X and Y, denote the number of overlapping 1s

by a, the number of overlapping 1s of X and 0s of Y by b, the

number of overlapping 0s of X and 1s of Y by c, and the

number of overlapping 0s on both SNs by d. Clearly,
 . We then have the following definition which is

equivalent to Def. 1:

 ()

{

 () ()()

()() ()

 ()

 The numerator ad  bc is common to many similarity

measures including Pearson correlation

 ()

√()()()()

and it captures the overlap of 0s and 1s in the two bit-streams.

The denominator, on the other hand, is simply a normalization

factor. While Pearson correlation is normalized by the

variance of the bit-streams, SCC is normalized so that the bit-

streams with maximum (minimum) overlap of 1s and 0s lead

to SCC = +1 (1), independent of the values of the SNs.

 Table I shows examples of bit-streams with their and

SCC values. Note that and SCC are the same for independ-

00

01

10

11

z

0 1

1 0

1 0

1 0

0 1

xy

TABLE I. SOME SNS WITH THEIR SCC AND STANDARD CORRELATION VALUES

Stochastic numbers
SC

correlation

 ()

Standard
correlation

 ()

X = 11110000 Y = 11001100 0 0

X = 11110000 Y = 11110000 +1 +1

X = 11110000 Y = 00001111 1 1

X = 11111100 Y = 11110000 1 0.58

X = 11111100 Y = 00001111 1 0.58

X = 11111100 Y = 11100001 0 0

X = 11000000 Y = 11111100 1 0.33

ent SNs, and for SNs with equal values. When the SNs have

different values, SCC consistently gives the value +1 (or 1)

for maximum (minimum) overlap of 1s and 0s between the

bit-streams, while gives different values. This shows that,

unlike , SCC is not affected by the values of the bit-streams.

As mentioned earlier, the function of a stochastic circuit

can effectively be changed by enforcing correlations among its

inputs. The XOR gate of Fig. 4 illustrates this. Fig. 5a shows

the stochastic functions implemented by the same XOR gate at

different levels of SCC. In all cases, the output of the function

remains the same at the four corners, but the function changes

greatly for the intermediate values. Fig. 5b shows the same

function for various fixed values of pY and SCC.

IV. COMBINATIONAL CIRCUITS

Every stochastic circuit implements a real-valued function F,

which is interpreted as its stochastic behavior. For example,

the AND gate of Fig. 1 implements the multiplication function

pZ = F(pX, pY) = pXpY, assuming () . The inputs of

F are the values of the SNs pX and pY. Hence, to obtain the

stochastic behavior of a logic circuit, we need to determine its

corresponding probability function F.

We saw earlier that a‎circuit’s‎functionality can change in

the presence of correlation. The AND gate, for example,

implements pZ = F(pX, pY) = min(pX, pY) if () .

Table II. FUNCTIONS FOR THE PTM ELEMENTS OF A TWO-INPUT CIRCUIT

 (pX, pY)
SCC = 0

 (pX, pY)

SCC = 1
 (pX, pY)
SCC = +1

i0
()
()

max() min()

i1 () min() max()

i2 () min() max()

i3 max() min()

Based on Def. 1 and the subsequent discussion, the SC

function of the AND gate for the case of, say ()
 , is half-way between its SC function for ()

and () . In general, we can express a circuit’s‎

functionality as a linear combination of its functions at

 () and () or 1. Hence for any

SCC, pZ can be written as

 () {
() () ()
() () ()

 (3)

where (), () and () are the

functions of the same circuit at () and +1,

respectively. For the AND gate example, we have

 () , () (), and

 () ().

In order to derive the stochastic behavior of a circuit C

with correlated inputs, we use the PTM tools discussed in Sec.

II. If C has two input bit-streams X and Y with correlation

SCC, construct the input PTM I = [i0 i1 i2 i3], in which the ik’s

are expressed in the form of Eq. (3). The ’s, ’s, and

 ’s corresponding to each ik are defined in Table II. From

these, we can extract C’s‎ stochastic‎ behavior‎ by‎multiplying‎

the vector I by the circuit PTM. For instance, if C is an XOR

gate, [] [

] yields the functions illustrated in

Fig. 5a for some representative values of SCC.

 SCC = 1 SCC = 0.5 SCC = 0 SCC = 0.5 SCC = 1

pY = 0 pY = 0.25 pY = 0.5 pY = 0.75 pY = 1

SCC=1

(b)

(a)

pX
pY

pZ

pX
pY

pZ

pX
pY

pZ

pX
pY

pZ

pX
pY

pZ

SCC=+1

SCC=1

SCC=+1

1/2

+1/2

SCC=0

SCC=1

SCC=+1

pX

pZ

pX

pZ

pX

pZ

pX

pZ

pX

pZ

Figure 5. Functions implemented by an XOR gate (a) with different input SCC values, and (b) with fixed values of pY.

x

00

z

y

t0

t1

t2

t3

01

10

11

Figure 6. High-level structure of a synthesized two-input circuit with

correlated inputs, prior to simplification.

Only correlation corresponding to the special case

 has been considered in the literature. As we have

just seen, other cases such as lead to useful results.

The PTM formulation of two-input SC circuits discussed

above points to a method for synthesizing stochastic circuits

with correlated inputs. In this approach, a target function F(pX,

pY) is approximated by a function pZ = (pX, pY) defined by

[] [

] [] (4)

in which the tk’s‎are‎the parameters of F to be determined and

the ik’s are expressed in the form of Eq. (3) and Table II. The

process of approximation is to find the best tk’s and the best

SCC for which the following error function is minimized.

 ∬ (() ())

 (5)

This is done by adjusting the tk’s and the SCC using standard

optimization techniques. Because of the limited number of

parameters and the well-behaved error function, this problem

is relatively easy to solve. Once the parameters are found,

 can be realized by a logic circuit with the overall

multiplexer-style structure shown in Fig. 6, The constant SNs

needed for the four tk’s‎can be generated by up to four copies

of the circuit in Fig. 2c. The resulting circuit can then be

further optimized using conventional logic synthesis methods

and tools.

 Generating two SNs X and Y with a desired level of SCC is

a problem that has not been studied before. We propose to use

the circuit structure shown in Fig. 7, which generates X by

pX

Random no.

generator 1

pY

01

y
00

10

11

SCCsign

r1

r2

r3

SCCmagn

x

Random no.

generator 2

Random no.

generator 3

Figure 7. Generating SNs with a specified SCC.

Figure 8. Algorithm CCC to synthesize a stochastic function

 () with correlated inputs.

means of a standard SN generator and, depending on the sign

SCCsign and magnitude SCCmagn of SCC, mixes uncorrelated

and correlated versions of Y together. For example, if SCC =

+1, then Y is generated from the same random number source

used by X, so X and Y become highly correlated. Note that Fig.

7 is a programmable structure, and not all the components

shown are needed in every design. For example, if a circuit

requires X and Y to be generated with SCC = +1, then the

select inputs xy of the multiplexer are set to 01, implying that

random number generators 2 and 3, and their associated

circuits can be removed. Fig. 8 summarizes our proposed

correlated combinational circuit (CCC) synthesis algorithm.

 As an example, consider the problem of synthesizing a

circuit for the target function () () In

Step 1 of CCC, () is prepared in the form of Eq.

(4), and in Step 2 the error function is prepared in the form

of Eq. (5). Then, the tk’s and SCC are adjusted until is

minimized. For the running example, , i.e., the exact

target function, can be achieved by assigning t0 = 0, t1 = 0, t2 =

0, t3 = 1, and SCC = +1. On plugging these values into the

circuit of Fig. 6, we obtain that of Fig. 9a, i.e., an AND gate.

Observe that the AND implements () only if its

inputs have SCC = +1. In order to generate X and Y, we use

the circuit of Fig. 7 and plug in SCC = +1 (SCCsign = 0,

SCCmagn = 1), yielding the circuit of Fig. 9b. This circuit is

smaller than one employing two of the independent SN

generators in Fig. 2c, so generating correlated SNs is cheaper

than generating independent ones in this case.

Table III shows examples of circuits synthesized by the

CCC algorithm. Most of the target functions are useful non-

linear functions that have no efficient stochastic implement-

ation when the inputs are uncorrelated. The last synthesized

function in the table is the multiplexer-based scaled adder in

which correlation of the input data does not matter. Another

type of SC adder, a saturating adder, is also shown. This

pX

Random no.

generator 1

pY

y

r1

xx

y

(a)

z

(b)

Figure 9. Implementing the function () (): (a)

synthesized stochastic circuit, and (b) corresponding SN generator.

Step 1: Determine a suitable approximating function
 () according to Eq. (4) in which the input vector I is
defined by Eq. (3) and Table II.

Step 2: Determine the error function given by Eq. (5).

Step 3: Minimize by adjusting the tk and SCC parameters in .

Step 4: Insert these parameters into the structure of Fig. 6, and
use standard logic synthesis methods to optimize the resulting
circuit.

circuit adds its inputs without scaling until the saturating value

1 is reached. Finally, observe that in some cases, the circuits

synthesized by CCC are the same as the standard designs. For

example, the smallest SC multiplier is the AND gate of Fig. 1,

which requires uncorrelated inputs. This shows that the CCC

is capable of replicating circuits synthesized by existing

methods, because SCC = 0 is also allowed in CCC.

 Table IV compares the circuits synthesized by CCC and

those designed by the spectral synthesis method of [1], which

makes the usual independent-inputs assumption, i.e., SCC = 0.

In addition to the circuits of Table III, a few other functions

were implemented. Since it is normally impossible to

implement real-valued functions exactly, some are

approximated before synthesis. Area is estimated by mapping

the circuits to a generic library of cells using 0.35m CMOS

technology ‎[19]. For a fair comparison, we also report the

measured mean error between the synthesized and target

functions F′ and F. The results indicate that in most cases, the

circuits synthesized by CCC are smaller and more accurate

than those designed by the method of ‎[1].

 When dealing with more than two signals, considering

their pairwise SCC values may be insufficient, as higher-order

correlations can exist among groups of three or more of the

signals. To handle such cases, we suggest using PTMs that are

large enough to embed all the signal correlations of interest.

Circuits with many inputs can also be designed by decom-

TABLE IV. COMPARISON BETWEEN CIRCUITS SYNTHESIZED IN THIS PAPER

AND THOSE SYNTHESIZED BY THE SPECTRAL METHOD OF [1]

Target
function

Synthesis method
and correlation

assumption

Area*

(m
2
)

Mean
Error
(%)

 ()
Saturating adder

[1] with SCC = 0 1,628 10

CCC with SCC = 1 1,091 0

 ()
Saturating subtracter

[1] with SCC = 0 1,663 10

CCC with SCC = +1 1,188 0

Multiplier

[1] with SCC = 0 1,646 0

CCC with SCC = 0 1,646 0

 ()
Scaled adder

[1] with SCC = 0 1,857 0

CCC with SCC = +1 1,320 0

 ()

[1] with SCC = 0 1,980 12

CCC with SCC = +1 1,443 7

 ()

[1] with SCC = 0 2,306 15

CCC with SCC = 1 1,760 9

A multi-variate
polynomial

[1] with SCC = 0 2,086 9

CCC with SCC = 1/2 2,473 4

* Circuits with uncorrelated (independent) inputs were synthesized
according to [1] with polynomials of degree 1. All the reported area
numbers include stochastic number generators.

x
0

1

y

v
w

z

z

z

r

Figure 10. Stochastic circuit for image edge-detection ‎[3].

posing the target function into subfunctions of two variables.

The CCC method can then be used to synthesize the pieces

and put them back together. For example, consider the four-

variable function () which

performs the very useful image-processing task of edge

detection ‎[3]. It decomposes into two absolute-valued

subtraction functions
 and

 , which are then combined by

a scaled add to produce :

 ,

 , (

)

All three of these functions can be synthesized by CCC, as

indicated in Table III. Fig. 10 shows the result; the XOR gates

perform absolute-valued subtraction, while the multiplexer

performs scaled addition. Note that the select input of the

multiplexer is fed by an auxiliary input r with pr = 1/2.

V. SEQUENTIAL CIRCUITS

As with conventional binary logic, stochastic sequential

circuits (stochastic FSMs) can lead to more efficient designs

than combinational ones. For instance, Fig. 11 shows a

sequential update node of the type commonly used in

stochastic LDPC decoders ‎[7]. It implements the function

 ()()

for which no more efficient combinational equivalent is

known. Sequential stochastic circuits have also been proposed

to implement arithmetic functions such as division and

hyperbolic tangent ‎[4]‎[6]‎[14]. However, the proposed designs

are mostly ad hoc, or require state transition diagrams of a

very restricted structure ‎[4]‎[14]. Analyzing stochastic

sequential circuits with arbitrary state transition diagrams is

difficult since the state variables tend to be correlated. For

example, in the three-state circuit of Fig. 12, the state 11 never

occurs, so the SNs corresponding to state bits w0 and w1 are

correlated. A general method to analyze and design arbitrary

stochastic sequential circuits does not presently exist.

TABLE III. EXAMPLES OF SYNTHESIZED STOCHASTIC CIRCUITS EXPLOITING VARIOUS CORRELATION LEVELS

Target function [] SCC Synthesized circuit

 () [] +1 AND gate with positively correlated inputs

 () [] +1 OR gate with positively correlated inputs

 [] +1 XOR gate with positively correlated inputs; implements absolute-valued subtraction

 () [] 1 OR gate with negatively correlated inputs; implements saturating add

 () [] Any Multiplexer with arbitrary correlation among its data inputs; implements scaled add

x

clock

J

K

Q

0 0 0 1 0 0 0 1 (2/8)

0 1 1 1 1 1 0 1 (6/8)
0 0 0 1 1 1 0 1 (4/8)y z

Figure 11. Stochastic update node used in LDPC decoders.

 A sequential logic circuit implements two combinational

functions: the next-state function δ that, given the current state

and the current inputs, produces the next state, and the output

function λ that produces the corresponding output signals. In

the context of SC, next-state transitions are treated as

probabilistic. Hence, we are mainly interested in the stochastic

behavior of the state-defining function δ, since λ is a simple

combinational function and can be analyzed by existing

methods.

 Like our approach to combinational circuits with

correlation, we use PTMs to analyze sequential circuits. The

state probability distribution of a sequential circuit is

represented by a vector S = [s1 s2 …‎sl] in which si denotes the

probability of being in state i. For example, the vector [1/3 1/3

1/3] corresponding to the circuit of Fig. 12 indicates that the

probability of being in each state is 1/3. The state transition

behavior of the sequential circuit can be expressed as a

transition matrix T, in which element tij denotes the

probability of a transition from state i to j. The transition

matrix corresponding to Fig. 12 is

 [

]

 Given the state probability distribution S(t) in a particular

clock cycle t and the transition matrix T, we can write the state

distribution of the next clock cycle t + 1 as S(t + 1) = S(t) 

T. For instance, with S(t) = [1/3 1/3 1/3] and pX = 1, we get

S(t + 1) = [0 1/3 2/3].

 After enough clock cycles, the state distribution of the

sequential circuit typically converges to a stationary

distribution , which can represent the circuit’s‎ stochastic‎

behavior. Fortunately, finding  is a well-known mathematical

problem. The transition matrix T of a sequential circuit can be

interpreted as a Markov chain ‎[8], which is an FSM with

probabilistic state transitions. The stationary state  of a

Markov chain is an eigenvector of T with the defining

property  =   T. For example, the stationary distribution of

the circuit in Fig. 12 is

 [

] [

]

 [

]

And since the output z only becomes 1 in the state w1w0 = 01,

i.e., the second state, we conclude that
 .

D Q

D Q

x

w1

w0
z

(a) (b)

x' x

x

x'

x

x'

00 01

10

0 0

1
w1w0

z

Figure 12. (a) A sequential stochastic circuit C and (b) its state

transition diagram.

 In order to find the stationary distribution of an l-state

FSM with an arbitrary transition matrix T, we need to solve

the equation  =   T and compute the elements of  = [s1 s2

…‎sl]. The equation corresponding to each state is of the form

 (), in which the Gi’s‎collectively represent the

stochastic behavior of the next-state function δ of the FSM. As

noted earlier, the function δ is combinational, and according to

[1], its stochastic behavior can be represented as a polynomial.

This implies that all the Gi’s,‎and hence all the elements of T,

are polynomial functions with respect to the input SN values.

This fact allows us to obtain an analytical solution to  =  T

and leads to the following result.

Theorem: Given a sequential circuit with m inputs x1,…,xm,

and a transition matrix T whose elements are polynomial

functions of

, its stationary state distribution  has

elements of the form F1(

) / F2(

), where

F1 and F2 are polynomial functions.

 The theorem follows from the fact that in solving  = 

T, the coefficients of the variables si become parameterized

polynomial functions. The standard row-transformation steps

in solution methods like Gaussian elimination only apply the

operations addition, multiplication, and division to the matrix

elements. Since these are polynomial functions, adding and

multiplying them produces polynomials, and dividing them

gives rational polynomials. The degrees of the polynomials

depend on the number of states l and the degrees of the

polynomial elements of T. If these polynomials are linear, the

final solution is of degree 2
l2

.

 For example, the transfer matrix corresponding to the two-

state LDPC update circuit of Fig. 11 is

 [

()()
]

To find the stationary distribution of T, we form the equations

 () (()())

 () ()

Since the circuit is either in state s0 or s1, we have the

additional constraint s0 + s1 = 1. Hence, s1 = 1  s0, yielding

 ()() ()

 ()

Thus, we obtain the expected function ‎[7]:

 ()()

 Another example is a four-state sequential circuit

from ‎[14], which has the transition matrix

 [

]

Now  =   T yields the following set of equations:

 () ()

 ()

 ()

with the additional constraint

Solving these equations analytically we obtain
() (

), etc., which is consistent with

the analysis of ‎[14].

VI. CONCLUSIONS

Stochastic computing (SC) has recently re-emerged as an

attractive alternative technique for some important computing

tasks with extreme demands for small size and low power. A

key unsolved problem in designing stochastic circuits has been

to overcome the computational inaccuracies that result from

undefined and undesired correlations among signals. The

usual solution has been to avoid correlation entirely at the cost

of introducing many independent stochastic number sources or

re-randomizers.

 This paper has investigated in depth the impact of

correlation on stochastic computing. We have shown that not

all correlation is harmful. In fact, contrary to what one would

intuitively expect, correlation can serve as a resource in

designing stochastic circuits. We have given the first general

and rigorous definition of correlation for SC, which has

enabled us to analyze both combinational and sequential

stochastic circuits in the presence of correlation. We

demonstrated how probabilistic transfer matrices aid this

analysis, and lead to a general approach to designing

stochastic circuits with correlated inputs. We further

demonstrated how to implement various useful functions such

as saturating addition and subtraction that had no previous

efficient SC implementations. We reported a comparative

study indicating that the circuits with correlated inputs are

generally smaller and more accurate than those with

independent inputs. Finally, we presented the first systematic

analysis of sequential stochastic circuits, a problem which has

generally resisted attack since the 1960s.

ACKNOWLEDGEMENTS

This work was supported by Grant CCF-1017142 from the

U.S. National Science Foundation. The authors are grateful to

Igor L. Markov for helpful discussions.

REFERENCES

[1] Alaghi, A. and Hayes, J.P., “A spectral transform approach to
stochastic‎circuits,” Proc. ICCD, pp. 315-321, 2012.

[2] Alaghi, A. and‎Hayes,‎ J.P.,‎ “Survey‎ of‎ stochastic‎ computing,”‎
ACM Trans. Embedded Computing Systems, 12, no. 2s, pp.
92:1-92:19, May 2013.

[3] Alaghi,‎A.,‎Li,‎C.‎and‎Hayes,‎J.P.,‎“Stochastic‎circuits‎for‎real-
time image-processing‎applications,”‎ ‎Proc. DAC, pp. 136:1-6,
June 2013.

[4] Brown, B.D. and Card, H.C., “Stochastic neural computation I:
computational elements” IEEE Trans. Computers, 50, pp. 891-
905, 2001.

[5] Choi, S.S., Cha, S.H. and‎ Tappert,‎ C.,‎ “A‎ survey‎ of‎ binary‎
similarity‎ and‎ distance‎ measures,”‎ Journ. Systemics,
Cybernetics and Informatics, 8, pp. 43-48, 2010.

[6] Gaines, B.R.,‎ “Stochastic‎ computing‎ systems,”‎ Advances in
Information Systems Science, 2, pp. 37-172, 1969.

[7] Gaudet, V.C. and‎ Rapley,‎ A.C.,‎ “Iterative‎ decoding‎ using‎
stochastic‎computation,”‎Electronics Letters, 39, 299-301, 2003.

[8] Grinstead, C.M., and Snell, L.J., Grinstead and Snell’s
Introduction to Probability, version of 4 July 2006, American
Math. Soc., 2006.

[9] Gross, W.J., Gaudet, V.C. and Milner,‎ A.,‎ “Stochastic‎
implementation‎of‎LDPC‎decoders,”‎Proc. Asilomar Conf., pp.
713-717, 2005.

[10] Golomb, S.W. and Gong, G., Signal Design for Good
Correlation, New York: Cambridge Univ. Press, 2004.

[11] Jeavons, P., Cohen, D.A. and Shawe-Taylor,‎ J.,‎ “Generating‎
binary‎ sequences‎ for‎ stochastic‎ computing,”‎ IEEE Trans. Info.
Theory, 40, pp. 716-720, 1994.

[12] Krishnaswamy, S., Viamontes, G.F., Markov, I.L. and Hayes,
J.P., “Probabilistic‎ transfer‎ matrices‎ in‎ symbolic‎ reliability‎
analysis‎ of‎ logic‎ circuits,”‎ACM Trans. Design Automation of
Electronic Systems, 13, no. 1, pp.8:1-8:35, Jan. 2008.

[13] Li, P. and Lilja,‎D.J.,‎“Using‎stochastic‎computing‎to‎implement‎
digital‎image‎processing‎algorithms,”‎Proc. ICCD, pp. 154-161,
2011.

[14] Li, P., Qian, W., Riedel, M.D., Bazargan, K. and Lilja, D.J.,
“The‎ synthesis‎ of‎ linear‎ finite‎ state‎ machine-based stochastic
computational‎elements,”‎Proc. ASP-DAC., pp. 757-762, 2012.

[15] Ma,‎ C.,‎ Zhong,‎ S.‎ and‎ Dang,‎ H.,‎ “Understanding‎ variance‎
propagation‎in‎stochastic‎computing‎systems,”‎Proc. ICCD, pp.
213-218, 2012.

[16] Naderi, A., Mannor, S., Sawan, M. and Gross,‎W.J.,‎“Delayed‎
stochastic‎decoding‎of‎LDPC‎codes,”‎IEEE Tran. Signal Proc.,
59, pp. 5617-5626, 2011.

[17] Poppelbaum, W.J., Afuso, C. and Esch,‎ J.W.,‎ “Stochastic‎
computing‎ elements‎ and‎ systems,”‎ Proc. AFIPS Fall Joint
Computer Conf., pp. 635-644, 1967.

[18] Qian, W., LI, X., Riedel, M.D., Bazargan, K. and Lilja, D.J.,
“An‎ architecture‎ for‎ fault-tolerant computation with stochastic
logic,”‎IEEE Trans. Computers, 60, pp. 93-105, 2011.

[19] Sentovich, E.M. et al.,‎ “SIS:‎ A‎ System‎ for‎ sequential‎ circuit‎
synthesis,”‎ Univ.‎ of‎ California,‎ Berkeley,‎ Tech.‎ Report‎
UCB/ERL M92/41, Electronics Research Lab, 1992.

