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ABSTRACT

Chinese dark chess is a popular and easy-to-learn game in Asia. The characteristic of possible
revealing of unknown pieces makes it different from Chinese chess or Western chess. Players with
luck may win a game by chance. Thus, there is a probabilistic behavior that a player has to consider.

Computer Chinese dark chess problems can be divided into three phases: 1) the opening game, 2)
the middle game, and 3) the endgame. Revealing pieces reasonably and effectively is the main issue
in the opening game. In the middle game, the choice of revealing pieces or moving pieces becomes
the critical issue. Designing a good evaluation function is also important both in the middle game
and endgame. In an advantageous endgame, how to capture all opponent’s pieces to win the game is
also a hard problem.

Search-based methods, such as αβ pruning, are only suitable in the positions where revealing actions
do not influence the results. However, according to our experiments, programs that reveal pieces
reasonably and effectively have better playing strength. In this paper, we introduce the game Chinese
dark chess and give some research topics about this game. We also discuss some strategies for
considering the revealing actions in this paper.
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1. INTRODUCTION

Chinese dark chess is a popular version of Banqi, a variation of Chinese chess that only uses half of the board,
also called dark chess, half chess or blind chess. 4 It is played in oriental countries where Chinese chess is played,
but with much more players. Most people playing Chinese chess play Chinese dark chess. A lot more people can
play Chinese dark chess while not able to play Chinese chess.

The pieces in Chinese dark chess are the same as those in Chinese chess: each player has sixteen pieces of one
color 5, including one king (K/k) 6, two guards (G/g), two ministers (M/m), two rooks (R/r), two knights (N/n),
two cannons (C/c), and five pawns (P/p). The board size consists of 4 × 8 squares, totally thirty two squares.
Unlike Chinese chess, pieces are placed within squares in Chinese dark chess. In the beginning of a game, all
pieces are randomly placed on the board with piece icons facing down so that piece types are unknown.

When playing a game, two players make actions alternately. There are two kinds of actions: 1) the flipping action
that reveals an unknown piece that is facing down, which is abbreviated to an unknown piece in this paper and 2)
the moving action that moves one revealed piece of his own color from a source to a destination or for the cannon,
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it can jump over a piece. The unknown piece being flipped is called a revealed piece. From the above discussion,
we know the player who plays first must flip a piece.

The color of the first flipped piece owns that color for the rest of the game. The opponent holds the other color.
All types of pieces except cannons can only move or capture a piece one square up, down, left and right within
the 4× 8 grid area. Cannons move in the same way as other pieces, but when capturing a piece, just like Chinese
chess (Yen et al., 2004), they need to jump over exactly one piece to capture a piece of any distance in the same
row or column. The indicated piece for a cannon to jump over is called a carriage.

Each piece type has a rank, as shown in Table 1. A piece can capture the pieces with equal or lower ranks.
However, there are exceptions as follows: 1) a cannon can only capture pieces of any rank by jumping over a
piece, 2) the king cannot capture pawns, and 3) pawns can capture the king.

A player wins when either the opponent has no legal move, i.e., stalemate, or all pieces are captured. The game
ends in a draw when both players do not capture or reveal a piece within 40 plies. Repetition of positions also
results in a draw.

Table 1: The rank of piece types.

~k~g~b~r~n~c~p

~K~G~B~R~N~C~P

Piece types Red Icon Black Icon Rank Exceptions
King K k 1 cannot capture pawns
Guard G g 2 none
Minister M m 3 none
Rook R r 4 none
Knight N n 5 none
Cannon C c 6 can only capture all types of pieces by jumping over
Pawn P p 7 can capture the king

The notation for recording moves is the same as the algebraic chess notation. Since the board size is 4 × 8, we
have the letters a to d to label the rows from the left to the right. The columns are numbered from 1 to 8 bottomed
up. Moving a piece is recorded as S −D where S stands for the source location and D stands for the destination
location. Revealing a piece is recorded as P (T ), where P indicates the place of the piece to be revealed and
T indicates the revealed piece type, upper-cased characters for red pieces and lower-cased characters for black
pieces. A sample opening game is shown in Figure 1.

To record a complete game, only the sequence of moves and result of a flipping action are needed. For an
incomplete game, i.e., a middle game or an endgame, we need the information of its initial position. A position
contains pieces on the board, the numbers of all types of unknown pieces and the player, his color, to move next.

By considering the initial unknown pieces, Chinese dark chess is a two-player zero sum game with incomplete
information (van den Herik, Uiterwijk, and van Rijswijck, 2002). Another example of incomplete information
game is a chess variant, Kriegspiel (Ciancarini and Favini, 2007; Sakuta and Iida, 2000) or dark chess. Kriegspiel
has many rule sets. Players can only see their own pieces and the grids of their legal moves, which is similar to
dark chess as described above.

The state-space complexity of the game is 232(32!/((5!)2(2!)10)), roughly 1037. A game lasts for about 90 moves
in average. Each position has an average of 32 valid moves. The game-tree complexity is roughly 10135. We
can see that the state-space complexity of Chinese dark chess is between Draughts and Western chess, whose
state space complexities are 1030 and 1046. The game-tree complexity of Chinese dark chess is between Western
chess and Chinese chess. It seems that a game-tree search algorithm is sufficient to handle the game. However,
the nature of incomplete information during the play makes the game more complex. We will discuss a detailed
analysis about the game-tree search complexity in Section 2.1. The complexity of Chinese dark chess is similar
to chess and Chinese chess. However, the distinguishing feature is its characteristic in incomplete information.
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Figure 1: A sample opening game.

This paper is organized as follows. In Section 2, we discuss the problems in each phase of a game in Chinese
dark chess. In Section 3, we introduce a baseline algorithm and an exhaustive search algorithm to discuss about
the properties and research issues in Chinese dark chess. In Section 4, we propose refined algorithms that provide
better flipping handling strategies and give some experimental results to compare these algorithms. In Section 5,
conclusions and future work are presented.

2. RESEARCH PROBLEMS IN COMPUTER CHINESE DARK CHESS

As an incomplete information game, the Chinese dark chess problem is hard to be either weakly-solved or
strongly-solved. Unknown pieces make the result of a position undecidable. An exhaustive search algorithm
cannot precisely obtain the scores of positions with unknown pieces, but it can compute their approximated
value.

In this section, we will discuss the complexity of an exhaustive search in Chinese dark chess, and possible research
problems in the opening game, the middle game and the endgame.

2.1 Analysis of the Search Complexity

To start a game, we can only reveal a piece. In the opening game, there may be a few revealed pieces and
many unknown pieces in a position; some pieces are captured. When more pieces are revealed and captured, the
branching factor reduces. To analyze the branching factor, we use the following definitions.

Definition 1. The variable n is the piece number remaining on the position. We have n = nr + nf where nr is
the number of revealed pieces and nf is the number of unknown pieces.
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Definition 2. The variable nt is the number of piece types that are still unknown. For example, we have nt = 14
in the beginning of a game.

Definition 3. The estimated branching factor b = M(p) + R(p) where p is the current position. M(p) is the
number of nodes for computing moving actions, and R(p) is the number of nodes for computing flipping
actions in position p. A position p contains information about nr, nf , nt and other information such as
locations of pieces.

The number of valid moves of a cannon is at most six. Other pieces can have up to four moves. Hence the upper
bound of the number of moving actions is 4nr + 8. A position usually contains roughly equal numbers of red
and black pieces, we estimate the number of valid moves of a player as M(p) = (4nr + 8)/2 = 2nr + 4. To
enumerate all possible combinations, the exhaustive search algorithm generates nt children for a flipping action
in the search tree. The number of nodes for computing flipping actions is then defined as R(p) = nf × nt. The
estimated branching factor b is thus b = 2nr + nf × nt + 4.

Here we show our analysis of branching factors in different stages of a game in Table 2. We make three assump-
tions in this analysis: 1) the analyzed games are reasonable games, not randomly generated positions, 2) when
there are 32 − nf pieces revealed, half of the revealed pieces are captured 3) we assume the revealed pieces are
uniformly distributed among all pieces.

Table 2: Branching factors in five stages of a game.

Stage p = (nr, nf , nt) M(p) R(p) b

1 (0, 32, 14) 4 448 452
2 (4, 24, 14) 12 336 348
3 (8, 16, 12) 20 192 212
4 (12, 8, 4) 28 32 60
5 (16, 0, 0) 36 0 36

The second assumption is based on the observation that as the game goes on, the piece on the board decreases.
The empty grid becomes more from the opening game to the middle game and from the middle game to the
endgame.

To explain the uniform distribution assumption, when we reveal fourteen pieces, the number of all piece types
are decreased by one. If the number of revealed pieces is less than fourteen, the types having higher occurence
probability are computed first. There are three levels of probabilities. Pawns are classified in the highest level,
kings are classified in the lowest level, and the rest of types of pieces are classified in the middle level. For
example, if sixteen pieces are revealed, fourteen of them are mapped to each type of pieces with additional two
pieces being pawns. Thus, both kings are revealed and the value of nt is 12.

Stages 1 and 2 are in the opening game; stages 3 and 4 are in the middle game; stage 5 is in the endgame. The
analysis shows that the branching factor in an exhaustive search algorithm is huge in the opening and middle
game. Solutions other than exhaustive search for evaluating flipping actions, such as Monte Carlo-based methods
(Kocsis and Szepesvári, 2006), may be needed to tackle this issue.

2.2 Issues in the Opening Game

In chess or Chinese chess, opening book construction is a common strategy to solve the problem in the opening
game. We can build an incomplete game tree for the opening game, and compute the utility of each opening move
by statistical strategy (Chen and Hsu, 2001). The opening game problem in Chinese dark chess is more difficult
because there are many unknown pieces in the opening game. Unknown pieces in Chinese dark chess makes the
result of a certain opening move indeterminable.

As a result, the first idea is using a search algorithm to handle the opening game. A possible research problem is
to reduce nodes searched in positions with unknown pieces. There is a trade off between the correctness and the
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efficiency. One possible improvement is to apply Monte Carlo tree search on the positions with unknown pieces
to compute an approximate solution. However, since the playouts need to be done until a game is finished in
a traditional Monte Carlo method, one may try to limit the plies by using other criteria such as a limited depth.
Another choice is to consider only some selective, not all possible piece types for an unknown piece. This method
is likely to reduce the number of nodes searched to a certain order and still retain reliability.

2.3 Issues in Piece Flipping

Three critical issues about flipping actions are: 1) when should a player flip pieces, 2) which place should a player
flip, and 3) how to analyze the positions after flipping a piece. Some possible heuristics for the three critical issues
are listed follows.

When should a player flip pieces? In the opening game, a player frequently flips pieces. It is generally consid-
ered appropriate to flip pieces when we cannot capture any piece and our pieces are not being captured.
However, the heuristic is not always correct. For example, when our piece is being threatened and unable
to move, flipping a piece may cause an exchange of pieces, or discover a new piece that protects the piece
being threatened.

Which piece should a player flip? When the opponent king is alive and our pawns are not yet revealed, we can
try to flip the unknown pieces adjacent to the opponent king. When at least one of our cannons are not
revealed, we can flip a piece that is behind the carriage in the same row or column of an opponent’s piece
to increase the chance of capturing pieces.

How to analyze the positions after flipping a piece? A flipping action results in nt possible variations. The
variable nt represents the number of unknown piece types. When nt = 1, the evaluation function of the
position after a flipping action is a precise value. Otherwise, we can only obtain an expected value out of nt

possible choices. When we compare two values in the search algorithm, a score that is an expected value
is less reliable. For example, we have two choices in a position with the scores of 10 and 20, respectively.
The score of the first choice is a precise value that is computed according to the best moves. The score
of the second choice is an expected value of three flipping actions. Assume the original scores of the
flipping actions are −20, 0, 80, respectively. If we only consider the score itself, we will select the value
20. However, there is a probability of 2/3 that the result will be worse than the choice of the value 10.

2.4 Issues in the Middle Game

The critical issue here in the middle game is how to design a good evaluation function. To decide which pieces
to remain on the board is an important issue in the middle game of Chinese dark chess. For example, the king,
though has the highest rank, is usually captured by pawns or cannons in early phase of a game if revealed.
Therefore, guards becomes as important as king. If both sides have neither king nor guards, ministers become
the pieces of the highest rank.

To design a suitable evaluation function, we may consider to represent piece values either by static or dynamic
strategy. Static piece value strategy uses a fixed table of the values of all pieces while dynamic piece value
strategy uses variant table. In Chinese dark chess, pawns are powerful pieces to attack the opponent king. The
material value of a pawn should be a high value when the opponent king is alive. After the king is captured,
pawns are more or less useless and can be ignored. By static piece value strategy, a pawn with a low value may be
easily captured. We can use dynamic strategy that gives pawns higher values when the opponent’s king is alive,
and gives them a low value otherwise.

Cannons are very powerful when carriages exist and the pieces that can threaten them are a distance away. A good
arrangement with cannons can even threaten pieces of high ranks such as king or guard. If a cannon is limited
in the surrounding of opponent pieces or unknown pieces, they can be easily captured. In a good evaluation
function, the score of a cannon is decided according to the situations above. Thus, we need to solve the following
two problems. The first is to consider the influence of other pieces on cannons. The second is to compute the
safety of a cannon.
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It is easy to draw a game in the middle game by performing repeated moves. If a program tends to use repeated
moves to draw all the time, the games are very boring. A program that plays repeated moves in disadvantageous
positions is reasonable. Playing repeated moves in an advantageous position misses the chance of winning a
game. Hence, the judgement of advantage or disadvantage is a very important issue in the middle game.

2.5 Issues in the Endgame

Retrograde analysis is a popular algorithm to construct endgame databases in many games. Several games are
solved by retrograde analysis, such as checkers (Schaeffer, 2005). In more complex games like chess, databases
of 6 pieces or less are available (Thompson, 1996). In Chinese chess, current largest database contains two
strong pieces, i.e., attacking pieces other than pawns, on both sides (Wu, Liu, and Hsu, 2006). One can also use
retrograde analysis to build some endgame databases.

Some issues in endgame are discussed in the following. First, for pieces that are not pawns and cannons, only the
relative strength of pieces matter. For example, the endgame GN v.s. MN is equivalent to MN v.s. RN.

To illustrate the concept of the Chinese dark chess endgame problem, we first discuss the characteristics of simple
endgames. The simplest endgame contains a red piece and a black piece. The distance of two pieces is defined
as their Manhattan distance. The player with the piece that can capture the other conditionally wins when the
distance of the two pieces is an odd number in his turn. Otherwise, the game is a draw.

A petty piece is defined as the piece that does not have attacking power but are used to change the turn. In the
left of Figure 2, the player who moves first loses the game. However, in the right of Figure 2, black wins no
matter who plays first. If black plays first, he can move the petty piece, the pawn, and the position reduces to the
situation that red plays first. In Figure 3, we show an example of how to draw a disadvantageous game by using
a petty piece. In the left figure, if red moves first, he loses the game, otherwise the game is a draw. In the right of
Figure 3, no matter who plays first, the game is guarenteed to be a draw. If red moves first, he can move the petty
piece to avoid being captured.
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Figure 2: Winning by a petty piece in the endgame of two equal-ranked pieces.

In endgames containing petty pieces, a player needs to use strategical method to win or draw a game. How to use
petty pieces reasonably is a problem to be studied.

3. IMPLEMENTING A CHINESE DARK CHESS PROGRAM

In this section, we will compare two basic search methods for Chinese dark chess. The first method is intuitively
a baseline method that do not handle flipping actions. The second method is an exhaustive search algorithm that
considers both moving actions and flipping actions. When searching a position with a flipping action, it expands
all unknown pieces with all types that are possible to appear. In our experiments, there is a great gap in playing
strength between the baseline program and the exhaustive search program. This emphasizes that reasonably
handling flipping actions is important in the game of Chinese dark chess.
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Figure 3: Drawing by a petty piece in a disadvantageous endgame.

3.1 Our Baseline Program

The baseline program shown in Algorithm 3.1 incorporates an nega-max search algorithm, a simple evaluation
function designed by static piece value strategy, and a flipping policy to decide whether we want to make a moving
action or a flipping action at the root. If a flipping action is selected, we randomly select an unknown piece to
reveal. When we visit a node with no moving action, we use the no-move cut strategy that calls the evaluation
function and returns the computed value.

function negamax(position, depth limit)
s = −∞
next position = generate moves(position)
if #(next position) = 0 or depth limit = 0 then

return evaluate(position)
for all p in next position do
v = −negamax(p, depth limit− 1)
if v > s then
s = v

if depth limit = initial depth then
c = evaluate(position)
if there are unknown pieces and s ≤ c then
v = −negamax(position, depth limit− 1) {∗perform null-move search∗}
if v > s then
{* choose the best flipping action instead of the best moving action *}

return s

Algorithm 3.1: The baseline algorithm

3.1.1 Flipping Policy

The baseline program considers only moving actions. After the search algorithm returns a move with the best
value given a fixed depth or time limitation, we have two choices: 1) perform the best move that the search
algorithm suggested, and 2) perform a random flipping action. The flipping policy is a decision function to
identify when we should make flipping actions. We list three possible flipping policies below.

The first policy is move-first policy. When there is a moving action, we perform the search algorithm and play
the best move. Since a flipping action takes one ply, the move-first policy never wastes time flipping and just wait
for the opponent to flip all unknown pieces unless no legal move is found. However, when there is no effective
move, i.e., a move with a material gain, the program would rather make meaningless moves than try to flip an
unknown piece. In addition, making meaningless moves sometimes leads to danger in the future. Furthermore, if
both players use this policy, their games seem to be drawn all the time because they tend to make repeated moves.
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To improve the move-first policy, we have the second policy, called comparing policy, which makes flipping
actions when no effective move exists. The strategy that determines when to flip pieces is a comparison algorithm.
The first idea is to compare the score of the best moving action and the average score of performing a flipping
action, which is performed by a null-move search. If the score of performing a flipping action is not worse than
the best moving action, we make a flipping action.

The comparison algorithm solves the problem of making meaningless moves. However, when a piece of the
opponent is to be captured for sure, the program usually does not capture it because the score of the moves
without capture the piece is also the same as the move to capture it. If the opponent flips surrounding pieces, the
to-be-captured piece may have chances to escape. Furthermore, the revealed piece can even threaten the potential
attacking pieces.

Our third policy, take-advantage-or-flip policy uses the enhanced comparison algorithm that compares the imme-
diate evaluation score of the current position and the score of performing the best moving action. The immediate
evaluation score is the score of the position before making any move. If the score after performing a best moving
action is higher than the score of the original position, we choose the moving action. Otherwise, a null-move
search is used to determine whether to use the searched moving action or perform a flipping action. If the score
of the null-move search is higher than that of the previous best move, it means that the player gets higher value
when he does not move any piece. Thus, a flipping action is suggested. In this method, the program immediately
captures pieces that cannot escape. Thus, the behavior of a computer program is more like human players.

3.2 The Exhaustive Search Program

The exhaustive search program shown in Algorithm 3.2 incorporates α − β pruning algorithm on both moving
actions and flipping actions. The variable s is the score returned by the alpha-beta pruning algorithm. It is
used to compare with c, which is the score by performing an immediate evaluation function in position. The
measurement of a flipping action is an important issue when searching. We measure the value of a flipping action
by computing the expected value of the search results of all possible piece types in this program.

Canonical exhaustive search algorithm has a problem when comparing the expected values with precise scores
of moving actions. The algorithm selects the flipping action with the highest expected value. Thus, the program
makes unreasonable moves such as flipping a piece instead of rescuing a piece in danger when the score of the
selected flipping action is higher than moving actions.

function exhaustive(position,depth limit,α,β)
c = evaluate(position) {* call evaluation function to compute the score of the current position *}
if (no legal move and no unknown pieces) or (depth limit = 0) then

return c
s = alpha beta(position,depth limit,α,β) {* normal alpha-beta pruning algorithm by considering only mov-
ing actions *}
if (s ≤ c) and (there are unknown pieces) then

for all r in possible flips places do
v = 0, n = 0
for all t in possible flip types do
p = flip(position, r, t) {* assign location r to be type t *}
v = v−exhaustive(p, depth limit− 1, −β, −max{s, α}) × piece num of type(t)
n = n+piece num of type(t)

if v/n > s then
s = v/n {* v/n is the expected score by flipping r *}

if s ≥ β then
return s

return s

Algorithm 3.2: The exhaustive search algorithm

Quiescence search (Yen et al., 2004) technique is very popular in Western chess and Chinese chess programs.
However, in Chinese dark chess, there is no major improvement of using this technique because the only forcing
move, capturing, does not last for many plies in most cases due to the low mobility of pieces.
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Figure 4: An example of capturing pieces after a flipping action.

Even if we perform exhaustive search, we still need a probabilistic model to evaluate the value of a position after
a flipping action. An acceptable evaluation scheme is to compute the average value among the branches of all
different outcomes after flipping. This method estimates possible scores of the positions after a flipping action.
However, the method is not suitable for risk avoidance. For example, it is possible for the algorithm to reveal
a king adjacent to the opponent pawn. It is also hard for the algorithm to capture pieces after taking a flipping
action. The following are examples of intelligent behaviors that often taken by human experts. In Figure 4, The
red side can reveal the unknown pieces adjacent to the three black pieces to capture them. If we get a red guard
at c3, which occurs with very low probability, all of the three black pieces are in danger. Our algorithm reveals
c5 because the probability of the piece at c5 can capture the cannon at c4 is high.

4. REFINEMENTS IN DEALING WITH FLIPPING ACTIONS

In this section, we introduce refined methods in making flipping actions to reduce the branching factor.

4.1 Refined Methods

Though the exhaustive search algorithm can handle flipping actions reasonably, its weakness is that it takes too
much time computing flipping actions. As a result, the searching depth is then reduced. To avoid the exponentially
exploration in branching factor, refinements are needed.

The first refinement modifies Algorithm 3.2 to expand the nodes of flipping actions only at the root node of a
search tree, as shown in Figure 5. When the depth is less than initial depth, the algorithm only expands the nodes
of moving actions The method is called initial-depth flipping. The program using this strategy is called VAR1.

Figure 5: An example of initial-depth flipping.
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Recall that when we visit a node with no moving action in BASIC program, we perform a no-move cut. This
strategy may cause a horizon effect. For example, in Figure 6, black is ready to move. The correct move of black
is to capture the red knight at b7 first, and then capture the red king at d4. If black captures the red knight at
b7 first, it makes red no legal move. A no-move cut is applied and the resulting score is only an advantage of a
knight.
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Figure 6: An example of horizon effect due to the no-move cut strategy.

The second refinement strategy reduces the branching factor when handling a flipping action. In an exhaustive
search algorithm, we evaluate a flipping action of an unknown piece by expanding all possible piece types. Here
we try to reduce the number of candidate piece types. This method is called k-type expansion.

We now give two possible variations of this kind of method: 1) fixed piece order strategy and 2) random piece
order strategy. The first strategy uses a predefined candidate order of piece types to expand nodes. It also reduces
the branching factor of exhaustive searching algorithm.

In fixed piece order strategy, the order of pieces is critical in the strength of the algorithm. However, due to the
limit of fixed order, it is hard to derive an optimal order that suitable for general cases. As a result, a random
piece order strategy is used as an improvement.

Although the value k has 14 choices, it still needs to select carefully. If k is too close to 14, we cannot decrease
the order of branching factor. If k is too small, that means the program assume only a very small set of pieces
can be revealed. It may let the program to make dangerous decision. As a result, a reasonable value of k is 6.
We also used a small experiment to verify the value k. In our experiment that the version of k = 6 against other
versions, the version of k = 6 has better performance.

5. EXPERIMENTAL RESULTS

5.1 Test Data

Here we show our experiments to verify the playing strength of the five programs discussed above. The baseline
program is called BASIC. The exhaustive searching program is called ENHANCE. The first refined method
with initial-depth flipping is called VAR1. The second refined method, k-type expansion with fixed piece order
strategy, is called VAR2. The third refined method, k-type expansion with random piece order strategy, is called
VAR3.

For fairness concern, the evaluation function of all programs are equal. Each player has a time limit of 30
seconds for each move. The differences of these programs are their search depth and their strategies in handling
flipping actions. Since initiative, which is known as the advantage of playing first, exists in many games, our
experiments also take initiative into account. A program needs to play against other four programs. There are
totally C(5, 2) = 10 pairs. In each pair, a program needs to play both 100 games as the first player and 100
games as the second player.
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In order to retrieve an average value of branching factor, we collected 1, 561 positions of computer versus com-
puter. The branching factor without flipping actions is 7.76. If we also consider flipping actions, the average
branching factor becomes 32.30.

5.2 Measurements

We incorporate the idea of Global strength to measure the performance of each program with the following
definitions:

• GSf (p): the global strength of p among all games when p plays first.

• GSs(p): the global strength of p among all games when the opponent of p plays first.

• winp,q(p): the number of games won by p when p plays first with q.

• winq,p(p): the number of games won by p when q plays first with p.

• drawp,q: the number of games drawn when p plays first with q.

GSf (p) =
∑

q3P,q 6=p

(2× winp,q(p) + drawp,q)
2× np,q

GSs(p) =
∑

q3P,q 6=p

(2× winq,p(p) + drawq,p)
2× nq,p

The variable np,q represents the total number of games that p plays first with q. P is the set of players.

Define tournament score of p among all games:

TS(p, q) = (GSp,q(p) +GSq,p(p))/2

5.3 Results of Each Versions of Programs

The results of our experiments is shown in Table 3. Any two of the programs have played 200 games. In each
pair, we use (w, l, d) to show their result, where w means that the first player wins, l means that the first player
loses, and d means the game is a draw. The programs in the leftmost column play first. For example, in the third
column of the second row, the result of BASIC plays first with ENHANCE is (9, 34, 57), which means BASIC
wins 9 games, loses 34 games, and 57 games are draws. The empty grids are programs play against themselves.
They are not considered in our experiment.

Table 3: The pairwise comparison results of all methods. The programs in the leftmost column play first.

BASIC ENHANCE VAR1 VAR2 VAR3 GSf (p) GSs(p) TS(p)
BASIC (9, 34, 57) (2, 74, 24) (0, 52, 48) (1, 53, 46) 0.2488 0.2900 0.2694

ENHANCE (47,7,46) (12, 41, 47) (5, 17, 78) (15, 25, 60) 0.4863 0.4988 0.4925
VAR1 (45, 0, 55) (32, 29, 39) (35, 14, 51) (41, 13, 46) 0.6213 0.6750 0.6481
VAR2 (48, 1, 51) (18, 18, 64) (22, 30, 48) (4, 5, 91) 0.5475 0.5525 0.5500
VAR3 (36, 0, 64) (26, 3, 71) (7, 38, 55) (3, 2, 95) 0.5363 0.5438 0.5400

The result shows that ENHANCE is stronger than BASIC and all refined algorithms are stronger than ENHANCE.
Among the three refined algorithm, VAR1 gets the highest tournament score. This means the initial-depth flipping
is the most effective strategy comparing with other methods. In the following, we discuss about some issues about
the results and the characteristics of these algorithms.
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The winning rate of the exhaustive search program is much higher than the baseline program. This shows that
the search depth and the strategy of handling flipping actions are both important.

In Chinese dark chess, a player having a great advantage sometimes needs to win the game with many moves
because he has to capture all pieces of the opponent. However, in a middle game position, it is not necessary to
search very deep to obtain a good move because the mobility of pieces except cannons in Chinese dark chess is
much less than pieces in Chinese chess or Western chess.

In our experiment, we conclude that RSf (p) < RSs(p) for all programs. This means initiative is a disadvantage
in Chinese dark chess. The intuition is that the first player can only flip a piece. After the first player’s move, the
second player has a target that he or she can attack and has more possibility to get some benefit.

A majority of the games in our experiment end in a draw. There are two possibles. One is that the endgame
position is theoretical draw. The other is that the player in advantage does not discover the path to win the game.
When a program is in a position that is considered to be a winning position, it may needs deeper search or better
knowledge to obtain a correct move. For example, Figure 7 shows a winning position that black has a great
advantage. The only thing black needs to do is to capture the red pawn. It takes at least fourteen plies for the
program to find such a winning strategy. Because the pieces except cannons can only move one grid each time,
we can realize that endgames in Chinese dark chess is similar to endgames with many pawns in Western chess or
Chinese chess.

1

2

3

4

5

6

7

8

a b c d

|p|C
|G |G

|B

Figure 7: An example of a winning position.

According to the results, the flipping action is a strange action that is important but do not need to be consider all
the time during search. To flip an optimal place is hard, but it is acceptable to flip a safe place. Besides flipping
actions, the depth of searching and knowledge are also critical for a strong program.

5.4 Results of Humans versus Computers

In our experiment, we selected five persons to play against each of our programs. The rank of the five persons is
shown in Table 4. Each person played 10 games with each of the three refined program versions: VAR1, VAR2,
VAR3. In the 10 games with one program, the human plays first in 5 of them, the computer plays first in the other
5 games. The results is shown in Table 5. The (w, l, d) notation in the table is the same as in Table 3.

Table 4: The rank of the five persons who against our programs.

Rank ID of person
1 4
2 1, 2, 5
3 3

This experiment also follows our observation of disadvantage in initiative. VAR1 is still the best version among
all refined versions, whose tournament score is 0.2500.
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Table 5: The pairwise comparison results of all methods. The programs in the leftmost column play first.

Computer First Human First GSf (p) GSs(p) TS(p)
VAR1 (4, 17, 4) (17, 5, 3) 0.2400 0.2600 0.2500
VAR2 (3, 21, 1) (19, 2, 4) 0.1400 0.1600 0.1500
VAR3 (2, 19, 4) (18, 3, 4) 0.1600 0.2000 0.2300

6. CONCLUSIONS

Chinese dark chess is a popular and easy-to-learn game in Asia. The characteristic of its probabilistic behavior
in flipping makes it different from Chinese chess and Western chess. The opening game problem lies in how to
flip pieces reasonably and effectively. In the middle game, we need a better evaluation function. The endgame is
an novel problem that some techniques used in Chinese chess also work, but new techniques are needed for some
special endgames, such as endgames with unknown pieces.

Game-tree searching techniques are also discussed in this paper. We have implemented αβ pruning algorithm
to handle moving actions. In flipping handling, we have proposed an exhaustive search algorithm and three
refinements. The result shows that the Chinese dark chess problem is a trade off between the search depth and
capability of making good flipping actions.

This paper is the first attempt to describe this interesting and popular game in English. We hope it can promote
future researches for Chinese dark chess.
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9. APPENDICES

A Selected Game Records

ENHANCE v.s. VAR1

∗ 3 . d8 ( P ) d8−c8 4 . a6 ( p ) d7 (R)
∗ 5 . a5 ( p ) b8 ( P ) 6 . a4 ( r ) c8−d8
∗ 7 . b5 ( c ) b8−c8 8 . b7−b8 a8−b8
∗ 9 . b5−b8 c7 (G) 1 0 . b8−a8 c8−b8
∗ 1 1 . a5−b5 b8−b7 1 2 . a6−a5 c7−c8
∗ 1 3 . b4 ( P ) c8−b8 1 4 . c5 ( r ) b4−b5
∗ 1 5 . d3 (m) b8−a8 1 6 . c5−b5 c6 ( k )
∗ 1 7 . d5 (N) c4 (G) 1 8 . b2 (R) b7−c7
∗ 1 9 . c6−c5 c4−b4 2 0 . d6 ( g ) a8−b8
∗ 2 1 . d6−d7 c7−c6 2 2 . c5−d5 b4−b5
∗ 2 3 . a5−a6 b5−b4 2 4 . a4−a5 b8−c8
∗ 2 5 . b6 ( p ) c6−c5 2 6 . d5−d6 c8−b8
∗ 2 7 . d7−d8 b8−b7 2 8 . a3 ( c ) b7−b6
∗ 2 9 . a1 (M) a2 ( p ) 3 0 . a3−a1 b2−a2
∗ 3 1 . a5−b5 b6−b5 3 2 . a7 (C) a2−a1
∗ 3 3 . d8−c8 b5−b6 3 4 . a6−a5 c5−c6
∗ 3 5 . d6−d7 c6−c7 3 6 . d7−d6 a7−a6
∗ 3 7 . d6−d5 c7−c6 3 8 . d4 ( P ) d4−d5
∗ 3 9 . d3−d4 b6−b5 4 0 . c2 ( P ) c6−b6
∗ 4 1 . c3 ( n ) b4−c4 4 2 . d1 (K) c4−d4
∗ 4 3 . d2−c2 b5−a5 4 4 . b3 ( g ) d1−d2
∗ 4 5 . c3−c4 d4−c4 4 6 . c2−c3 d2−d3
∗ 4 7 . b3−b2 d3−c3 4 8 . b1 (N) b6−b7
∗ 4 9 . c1 (C) c4−b4 5 0 . c8−d8 c1−d1
∗ 5 1 . d8−c8 b1−c1 5 2 . c8−c7 a6−a7
∗ 5 3 . c7−c8 c3−c2 5 4 . c8−b8 c2−b2
∗ 5 5 . b8−a8 a5−a6 5 6 . a8−b8 a7−a8
∗ 5 7 . b8−a8 b7−a7 5 8 . a8−b8 a6−b6
∗ 5 9 . b8−a8 b6−b7 6 0 . a8−a7 b7−a7
∗ VAR1 wins


