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Abstract—Stochastic computing (SC) is a re-emerging computing 

paradigm which enables ultra-low power and massive parallel-

ism in important applications like real-time image processing. It 

is characterized by its use of pseudo-random numbers 

implemented by 0-1 sequences called stochastic numbers (SNs) 

and interpreted as probabilities. Accuracy is usually assumed to 

depend on the interacting SNs being highly independent or 

uncorrelated in a loosely specified way.  This paper introduces a 

new and rigorous SC correlation (SCC) measure for SNs, and 

shows that, contrary to intuition, correlation can be exploited as 

a resource in SC design. We propose a general framework for 

analyzing and designing combinational circuits with correlated 

inputs, and demonstrate that such circuits can be significantly 

more efficient and more accurate than traditional SC circuits. 

We also provide a method of analyzing stochastic sequential 

circuits, which tend to have inherently correlated state variables 

and have proven very hard to analyze. 

Keywords—Stochastic computing; signal correlation; low-power 

design; stochastic circuit design. 

I. INTRODUCTION 

Stochastic computing (SC) was introduced in the 1960s as a 

way to implement complex computing tasks at low hardware 

cost ‎[2]‎[6]‎[17]. Its key feature is the use of long random bit-

streams called stochastic numbers (SNs) to represent the data 

being processed. Fig. 1a shows how a single AND gate can 

multiply two n-bit SNs in n clock cycles. Here x, y, z denote 

logic functions, and the 8-bit sequences X, Y, Z denote the 

corresponding SNs with their probability values pX, pY, pZ in 

parenthesis. The probability pZ of 1 appearing on z is equal to 

the probability pX of 1 on x, multiplied by the probability pY of 

a 1 on y, assuming that the input signals are independent or 

uncorrelated. SC has seen little use in practice because it 

involves complex and poorly understood trade-offs among 

circuit size, computation time, and accuracy.  There has been a 

recent resurgence of interest in SC as it has been shown to be 

very cost-effective in some useful applications, notably low-

density parity check (LDPC) decoding ‎[9]‎[16] and image 

processing ‎[3]‎[13]. Stochastic circuits have other nice 

properties such as very low power and high error tolerance.   

 On the other hand, SC has several drawbacks that need to 

be addressed to obtain practical circuits. In particular, 

independent inputs have been seen as necessary for SC 

because correlated inputs can produce inaccurate results ‎[2]. 

This is illustrated by Fig. 1b where the bit-streams X and Y are 

identical, and so are maximally correlated.  The output Z now 

has the value pX instead of the desired product     . 
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Figure 1. Stochastic multiplication; (a) accurate result with 

uncorrelated inputs; (b) inaccurate result due to correlated inputs. 

 Fig. 2 shows some basic components for constructing 

stochastic circuits. Addition is implemented by a two-way 

multiplexer in the scaled form (pX + pY)/2, which ensures that 

the sum of two SNs lies in the probability interval [0,1]. Note 

that the scaling factor is supplied by an independent SN W of 

fixed value 0.5, i.e., a purely random bit-stream. The remain-

ing two circuits convert numbers between ordinary‎ “binary”‎

form N and stochastic form X with pX = N/2
k
.  The (pseudo) 

random number generator in Fig. 2c is typically implemented 

by a linear feedback shift register (LFSR) ‎[10]. Signed 

numbers can be handled by  bipolar notation, which maps the 

SN range from [0,1] to [1,1]. If X is an SN with (unipolar) 

value pX, its corresponding bipolar value is  ̂       . The 

circuits of Fig. 2 require very minor modification to handle 

bipolar numbers.  For example, an XNOR gate performs the 

bipolar multiplication  ̂   ̂  ̂ , while the multiplexer of 

Fig. 2b continues to serve as a scaled adder for bipolar SNs. 

Most SC circuits designed so far do not behave 

satisfactorily when their inputs are even moderately 

correlated. The general solution to this problem has been to 

avoid correlation as much as possible, either by using 

independent sources for all input SNs, or else by selectively 

re-randomizing  correlated SNs.  The latter involves first 
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Figure 2. Unipolar SC components: (a) multiplier (b) scaled adder 

(c) binary-to-stochastic converter (d) stochastic-to-binary converter.  
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Figure 3. Stochastic addition showing accurate results with (a) 

uncorrelated and (b) correlated inputs X and Y.  

converting an SN to binary form and then converting it back 

to stochastic form via circuits like those of Fig. 2c-d. These 

steps come at high cost, imposing as much as 80% area 

overhead on one stochastic image-processing circuit ‎[18]. In 

an iterative LPDC decoder ‎[16], SNs must be re-randomized 

in every iteration to avoid deadlocks. 

Correlation is poorly understood in the SC context, in 

contrast with areas such as communications theory ‎[10]. The 

only relevant study we know of is due to Jeavons et al. ‎[11], 

who do not provide any measure of correlation among bit-

streams or its impact on SC behavior. They define SNs X and 

Y to be independent if          , where     is the SN  

obtained  by ANDing X  and Y.  This, in effect, says that  a 

stochastic‎multiplier’s‎ inputs‎ are‎uncorrelated‎ if‎ the‎output‎ is‎

accurate. It gives no hint of what happens with correlation 

present. Ma et al. ‎[15]  discuss the propagation of inaccuracy 

through stochastic circuits under the assumption of 

independent inputs, and do not analyze correlated inputs. 

 This paper introduces a rigorous measure of correlation 

among SNs, and shows how to analyze circuits with correlated 

inputs. It leads to an interesting conclusion: contrary to 

general belief, correlation is not always harmful in SC.  In 

fact, it can even be exploited to design better circuits! Fig. 3 

gives a motivating example. The multiplexer implements 

   (    )         which, with    = 0.5, is the scaled 

sum    (     )  . If all inputs are independent as in Fig. 

3a, the circuit performs the add operation accurately. In Fig. 

3b, every 0 of X coincides with a 1 from Y, implying  

that X and Y are (negatively) correlated, but the circuit still 

computes accurately. This will be explained in Sec. II.  

The next example illustrates a situation where, counter to 

most intuition, correlation is actually beneficial. The absolute-

valued subtraction function             is useful in image 

processing ‎[3]. If it is implemented under the usual 

assumption of independent inputs, a large stochastic circuit is 

needed ‎[13]. However, it can also be implemented by a single 

XOR gate fed with highly correlated inputs in which there is 

maximum overlap of 1s and 0s between the two input SNs. In 

that case, the probability of getting two 1s (or two 0s) on x and 

y is     (     ) (or     (         )), implying that the 

probability  of different values  on x and y becomes       if 

0 1 1 0 1 1 1 0 (5/8)

0 1 0 0 1 1 1 0 (4/8)
0 0 1 0 0 0 0 0 (1/8)x

y
z

Figure 4. XOR gate with correlated inputs implementing absolute-

valued subtraction. 

     , as in Fig. 4, or else        if      . In other 

words, the output represents        . Note that an XOR fed 

with independent SNs X and Y implements an entirely 

different function, namely,      (    )    (    ).  

These examples demonstrate correlation’s‎significance  in 

SC, and suggest that advantage can be taken of correlation in 

certain cases. We introduce here a measure of correlation for 

SC and a method of analyzing SC circuits based on the 

probabilistic transfer matrix (PTM) methodology ‎[12]. We 

also develop a method of synthesizing combinational circuits 

that work in the presence of correlation. Finally, we discuss 

the analysis of sequential stochastic circuits, which is very 

poorly understood at present. Prior work is limited to a few 

special cases with regular structures ‎[4]‎[14]. General 

sequential circuits are difficult to analyze because of 

correlation among the state variables. The correlation analysis 

of this paper provides a way to tackle these circuits. 

The main contributions of this paper are 

 A new correlation measure SCC for SNs 

 Use of  PTMs to analyze stochastic circuits 

 A study of combinational circuits with correlated 

inputs and their application to some useful SC designs  

 Analysis of  general sequential stochastic circuits  

  The paper is organized as follows. Sec. II discusses PTMs 

and their role in SC. A rigorous analysis of correlation in the 

SC context is presented in Sec. III. Then Sec. IV deals with 

combinational stochastic circuits, while Sec. V addresses 

sequential circuits. Some conclusions are drawn in Sec.VI. 

II. PROBABILISTIC TRANSFER MATRICES 

The probabilistic transfer matrix (PTM) ‎[12] has proven 

valuable in the probabilistic analysis of logic circuits, such as 

circuits subject to soft errors. Here we show that PTMs are 

also useful for analyzing correlation in stochastic circuits. In 

the usual SC scenario, a circuit with m inputs, x1,x2,…‎ ,xm is 

analyzed using the probability values of m bit-streams applied 

to its input lines, assuming that these bit-streams are 

independent. In the PTM formulation, the same input data is 

represented by a stochastic vector V of size 2
m
. The elements 

of V are the probabilities of the possible input combinations of 

x1x2…xm, which can vary from‎00…0‎to‎11…1.‎For‎example,‎

V1 = [1/2  0  0 1/2] is the PTM corresponding to two inputs x 

and y, when the probability of xy = 00 and xy = 11 is 1/2  and 

the other probabilities are zero. The PTM has more 

information than conditional probability valuesit also 

implicitly contains correlation information. For example, V1 = 

[1/2 0 0 1/2] indicates that SNs X and Y are highly correlated 

because the probability of having different values on x and y is 



 

 

always zero. The vector V2 = [1/4 1/4 1/4 1/4], on the other 

hand, represents two completely uncorrelated SNs. 

Every logic circuit has a PTM representing its error-free 

function. This is a matrix of size 2
m 
 2

l
, where m and l are the 

numbers of inputs and outputs of the circuit, respectively. The 

PTM of an AND gate implementing z = x  y is 

 

 

 

 

The entry pi,j is the (conditional) probability of  input i 

producing output j. Multiplying an input PTM by a circuit 

PTM yields an output PTM, which for a single-output gate is a 

vector [o0 o1] where o0 and o1 are the probabilities of 0 and 1, 

respectively, appearing at the output. For example, the SC 

operation performed by the XOR circuit of Fig. 4 is described 

by the PTM calculation  

[          ]  [

  
  
 
 

 
 

]  [      ] 

 It was stated earlier that the adder of Fig. 3 has input SNs 

X and Y which can be correlated without causing inaccuracy. 

We now prove this via PTM analysis. The input vector has the 

form I = [i0 i1 i2 i3], in which i0, i1, i2 and i3 denote the 

probability of xy being 00, 01, 10 and 11, respectively. The 

input SN W is a constant of value 1/2 and so is omitted from 

the PTM. The adder’s‎PTM is therefore  
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] 

The corresponding output vector is given by 

[        ]  [

  

      

   

 

   

 

]  [   
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Note that          and          always holds, whether 

X and Y are independent or correlated. Hence,       (   
  ). The input vectors [1/8 3/8 1/8 3/8] and [0 1/2 1/4 1/4] 

corresponding to the inputs X and Y of Figs. 3a and 3b, 

respectively, both lead to the same output vector [3/8  5/8]. 

III. CORRELATION OF STOCHASTIC NUMBERS 

Correlation refers to statistical similarity between two 

phenomena.  As discussed in detail in ‎[10], the correlation of 

two sequences (bit-streams) is measured by some form of 

covariance or dot-product operation. With appropriate 

normalization, a correlation value of +1 means maximum 

similarity, a correlation value 1 means minimum similarity 

(maximum difference), and a correlation of 0 means the 

sequences are uncorrelated. While many measures of 

similarity exist ‎[5], they are not very useful in the SC context. 

The standard definition of correlation (also known as the 

Pearson correlation ‎[5])  (   ), in particular, is unsuitable 

because it imposes constraints on the expected value of the 

bit-streams.  For example,      implies that the bit-streams 

must be identical. A suitable similarity measure should be 

independent of, or orthogonal to, the data values; in other 

words, it should not impose constraints on the data. We 

therefore propose a new correlation measure defined as 

follows.  

Definition 1: The SC correlation SCC(X, Y) of two SNs X and 

Y is given by 

   (   )  {

         

   (     )      
                               

         

        (         )
                    

   ( ) 

 The starting point in constructing SCC(X, Y) is obtaining 

the bit-wise AND function     (a kind of dot-product) of 

the SNs, that is, finding     . This is then centralized by the 

uncorrelated value       yielding             Finally, the 

centralized value is normalized by dividing it by the maximum 

possible values. The centralization makes SCC consistent with 

the definition of independence in ‎[11] when     (   )    , 
i.e., when            . The normalization guarantees 

that for two maximally similar (or different) SNs X and Y, we 

get    (   )     (or 1). Unlike the standard correlation 

measure  (   ), SCC does not vary with the SN values. All 

the intermediate values of SCC are linearly interpolated 

between the independent case and the maximum similarity (or 

difference) case. For example,  (   )      means that      

is half-way between     , i.e., the independent case, and 

   (     ), i.e., the maximum overlap case. 

 We can also define SCC using the notation of ‎[5], which 

allows easy comparison with other correlation concepts. For 

two n-bit  SNs X and Y, denote the number of overlapping 1s 

by a, the number of overlapping 1s of X and 0s of Y by b, the 

number of overlapping 0s of X and 1s of Y by c, and the 

number of overlapping 0s on both SNs by d. Clearly,     
     . We then have the following definition which is 

equivalent to Def. 1: 
 

   (   )

 

{
 

 
     

     (       )  (   )(   )
           

     

(   )(   )       (     )
                   

         ( ) 

 The numerator ad  bc is common to many similarity 

measures including Pearson correlation  

 (   )   
     

√(   )(   )(   )(   )
 

and it captures the overlap of 0s and 1s in the two bit-streams. 

The denominator, on the other hand, is simply a normalization 

factor. While Pearson correlation is normalized by the 

variance of the bit-streams, SCC is normalized so that the bit- 

streams with maximum (minimum) overlap of 1s and 0s lead 

to SCC = +1 (1), independent of the values of the SNs. 

 Table I shows examples of bit-streams with their   and 

SCC values.   Note that   and SCC are the same for  independ- 
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TABLE I. SOME SNS WITH THEIR SCC AND STANDARD CORRELATION VALUES 

Stochastic numbers 
SC 

correlation 

   (   ) 

Standard 
correlation 

 (   ) 

X = 11110000   Y = 11001100 0 0 

X = 11110000   Y = 11110000 +1 +1 

X = 11110000   Y = 00001111 1 1 

X = 11111100   Y = 11110000 1 0.58 

X = 11111100   Y = 00001111 1 0.58 

X = 11111100   Y = 11100001 0 0 

X = 11000000   Y = 11111100 1 0.33 
 

ent SNs, and for SNs with equal values. When the SNs have 

different values, SCC consistently gives the value +1 (or 1) 

for maximum (minimum) overlap of 1s and 0s between the 

bit-streams, while   gives different values. This shows that, 

unlike  , SCC is not affected by the values of the bit-streams. 

As mentioned earlier, the function of a stochastic circuit 

can effectively be changed by enforcing correlations among its 

inputs. The XOR gate of Fig. 4 illustrates this. Fig. 5a shows 

the stochastic functions implemented by the same XOR gate at 

different levels of SCC. In all cases, the output of the function 

remains the same at the four corners, but the function changes 

greatly for the intermediate values. Fig. 5b shows the same 

function for various fixed values of pY and SCC. 

IV. COMBINATIONAL CIRCUITS 

Every stochastic circuit implements a real-valued function F, 

which is interpreted as its stochastic behavior. For example, 

the AND gate of Fig. 1 implements the multiplication function 

pZ = F(pX, pY) = pXpY, assuming    (   )   . The inputs of 

F are the values of the SNs pX and pY. Hence, to obtain the 

stochastic behavior of a logic circuit, we need to determine its 

corresponding probability function F.  

We saw earlier that a‎circuit’s‎functionality can change in 

the presence of correlation. The AND gate, for example, 

implements pZ = F(pX, pY) = min(pX, pY) if    (   )    . 
 

Table II. FUNCTIONS FOR THE PTM ELEMENTS OF A TWO-INPUT CIRCUIT 

 
   (pX, pY) 
SCC = 0 

    (pX, pY) 

SCC = 1 
    (pX, pY) 
SCC = +1 

i0 
(    )  
(    ) 

max(         ) min(         ) 

i1 (    )    min(       ) max(       ) 

i2 (    )    min(       ) max(       ) 

i3       max(         ) min(     ) 
 

 

Based on Def. 1 and the subsequent discussion, the SC 

function of the AND gate for the case of, say    (   )  
   , is half-way between its SC function  for    (   )     

and    (   )   . In general, we can express a circuit’s‎

functionality as a linear combination of its functions at 

   (   )    and    (   )     or 1. Hence for any 

SCC,  pZ  can be written as 

  (     )  {
(     )   (     )         (     )               
(     )   (     )         (     )                

     (3) 

where   (     ),    (     ) and    (     ) are the 

functions of the same circuit at    (   )       and +1, 

respectively. For the AND gate example, we have 

  (     )      ,    (     )      (         ), and 

   (     )      (     ). 

In order to derive the stochastic behavior of a circuit C 

with correlated inputs, we use the PTM tools discussed in Sec. 

II. If C has two input bit-streams X and Y with correlation 

SCC, construct the input  PTM I = [i0 i1 i2 i3], in which the ik’s 

are expressed in the form of Eq. (3). The   ’s,    ’s, and 

   ’s corresponding to each ik are defined in Table II. From 

these, we can extract C’s‎ stochastic‎ behavior‎ by‎multiplying‎

the vector I by the circuit PTM. For instance, if C is an XOR 

gate, [        ] [

  
  
 
 

 
 

]  yields the functions illustrated in 

Fig. 5a for some representative values of SCC. 
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Figure 5. Functions implemented by an XOR gate (a) with different input SCC values, and (b) with fixed values of pY.  
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Figure 6. High-level structure of a synthesized two-input circuit with 

correlated inputs, prior to simplification.  

Only correlation corresponding to the special case  

      has been considered in the literature.  As we have 

just seen, other cases such as        lead to useful results.  

The PTM formulation of two-input SC circuits discussed 

above points to a  method  for synthesizing  stochastic circuits 

with correlated inputs. In this approach, a target function F(pX, 

pY) is approximated by a function pZ =   (pX, pY) defined by  

[        ]  [

      
      
    
    

  
  

]  [      ]           (4) 

in which the tk’s‎are‎the parameters of F to be determined and 

the ik’s are expressed in the form of Eq. (3) and Table II. The 

process of approximation is to find the best tk’s and the best 

SCC for which the following error function   is minimized. 

  ∬ ( (     )    (     ))
       

   

   
    (5) 

This is done by adjusting the tk’s and the SCC using standard 

optimization techniques. Because of the limited number of 

parameters and the well-behaved error function, this problem 

is relatively easy to solve. Once the parameters are found, 

   can be realized by a logic circuit with the overall 

multiplexer-style structure shown in Fig. 6, The constant SNs 

needed for the four tk’s‎can be generated by up to four copies 

of the circuit in Fig. 2c. The resulting circuit can then be 

further optimized using conventional logic synthesis methods 

and tools. 

 Generating two SNs X and Y with a desired level of SCC is 

a problem that has not been studied before. We propose to use 

the circuit structure shown in Fig. 7, which generates X by  
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Figure 7. Generating SNs with a specified SCC. 

 
 

Figure 8. Algorithm CCC to synthesize a stochastic function 

 (     ) with correlated inputs. 

means of a standard SN generator and, depending on the sign 

SCCsign and magnitude SCCmagn of SCC, mixes uncorrelated 

and  correlated versions of Y together. For example, if SCC = 

+1, then Y is generated from the same random number source 

used by X, so X and Y become highly correlated. Note that Fig. 

7 is a programmable structure, and not all the components 

shown are needed in every design. For example, if a circuit 

requires X and Y to be generated with SCC = +1, then the 

select inputs xy of the multiplexer are set to 01, implying that 

random number generators 2 and 3, and their associated 

circuits can be removed. Fig. 8 summarizes our proposed 

correlated combinational circuit (CCC) synthesis algorithm.  

 As an example, consider the problem of synthesizing a 

circuit for the target function  (     )     (     )  In 

Step 1 of CCC,      (     ) is prepared in the form of Eq. 

(4), and in Step 2 the error function   is prepared in the form 

of Eq. (5). Then, the tk’s and SCC are adjusted until   is 

minimized. For the running example,    , i.e., the exact 

target function, can be achieved by assigning t0 = 0, t1 = 0, t2 = 

0, t3 = 1, and SCC = +1. On plugging these values into the 

circuit of Fig. 6, we obtain that of Fig. 9a, i.e., an AND gate. 

Observe that the AND implements    (     ) only if its 

inputs have SCC = +1. In order to generate X and Y, we use 

the circuit of Fig. 7 and plug in SCC = +1 (SCCsign = 0, 

SCCmagn = 1), yielding the circuit of Fig. 9b. This circuit is 

smaller than one employing two of the independent SN 

generators in Fig. 2c, so generating correlated SNs is cheaper 

than generating independent ones in this case. 

Table III shows examples of circuits synthesized by the 

CCC algorithm.   Most of the target functions are useful non- 

linear functions that have no efficient stochastic implement-

ation when the inputs are uncorrelated. The last synthesized 

function in the table is the multiplexer-based scaled adder  in 

which correlation of the input data does not matter. Another 

type of SC adder, a saturating adder, is also shown. This 
  

pX

Random no. 

generator 1

pY

y

r1

xx

y

(a)

z

(b)
 

Figure 9. Implementing the function  (     )     (     ): (a) 

synthesized stochastic circuit, and (b) corresponding SN generator. 

Step 1: Determine a suitable approximating function    
  (     ) according to Eq. (4) in which the input vector I is 
defined by Eq. (3) and Table II. 

Step 2: Determine the error function   given by Eq. (5). 

Step 3: Minimize   by adjusting the tk and SCC parameters in   . 

Step 4: Insert these parameters into the structure of Fig. 6, and 
use standard logic synthesis methods to optimize the resulting 
circuit. 

 



 

 

circuit adds its inputs without scaling until the saturating value 

1 is reached.   Finally, observe that in some cases, the circuits 

synthesized by CCC are the same as the standard designs. For 

example, the smallest SC multiplier is the AND gate of Fig. 1, 

which requires uncorrelated inputs. This shows that the CCC 

is capable of replicating circuits synthesized by existing 

methods, because SCC = 0 is also allowed in CCC. 

 Table IV compares the circuits synthesized by CCC and 

those designed by the spectral synthesis method of [1], which 

makes the usual independent-inputs assumption, i.e., SCC = 0. 

In addition to the circuits of Table III, a few other functions 

were implemented. Since it is normally impossible to 

implement real-valued functions exactly, some are 

approximated before synthesis. Area is estimated by mapping 

the circuits to a generic library of cells using 0.35m CMOS 

technology ‎[19]. For a fair comparison, we also report the 

measured mean error between the synthesized and target 

functions F′ and F. The results indicate that in most cases, the 

circuits synthesized by CCC are smaller and more accurate 

than those designed by the method of ‎[1]. 

 When dealing with more than two signals, considering 

their pairwise SCC values may be insufficient, as higher-order 

correlations can exist among groups of three or more of the 

signals. To handle such cases, we suggest using PTMs that are 

large enough to embed all the signal correlations of interest. 

Circuits with many inputs can also be designed by decom- 
 

TABLE IV. COMPARISON BETWEEN CIRCUITS SYNTHESIZED IN THIS PAPER 

AND THOSE SYNTHESIZED BY THE SPECTRAL METHOD OF [1]  

Target  
function 

Synthesis method 
and correlation 

assumption 

Area* 

(m
2
) 

Mean 
Error  
(%) 

      (       ) 
Saturating adder 

[1] with SCC = 0 1,628 10 

CCC with SCC = 1  1,091 0 

      (       ) 
Saturating subtracter 

[1] with SCC = 0 1,663 10 

CCC with SCC = +1 1,188 0 

         
Multiplier 

[1] with SCC = 0 1,646 0 

CCC with SCC = 0 1,646 0 

   (     )   
Scaled adder 

[1] with SCC = 0 1,857 0 

CCC with SCC = +1 1,320 0 

   (    )
     

[1] with SCC = 0 1,980 12 

CCC with SCC = +1 1,443 7 

   (       )
  

[1] with SCC = 0 2,306 15 

CCC with SCC = 1 1,760 9 

A multi-variate 
polynomial 

[1] with SCC = 0 2,086 9 

CCC with SCC = 1/2 2,473 4 

* Circuits with uncorrelated (independent) inputs were synthesized 
according to [1] with polynomials of degree 1. All the reported area 
numbers include stochastic number generators. 
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Figure 10. Stochastic circuit for image edge-detection ‎[3]. 

posing the target function into subfunctions of two variables. 

The CCC method can then be used to synthesize the pieces 

and put them back together. For example, consider the four-

variable function        (               )  which 

performs the very useful image-processing task of edge 

detection ‎[3]. It decomposes into two absolute-valued 

subtraction functions     
  and   

  , which are then combined by 

a scaled add to produce     : 

   
         ,     

          ,            (  
    

  ) 

All three of these functions  can be synthesized by CCC, as 

indicated in Table III. Fig. 10 shows the result; the XOR gates 

perform absolute-valued subtraction, while the multiplexer 

performs scaled addition. Note that the select input of the 

multiplexer is fed by an auxiliary input r with pr = 1/2. 
 

 

V. SEQUENTIAL CIRCUITS 

As with conventional binary logic, stochastic sequential 

circuits (stochastic FSMs) can lead to more efficient designs 

than combinational ones. For instance, Fig. 11 shows a 

sequential update node of the type commonly used in 

stochastic LDPC decoders ‎[7].   It implements the function 
 

   
    

     (    )(    )
 

 

for which no more efficient combinational equivalent is 

known. Sequential stochastic circuits have also been proposed 

to implement arithmetic functions such as division and 

hyperbolic tangent ‎[4]‎[6]‎[14]. However, the proposed designs 

are mostly ad hoc, or require state transition diagrams of a 

very restricted structure ‎[4]‎[14]. Analyzing stochastic 

sequential circuits with arbitrary state transition diagrams is 

difficult since the state variables tend to be correlated. For 

example, in the three-state circuit of Fig. 12, the state 11 never 

occurs, so the SNs corresponding to state bits w0 and w1 are 

correlated. A general method to analyze and design arbitrary 

stochastic sequential circuits does not presently exist. 

TABLE III. EXAMPLES OF SYNTHESIZED STOCHASTIC CIRCUITS EXPLOITING VARIOUS CORRELATION LEVELS  

Target  function [        ] SCC Synthesized circuit  

       (     ) [    ] +1 AND gate with positively correlated inputs 

       (     ) [    ] +1 OR gate with positively correlated inputs 

           [    ] +1 XOR gate with positively correlated inputs; implements absolute-valued subtraction 

       (       ) [    ] 1 OR gate with negatively correlated inputs; implements saturating add  

       (     ) [        ] Any Multiplexer with arbitrary correlation among its data inputs; implements scaled add 
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Figure 11. Stochastic update node used in LDPC decoders. 

 

 A sequential logic circuit implements two combinational 

functions: the next-state function δ that, given the current state 

and the current inputs, produces the next state, and the output 

function λ that produces the corresponding output signals. In 

the context of SC, next-state transitions are treated as 

probabilistic. Hence, we are mainly interested in the stochastic 

behavior of the state-defining function δ, since λ is a simple 

combinational function and can be analyzed by existing 

methods. 

 Like our approach to combinational circuits with 

correlation, we use PTMs to analyze sequential circuits. The 

state probability distribution of a sequential circuit is 

represented by a vector S = [s1 s2 …‎sl] in which si denotes the 

probability of being in state i. For example, the vector [1/3 1/3 

1/3] corresponding to the circuit of Fig. 12 indicates that the 

probability of being in each state is 1/3. The state transition 

behavior of the sequential circuit can be expressed as a 

transition matrix T, in which element tij denotes the 

probability of a transition from state i to j. The transition 

matrix corresponding to Fig. 12 is 

   [

       
       

       

] 

 Given the state probability distribution S(t) in a particular 

clock cycle t and the transition matrix T, we can write the state 

distribution of the next clock cycle t + 1  as  S(t + 1) = S(t)   

T. For instance, with S(t)  = [1/3 1/3 1/3] and pX = 1,  we get 

S(t + 1)  = [0 1/3 2/3].  

 After enough clock cycles, the state distribution of the 

sequential circuit typically converges to a stationary 

distribution , which can represent the circuit’s‎ stochastic‎

behavior. Fortunately, finding  is a well-known mathematical 

problem. The transition matrix T of a sequential circuit can be 

interpreted  as  a Markov  chain ‎[8], which  is  an  FSM  with 

probabilistic state transitions. The stationary state  of a 

Markov chain is an eigenvector of T with the defining 

property   =   T. For example, the stationary distribution of 

the circuit in Fig. 12 is          

   [         
   

 ]  [

       
       

       

]  

      [         
   

 ]  
     

And since the output z only becomes 1 in the state w1w0 = 01, 

i.e., the second state, we conclude that          
 . 
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Figure 12. (a) A sequential stochastic circuit C and (b) its state 

transition diagram. 

  

 In order to find the stationary distribution of an l-state 

FSM with an arbitrary transition matrix T, we need to solve 

the  equation   =   T and compute the elements of  = [s1 s2 

…‎sl]. The equation corresponding to each state is of the form 

     (       ), in which the Gi’s‎collectively represent the 

stochastic behavior of the next-state function δ of the FSM. As 

noted earlier, the function δ is combinational, and according to 

[1], its stochastic behavior can be represented as a polynomial. 

This implies that all the Gi’s,‎and hence all the elements of T, 

are polynomial functions with respect to the input SN values. 

This fact allows us to obtain an analytical solution to  =  T 

and leads to the following result.  

Theorem: Given a sequential circuit with m inputs x1,…,xm, 

and a transition matrix T whose elements are polynomial 

functions of    
      

, its stationary state distribution  has 

elements of the form  F1(   
      

) / F2(   
      

), where 

F1 and F2 are polynomial functions. 

 The theorem follows from the fact that in solving   =  

T, the coefficients of the variables si become parameterized 

polynomial functions. The standard row-transformation steps 

in solution methods like Gaussian elimination only apply the 

operations addition, multiplication, and division to the matrix 

elements. Since these are polynomial functions, adding and 

multiplying them produces polynomials, and dividing them 

gives rational polynomials. The degrees of the polynomials 

depend on the number of states l and the degrees of the 

polynomial elements of T. If these polynomials are linear, the 

final solution is of degree 2
l2

. 

  For example, the transfer matrix corresponding to the two-

state LDPC update circuit of Fig. 11 is 

  [
          

(    )(    )           
] 

To find the stationary distribution of T, we form the equations   

       (      )    ((    )(    )) 

       (    )    (          ) 

Since the circuit is either in state s0 or s1, we have the 

additional constraint s0 + s1 = 1. Hence,  s1 = 1  s0, yielding 

     (    )(    )    (          ) 

    (                 )       



 

 

Thus, we obtain the expected function ‎[7]: 

      
    

     (    )(    )
 

 Another example is a four-state sequential circuit 

from ‎[14], which has the transition matrix  

  [

        
        

 
 

    

 

 
    

  

  

] 

Now   =   T  yields the following set of equations: 

         (    )    (    ) 

              (    ) 

              (    )   

                 

with the additional constraint 

                  

Solving these equations analytically we obtain    
(    )  (   

       ), etc., which is consistent with 

the analysis of ‎[14]. 

VI. CONCLUSIONS 

Stochastic computing (SC) has recently re-emerged as an 

attractive alternative technique for some important computing 

tasks with extreme demands for small size and low power. A 

key unsolved problem in designing stochastic circuits has been 

to overcome the computational inaccuracies that result from 

undefined and undesired correlations among signals. The 

usual solution has been to avoid correlation entirely at the cost 

of introducing many independent stochastic number sources or 

re-randomizers.  

 This paper has investigated in depth the impact of 

correlation on stochastic computing. We have shown that not 

all correlation is harmful. In fact, contrary to what one would 

intuitively expect, correlation can serve as a resource in 

designing stochastic circuits. We have given the first general 

and rigorous definition of correlation for SC, which has 

enabled us to analyze both combinational and sequential 

stochastic circuits in the presence of correlation. We 

demonstrated how probabilistic transfer matrices aid this 

analysis, and lead to a general approach to designing 

stochastic circuits with correlated inputs. We further 

demonstrated how to implement various useful functions such 

as saturating addition and subtraction that had no previous 

efficient SC implementations. We reported a comparative 

study indicating that the circuits with correlated inputs are 

generally smaller and more accurate than those with 

independent inputs. Finally, we presented the first systematic 

analysis of sequential stochastic circuits, a problem which has 

generally resisted attack since the 1960s.  
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