
The Logic of Random Pulses: Stochastic Computing

by

Armin Alaghi

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2015

Doctoral Committee:

Professor John P. Hayes, Chair
Professor Igor L. Markov
Professor Karem A. Sakallah
Professor David D. Wentzloff

0101010001101000011001010010000001110111011011110111001001101100011001000
0100000011100110110000101110111001000000110111001101111001000000111000001
1100100110111101100110011010010111010000100000011001100111001001101111011
0110100100000011011010111100100100000011000100110010101100011011011110110
1101011010010110111001100111000011010000101001001110011011110111001000100
0000110100101110100011100110010000001110011011100000110110001100101011011
1001100100011011110111001000100000011000010110111001100100001000000110111
0011011110110001001101001011011000110100101110100011110010010000001100001
0111010101100111011011010110010101101110011101000110010101100100001000000
1100010011110010010000001101101011110010010000001101100011001010110000101
1101100110100101101110011001110000110100001010010101000110100001100101011
1001001100101001000000110100101110011001000000110111001101111001000000110
1111011011100110010100100000011001100111001001101111011011010010000001110
1110110100001101111011011010010000001100010011011110111010001101000001000
0001101101011010010110111001100101001000000110010101100001011100100111001
1001000000110100001100001011101100110010100100000011010000110010101100001
0111001001100100001000000000110100001010010101110110100001100001011101000
0100000011100000111010101110010011100000110111101110011011001010010000001
1001000110100101100100001000000111001101100101011100100111011001100101001
0000001101101011110010010000001100011011011110110110101101001011011100110
0111001000000110000101101110011001000010000001100111011011110110100101101

11001100111

ن ف زود ج لال ش و ج اه م ن رف ت ن وز س ود را گ ردون ن ب ود آم دن م از
ب ود چ ه ب ه ر از رف ت ن م و آم دن ک ای ن ن ش ن ود گ وش م دو ن ی ز ک س ی ه ی چ وز

©Armin Alaghi

2015

Dedicated to my Elly

ii

A C K N O W L E D G M E N T S

Many people have helped me throughout my PhD work and I am deeply grateful to all
of them.

First and foremost, I wish to thank my advisor Professor John P. Hayes who has guided
me and encouraged me all the way. He is an excellent mentor, a world-class researcher, and
a wonderful person with a great sense of humor. I have learned a lot from his invaluable
advice, patience, kindness, and experience. It has been an honor to be his student.

I am grateful to the members of my PhD committee, Professors Igor L. Markov, Karem
A. Sakallah, and David D. Wentzloff. Their suggestions and helpful discussions have
greatly improved this work. A special thanks to Professor Markov who introduced me
to the topic of stochastic computing and shared lots of interesting ideas with me.

I wish to thank Professors Ilia Polian, Andrew Kahng, Scott Mahlke, Thomas Wenisch,
Marios Papaefthymiou, Todd Austin, Jason Mars, and Lingjia Tang for their support and
helpful advice.

Thank you to Professor Zainalabedin Navabi, my advisor at the University of Tehran,
who trained me as a researcher and prepared me for the tough journey of my PhD.

I am thankful to the members of our research group with whom I have had a lot of
great discussions. Dr. Smita Krishnaswamy, Dr. Kenneth Zick, Dr. Dae Young Lee, Dr.
Chien-Chih Yu, (soon to be) Dr. Te-Hsuan (Sean) Chen, I-Che (Jonathan) Chen, Ahsen
Tahir, Pai-Shun Ting, and William Sullivan. I also wish to thank Dr. Alexandru Paler from
the University of Passau, and Wei-Ting (Jonas) Chan and Jiajia Li from the University of
California-San Diego.

I have been lucky to be an honorary member of the wireless integrated circuits and
systems group at the University of Michigan. I have had many memorable moments with
them, and I wish to acknowledge them here. Special thanks to Kuo-Ken Huang, Muham-
mad Faisal, Osama Khan, Nathan Roberts, Jonathan Brown, Ryan Roger, David Moore,
Mike Kines, and Avish Kosari.

I would like to express my gratitude to CSE staff members who have helped me in
many ways. Thank you Dawn Freysinger, Karen Liska, Lauri Johnson-Rafalski, Stephen
Roger, Steve Crang, Denise DuPrie, and Kyle Banas. I would also like to thank all the CSE
graduate students with whom I have taken courses, done projects, played games, and had a
lot of fun memories.

iii

My valuable friends in Ann Arbor have helped me remember that life is all about love
and friendship. I wish to acknowledge them all for being there for me. A special thanks
to the members of the music bands with whom I have shared lots of great moments. My
deepest gratitude to Dr. Mehrzad Samadi whose advice and unconditional help has been
the most precious.

I wish to thank my family Farkhondeh Kokabi, Soleiman Alaghi, Robab Parvizi, and
Dariush Ansari for everything they have given to me. Thank you to my brother Lachen
Alaghi, and my sisters Shamin Alaghi, Sahar Ansari, and Samin Ansari. A unique thanks
to my cousin, Sepehr Attarchi who taught me image processing, and much more.

Above all, I want to express my most sincere gratitude to my dear wife Elnaz Ansari
who has been with me every single moment for the past ten years. Her technical and
emotional support has been the driving force of my career. Thank you for all the late nights
and early mornings, and most of all, thank you for being my best friend. I am in your debt,
forever.

iv

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . x

List of Abbreviations . xi

Abstract . xii

Chapter 1 Introduction . 1

1.1 Motivation . 1
1.2 Stochastic Computing . 3
1.3 Dissertation Summary . 8

Chapter 2 Stochastic Computing Basics . 12

2.1 Stochastic Numbers and Functions . 12
2.2 Basic SC Components and Conversion Circuits 18
2.3 Accuracy and Precision . 20
2.4 History and Applications . 27
2.5 Recent Developments . 31
2.6 Summary . 36

Chapter 3 Design of Stochastic Circuits . 37

3.1 Spectral Transforms . 37
3.2 Synthesis based on Spectral Transforms 45
3.3 Constant Number Generation . 49
3.4 Further Optimizations . 55
3.5 Related Work and Experimental Results 61
3.6 Summary . 65

Chapter 4 Correlation in Stochastic Computing 66

4.1 Statistical Simulation and Correlation Insensitivity 66
4.2 Correlation of Stochastic Numbers . 75

v

4.3 Combinational Circuits . 77
4.4 Summary . 84

Chapter 5 Errors Affecting Stochastic Computing 85

5.1 Error Categories . 85
5.2 Probabilistic Transfer Matrices . 87
5.3 Effect of Soft Errors on Stochastic Numbers and Circuits 90
5.4 Case Study: Image Edge Detection . 97
5.5 Effect of Voltage/Frequency Scaling on Stochastic Circuits 99
5.6 Summary . 103

Chapter 6 Stochastic Image Processing . 104

6.1 Vision Chip Overview . 104
6.2 Image Processing Operations . 107
6.3 Implementations and Results . 109
6.4 Guaranteeing Progressive Precision . 113
6.5 Summary . 119

Chapter 7 Concluding Remarks . 121

7.1 Summary of Contributions . 121
7.2 Future Directions . 124

Bibliography . 127

vi

LIST OF FIGURES

1.1 Example of an image-processing task for retinal implants: edge detection con-
verts the raw image of a corridor (a) into a high-contrast image (b). 2

1.2 Similarity of biological signals and stochastic numbers; information is carried
via pulses. 4

1.3 Stochastic multiplication: (a) accurate result with uncorrelated inputs; (b) in-
accurate result due to correlated inputs. 4

1.4 Edge-detection performance for three implementation methods with noise lev-
els of (a) 5%, (b) 10% and (c) 20%. 6

1.5 Stochastic computing circuit implementing the function Z = 1
4

+ 1
2
X1X2.

The SN represented by each bit-stream is the probability of seeing a 1 in a
randomly chosen position. 7

1.6 SC circuit used in an embedded system; SC circuit performs low-cost pre-
processing before the sensor signal is converted to a digital number. 8

1.7 Example illustrating the SC synthesis problem: given a target function, find an
SC circuit implementing it. 9

1.8 XOR gate with correlated inputs. It implements the stochastic function Z =
|X − Y |, instead of Z = X + Y − 2XY which is implemented by the same
circuit using independent (uncorrelated) inputs. 10

2.1 SN values of a bit-stream of length N with N1 1’s for different formats. The
points in the graph correspond to the rows of Table 2.2. 15

2.2 Basic SC components: (a) unipolar, (b) bipolar and (c) inverted bipolar multi-
pliers; (d) stochastic adder for all three formats. 19

2.3 SC conversion units: (a) binary-to-stochastic converter, also referred to as a
stochastic number generator (SNG), and (b) stochastic-to-binary converter. . . 20

2.4 Stochastic circuit realizing the arithmetic function Z = X1X2X4+X3(1−X4)
along with its conversion units [75]. 21

2.5 The weighted binary SNG proposed by Gupta and Kumaresan [49]. 22
2.6 Accurate 4-bit stochastic multiplier of the type proposed by Gupta and Ku-

maresan [49]. 24
2.7 Four-bit SNG proposed by van Daalen et al. [130]: (a) overall structure; (b)

module M . 25
2.8 Fluctuations in pX for 3 bit-streams as their length N increases. 27

vii

2.9 SC-based controller for an induction motor proposed by Zhang and Li [139]. . 30
2.10 (a) Check and (b) update blocks used in stochastic LDPC decoding. 31
2.11 Reconfigurable stochastic arechitecture (ReSC) realizing a Bernstein polyno-

mial of degree k [109]. 33
2.12 Sequential stochastic circuits implementing (a) Z = X/(1 + X) and (b) Z =

X1/(X1 +X2). 34
2.13 An n-input sequential circuit with k flip-flops. 35
2.14 State diagram of a generalized ADDIE [39]. 35

3.1 Illustration of the spectral transformation of the function f1 of Example 3.1. . . 41
3.2 Circuit illustrating the application of Boole-Shannon expansion to the function f . 42
3.3 Two synthesized circuits for SC addition: (a) without optimization; (b) with

optimization. 50
3.4 Optimal circuit implementation for function f8 of Example 3.5. 52
3.5 Stochastic implementation of F̂9(X) = 0.4375−0.25X−0.5625X2 obtained

by (a) STRAUSS and (b) the algorithm of [1]. 55
3.6 Stochastic implementations for F̂11 of Example 3.7: (a) symmetric and (b)

asymmetric. 60
3.7 (a) ReSC architecture proposed in [109]; (b) Implementation of F̂9(X) from

Example 3.6 using this architecture. 64

4.1 Statistical simulation set-up; random samples are generated at r1, ..., rn to es-
timate probability distribution fZ . 68

4.2 Five-input circuit; paths from x4 (blue) and x5 (red, dashed) are activated by
different values of x1. 69

4.3 Exploiting correlation insensitivity in an SC adder; (a) with independent RNGs
and (b) with a shared RNG. 75

4.4 Functions implemented by an XOR gate (a) with different input SCC values,
and (b) with fixed values of pY . 78

4.5 High-level structure of a synthesized two-input circuit with correlated inputs,
prior to simplification. 80

4.6 Generating SNs with a specified SCC. 81
4.7 Implementing the function F (pX , pY) = min(pX , pY): (a) synthesized

stochastic circuit, and (b) corresponding SN generator. 82
4.8 Stochastic circuit for image edge detection [3]. 83

5.1 Representative PTMs: (a) NAND gate with four distinct input-dependent bit-
flip error rates, (b) NAND gate with its first input stuck-at-1, (c) fanout wiring
network with two output branches, and (d) swap or crossover gate that switches
the order of two wires. 89

5.2 Circuit models for a stochastic multiplier with a bit-flip error e affecting its
output: (a) internal or built-in error, and (b) externally injected error. 92

viii

5.3 MSE of a stochastic number EX∗ and a binary number EB∗ in the presence of
bit-flips calculated using analytical and simulation methods; (a) for different
values of pe and (b) for different values of pX 93

5.4 Stochastic circuits for the scaled addition pZ = 0.5(pX1 + pX2): (a) majority-
based, (b) multiplexer-based, (c) majority-based with error injection, and (d)
multiplexer-based with error injection; dashed vertical lines separate levels of
the circuits. 95

5.5 MSE at the outputs of representative stochastic circuits in the presence of soft-
errors calculated using analytical and simulation methods. 96

5.6 MSE of stochastic and conventional edge-detection circuits in the presence of
soft-errors. 98

5.7 Comparison of stochastic and conventional edge detection for different soft-
error rates (bit-flips percentages) in the edge-detection circuits: (a) 0.1%, (b)
0.5%, (c) 1% and (d) 2%. 99

5.8 Error in the magnitude of an SN for different 0-to-1 and 1-to-0 timing error rates.100
5.9 Voltage scaling results of gamma correction executed by conventional circuit

and stochastic circuit. 102

6.1 Top-level view of an SC-based vision chip and its stochastic processing ele-
ments (SPEs). 106

6.2 Conventional ADC circuit for a vision chip with the changes (in red) needed
for analog-to-stochastic conversion. 106

6.3 An image at four different resolution levels: (a) 400× 400, (b) 100× 100, (c)
50× 50, and (d) 25× 25 pixels. 108

6.4 Stochastic processing of 16 pixels individually and as a super-pixel. 108
6.5 Progressive precision results for edge detection: (a) input image; output image

after (b) 4, (c) 32, and (d) 256 clock cycles. 109
6.6 Edge detectors: (a) stochastic and (b) conventional designs. 110
6.7 FPGA setup for emulating image-processing tasks, in this case, gamma cor-

rection. 110
6.8 Gamma correctors: (a) stochastic and (b) conventional. 112
6.9 (a) Good PP and (b) bad PP in edge detection. 114
6.10 SC multiplication viewed as a Monte Carlo problem. 115
6.11 SN generation illustrating PP; (a) numerical value pX for p∗X = 0.63, and (b)

average absolute error |pX − p∗X | for all p∗X’s. 116
6.12 SN generation illustrating PP; (a) numerical value pX for p∗X = 0.63, and (b)

average absolute error |pX − p∗X | for all p∗X’s. 118
6.13 Input regions for which computation of F1 can stop after 2k clock cycles, for

3 < k < 9. 119

7.1 Two sequential circuits implementing Z(X) = (2X − 2)/(X − 2). 125

ix

LIST OF TABLES

2.1 Interpretations of a bit-stream of length N with N1 1’s and N0 0’s. 14
2.2 Representative bit-streams of length N = 8 and their values in different SN

formats. 14
2.3 Bit-streams generated by the circuit of Figure 2.5. 23
2.4 Bit-streams generated by the circuit of Figure 2.5 when the LFSR is replaced

by a plain binary counter. 23
2.5 Advantages and disadvantages of stochastic computing. 28
2.6 Timeline for the development of stochastic computing (1956-2010). 28

3.1 Comparison between the proposed synthesis method STRAUSS and those of
[1] and [109]; area is in unit cells from a generic library and includes the
LFSRs and SNGs used for constant generation. 64

4.1 Some SNs with their SCC and standard correlation values. 77
4.2 Functions used in the elements of input vector III of a two-input circuit. 79
4.3 Examples of synthesized stochastic circuits exploiting various correlation levels. 82
4.4 Comparison between circuits synthesized by CCC and those synthesized by

the spectral method of [1]. 83

5.1 Categories of errors affecting SC, and their possible causes and solutions. . . . 86

6.1 Synthesis results for the edge-detection circuits. 111
6.2 Synthesis results for low-precision edge-detection circuits. 112
6.3 Synthesis results for gamma-correction, blurring, and gradient calculation cir-

cuits. 113

x

LIST OF ABBREVIATIONS

ADC Analog-to-Digital Converter

ADDIE ADaptive DIgital Element

APS Asymmetric Polynomial Selection

BD Boolean Difference

BF Boolean Function

BRV Bernoulli Random Variable

CCC Correlated Combinational Circuit
(algorithm)

CI Correlation Insensitive

CMOS Complementary Metal-Oxide
Semiconductor

CNTFET Carbon Nanotube Field-Effect
Transistor

DAC Digital-to-Analog Converter

ECC Error-Correcting Code

FDSOI Fully Depleted Silicon On Insulator

FPGA Field-Programmable Gate Array

FSM Finite State Machine

IC Integrated Circuit

ITM Ideal Transfer Matrix

LD Low Discrepancy

LDPC Low-Density Parity-Check

LFSR Linear Feedback Shift Register

MC Monte Carlo

PE Processing Element

PFM Pulse Frequency Modulation

pmf Probability Mass Function

PP Progressive Precision

PTM Probabilistic Transfer Matrix

QMC Quasi-Monte Carlo

ReSC Reconfigurable Stochastic Computing
Architecture

RNG Random Number Generator

RV Random Variable

SC Stochastic Computing

SCC Stochastic Computing Correlation

SCG Single Constant Generation

SF Stochastic Function

SN Stochastic Number

SNR Signal to Noise Ratio

SNG Stochastic Number Generator

SPA Sum-Product Algorithm

SPE Stochastic Processing Element

SS Statistical Simulation

STRAUSS Spectral TRAnsform Use in Stochastic
Circuit Synthesis

STT Symmetric Truth Table

TT Truth Table

WCI Weakly Correlation Insensitive

xi

ABSTRACT

The Logic of Random Pulses: Stochastic Computing

by

Armin Alaghi

Chair: John P. Hayes

Recent developments in the field of electronics have produced nano-scale devices
whose operation can only be described in probabilistic terms. In contrast with the conven-
tional deterministic computing that has dominated the digital world for decades, we investi-
gate a fundamentally different technique that is probabilistic by nature, namely, stochastic
computing (SC). In SC, numbers are represented by bit-streams of 0’s and 1’s, in which
the probability of seeing a 1 denotes the value of the number. The main benefit of SC is
that complicated arithmetic computation can be performed by simple logic circuits. For
example, a single (logic) AND gate performs multiplication. The dissertation begins with a
comprehensive survey of SC and its applications. We highlight its main challenges, which
include long computation time and low accuracy, as well as the lack of general design
methods. We then address some of the more important challenges. We introduce a new
SC design method, called STRAUSS, that generates efficient SC circuits for arbitrary tar-
get functions. We then address the problems arising from correlation among stochastic
numbers (SNs). In particular, we show that, contrary to general belief, correlation can
sometimes serve as a resource in SC design. We also show that unlike conventional cir-
cuits, SC circuits can tolerate high error rates and are hence useful in some new applications
that involve nondeterministic behavior in the underlying circuitry. Finally, we show how
SC’s properties can be exploited in the design of an efficient vision chip that is suitable for
retinal implants. In particular, we show that SC circuits can directly operate on signals with
neural encoding, which eliminates the need for data conversion.

xii

Chapter 1

Introduction

Stochastic computing (SC) is a (re-)emerging computing technique that was invented in
the 1960s as a low-cost alternative to conventional binary computing. It is unique in that
it represents and processes information in the form of probabilities. More recently, it has
been shown to be useful in important applications such as image-processing and commu-
nications. In this dissertation, we address some of the challenges of SC, and show how it
can be used to implement efficient image-processing circuits intended for retinal implants.
This chapter provides the motivation behind this work, as well as a brief introduction to SC
and a summary of our contributions.

1.1 Motivation

Advances in semiconductor technology have enabled many exciting new applications of
embedded computers. They have also exposed problems and opportunities that cannot be
easily addressed using conventional design approaches. An example that motivates our
work is the provision of retinal implants for the visually impaired [88]. This involves
designing an integrated circuit (IC) chip that can be surgically placed on a dysfunctional
retina to sense images (or process images sent wirelessly from an external camera) and
convert an array of pixel streams to streams of neural-style electrical signals that stimulate
useful visual sensations. The implanted IC is linked to an external power supply and must
not dissipate more than a few mW/mm2 to avoid heat damage to the eye [98] [30].

Most of the state-of-the-art retinal implants only have the stimulation circuit implanted
inside the eye. Image acquisition and processing are performed in an external device (usu-
ally a camera and a general-purpose processor) and only the stimulation signals are trans-
mitted to the implant [46] [64]. The images perceived through retinal implants have a low

1

resolution, which makes proper image processing tasks necessary. One such task is edge
detection, which is the process of finding the edges of an image. Figure 1.1 shows how
edge detection converts the raw image of a corridor to a high-contrast image that can be eas-
ily perceived. Due to limitations of conventional image-processing circuits (energy/power
among others), unconventional computing techniques have been proposed to enable inte-
gration of image sensors and processors into the implant. Ohta et al. [96] propose using
“pulse-mode” image-processing techniques to avoid the cost of data conversion, because
the signals required to stimulate the retina are in fact pulse frequency modulated (PFM)
signals.

Similar energy and power constraints have become major challenges to IC design of
mobile embedded systems such as wearable devices. These devices have strict power and
energy requirements due to battery capacity and physical limitations. Various approaches
have been proposed to overcome such energy/power problems. Notably, embedded systems
are usually designed for specific applications, which allows designers to use dedicated hard-
ware with more desirable physical and/or logical characteristics than conventional general-
purpose designs.

(a) (b)

Figure 1.1: Example of an image-processing task for retinal implants: edge detection con-
verts the raw image of a corridor (a) into a high-contrast image (b).

2

In addition to the stringent application requirements like extremely small size, low
power consumption, and high reliability, modern computing hardware is also subject to
physical phenomena like manufacturing process variations and soft errors, which give rise
to error-prone behavior that can best be described in probabilistic terms. Nondeterministic
behavior is ubiquitous in digital circuits implemented using conventional complementary
metal-oxide semiconductor (CMOS) transistors or various novel nanotechnologies [14].
For instance, because of their small size, these circuits are easily affected by small manu-
facturing defects and by transient errors due to environmental noise, both of which tend to
be nondeterministic in nature. For instance, carbon nanotube field-effect transistors (CNT-
FETs), an emerging alternative to CMOS, exhibit behavioral variations that are difficult
to identify and control [122]. Other nano-devices such as memristors [66] and magnetic-
tunnel junction devices [97] are naturally stochastic in some respect. The nondeterministic
nature of such devices suggest that conventional binary-weighted coding of numbers may
be unreliable for accurate computation. For decades, (weighted) binary encoding has been
used as the main code for computation. Often reliable computation requires the use of
error-correcting codes (ECC) [112] or replication of hardware, software and/or data [67]
[105]. Most of these approaches impose high circuit overhead, and tend to be used only
in the most cost-insensitive applications. For example, triple modular redundancy (TMR)
[67] uses three replicas of the original circuit and a voter, and hence increases the area cost
of the circuit by a factor of three.

The foregoing discussions suggest that unconventional computing methods that directly
address the reliability issues should be considered as an alternative to conventional com-
puting. Von Neumann took the first steps in designing reliable circuits using unreliable
switches in the 1950s [134]. A fundamentally different way of encoding numbers was intro-
duced in the 1960s by the emergence of stochastic computing (SC) [38] [103] [113]. In SC,
a signal is encoded via a random bit-stream, i.e., a series of random pulses, where the prob-
ability of seeing a 1, or in other words, the rate of the pulses, is the value being carried. For
example, the number 0.3 can be represented by the bit-stream 01001000100010010100...,
in which the probability of seeing a 1 is 0.3.

1.2 Stochastic Computing

Computing hardware has traditionally been partitioned into two broad classes: analog cir-
cuits acting on continuous data and digital circuits acting on discrete data, with real and in-

3

teger arithmetic being the corresponding mathematical methods. In the digital case where
the fundamental data units are the bits 0 and 1, Boolean algebra plays a key role. Analog
computing was eclipsed by digital in the mid-twentieth century due to the latter’s greater
generality, higher precision, and ease of use [80]. Nevertheless, analog computing contin-
ues to be found in applications that can exploit its performance advantages (high speed,
complex basic operations, and error insensitivity) while tolerating its disadvantages. SC
can be seen as a hybrid system that combines analog and digital features. This is similar
to biological systems, where digital neural signals control analog functions like motion.
In fact, there is an important similarity between neural signals and stochastically encoded
numbers. Figure 1.2 shows this similarity: in both cases, the information is carried by the
rate of the pulses. This similarity makes SC potentially useful for bio-related applications.

In SC, as mentioned, numbers are represented by random bit-streams that are inter-
preted as probabilities. For example, a bit-stream containing 25 percent 1’s and 75 percent
0’s denotes the stochastic number (SN) X with value pX = 0.25, reflecting the fact that

11001110000010010011

11101110000000000011

Figure 1.2: Similarity of biological signals and stochastic numbers; information is carried
via pulses.

Z = 0 1 0 0 1 0 0 0 (2/8)

Z = 0 1 0 0 1 1 1 0 (4/8)

X = 0 1 1 0 1 0 0 1 (4/8)

Y = 0 1 0 0 1 1 1 0 (4/8)
x

(a)
y

z

X = 0 1 0 0 1 1 1 0 (4/8)

Y = 0 1 0 0 1 1 1 0 (4/8)
x

(b)
y

z

Figure 1.3: Stochastic multiplication: (a) accurate result with uncorrelated inputs; (b) inac-
curate result due to correlated inputs.

4

the probability of observing a 1 at an arbitrary bit position is X . Neither the length nor
the structure of X need be fixed; so bit-streams 1000, 0100 and 01000100 are all possible
representations of 0.25. Note that the value pX depends on the ratio of 1’s to the length
of the bit-stream, not on their positions, which can, in principle, be chosen randomly. The
main attraction of SC when it was first introduced in the 1960s [38] [103] [113] is that it
enables low-cost implementations of arithmetic operations using standard logic elements.
For example, multiplication can be performed by a stochastic circuit consisting of a sin-
gle AND gate. Consider two binary bit-streams that are logically ANDed together. If the
probabilities of seeing a 1 on the input bit-streams are pX and pY , then the probability of 1
at the output of the AND gate is pX × pY , assuming that the two bit-streams are suitably
uncorrelated or independent. Figure 1.3a illustrates the multiplication of two SNs in this
way. As can be seen, both inputs to the AND gate represent the number 4/8. In the case of
Figure 1.3a, we get an output bit-stream denoting 4/8× 4/8 = 2/8.

Figure 1.3b shows one of the many possible alternative SC representations of the same
values. In this case, the input bit-streams are highly correlated leading to an output bit-
stream denoting 4/8, which is inaccurate (4/8 × 4/8 6= 4/8). This example illustrates a
key problem in SN processing.

In addition to their simplicity, SC circuits are error-tolerant. The value of an SN X is
only determined by the number of 1’s in the bit-stream, and not their position. This makes
the representation highly redundant, and hence error-tolerant. As an example, consider the
bit-stream 01001010 which is an SN of value 3/8. In a noisy environment, the bits are
susceptible to soft errors of the bit-flip type [13]. Should a bit-flip occur in the SN, its value
will slightly change to 4/8 (or 2/8). Multiple bit-flips may even cancel each other out.
On the other hand, bit-flips can greatly alter the value of a conventional binary number,
if they occur on the most significant bits. For instance, if we consider the same number
3/8 in conventional binary format 0.011, a single bit-flip causes a huge error if it affects
a high-order bit. A change from 0.011 to 0.111, for example, changes the result from 3/8

to 7/8. SNs have no high-order bits as such since all bits of a stochastic bit-stream have
the same weight. Figure 1.4 shows how SC circuits can outperform conventional image-
processing circuits when environmental noise affects their inputs. The quality of output
images of conventional circuits—even when noise reduction techniques are used—quickly
drops with noise appearance, while SC circuits continue to produce acceptable results.

Due to its inherent probabilistic behavior and error tolerance, SC is suitable for utilizing
nanoscale devices such as memristors and magnetic-tunnel junction devices. Knag et al.

5

[66] exploit the memristors’ nondeterministic behavior to implement hybrid SC systems.
In their designs, the memristors’ stochasticity is essential in generating inexpensive SNs.
Similarly, Onizawa et al. [97] use magnetic-tunnel junctions for efficient SN generation.
Spintronics has also been suggested as another platform that exploits SC’s properties [132].

Now let us look at the relation between the Boolean functions (BFs) of a combinational
circuit and the stochastic function (SF) it implements. A single-output combinational cir-
cuit, such as the AND gate of Figure 1.3 corresponds to a BF that, in general, is of the form
z = f(x1, ..., xn), in which xi’s are the input Boolean variables and z is the output. Each
Boolean variable yi corresponds to an SN Yi, whose value is represented by pYi

. The SF that
corresponds to a BF is the relation between the value of the output SN and the values of the
inputs SNs. For the AND gate of Figure 1.3 this function is pZ = FAND(pX , pY) = pX×pY ,
as discussed before. For ease of reading, we occasionally denote the value of an SN Yi with
the same symbol Yi. In such cases, the meaning of the symbol is known from the context.
So the SF of the AND gate may also be denoted as Z = FAND(X, Y) = X × Y .

(a) (b) (c)

Conventional

binary

Conventional

binary with

noise reduction

Stochastic

computing

Figure 1.4: Edge-detection performance for three implementation methods with noise lev-
els of (a) 5%, (b) 10% and (c) 20%.

6

Figure 1.5 shows an SC circuit implementing the SF Z = 1
4

+ 1
2
X1X2. Again the

number represented by each bit-stream is the probability of seeing a 1 in it; this is known
as the unipolar format. There are several other possible formats, i.e., different ways of
interpreting the value of a bit-stream, that will be discussed in Chapter 2. For example,
the SNs X1, X2, Z appearing at x1, x2, z are 9/12, 8/12, 6/12, respectively. The circuit has
two primary inputs x1 and x2, and two auxiliary inputs r1 and r2. The auxiliary inputs
are constant SNs of value 1/2. The NAND gate of Figure 1.5 implements the stochastic
function Y1 = 1 − X1X2, which involves multiplication and subtraction (The relation
between the elementary gates and the SFs they implement will be discussed in Chapter 2).
The OR gate implements Y2 = R1 +R2−R1R2, and since R1 = R2 = 1/2, we have Y2 =

3/4. Finally, the XOR gate implements the function Z = Y1 + Y2 − 2Y1Y2 = 1
4

+ 1
2
X1X2.

Again notice that the few simple gates of Figure 1.5 implement a relatively complicated
SF.

SC can be categorized as an approximate computing technique. Approximate com-
puting [77] has recently gained attention because it provides a promising solution to en-
ergy/power barriers of modern IC applications [35] [115] [116]. These applications are
usually the ones that can naturally tolerate small errors. For instance, image processing
and machine learning applications are naturally error-tolerant. Similarly, embedded sys-
tems that process sensory data do not need accurate computations because their input data
is noisy. In these applications, it is possible to use hardware and software techniques that
sacrifice accuracy for energy/power efficiency. For example, it is possible to reduce the
supply voltage of a circuit in order to lower its power consumption at the cost of producing
occasional incorrect results [121]. Another approach is to employ arithmetic circuits that

x1
101110110111

110110110101

010011011100

100110010011

110111011111

101110010001x2

r1
r2

z

y1

y2

011001001110

Figure 1.5: Stochastic computing circuit implementing the function Z = 1
4

+ 1
2
X1X2. The

SN represented by each bit-stream is the probability of seeing a 1 in a randomly chosen
position.

7

execute approximate rather than exact algorithms; these circuits tend to be more power-
efficient than their exact counter-parts [61]. Software approximation techniques also exist;
for example loop perforation can reduce the number of iterations in a program loop, at the
cost of less accuracy [115].

SC provides a clear accuracy-energy tradeoff: both the accuracy and the energy con-
sumption of the circuit increase with length N of the SNs used during the computation.
This makes SC suitable for scenarios that require multiple levels of accuracy, or perhaps
require an adaptive approximation, because the same SC circuit provides multiple accuracy
levels when used for a different number of clock cycles. One such scenario can occur in
an embedded processor that processes sensor data such as images captured by a camera. In
these cases, the SC circuit can perform low-cost pre-processing, image edge detection for
instance, on the sensor data before handing it to the main processor. Figure 1.6 shows a
high-level overview of this scenario, where a physical phenomenon is captured by a sensor
and is converted into an analog signal. Usually, the analog signal is converted to a digital
signal and is processed by a digital processor. However, it is possible to add an intermedi-
ate step to the analog-to-digital conversion process, in which the signal is represented by
an SN and processed via SC circuits [3].

1.3 Dissertation Summary

This dissertation presents our research and contributions in the field of SC. Our main aim
was to address theoretical questions such as “how to design an arbitrary SC circuit?” or
“what is the role of correlation in SC?” We also analyzed the effect of different errors in
SC, as well as its applicability to image-processing applications.

Sensor

Conversion
Stochastic

Computing

Circuit
Conversion

To digital

processing unit

To communication

link

Analog domain

Physical

world

Stochastic domain Digital domain

Figure 1.6: SC circuit used in an embedded system; SC circuit performs low-cost pre-
processing before the sensor signal is converted to a digital number.

8

Our research started with a comprehensive survey [2] of the previous work from a
modern perspective, where we argued that the small size, error resilience, and probabilistic
features of SC may compete successfully with conventional methodologies in certain ap-
plications. We reviewed the key concepts of SN representation and circuit structure, and
we discussed the challenges and the applications of stochastic computing.

We discovered that the notion of randomness in SNs was poorly understood in the liter-
ature and that little attention was given to the process of SN generation. To address this, we
gave a rigorous definition for SN and excluded the notion of randomness from it. We also
analyzed the effect of SN generation on the accuracy and runtime of SC circuits. Chap-
ter 2 gives a detailed discussion of the basic concepts of SC (SNs, accuracy, correlation,
etc.). It also surveys the history of the field and highlights SC’s applications. Furthermore,
Chapter 2 discusses the challenges of the field, some of which will be addressed in this
dissertation. The subsequent chapters of this dissertation highly rely on the basic concepts
defined in Chapter 2, so a reader unfamiliar to the field should read Chapter 2 first.

Since the early days of SC, many circuits have been designed for specific applica-
tions. However, most of the designs were ad hoc, or were simple assemblies of pre-
designed components; systematic methods of designing SC circuits were largely unknown.
To address this, we defined the following synthesis problem: given a target function
Z = F (X1, ..., Xn), can we find an SC circuit to implement it? Figure 1.7 illustrates
the synthesis problem with an example. A major part of the dissertation focuses on solving
the synthesis problem under different conditions.

Our main synthesis method, which is based on spectral transforms [8], starts from a
polynomial target function and produces a combinational circuit whose stochastic function
is the desired target function. We first prove that the Fourier transform of a Boolean func-

Target
function

Synthesis

Stochastic circuit

x D Q

Auxiliary
inputs

z

Example: Z = X
0.45

Figure 1.7: Example illustrating the SC synthesis problem: given a target function, find an
SC circuit implementing it.

9

tion f reveals the stochastic behavior of f . Based on this discovery, we propose applying
inverse Fourier transforms to a target stochastic function F in order to obtain a Boolean
function f that implements it. The early version of our synthesis method appeared in 2012
[1], after which many optimization and improvement steps were added to the synthesis pro-
cess. The resulting synthesis tool called STRAUSS (Spectral TRAnsform Use in Stochastic
circuit Synthesis), will be discussed in Chapter 3.

Figure 1.3b, as discussed before, illustrates an example involving correlated SNs. The
bit-streams appearing on the x and y inputs of the AND gate are identical, implying that
they are highly correlated. This led to an unexpected result. When we introduced the AND
gate as a multiplier, we mentioned that it performs multiplication only if the input SNs are
independent. Similar correlation assumptions are made for the circuits that exist throughout
the SC literature. It was generally believed that correlated SNs produce inaccurate results
in SC circuits. We show, for the first time, how to quantify correlation of arbitrary SNs. For
this purpose, we introduce a new measure called stochastic computing correlation (SCC)
which is especially suitable for SC. Furthermore, we show that some Boolean functions
are correlation insensitive (CI), meaning that correlation among their inputs will not affect
their accuracy. This property can be used to reduce the cost of random number generation
through sharing. In addition, we show that by deliberately using correlated inputs, we can
change the functionality of a circuit and consequently we can implement certain useful
functions very efficiently.

For example, an XOR gate with Boolean function z = x⊕ y implements the stochastic
function Z = X + Y − 2XY when fed by independent (uncorrelated) inputs. However,
if we apply highly correlated inputs to the XOR gate, as shown in Figure 1.8, the circuit
implements a different function Z = |X − Y |, which turns out to be a useful function
in image-processing tasks. The material related to correlation appears in Chapter 4 where
we give rigorous definitions for correlation insensitivity and SCC. We also show how to
systematically design circuits that involve correlation.

0 1 1 0 1 1 1 0 (5/8)

0 1 0 0 1 1 1 0 (4/8)
0 0 1 0 0 0 0 0 (1/8)x

y
z

Figure 1.8: XOR gate with correlated inputs. It implements the stochastic function Z =
|X − Y |, instead of Z = X + Y − 2XY which is implemented by the same circuit using
independent (uncorrelated) inputs.

10

Chapter 5 of this dissertation discusses different errors affecting SC circuits, including
those induced by the environment. It was mentioned earlier that SC circuits are naturally
tolerant of errors. However, to compare their behavior with that of conventional circuits,
we have to quantify the effect of different errors. Chapter 5 discusses two methods of
analyzing circuits that involve soft errors. There is also a brief discussion of the effect of
voltage/frequency scaling on SC circuits.

The main application considered in our research is image processing, which will be
covered in Chapter 6. We describe the design of an SC vision chip that employs effi-
cient SC image-processing circuits. This design is suitable for real-time operation in low-
energy/low-power applications such as medical implants. We show how SC circuits and
image sensors can be integrated with no number conversion overhead. Furthermore, we
show how an SC circuit can produce output images whose quality improves over time.
This is achieved by exploiting a property of SC call progressive precision (PP) which will
be introduced in Chapter 2. Finally, concluding remarks and future directions appear in
Chapter 7.

11

Chapter 2

Stochastic Computing Basics

Stochastic computing (SC) was briefly introduced in the previous chapter. This chapter
provides a more comprehensive discussion using several examples. We start by giving a
formal definition for stochastic numbers and functions, and then we introduce the basic
components and conversion units used in SC. Accuracy and precision of SC circuits will
also be discussed before we survey SC’s history and applications. More details of the
history and applications can be found in [2], while the relation between Boolean functions
and stochastic functions are from [7].

2.1 Stochastic Numbers and Functions

As mentioned earlier, An N -bit stochastic number (SN) X containing N1 1’s and N −
N1 0’s has the value pX = N1/N ∈ [0, 1]. Clearly, the stochastic representation of a
number is not unique. SC uses a redundant number system in which there are

(
N
N1

)
possible

representations for each number N1/N . For example, with N = 4, there are six ways to
represent 1/2: 0011, 0101, 0110, 1001, 1010, and 1100. Moreover, a bit-stream of length
N can only represent numbers in the set {0/N, 1/N, 2/N, ..., (N − 1)/N,N/N}, so only
a small subset of the real numbers in [0, 1] can be expressed exactly in SC. More formally,
we can define an SN as follows.

Definition 2.1: A binary sequence of length N is a stochastic number X of value pX =

N1/N , where N1 is the number of 1’s in X .

For example, the SN on output line z of Figure 1.5 has the value pZ = 6/12. Since pX
always lies in the real-number interval [0, 1], it can be seen as the probability of observing

12

1 in any randomly selected position of X . This interpretation is called the unipolar (UP)
format and represents real numbers over the unit interval [0, 1], which is also the probability
domain. The value pX is also referred to as signal intensity, pulse rate, or frequency in
different contexts. In neurobiology, for instance, a neural spike train can be modeled by
a bit-stream X and its intensity can be represented by pX [17]. In this dissertation, we
occasionally use the same symbol X for an SN and its value. There will be no ambiguity
since the meaning of the symbol will be known from the context.

Note that Definition 2.1 places no constraints on the randomness properties of an SN. In
fact, bit-streams like 01010101 and 0000000011111111 are both acceptable representations
of the number 1/2 even though they both look very “non-random.” The reason behind this
selection will be discussed later in Section 2.3.

In addition to the unipolar format, several alternative SN formats have been proposed.
Gaines [38] considers mapping the natural range of SNs, that is, the interval [0, 1] to differ-
ent symmetric ranges, and discusses the computation elements needed. One such mapping
is from x ∈ [0, 1] to the range y ∈ [−1, 1] via the function Y = 2X − 1. This is the bipo-

lar (BP) stochastic representation, which has the benefit of including negative numbers in
a natural way. Table 2.1 shows several different SN formats and their relation to the UP
format. The third format is a new one we call inverted bipolar (IBP) which is the inverse
of BP. While, the IBP and BP formats are essentially equivalent, IBP is more convenient to
use with spectral transforms, where the Boolean values 0 and 1 are replaced by +1 and−1,
respectively. This small notational change greatly simplifies the analysis and synthesis of
circuits in the spectral domain. The IBP format is mainly used in Chapter 3 of this disser-
tation. The last format shown in the table, is a format in which the value is represented by
the ratio of 1’s to 0’s of the bit-stream. This gives the representation a large, albeit sparse,
range [85].

Example 2.1: Consider the bit-stream 0110101101 of length 10 containing six 1’s and
four 0’s. It represents the UP number 0.6, the BP number 0.2, the IBP number −0.2, and
the ratio number 1.5.

Example 2.2: To illustrate the full range of the different formats, we list all the non-
redundant bit-streams of length N = 8, and display their values using different SN formats
in Table 2.2. Note that only the number of 1’s (and 0’s) of a bit-stream, and not their posi-
tion, is important. So the table excludes the redundant bit-streams that have equal number
of 1’s. Figure 2.1 illustrates the same SN values and also shows the range of each number

13

Table 2.1: Interpretations of a bit-stream of length N with N1 1’s and N0 0’s.

Format Number value Number range Relation to unipolar value pX
Unipolar (UP) N1/N [0, 1] pX
Bipolar (BP) (N1 −N0)/N [−1,+1] 2pX − 1

Inverted bipolar (IBP) (N0 −N1)/N [−1,+1] 1− 2pX
Ratio of 1’s to 0’s N1/N0 [0,+∞] pX/(1− pX)

Table 2.2: Representative bit-streams of length N = 8 and their values in different SN
formats.

Bit-stream UP BP IBP Ratio
00000000 0 −1 +1 0

00000001 1/8 −3/4 +3/4 1/7

00000011 2/8 −2/4 +2/4 1/3

00000111 3/8 −1/4 +1/4 3/5

00001111 4/8 0 0 1

00011111 5/8 +1/4 −1/4 5/3

00111111 6/8 +2/4 −2/4 3

01111111 7/8 +3/4 −3/4 7

11111111 1 +1 −1 +∞

format. As evident from the table and the figure, the ratio format provides a big but very
sparse and irregular range, and hence, it is not widely used.

In addition to the number formats defined in Table 2.1, several other ways of stochastic
encoding exist. Gaines [39] defines a dual-rail representation, where two wires carry the
information of the SN. In another recently proposed dual-rail format, the value is denoted
by the ratio of the BP number represented by each rail [18]. This representation covers
the range [−∞,+∞]. Similar multi-rail representations also exist in the literature [71]. In
some cases, the different lines carrying a number have different weights, which makes the
representation a hybrid of weighted binary and unweighted stochastic [27].

We already saw that SC multiplication pZ = F (pX , pY) = pX × pY is performed by a
single AND gate which has the Boolean function (BF) z = x∧y.1 We now discuss the links
between the BF of a combinational logic circuit and its stochastic function (SF). Unlike a

1When dealing with BFs, the ∨ and ∧ symbols are usually used to denote the logical OR and logical AND
functions, respectively. However, these symbols are occasionally replaced by + and juxtaposition throughout
the dissertation. Since Boolean variables are denoted by lowercase letters x1, x2, ..., the symbols will not be
confused by addition and multiplication, which apply to numerical values X1, X2,

14

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

S
N

 v
al

ue

N1/N

UP
BP
IBP

Ratio

Figure 2.1: SN values of a bit-stream of length N with N1 1’s for different formats. The
points in the graph correspond to the rows of Table 2.2.

BF that maps the discrete space {0, 1}n to {0, 1} (n is the number of inputs of the BF), SFs
are arithmetic functions over the real numbers and map [0, 1]n to [0, 1] in the UP format.

Suppose some n-input single-output combinational circuit C realizes the BF z(x1, x2,

..., xn). This function has the canonical sum-of-minterms form

z(x1, x2, ..., xn) =
2n−1∨
i=0

ci ∧mi (2.1)

where the ci’s are 0-1 constants. The mi’s are minterms of the form x̃1,i ∧ x̃2,i ∧ ... ∧ x̃n,i
where x̃j,i is either xj or x̄j . For example, the sum-of-minterms representation of the AND
gate is zAND(x1, x2) = m3 = x1 ∧ x2. For the XOR function we have zXOR(x1, x2) =

m2 ∨m3 = (x1 ∧ x̄2) ∨ (x̄1 ∧ x2).
Now suppose n SNs are applied to the inputs of C. If we use Xi to denote2 the (unipo-

lar) probability value of the SN on xi, then x̄i has the probability value 1 − Xi. The
following theorem gives C’s output probability Z, and so defines its SF.

Theorem 2.1: Let z(x1, x2, ..., xn) be a Boolean function defined by Eq. (2.1). The
stochastic function Z(X1, X2, ..., Xn) implemented by z, assuming all input SNs are in-

2Using the alternative notation that replaces pXi
with Xi for better readability.

15

dependent, is

Z(X1, X2, ..., Xn) =
2n−1∑
i=0

ciMi (2.2)

where Mi = M̃1,iM̃2,i...M̃n,i with M̃j,i = Xj (= pXj
) if the corresponding minterm mi of

Eq. (2.1) has x̃j,i = xj ; M̃j,i is 1−Xj (= 1− pXj
) if x̃j,i = x̄j .

Proof. We want to find Z (= pZ), i.e., the value of the SN that corresponds to z. In unipolar
format, this value corresponds to the probability of seeing a 1 in z, so Z = P{z = 1},
where P{A} denotes the probability of event A. Following Eq. (2.1), we get

Z = P

{(
2n−1∨
i=0

ci ∧mi

)
= 1

}
= P

{
2n−1∨
i=0

(ci ∧mi = 1)

}

Since the minterm functions (the mi’s) are disjoint, the events specified by different terms
of the OR function are also disjoint. Based on this and the fact that ci’s are constants, we
get

Z =
2n−1∑
i=0

ciP{mi = 1} =
2n−1∑
i=0

ciP {(x̃1,i = 1) ∧ (x̃2,i = 1) ∧ ... ∧ (x̃n,i = 1)}

Because the input SNs are independent, the ANDed events of the equation above become
independent, yielding

Z =
2n−1∑
i=0

ci (P{x̃1,i = 1} × P{x̃2,i = 1} × ...× P{x̃n,i = 1})

The probability of event xj,i = 1 is Xj if xj,i = xj; it is 1−Xj otherwise. So in the general
case we have P{xj,i = 1} = M̃j,i, yielding Eq. (2.2)

This key result was first shown by Parker and McCluskey [100] using rather ad hoc
notation. Theorem 2.1 implies that the SF Z has a polynomial form, in which all the vari-
ables Xj appear with a power of at most 1. This special type of polynomial is called a
multilinear polynomial. Note that each Mi corresponds to a minterm and is the probability
of the corresponding input combination. These probabilities have the form stated in Theo-
rem 2.1 when the input SNs are independent. As will be shown in Chapter 4, if the input
SNs are correlated, the Mi’s may take a different form. For the XOR gate example with

16

independent inputs, Theorem 2.1 implies

ZXOR(X1, X2) = X1(1−X2) + (1−X1)X2

which, when multiplied out, becomes

ZXOR(X1, X2) = X1 +X2 − 2X1X2

The sum-of-minterms-style probability expression (2.2) can be seen as a canonical rep-

resentation of the SF Z realized by the BF z. It thus captures z’s stochastic behavior with
respect to the basic UP format. When the Xi’s are restricted to 0 and 1, and sum is inter-
preted as OR, Eq. (2.2) reduces to Eq. (2.1), so Z is effectively an interpolation of z in
the real-number domain. Equation (2.2) is also easily converted to other widely used SN
formats. To convert from UP to BP, for instance, we replace Xi by a new SN X ′i defined as
X ′i = 2Xi − 1.

The canonical representation of Eq. (2.2) can also be expressed as the inner product
of two vectors. The first is the truth-table vector CCCz = [c0 c1 . . . c2n−1] defining z

in terms of the constant coefficients in Eq. (2.1). The second is the input vector MMM =

[M0 M1 . . . M2n−1] specifying the probability distribution of the input combinations,
or equivalently, the stochastic minterm functions. We can now rewrite Eq. (2.2) as follows,
where “�” denotes the inner-product operation:

Z(X1, X2, ..., Xn) = CCCz �MMM = [c0 c1 . . . c2n−1] � [M0 M1 . . . M2n−1] (2.3)

The ci elements in Eqs. (2.1), (2.2) and (2.3) are the same and belong to the binary set
{0, 1}. Since SFs deal with real numbers, we can further generalize Theorem 2.1 by allow-
ing the ci’s to be any numbers in the real interval [0, 1]. Such generalized ci coefficients can
be interpreted as constant SNs applied to the circuit when the corresponding minterm mi

is activated or set to 1. For example, if c0 = 0, c1 = 0.5, c2 = 0.5, and c3 = 1 (or in vector
form [0 0.5 0.5 1]), then Eq. (2.2) for n = 2 becomes

Z(X1, X2) = 0.5X1(1−X2) + 0.5(1−X1)X2 +X1X2 = 0.5(X1 +X2) (2.4)

which is well-known in the SC literature as the scaled add function. The coefficients c1 =

c2 = 0.5 in (2.4) imply that when minterms m1 and m2 are activated, a constant SN of

17

value 0.5 should propagate to the output. Such constant probabilities can be obtained from
(pseudo) random number sources. These sources often appear as auxiliary inputs in the
corresponding circuit, as we will see in the next section.

2.2 Basic SC Components and Conversion Circuits

Figure 2.2 shows multipliers and adders for the top three number formats listed in Table 2.1.
We have already shown how the AND gate implements the UP multiplier. We now explain
how multiplication is performed in BP and IBP formats.

The XNOR gate of Figure 2.2 has the following minterms (in vector form):
[1 0 0 1], so according to Theorem 2.1, the UP SF implemented by the XNOR gate
is

ZXNOR = (1−X)(1− Y) +XY = 1−X − Y + 2XY

To convert the SF to BP format, we need to apply the corresponding formula from Table 2.1
to every SN. So each SN X should be replaced by a new SN X ′ = 2X − 1, which means

that X =
X ′ + 1

2
. Consequently, we have:

Z ′XNOR + 1

2
= 1− X ′ + 1

2
− Y ′ + 1

2
+ 2

(
X ′ + 1

2

)(
Y ′ + 1

2

)
Z ′XNOR + 1 = 2−X ′ − 1− Y ′ − 1 + 1 +X ′ + Y ′ +X ′Y ′

Z ′XNOR = X ′Y ′

So the XNOR gate is the BP multiplier. It is easily seen that the XOR gate of Figure 2.2
implements IBP multiplication.

The SC add operation for all three cases is performed by a multiplexer with an auxiliary
select input r, where pR = 1/2. When adding two UP numbers X and Y , the result X + Y

falls into the range [0, 2], which is unacceptable for the range of UP numbers, i.e., [0, 1]. So
it is necessary to scale the result by a factor such as 1/2. This scaling factor is provided by
the auxiliary input r. The final function implemented is then Z = 0.5(X + Y), which is
called the scaled add operation. The multiplexer of Figure 2.2d therefore acts as the scaled
adder for the top three number formats of Table 2.1.

Circuits that convert binary numbers to SNs, and vice versa, are fundamental elements
of SC. Figure 2.3a illustrates a widely used binary-to-stochastic conversion circuit, which
we will refer to as a stochastic number generator (SNG). The conversion process involves

18

x

y
z

x

y
z

x

y
z

(a) (b) (c)

0

1

x

y

z

(d)

r (1/2)

Figure 2.2: Basic SC components: (a) unipolar, (b) bipolar and (c) inverted bipolar multi-
pliers; (d) stochastic adder for all three formats.

generating a k-bit random binary number in each clock cycle by means of a random or,
more likely, a pseudo-random number generator, and comparing it to the k-bit input binary
number B. The comparator produces a 1 if the random number is less than B, and a 0
otherwise. Assuming that the random numbers are uniformly distributed over the interval
[0, 1], the probability of a 1 appearing at the output of the comparator at each clock cycle is
equal to B/2k.

Linear feedback shift registers (LFSRs) [43] are the most common units used as the
(pseudo) random number generator of Figure 2.3a. These are finite state machines (FSMs),
i.e., sequential circuits that go through a specific sequence of states deterministically. Se-
quences generated by LFSRs pass many randomness tests, and so are very suitable for SC.
As we will discuss later, however, it is possible to replace the LFSR with other deterministic
number sources such as counters, and still produce acceptable SNs.

Converting an SN X to binary is much simpler. The SN’s value pX is carried by the
number of 1’s in its bit-stream form, so it suffices to count these 1’s in order to extract pX .
Figure 2.3b shows a counter that performs this conversion. Note that the counter can also
serve as an efficient storage register for X .

Example 2.3: Figure 2.4 shows a stochastic circuit that implements the arithmetic func-
tion Z = X1X2X4 + X3(1 − X4) [75]. The inputs X1, X2, X3 and X4 are provided in
conventional binary form and must be converted to SNs via SNGs. We know that the AND
gate is a multiplier, so (with high probability) it outputs X5 = 4/8 × 6/8 = 3/8. The
probability of 1 at z is the probability of 1 at both x4 and x5 plus the probability of 0 at x4
and a 1 at x3. Hence, the SN appearing at z has the value Z = X1X2X4 + X3(1 − X4),
and the counter at the output converts it to conventional binary form.

19

The result appearing at Z in Figure 2.4 represents 6/8 exactly only if we get six 1’s at
the output in 8 clock cycles, otherwise the counter outputs an SN other than 6/8. The prob-
ability of obtaining exactly six 1’s is P{Z = 6/8} =

(
8
6

)
(6/8)6(2/8)2 ' 0.31, implying

there is a 69% chance that we do not get six 1’s, and the computation has some inaccuracy.
The specific SNs in Figure 2.4 have been chosen to avoid inaccuracy. Indeed, even if we use
a high-quality random number source such as the “one million random digits” table [111]
to generate the SNs, we will probably still find some inaccuracy. For example, using the
first four lines of this table to generate SNs, we obtain X1 = 01100010, X2 = 00111111,
X3 = 11111111 and X4 = 00000100. Applying these numbers to the circuit in Figure 2.4
yields Z = 11111011 = 7/8 6= 6/8.

Figure 2.4 also illustrates the high cost of number conversion. The computation part
of the circuit consists of only an AND gate and a multiplexer, while the conversion units
include four random number generators, four comparators, and a counter. Since the four
primary inputs must be independent, each SNG contains a separate random number gener-
ator. Qian et al. [109] report that in some image-processing applications, up to 80% of the
stochastic circuit area is consumed by conversion units.

2.3 Accuracy and Precision

Accuracy concerns arise in SC for several reasons. The one previously discussed is due to
the fluctuations inherent in random numbers. Correlations among the SNs being processed
also lead to inaccuracies. Surprisingly, it is generally not desirable to use truly random
number sources to derive or process SNs. As we will explain here, deterministic or pseudo-
random number generators like LFSRs form the best driving sources for SNGs from both a

Comparatork
A

B

A < B

Binary number

B

(a)

pX = B/2k

k

(b)

Binary counter

B
kRandom no.

generator
x

x

Figure 2.3: SC conversion units: (a) binary-to-stochastic converter, also referred to as a
stochastic number generator (SNG), and (b) stochastic-to-binary converter.

20

SNGX1
0.100 (4/8)

SNG
0.110 (6/8)

1 0 0 1 0 1 1 0

0 1 0 1 1 1 1 1

0 0 0 1 0 1 1 0

SNG
0.111 (7/8)

SNG
0.010 (2/8)

1 1 1 1 1 0 1 1

1 0 0 1 0 0 0 0

0 1 1 1 1 0 1 1
Counter 0.110 (6/8)

0

1

X2

X3

X4

x5

Z

x1

x2

x3

x4

z

Figure 2.4: Stochastic circuit realizing the arithmetic function Z = X1X2X4 +X3(1−X4)
along with its conversion units [75].

practical and theoretical point of view. They can be used to implement SC operations with
high and, in some special cases, complete accuracy.

Inaccuracy in SC has several distinct sources: random fluctuations in SN representation,
similarities (correlations) among the numbers that are being combined, and physical errors
that alter the numbers. Jeavons et al. [57] provide a definition for independence among
bit-streams used in SC.

Definition 2.2: Two bit-stream X and Y with unipolar values pX and pY are uncorrelated

or independent if and only if
pX × pY = pX∧Y

where X ∧ Y is a bit-stream obtained by performing bit-wise AND operation on X and Y ,
and pX∧Y denotes its unipolar value. Otherwise, the sequences are called correlated.

Example 2.4: This example shows how correlation can lead to inaccuracy. The eight-bit
SNs 11110000 and 01010101, both representing 1/2, are uncorrelated according to Defini-
tion 2.2. Their product, obtained by ANDing them (as in Figure 1.3), is 01010000 = 1/4.
In contrast, 11110000 and 00001111 are correlated, and their product 00000000 = 0, which
is far from the correct result.

Quantifying correlation (of two SNs) is a difficult task which has received little attention
in the past. We address this issue in depth in Chapter 4. To reduce such inaccuracies, SNGs
are needed which produce SNs that are sufficiently random and uncorrelated. Once again,
LFSRs are suitable choices because they are capable of generating multiple uncorrelated
bit-streams. The preferred LFSRs have m flip-flops and cycle through N = 2m− 1 distinct

21

LFSR

L3

L2

L1

L0

W3

W2

W1

W0

Binary

number

 X

X [0]X [1]X [2]X [3]

x

Stochastic

number

1 0 1 1

Weighted binary generator (WBG)

Figure 2.5: The weighted binary SNG proposed by Gupta and Kumaresan [49].

states, the maximum possible since the all-0 state is excluded. As mentioned, the generated
bit-streams pass various randomness tests, although they are deterministic. For example,
they contain (almost) equal numbers of 0’s and 1’s, as well as runs of 0’s and 1’s whose
numbers and lengths correspond to those of a Bernoulli sequence. In addition, shifted
versions of LFSR sequences have low correlation [43] [57]. Poppelbaum [104] noted that
if the LFSRs are large enough, they resemble ideal random sources. Hence, noise-like
random fluctuations appear as errors in the generated SNs. These errors can be reduced at
a rate N−1/2 by increasing the number length N . Much less is known about how this error
size changes as SNs go through a sequence of operations.

Surprisingly, LFSRs can be used to generate SNs that are, in certain cases, guaranteed
to be exact. This was demonstrated for multiplication by Gupta and Kumaresan [49] who
introduced a new type of SNG that we call a weighted binary SNG. Figure 2.5 shows a
4-bit version, which converts a 4-bit binary number X to an SN of length 16. The pseudo-
random source is a 4-bit LFSR to which the all-0 state is artificially added (details not
shown). The SNG’s behavior with X = 11/16 is illustrated in Table 2.3. The bit-streams
Li generated by the LFSR, the intermediate signals Wi, and the output SN are all shown.
The key features of the Gupta-Kumaresan design, which immediately imply that the final
SN exactly representsX , is that theW3, W2, W1, andW0 bit-streams have non-overlapping
1’s, and weights of 1/2, 1/4, 1/8, and 1/16, respectively. Note that the order of the bits
in the bit-streams of Table 2.3 is not important; we can reorder the columns of the table,

22

Table 2.3: Bit-streams generated by the circuit of Figure 2.5.

Signal Bit-stream Value
L3 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 8/16
L2 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 8/16
L1 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 8/16
L0 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 8/16

W3 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 8/16
W2 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 4/16
W1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2/16
W0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1/16

x 1 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 11/16

Table 2.4: Bit-streams generated by the circuit of Figure 2.5 when the LFSR is replaced by
a plain binary counter.

Signal Bit-stream Value
L3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 8/16
L2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 8/16
L1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 8/16
L0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 8/16

W3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 8/16
W2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 4/16
W1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2/16
W0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1/16

x 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 11/16

and the resulting bit-streams will still have the same values. Table 2.4 shows one possible
ordering of the bit-streams, which is obtained by replacing the LFSR of Figure 2.5 with a
plain binary counter. This is an important observation: deterministic number sources (such
as a counter) can generate accurate SNs. The point is that only the number of 1’s, and not
their ordering, is important in the bit-streams. In fact, the same approach applies to the
SNG of Figure 2.2b too; we can replace the LFSR with a counter. Note that the above
scheme gives accurate results only when the period of the LFSR (or counter) used is equal
to N (the length of the generated SN).

Gupta and Kumaresan further used their SNG to design a circuit that multiplies two
SNs accurately. As shown in Figure 2.6 for the 4-bit case, it contains two weighted binary
generators connected to a double-length LFSR. It is not hard to see that stochastic multipli-
cation using this approach always yields exact results. Zelkin [138] employs an essentially
similar SNG to design an accurate arithmetic unit for SNs.

23

LFSR

Binary

number X

x4-bit WBG

4-bit WBG

Binary

number Y

X [3]

y

z

X [0]X [1]X [2]

Y [3] Y [0]Y [1]Y [2]

Figure 2.6: Accurate 4-bit stochastic multiplier of the type proposed by Gupta and Ku-
maresan [49].

The foregoing results reveal an important and perhaps unexpected aspect of SC: pseudo-
random SNs can be better than random. This can be compared to the use of low-discrepancy
numbers in quasi-Monte-Carlo sampling methods [123]. Quasi-Monte Carlo is similar to
normal Monte Carlo, but uses carefully chosen deterministic samples instead of purely
random ones. Moreover, Gupta and Kumaresan’s work shows that small deterministic
LFSRs can produce highly accurate results. In contrast, Gaines [38] and Poppelbaum [104]
rely on very large LFSRs to ensure randomness in the generated SNs.

Jeavons et al. [57] address the SC accuracy problem by creating a mathematical frame-
work in which another SNG type is introduced. Instead of using comparators as in the
traditional SNG of Figure 2.3a, their design [130] employs a cascade of majority modules
M , as illustrated in Figure 2.7. A random number generator feeds the M ’s with uncorre-
lated SNs of probability 1/2, and Jeavons et al. [57] suggest using bits of an LFSR for

24

Y [0] = 0

Binary

number X
MSBX [0]

x

Stochastic
number

Random number

generator

MM M M M

M

D Q

clock

X [1] X [2] X [3]

Y [3]Y [2]Y [1]

R [0] R [1] R [2] R [3]

X [i]

Y [i]

R [i]

Y [i+1]

(a)

(b)

Figure 2.7: Four-bit SNG proposed by van Daalen et al. [130]: (a) overall structure; (b)
module M .

this purpose. But similar to the previous SNGs, a counter can also be used as the number
source. Individual bits of the binary number X to be converted are also fed to the M ’s,
as shown in the figure, and one bit of the SN is generated per clock cycle. The SF imple-
mented by each M is Y [i + 1] = 0.5(X[i] + Y [i]), so for the 4-bit scenario of Figure 2.3a
we have

pX =
1

2

(
X[3] +

1

2

(
X[2] +

1

2

(
X[1] +

1

2
X[0]

)))
=

1

2
X[3]+

1

4
X[2]+

1

8
X[1]+

1

16
X[0]

Hence, the probability of seeing a 1 at x is equal to the fractional binary number represented
by the X[i] inputs.

25

Informally, the precision of a value is the number of bits needed to express that value.
With m bits of precision, we can distinguish between 2m different numbers. For instance,
the numbers in the interval [0, 1], when represented with 8-bit precision, reduce to the
following 256-member set, {0/256, 1/256, 2/256, ..., 255/256, 256/256}, and their exact
stochastic representation requires bit-streams of length 256. To increase the precision from
8 to 9 bits requires doubling the bit-stream length to 512, and so on. This exponential
growth in data length with precision is responsible for the long computation times associ-
ated with SC. In general, an SN X of length N has m = log2(N) bits of precision, which
approximates that of an dme-bit binary number.

The exponential length of SNs has another important consequence: storing SNs be-
comes inefficient. So it most SC circuits, storing SNs are avoided as much as possible. In
applications where storage is absolutely necessary, SNs are typically converted to weighted
binary numbers and are stored efficiently in a counter, as in Figure 2.4. They are converted
back to the stochastic format when needed. This approach, however, is also costly due to
excessive use of conversion circuits.

Now consider the 16-bit SNs 1111111110000000 and 0101010101010111; both repre-
sent 9/16 and have 4-bit precision. There is a subtle difference between them, however. If
we consider the first 8 bits of the sequences as an SN of lower precision (3-bit precision
in this case), we obtain 11111111 and 01010101 representing 8/8 and 4/8, respectively.
The latter provides a low-precision estimate of the full-length SN (i.e., 9/16). This points
to a potential advantage of SC: initial subsequences of an SN, if appropriately generated,
can provide an estimate of a target number. We say an SN X of length N has progressive

precision (PP) if all the SNs X̂k (k ∈ {1, 2, 3, ..., log2(N)}), composed of the first 2k ele-
ments of X , are accurate. In other words, accuracy and precision increase steadily with SN
length. SNs with good PP can therefore be seen as presenting their most significant bits
first. Such behavior of SNs has been implicitly exploited in decoding applications [47].
In certain computations, this makes it possible to make decisions early by looking at the
first few bits of a result. Figure 2.8 shows how pX , the value of SN X fluctuates as N (the
length of the bit-stream of X) increases for SNs of nominal value p = 1/2 generated by a
typical SNG. SNs that rapidly converge to p are said to have good PP.

Despite the efforts of Jeavons et al. [57] and Gupta and Kumaresan [49], accuracy, or
the lack thereof, continues to be a major concern in SC as low accuracy may degrade the
energy efficiency promised by SC [89] [81]. Inaccuracies due to correlation, for example,
worsen as the number of inputs increases, the SNs pass through multiple levels of logic,

26

N

pX

Nominal

value

SN with poor progressive precision

SN with medium progressive precision
SN with good progressive precision

Figure 2.8: Fluctuations in pX for 3 bit-streams as their length N increases.

or feedback is present. Reconvergent fanout, in particular, creates undesirable correlations
when signals derived from a common input converge and interact. A possible but expensive
solution to this problem is to convert these signals to binary and regenerate new and inde-
pendent SNs from them on the fly [126]. We end this section by summarizing the known
advantages and disadvantages of SC in Table 2.5

2.4 History and Applications

Over the years, SC has been recognized as potentially useful in specialized (and often em-
bedded) systems, where small size, low power, or soft-error tolerance are required, and
limited precision or speed are acceptable. Besides its intrinsic suitability for certain com-
putation tasks, SC seems worth reexamining because it copes with some complex proba-
bilistic issues that are becoming an unavoidable part of conventional technologies [68] and
are as yet poorly understood.

Table 2.6 provides a brief historical perspective on SC from its early days until 2010.
Von Neumann [134] defined fundamental ideas concerning probabilistic, error-tolerant de-
sign, and greatly influenced subsequent research. In the mid-1960s, further influenced by
developments in both analog and digital computers, SC was defined and explored concur-
rently in the U.K. [38] [39] and the U.S. [103] [113]. Several of the few prototype stochastic
machines ever actually implemented were built around that time, and they uncovered nu-

27

Table 2.5: Advantages and disadvantages of stochastic computing.

Feature Advantages Disadvantages
Circuit size
and power

Tiny arithmetic components
Many random number sources and
stochastic-binary conversion circuits

Operating
speed

Short clock periods
Massive parallelism

Very long bit-streams

Result
quality

High error tolerance
Progressive precision

Low precision
Random number fluctuations
Correlation-induced inaccuracies

Design
issues

Rich set of
arithmetic components

Theory not fully understood
Little CAD tool support at present

Table 2.6: Timeline for the development of stochastic computing (1956-2010).

Dates Items References
1956 Fundamental concepts of probabilistic logic design. [134]

1960–79
Definition of SC and introduction of basic concepts.
Construction of prototype SC machines.

[38][39] [104]

1980–99
Advances in the theory of SC.
Studies of specialized applications of SC, including
artificial neural networks and hybrid controllers.

[57] [65] [129]

2000–10
Application to efficient decoding of error-correcting
codes. New general-purpose architectures.

[42] [106]

merous shortcomings of the technology. Poppelbaum [104] observed that “short sequences
are untrustworthy” and that a major drawback of SC is low bandwidth and therefore low
computational speed.

It is interesting to note that the first—and also the last—International Symposium on
Stochastic Computing and its Applications was held in Toulouse in 1978 [131]. Since then,
interest in SC has greatly diminished as conventional binary circuits have become smaller,
cheaper, faster, and more reliable. SC research has focused on a narrow range of specialized
applications, such as neural networks, [16] [65], control circuits [82] [129], and reliability
calculations [10] [21]. There were, however, some important theoretical discoveries [49]
[57] relating to SN generation that have attracted little attention, but nevertheless have
positive implications for SC.

There are other probabilistic methods in the computing literature that we do not con-
sider here, some of which use the term “stochastic.” They typically aim to achieve power-
reliability trade-offs by means of probabilistic or statistical design, and differ substantially

28

from what we call SC. For example, Shanbhag et al. [121] and Chakrapani et al. [20]
focus on supply-voltage overscaling and methods of reducing the effect of any resulting
errors. Other examples of probabilistic computing hardware are found in Nepal et al. [93]
and Vigoda [133]. The terms “stochastic numbers” and “stochastic arithmetic” appear in
Alt et al. [11] which, however, is concerned with numerical errors in conventional binary
computation.

Stochastic computing has been investigated for a variety of applications. Besides the
basic operations of addition and multiplication, SC has been applied to a limited extent
to division and square-rooting [129], matrix operations [83], and polynomial arithmetic
[106] [109]. A more specialized application area for SC is reliability analysis [10] [21].
Since probabilities are fundamentally analog quantities, SC has been proposed for some
analog and hybrid analog-digital computing tasks, often under the heading of digital signal
processing [63] [101].

Neural (or neuromorphic) networks [16] [32] [65] [102] and control systems [33] [82]
[15] are among the earliest and most widely studied applications of SC, and have close
connections with analog computing. SC neural networks also appear as “pulse coded net-
works” in the literature [128] [114]. An illustrative example of a stochastic control system
is found in [139], where a control unit for an induction motor is described that integrates
several SC-based algorithms and a large neural network. The controller is implemented
on an FPGA and is claimed to exhibit higher performance and lower hardware cost than
conventional microprocessor-based designs for the same application. Figure 2.9 shows
a simplified, high-level view of the motor controller. The stochastic integrators execute
functions of the form Y (n) = X(n) + Y (n− 1) on SNs. The stochastic anti-windup con-
troller incorporates a complex algorithm that limits any changes implied in the input speed
command that might lead to improper motor operation. The stochastic neural network esti-
mator implements in real time the key feedback-processing functions of the system, several
of which are computation-intensive. An example is the hyperbolic tangent or “tansig” func-
tion, which is a typical transform function computed by an artificial neuron, and takes the
form

tansig(x) =
2

1− e−2x
− 1

Zhang and Li [139] note that besides improved cost-performance figures, their SC-based
design has advantages in terms of reduced design and verification effort.

Image processing is another potential application area for SC of great practical impor-
tance. Many imaging applications involve functional transformations on the pixels of an

29

Stochastic

anti-windup

controller

Speed

control logic

Stochastic

integrators

Stochastic

neural network

estimator

Speed
command

From
motor

To
motor

Figure 2.9: SC-based controller for an induction motor proposed by Zhang and Li [139].

input image which is transmitted as a long analog video signal resembling a digital bit-
stream. The pixel-level functions are usually simple, but because of the large number of
pixels involved, the overall transformation process is extremely computation-intensive. If
these functions are implemented using SC, then low-cost, highly parallel image processing
becomes possible, as demonstrated in an SC-based image-sensing chip [51].

The main reasons for the early interest in SC are the relative simplicity and robustness
of SC-based arithmetic units and the possibility of having many units working in parallel.
These benefits became less important as the transistors became cheaper, but as the forego-
ing motor-control application suggests, the benefits continue to be significant, even in some
well-established applications. Furthermore, the past decade has introduced several entirely
new applications for SC. One such application is the decoding of low-density parity check
(LDPC) codes.

LDPC codes are powerful error-correcting codes which were introduced by Gallager in
1962 [41]. They enable data to be sent over noisy channels at rates close to the theoretical
maximum (the Shannon limit). Because they are difficult to implement in practice, they
were largely ignored until the 1990s when new research [79] and semiconductor technology
developments made them economically viable. LDPC codes are attractive because there are
no global relations among their bits, making it possible to have highly parallel and efficient
decoding algorithms for very long codewords, such as the sum-product algorithm (SPA)
[70]. LDPC codes are now utilized in communication standards such as WiFi [56] and
digital video broadcasting [36].

Because of its use of extremely long codewords (often containing thousands of bits),
LDPC decoding requires massive computational resources using conventional approaches
[140]. Moreover, some of the better decoding algorithms are probabilistic or “soft” rather
than deterministic. All these features suggest that LDPC decoding can take advantage of

30

x

clock

J

K

Q

(a)

y z

x
y z

(b)

Figure 2.10: (a) Check and (b) update blocks used in stochastic LDPC decoding.

the compactness, error tolerance, and inherently probabilistic nature of SC circuits, as has
been demonstrated [47] [91] [72].

LDPC decoding is the process of trying to find the closest valid codeword to a received
and possibly erroneous codeword. The SPA algorithm mentioned above is a probabilistic
algorithm for LDPC decoding based on belief propagation. Gross et al. [47] present a
stochastic implementation of the SPA approach that employs the basic components shown
in Figure 2.10. The XOR gate of Figure 2.10a implements the function Z = X(1 − Y) +

Y (1−X) used in a step of the SPA algorithm known as the check step, while the circuit of
Figure 2.10b implements the update step: Z = XY/

(
XY+(1−X)(1−Y)

)
. The simplicity

of the elements shown in Figure 2.10 allows massively parallel decoding of LDPC codes.
While the probabilistic nature of SC makes it suitable for this decoding application,

several other features of SC can be exploited in the decoder design. The low complexity
of the basic components enables easy scaling to very large LPDC codes and effectively
supports efficient parallel processing for such codes. Also, the progressive precision feature
noted in Section 2.3 speeds up convergence of the decoding process. The early iterations of
the algorithm can proceed faster by using rough values provided by the first bits of the SNs
being processed. Furthermore, the overhead due to binary-to-stochastic number conversion
is small. A recently reported IC implementation of an SC-based LDPC decoder [72] claims
to achieve higher throughput with less chip area than conventional non-SC decoders.

2.5 Recent Developments

Since 2010, the year we started our research on SC, interest in the field has significantly
increased. The promising new application to LDPC decoding has been an important mile-
stone. Many new stochastic LDPC decoders have appeared in the literature [91] [72].
Furthermore, SC decoders for polar codes [137] and Viterbi decoders [22] have also been

31

designed. The probabilistic nature of SC, as well as its error tolerance, makes it a suitable
choice for such designs.

Implementing artificial neural networks continues to be a major application of SC [18]
[118] [58]. With the ever-increasing interest in the so-called spiking neural networks [86],
further research in stochastic neural networks has also become relevant, because of the
similarity between the encoding of SNs and that of the neural “spikes”; see Figure 1.2. SC
neurons have low complexity, which allows the designers to put many of them in paral-
lel and obtain a fully parallel neural network. Similarly, applications that involve matrix
operations [127] can benefit from SC’s low-complexity implementations.

Data recognition and mining [27] [90] and machine learning [48] are also among the
new applications of SC. These applications of inherently error-tolerant, making approxi-
mate computing techniques, including SC, suitable for efficient implementations. Image
processing also benefits from the same properties of SC. Since 2010, many new SC image-
processing circuits have appeared in the literature [73] [3] [92], including a recently fabri-
cated chip [37] that outperforms similar conventional designs. The theory of SC has also
gained some attention recently; for instance a method of testing SC circuits has been pro-
posed in [99].

General design methods for SC have received little attention since the 1970s. The topic
was revisited recently by Qian et al. [109] and Li et al. [75], who introduced an SC
architecture called Reconfigurable SC (ReSC) architecture that is capable of implementing
many arithmetic functions. Function implementation in this style has a strong similarity
to analog computing [80]. Its main idea [106] is to approximate a given function by a
Bernstein polynomial [76]. A Bernstein polynomial of degree k has the form

Z =
k∑

i=0

bkBi,k(X)

where the bi’s are the coefficients of the polynomial, and Bi,k(X) is a Bernstein basis
polynomial of the form

Bi,k(X) =

(
k

i

)
X i(1−X)k−i

Figure 2.11 shows the ReSC architecture. The input variable X and the constant coeffi-
cients bi are converted to SNs via the SNGs. The inputs of the adder are k independent
SNs representing X for some realization of a polynomial of degree k. The probability of

32

obtaining a number i at the output of the adder is

P{sum = i} =

(
k

i

)
X i(1−X)k−i

Now the probability of having a 1 at z is

P{z = 1} = b0.P{sum = 0}+ b1.P{sum = 1}+ ...+ bk.P{sum = k}

which reduces to

P{z = 1} =
k∑

i=0

bkBi,k(X)

In other words, the probability of outputting a 1 at z (i.e. the value of the SN Z) is a
Bernstein polynomial of degree k defined by the coefficients bi calculated at X .

Since 2010, general design methods for SC circuits gained more attention due to the
need for automatic design of many different functions. We introduced a synthesis method
called STRAUSS (Spectral TRAnsform Use in Stochastic circuit Synthesis) [1] [8] which
will be covered in detail in the next chapter. STRAUSS and ReSC are only capable of de-
signing combinational circuits. Sequential SC circuits are also mentioned in the literature.
For instance, Figure 2.10b shows a sequential circuit implementing a relatively complex

SNGX

SNG

SNG

...

SNG

SNG

SNG

...

b0

b1

bk

... +

..

.

0

1

k

...
Counter

z
Z

Figure 2.11: Reconfigurable stochastic arechitecture (ReSC) realizing a Bernstein polyno-
mial of degree k [109].

33

x

(a)

J Q

K

(b)

y

x1
x2

z
D Q

z

Figure 2.12: Sequential stochastic circuits implementing (a) Z = X/(1 + X) and (b)
Z = X1/(X1 +X2).

operation that involves division. However, sequential circuits are significantly more com-
plicated to analyze and design than combinational circuits because introducing memory
elements into stochastic circuits completely changes the picture, as we now show.

Consider the circuit of Figure 2.12a which combines an AND gate with a D-flip-flop.
The AND acts as a stochastic multiplier implementing the function Z = X(1−Y). The D-
flip-flop simply shifts its input bit-stream by 1 bit, and implements the stochastic function
Y = Z. Eliminating Y from the preceding equations, gives Z = X/(1 + X), which
is the SF implemented by the circuit of Figure 2.12a. This function does not have an
appropriate polynomial form, and so cannot be directly implemented by combinational
stochastic circuits. A similar example is the JK-flip-flop shown in Figure 2.12b, which has
the SF Z = X1(X1 +X2), and is used to approximate stochastic division .

Figure 2.13 shows the general structure of an n-input sequential circuit with k flip-flops.
The combinational block generates the output z and the next state variables y+1 , ..., y

+
k based

on the inputs and the current state variables y1, ..., yk. The memory block merely copies
the y+i values to yi at the active clock edge. The stochastic functions implemented by
a sequential circuit C are defined by the stationary distribution Y of its states and the
primary output Z, which can be derived by solving the Markov chain equations for C
[39]. It can be shown [7] that sequential circuits implement a larger class of SFs than
combinational circuits (which only implement certain polynomials; see Chapter 3), namely,
rational functions of the form

Z(X1, ..., Xn) =
P (X1, ..., Xn)

Q(X1, ..., Xn)

in which P and Q are polynomials.
As noted, the stochastic function of sequential circuits can be obtained by solving the

corresponding equations for Y and Z, but this can be very difficult when many state vari-

34

x1

Combinational

circuit
Memory

elements

+

xn

y1

yk yk

+
y1

z

Figure 2.13: An n-input sequential circuit with k flip-flops.

ables are involved. To sidestep this problem, Gaines proposed restricting attention to FSMs
with a chain structure in which the states are ordered and transitions only occur between ad-
jacent states; jumping over states is not allowed [39]. This restriction allows easy Markov
chain analysis. Figure 2.14 shows the state behavior of one such chain-structured FSM,
the ADDIE (ADaptive Digital Element). Gaines also argued that state transitions should
be local to avoid excessive fluctuations in SF values. ADDIEs have been used in various
analog-style stochastic circuits such as filters [39]. Similar chain structured sequential cir-
cuits can implement non-polynomial functions such as tanh and exp efficiently [16] [74].

Variations and extensions of Gaines’s ADDIE model have been proposed over the years.
A 2-dimensional extension of the chain-structured FSM was proposed by Li et al. [74]. A
more general form of ADDIE was used by Saraf et al. [119] to implement SFs such as
trigonometric functions. Evidently, sequential implementations can be more efficient than
combinational for certain classes of SFs. However, many optimal combinational stochastic
circuits exist. For example, the sequential edge-detection circuit designed in [73] is more
than 20 times larger than the combinational edge detector of [3].

S1 S2 S3

p1→2

p1→1

p2→1

p2→3

p3→2

p2→2 p3→3

p3→4

Sk

pk-1→k

p4→3 pk→k-1

pk→k

Figure 2.14: State diagram of a generalized ADDIE [39].

35

A drawback of sequential circuits is that they require a transition (warm-up) period
before settling to the desired stationary distribution. During this period, which can be
quite long, the circuit may produce inaccurate results. Another disadvantage of sequential
circuits is that their behavior is affected by auto-correlation among the SNs. This refers to
the correlation between an SN and its shifted or delayed versions. Auto-correlation imposes
new requirements for the SNGs used for sequential circuits. Combinational circuits, being
memoryless, are not affected by auto-correlation [24]. Unlike combinational circuits, a
general design methodology for sequential stochastic circuits is not known. Most existing
methods are limited to chain-structured designs.

As mentioned in Section 2.2, the conversion circuits can consume a lot of area, and in
some cases can defeat the purpose of using SC. For this reason, there have been several
efforts to reduce the cost of SNGs, especially the ones used for generating constant num-
bers. For instance, the ReSC design of Figure 2.11 uses k + 1 constant number generators,
so reducing their cost can significantly improve its efficiency. Qian et al. [107][110] and
Chen and Hayes [25] have introduced several methods of synthesizing circuits for constant
number generation.

2.6 Summary

This chapter reviewed the basic concepts of SC, as well as its history and applications. We
started by giving a rigorous definition of SNs that excludes the notion of randomness. This
is important because it allows the use of deterministic number sources to increase an SC
circuit’s accuracy. We discussed the relation between BFs and SFs implemented by com-
binational circuits, and derived several basic components of SC. Then we highlighted SC’s
traditional and new applications, which include image processing, neural networks, and
LDPC decoding. We also discussed the recent developments in the field and the challenges
that need to be addressed, including accuracy issues, correlation problems, and the lack of
general design methods. In the next chapters of this dissertation, we discuss our research
that addresses many of the challenges discussed here.

36

Chapter 3

Design of Stochastic Circuits

One of the missing pieces of stochastic computing (SC) since its early days has been the
lack of a general design method. While basic arithmetic operations such as multiplication
and addition were known, many stochastic circuits used to be designed in an ad hoc fashion.
This chapter presents a systematic method of designing stochastic circuits based on spectral
transforms, in effect, targeting the synthesis problem defined in Chapter 1 (see Figure 1.7).
We present a synthesis algorithm called STRAUSS, which produces low-cost SC circuits.
Most of the material of this chapter is taken from our paper on STRAUSS [8] and an older
version of the same synthesis method [1].

3.1 Spectral Transforms

We start by exploring a fundamental relation between SC circuits and spectral transforms
like the Fourier transform [55] [62]. Such transforms have many applications in engineer-
ing. For instance, consider the time-domain impulse response of an analog filter. While it
contains all the information about the filter’s behavior, it is not easy to extract the response
of the filter to a given input signal. The Fourier transform of the impulse response reveals
the “hidden” frequency-domain behavior of the system, from which its response to a given
input signal can readily be found. The spectral transforms of interest in this chapter map
Boolean functions (BFs) from the logic domain to the domain of real numbers. We will see
that they lead to a unique multilinear1 representation of a given Boolean function (similar
to the result of Theorem 2.1), which defines the underlying stochastic function (SF).

1A multilinear polynomial is a polynomial in which terms may contain products of variables, but no
variable appears with a power of two or higher.

37

As mentioned earlier, a stochastic circuit C is a logic circuit that operates on (pseudo)
random bit-streams, called stochastic numbers (SNs). Each wire xi of C carries an SN
Xi. The information conveyed by Xi, also conveniently denoted by Xi, is the rate or
frequency of its 1-pulses and is independent of bit-stream length. Note that this is a slightly
different notation from the one used in the previous chapters. Previously, the unipolar value
represented by an SNX was denoted by pX . However, in this chapter, we useX in a natural
way to represent both the SN and its value.

We now introduce the spectral transforms used to analyze and synthesize stochas-
tic circuits. An n-variable Boolean function (BF) f(x1, ..., xn) maps Bn = {0, 1}n to
B = {0, 1}. Here, Bn is seen as a 2n-dimensional vector space, where each dimension
corresponds to a row of f ’s truth-table (TT), or equivalently, to an n-variable minterm. For
example, if n = 2, f(x1, x2) has the 4-dimensional basis vectors m0 = (1, 0, 0, 0),m1 =

(0, 1, 0, 0),m2 = (0, 0, 1, 0), and m3 = (0, 0, 0, 1), and can be written as

f(x1, x2) =
3∨

i=0

ci ∧mi (3.1)

This is the familiar sum-of-minterms expansion of f , where the ci’s are 0-1 coefficients
that define f .

Example 3.1: If f1(x1, x2) = x1 ∨ x̄2 , then f1(x1, x2) = m0 ∨ m2 ∨ m3 , or in the
column-vector form that we use later:

~f1(x1, x2) =

1

0

0

0

 ∨

0

0

1

0

 ∨

0

0

0

1

 =

1

0

1

1

 (3.2)

The last vector is essentially f1’s TT. To save space, we also write such vectors in the
transposed form [1 0 1 1]T.

As Table 2.1 indicates, in the SC context we must deal with real numbers ranging over
intervals such as [0, 1] and [−1,+1]. Given a BF such as f1 , we are interested in an equiva-
lent real function F̂1 defined on [−1,+1]n (or some other appropriate domain) that specifies
the SC behavior of f1 . This function can be obtained by interpolating the TT values in the
real domain via a multilinear polynomial. For example, consider the TT vector in Eq. (3.2).
By replacing 0’s and 1’s with +1’s and −1’s, respectively, we see that f1 produces the TT

38

vector [−1 1 −1 −1]T for inputs (x1, x2) = (1, 1), (1,−1), (−1, 1) and (−1,−1), in
IBP format. These four discrete “TT points” can be embedded in a continuous real-number
function as follows:

F̂1(X1, X2) =

(
1 +X1

2

)(
1 +X2

2

)
(−1)

+

(
1 +X1

2

)(
1−X2

2

)
(+1)

+

(
1−X1

2

)(
1 +X2

2

)
(−1)

+

(
1−X1

2

)(
1−X2

2

)
(−1)

Observe that each term of the foregoing expression assumes the correct value 1 or −1 at
each TT point. On expanding this expression, we get

F̂1(X1, X2) = 0.25
(

(1 +X2 +X1 +X1X2) (−1)

(1−X2 +X1 −X1X2) (+1)

(1 +X2 −X1 −X1X2) (−1)

(1−X2 −X1 +X1X2) (−1)
)

= −0.5− 0.5X2 + 0.5X1 − 0.5X1X2

(3.3)

The polynomial (3.3) interpolates the TT values in the real numbers. It is linear with respect
to variables X1 and X2, and is referred to as multilinear. Most importantly as we will see,
it represents the stochastic behavior of the BF f1.

More generally, given a Boolean function f(x1, x2, ..., xn), if n independent SNs
X1, X2, ..., Xn, defined in an SC format, such as UP, BP or IBP, are the input arguments of
f , the output is another SN that is some function ofX1, X2, ..., Xn. We denote this function
by F̂ (X1, X2, ..., Xn) and refer to it as the SC behavior or stochastic function of f . We will
see that F̂ has a unique multilinear form similar to that in (3.3), and can be determined by
means of spectral transforms. This form is essentially the same as that given by (2.2) where
the BF was defined over {0, 1} rather than {−1,+1}.

The spectral transforms of interest execute a change of basis from the minterm space
of a BF f to a real-valued space. We employ the Fourier transform F for BFs, which
is also known as the discrete Walsh transform in Hadamard ordering [62] [95]. Spectral

39

transforms of this type have been considered previously for a wide variety of logic design
and testing tasks [55] [62]. For BFs with large values of n, it may be impractical to deal
with 2n-dimensional spectra, although concise representations of spectra for functions with
hundreds of variables are known [38]. This size issue is of much less concern in SC,
however, because the values of n tend to be small, e.g., n = 2 in Figure 1.5.

To compute the Fourier transform of a BF given as a TT vector ~f or equivalent, we first
replace 0 and 1 by +1 and −1, respectively. The Fourier transform F = F(f) is specified
by

~F =
1

2n
Hn × ~f (3.4)

where ~F is the vector form of F denoting its spectral coefficients or spectrum, and Hn is
the Walsh matrix (with natural or Hadamard ordering) of dimension 2n defined recursively
by

H0 =
[
+1
]

and Hn =

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
Equation (3.4) is evaluated using the rules of linear algebra over real numbers. In the case
of f1 from Example 3.1, we get

~F1 =
1

4
H2 × ~f1 =

1

4

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

×

−1

+1

−1

−1

 =

−0.5

+0.5

−0.5

−0.5

The result is the spectrum of f , and the corresponding basis is

[+1 +1 +1 +1]T, [+1 −1 +1 −1]T, [+1 +1 −1 −1]T, [+1 −1 −1 +1]T

defined by the rows or columns of H2 . (Note that Hn is symmetric.) These basis vectors
resemble digital waveforms, and are analogous to harmonics in the sine-cosine Fourier
transform used for time-frequency conversions. More specifically, they correspond to the
four linear BFs: 1, x2 , x1, and x1 ⊕ x2, where ⊕ denotes XOR. Recall that in the spectral
domain, XOR is replaced by multiplication.

40

Analogous to the sum-of-minterms expansion (3.1) for f1 in the Boolean domain, we
write the transformed function as

F1(X1, X2) =
3∑

i=0

CiSi (3.5)

where Si’s are the basis vectors 1, X2 , X1 , and X1X2, in the spectral domain, and the Ci’s
constitute the spectrum of f1. Hence, Eq. (3.5) becomes

F1(X1, X2) = −0.5− 0.5X2 + 0.5X1 − 0.5X1X2

This is a multilinear polynomial that interpolates (matches) the original BF
f1 at its four Boolean input coordinates (TT points), namely (X1, X2) =

(1, 1), (−1, 1), (1,−1), (−1,−1). This transformation is illustrated in Figure 3.1. Notice
that the last expression above is exactly the same as (3.3), and the process of arriving at the
two expressions is similar. So, we see intuitively that the Fourier transform of a BF defines
its unique SC behavior. This leads to the following theorem, which is closely related to
Theorem 2.1.

Theorem 3.1: If F̂ denotes the SC behavior of an n-variable Boolean function f in IBP
format, and F = F(f) is its Fourier transform, then F̂ = F .

Proof. We provide a proof by induction on n, the number of variables of f . Suppose n = 1,
so f is a single-variable Boolean function. Using the Boole-Shannon expansion theorem
[50], we can write f(x) = c0x̄ ⊕ c1x where c0 = f(0) and c1 = f(1) are constants.
Now apply a bit-stream X of length N to the input x of f . If this bit-stream contains N1

Spectral

domain

Boolean

domain

X1

X2

F1

Figure 3.1: Illustration of the spectral transformation of the function f1 of Example 3.1.

41

1’s and N0 0’s, it represents the number (N0 − N1)/N in IBP format. The function f

therefore outputs another bit-stream with N1 c1’s and N0 c0’s representing the IBP number
(N0C0 + N1C1)/N , where C0 = 1 − 2c0 and C1 = 1 − 2c1. Hence, for an arbitrary SN
X = 1− 2N0/N , the output number is

F̂ (X) =
C0 + C1

2
+
C0 − C1

2
X (3.6)

which describes the SC behavior of f in the IBP format. Now the TT of f is ~f = [C0 C1]
T,

so its Fourier transform is

~F =
1

2
H1 × ~f =

1

2

[
+1 +1

+1 −1

][
C0

C1

]
=

1

2

[
C0 + C1

C0 − C1

]

This corresponds to the polynomial

F (X) =
1

2

(
C0 + C1 + (C0 − C1)X

)
(3.7)

which is the same as (3.6), so the theorem holds for single-variable functions.
Now as the induction hypothesis, assume the theorem holds for all functions of up to

n−1 variables. We want to show that it also holds for the n-variable function f(x1, ..., xn).
Again using Boole-Shannon expansion, we can write f(x1, ..., xn) = f0.x̄n⊕f1.xn , where
f0 = f(x1, ..., xn−1, 0) and f1 = f(x1, ..., xn1 , 1) are functions of n− 1 or fewer variables.
Figure 3.2 illustrates how f is decomposed in this way. Thus, f ’s SC behavior is, in terms

0

1

f

xn

x1
f0

xn-1

x1
f1

xn-1

Figure 3.2: Circuit illustrating the application of Boole-Shannon expansion to the func-
tion f .

42

of the behavior of a 2-to-1 multiplexer (Figure 3.2)

F̂ (X1, ..., Xn) =
F̂0 + F̂1

2
+
F̂0 − F̂1

2
Xn (3.8)

where F̂0 and F̂1 denote the SC behavior of f0 and f1, respectively.
We can express the TT of f in terms of the TTs of f0 and f1 as ~f = [~f0 ~f1]

T. Accord-
ingly, we can decompose the Fourier transform calculation (Eq. (3.4)) into

~F =
1

2n
Hn × ~f =

1

2
H1

[
1

2n−1Hn−1 × ~f0
1

2n−1Hn−1 × ~f1

]
=

1

2
H1

[
~F0

~F1

]

where ~F0 and ~F1 are the Fourier transforms of f0 and f1, respectively. The resulting poly-
nomial is

F (X1, ..., Xn) =
1

2

(
F0 + F1 + (F0 − F1)Xn

)
which is the same as (3.8). Hence F̂ = F , and from the Principle of Induction we conclude
that the theorem holds.

Thus, given a combinational circuit or Boolean function, we can determine its IBP
behavior by computing its Fourier transform. A simple interval conversion according to
Table 2.1 is all that is required to determine its behavior in other SN formats. The next
example illustrates this.

Example 3.2: As discussed before, the XOR gate of Figure 2.2c serves as an IBP multi-
plier. We can verify this as follows. XOR has the TT vector ~f2 = [+1 −1 −1 +1]T .
Calculating its Fourier transform yields

~F1 =
1

4
H2 × ~f1 =

1

4

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

×

+1

−1

−1

+1

 =

0

0

0

1

so F2(X1, X2) = X1X2. According to Theorem 3.1, the IBP behavior of XOR is

F̂2(X1, X2) = F2(X1, X2) = X1X2

43

Similarly, we know that a 2-input AND gate acts as a multiplier in UP format. In this
case, ~f3 = [+1 +1 +1 −1]T and

~F1 =
1

4
H2 × ~f1 =

1

4

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

×

+1

+1

+1

−1

 =

+0.5

+0.5

+0.5

−0.5

Thus,

F3(X1, X2) = 0.5(1 +X1 +X2 −X1X2) (3.9)

Since we want the AND behavior in UP format, we must map (3.9) from IBP to UP. Let
p1 , p2 and p3 denote the UP values of X1 , X2 and F3, respectively. Table 2.1 implies
X1 = 1− 2p1, X2 = 1− 2p2, and F3 = 1− 2p3. Hence,

1− 2p3 = 0.5(1 + 1− 2p1 + 1− 2p2 − 1 + 2p1 + 2p2 − 4p1p2)

leading to the desired multiplication p3 = p1p2.

Finally, we note that the Fourier transform is invertible and preserves all information
about f . We can therefore retrieve the original TT form by applying the inverse Fourier
transform f = F−1(F) to the spectrum. Since Hn is related to own inverse (by a 2n

factor), this may be calculated as follows:

~f = Hn × ~F (3.10)

This is the key link from the desired SC behavior F to a logic function f that, with appro-
priate modifications, implements F .

As mentioned, the elements of ~F correspond to polynomial terms in the spectral do-
main. For n = 2, these terms are 1, X2, X1 and X1X2, respectively. In the general case, we
assign an n-bit binary number to each element of ~F , starting from all 0’s. So the elements
of ~F are assigned to “000...0”, “000...1”, ..., “111...0”, and “111...1”, respectively. Now to
find the polynomial term corresponding to each element, we get the assigned binary num-
ber and replace each 1 by the corresponding Xi for that position, and replace each 0 by 1.
Hence, the terms corresponding to the first, second, and last elements of ~F are 1, Xn and
X1X2...Xn, respectively.

44

3.2 Synthesis based on Spectral Transforms

The spectral transforms discussed so far have several useful applications in the SC context.
Besides analyzing Boolean functions and extracting their SC behavior, they can be used
to systematically design combinational SC circuits. But before discussing our synthesis
method (STRAUSS), a few preliminary concepts are needed.

Theorem 3.1 implies that a combinational circuit can implement a stochastic function
F̂ given in multilinear polynomial form, i.e., one in which terms may contain products of
variables of degree at most one. The idea is then to apply the inverse Fourier transform
F−1 to F̂ and obtain the corresponding Boolean function ~f in vector truth-table form, as in
Eq. (3.10). However, applying F−1 to an arbitrary target function F̂ does not necessarily
yield a vector ~f whose elements are the TT values +1 and −1. In fact, we can have three
possible outcomes:

1. All the elements of ~f are +1 or −1, in which case ~f is the truth-table of a Boolean
function and is directly implementable by a logic circuit.

2. All elements of ~f lie in the interval [−1,+1], but some have values {ci} other than +1
or −1. In that case, the function is still implementable, but requires auxiliary inputs
and circuitry to generate the ci’s, as discussed in Section 3.3.

3. Some elements of ~f are larger than +1 or less than −1, in which case the function is
not implementable. It is still possible to implement a related function F̂ ′ that is an
approximate or scaled version of F̂ .

We say polynomial F̂ is SC-implementable if we can synthesize a stochastic circuit
whose behavior is defined by F̂ . SC-implementable functions fall into the first two cat-
egories above, and are distinguished by having inverse Fourier transforms. The simple
product function X1X2 is SC-implementable, whereas the unscaled sum X1 + X2 is not.
We will refer to the latter as SC-unimplementable.

To illustrate the general case, consider the generic two-variable multilinear polynomial

F̂ (X1, X2) = a0 + a1X2 + a2X1 + a3X1X2

45

Taking its inverse Fourier transform, we get

~f = H2 × ~F =

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

×

a0

a1

a2

a3

 =

a0 + a1 + a2 + a3

a0 − a1 + a2 − a3
a0 + a1 − a2 − a3
a0 − a1 − a2 + a3

In order for F̂ to be SC-implementable, the elements of ~f should be in the interval [−1,+1].
In other words, the following constraints should be satisfied:

−1 ≤ a0 + a1 + a2 + a3 ≤ +1

−1 ≤ a0 − a1 + a2 − a3 ≤ +1

−1 ≤ a0 + a1 − a2 − a3 ≤ +1

−1 ≤ a0 − a1 − a2 + a3 ≤ +1

Constraints of this kind can be obtained for polynomials of n variables by applying the
inverse Fourier transform to them. Concepts similar to SC-implementable polynomials
are discussed by Qian and Riedel [106] [108]. They implement stochastic functions in
the form of Bernstein polynomials, and define constraints on the coefficients of Bernstein
polynomials in order to distinguish implementable functions. As we will show later, that
approach can also be interpreted in terms of spectral transforms.

In order to synthesize a stochastic circuit for an arbitrary target function F̂ , a few con-
version steps are required. For instance, the inverse Fourier transform can only produce
suitable Boolean functions when applied to multilinear functions [95]. Suppose F̂ is an
ordinary polynomial of degree n

F̂ (X) = a0 + a1X + a2X
2 + ...+ anX

n

implying that it has non-linear terms. We convert it to a multilinear polynomial
P̂ (X1, ..., Xn) in which the non-linear terms of F̂ , such as anXn, are replaced by mul-
tilinear terms like anX1X2...Xn. The new variables X1, X2, ..., Xn are assumed to be in-
dependent copies of the original variable X .

46

Procedure STRAUSS (F̂) – Returns a stochastic circuit implementing the target
– function F̂

Step 1. Format the target function F̂ as a multilinear polynomial P̂

Step 2. Compute the inverse Fourier transform F−1(P̂) to obtain ~f

Step 3. Generate constant IBP values for elements of ~f (Section 3.3)

Step 4. Optimize via standard combinational design procedures

Procedure 3.1: The main steps of the STRAUSS synthesis method.

There are many possible ways to select a multilinear polynomial P̂ that corresponds to
F̂ . A natural choice is one that is symmetric with respect to all its variables thus:

P̂ (X1, ..., Xn) =a0 +
a1
n

(X1 +X2 + ...+Xn) +
a2(
n
2

)(X1X2 +X1X3 + ...+Xn−1Xn)

+ ...+ an(X1X2...Xn)

which is unique, because every term of the original polynomial is uniquely transformed
into a set of symmetric terms. However, symmetry is not a necessity and asymmetric
polynomials are also acceptable. For instance,

P̂ (X1, ..., Xn) = a0 + a1X1 + a2X1X2 + ...+ anX1...Xn

is one of the possible asymmetric multilinear polynomials that correspond to F̂ . Previous
synthesis methods [106] [109] assume symmetry, but as we show that asymmetric multi-
linear polynomials may lead to better implementations.

Finally, to synthesize a function F̂ from [0, 1]n to [0, 1] that is SC-unimplementable, we
convert it to an SC-implementable polynomial by approximation. This step is a straight-
forward polynomial fitting problem and can be easily solved by tools such as MATLAB
[84].

The main steps of STRAUSS are listed in Procedure 3.1. We first illustrate them with
examples, and then discuss their details.

Example 3.3: Consider the problem of reverse engineering the IBP multiplier, so the given
function is F̂2(X1, X2) = X1X2. Since this already has the desired multilinear polynomial

47

form, we can skip Step 1 of STRAUSS and proceed to Step 2, where we use the inverse
Fourier transform to obtain f2’s TT vector.

~f2 = H2 × ~F2 =

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

×

0

0

0

1

 =

+1

−1

−1

+1

The result ~f2 only has +1 and −1 as elements, and is clearly the TT of a 2-input XOR gate.

Now consider the same problem for the UP multiplier F̂3(X1, X2) = X1X2. Note that
this function will be different from F̂2 because of the format change. Mapping F̂3 to the
IBP format yields

P̂3(X1, X2) = 1− 2F̂3

(
1−X1

2
,
1−X2

2

)
= 0.5(1 +X1 +X2 +X1X2)

Applying the inverse Fourier transform to P̂3 produces the TT [+1 +1 +1 −1]T, which
defines an AND gate.

Example 3.4: Suppose we attempt to synthesize the arithmetic sum function
F̂4(X1, X2) = X1 + X2. This is also in multilinear form, so we proceed with the inverse
Fourier transform.

~f4 = H2 × ~F4 =

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

×

0

1

1

0

 =

+2

0

0

−2

Two elements of ~f4 lie outside the interval [−1,+1], which means that it is SC-
unimplementable. The standard solution is scaled addition which substitutes s(X1 + X2)

for X1 + X2, where s is a scale factor that makes the function SC-implementable; in this

48

case s = 1/2. The new target function is F̂5(X1, X2) = 1
2
(X1 +X2), which yields

~f5 = H2 × ~F5 =

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

×

0

0.5

0.5

0

 =

+1

0

0

−1

However, the result ~f5 has elements other than +1 and 1, namely 0, so a constant number
generation step (Step 3) is required. This is discussed in the next section.

3.3 Constant Number Generation

The third step of STRAUSS, as seen in Procedure 3.1, is constant number generation, a
challenging problem in itself. We first discuss the intuition behind this step. Then, we
formally define the problem and present several solutions.

Continuing Example 3.4 from the previous section, we derived the truth-table ~f5 =

[+1 0 0 −1]T for the stochastic add operation. We can interpret this TT as follows. If
both inputs are 0, then a constant SN of value +1 (in IBP format) is sent out; if both inputs
are 1, then a constant SN of value −1 (in IBP format) is sent out; if one input is 1 and the
other is 0, a constant SN of value 0 is sent out. Producing an SN with values other than +1
or −1 requires additional inputs, i.e., random number sources. For the running example,
we can replace the two-input TT ~f5, with the following three-input TT

~f5 = [+1 +1 +1 −1 +1 −1 −1 −1]T

which is the Boolean function f5(x1, x2, r) = (x1 ∧ r) ∨ (x2 ∧ r) ∨ (x1 ∧ x2), where an
auxiliary input r has been added to the function. (This happens to be the majority function.)
The r input must be fed with the IBP stochastic number 0, i.e., a pure random bit-stream.
Figure 3.3a shows a straightforward AND-OR implementation of f5.

It is possible to optimize the synthesized circuit further by reordering the elements of
~f5. For example, the following TT has the same stochastic behavior of ~f5 but has a simpler
implementation:

~f5 = [+1 +1 −1 +1 +1 −1 −1 −1]T

49

This is the BF f5(x1, x2, r) = (x1 ∧ r)∨ (x2 ∧ r̄), which has the AND-OR implementation
of Figure 3.3b. It is obvious that this new circuit is a 2-to-1 multiplexer with r as its select
input. This is precisely the standard scaled adder in the SC literature [38].

Finding the best ordering of +1’s and −1’s of a TT is a difficult optimization task. We
now formally define the constant SN generation problem, and present a solution method
for it.

Single SN generation problem: Given a constant number c ∈ [−1,+1] and a
desired precision m, we want to find an m-input Boolean function f(r1, ..., rm) with
k = b(1− c)2m−1c (or k = d(1− c)2m−1e) minterms that has minimum cost.

When fed with pure random inputs, an m-input BF f(r1, ..., rm) with k = (1− c)2m−1

minterms, will output a 1 with a probability of k
2m

. Thus the IBP value generated at the
output of f is 1− 2(k

2m
) = c. Note that the precision m only refers to the target constant c,

and has no implications on the runtime for SN generation.
It should be noted that the number of auxiliary inputs introduced determines the pre-

cision of the constant numbers that can be generated. With m + 1 auxiliary inputs
r1, ..., rm, rm+1, we can only generate the following numbers{

−2m

2m
,
−2m + 1

2m
, ...,
−1

2m
,

0

2m
,
+1

2m
, ...,

2m − 1

2m
,
2m

2m

}
Any other number c should be rounded to the closest number from the above set. So for an
arbitrary real-valued c, one has to choose a value for m, taking into account that increasing
m provides better precision and accuracy but also increases the cost of the circuit.

As the problem suggests, there may be many BFs that generate the same constant num-
ber, and our goal is to select one with minimum cost. We use literal count as our cost crite-

f5rf5r

x1

x1

x2
x2

(a) (b)

Figure 3.3: Two synthesized circuits for SC addition: (a) without optimization; (b) with
optimization.

50

Procedure SCG(m, k) – Returns m-input Boolean function with k minterms in
– truth-table format

Step 1. (terminal cases)
If k = 0 then the function is constant 0, so return [0 0 ... 0]T

If k = 2m then the function is constant 1, so return [1 1 ... 1]T

Step 2a. If k ≤ 2m−1 , fill the first half of the truth-table TT with zeros, and fill the
second half using a recursive call to SCG(m− 1, k):

TT = [0 0 ... 0 SCG(m− 1, k)]T

Step 2b. If k > 2m−1 , fill the second half of the truth-table TT with ones, and fill the
first half using a recursive call to SCG(m− 1, k)− 2m−1:

TT = [SCG(m− 1, k − 2m−1) 1 1 ... 1]T

Step 3. Return TT

Procedure 3.2: Overview of the single constant generation procedure SCG.

rion, because it is easy to use and reflects both transistor and gate count fairly accurately in
standard CMOS logic [50]. For example, both of the following BFs f6(r1, ..., rm) = r1 and
f7(r1, ..., rm) = r1 ⊕ ... ⊕ rm have 2m−1 minterms and thus generate the constant c = 0.
But f6 has a literal count of 1, while f7 has a literal count of 2(m− 1) using a chain or tree
of XOR gates. Note that the cost of an XOR gate is twice the cost of an elementary gate.

Qian and Riedel [107] give a method of synthesizing a minimal two-level circuit that
generates a given stochastic constant. Qian et al. [109] discuss several other methods that
synthesize multi-level circuits. The method of [109] does not directly address the single
SN generation problem defined in this chapter, so the optimality of that method will not
be discussed here. We now present a recursive algorithm called single constant generation

(SCG) to obtain a minimal multi-level constant generation circuit. This algorithm takes two
parameters, the number of inputsm and the number of minterms k, and returns a truth-table
(TT) of length 2m with k minterms. If k ≤ 2m−1, i.e., k is at most half the TT’s length,
then SCG fills the first half of the TT with 0’s, and makes a recursive call with parameters
m− 1 and k. This recursion can be interpreted as follows. SCG returns

f(r1, ..., rm) = r1 ∧ f ′(r2, ..., rm)

51

in which f ′ is a function with m − 1 variables and k minterms. If k > 2m−1, SCG fills
the second half of the TT with 1’s, and makes a recursive call with parameters m − 1 and
k − 2m−1. Similarly, this recursion step can be interpreted as the algorithm returning

f(r1, ..., rm) = r1 ∨ f ′(r2, ..., rm)

After m − 1 recursion steps, SCG returns a BF that is implemented by a chain of at most
m − 1 AND or OR gates. The steps of the SCG procedure are given in Procedure 3.2.
This algorithm can also be used to solve the multiple constant SN generation problem, as
discussed below.

Example 3.5: Consider finding a 7-input function f8(r1, ..., r7) with 77 minterms. We call
SCG(7, 77), which returns a TT with 64 ones in the second half, and 13 ones in the first
half. The first half is now obtained by calling SCG(6, 13). This recursion step corresponds
to

f8(r1, ..., r7) = r1 ∨ f ′8(r2, ..., r7)

in which f ′8 is the result of SCG(6, 13). Continuing down the recursion path we see
SCG(5, 13), SCG(4, 13), SCG(3, 5), SCG(2, 1), SCG(1, 1), and SCG(0, 1) which is
a terminal case. The resulting function is hence

f8(r1, ..., r7) = r1 ∨ r2r3(r4 ∨ r5 ∨ r6r7)

which has minimal literal count. The corresponding optimal circuit implementation of f8
is shown in Figure 3.4.

The circuits generated by the SCG procedure are optimal in terms of literal count. The
proof is straightforward; each input of the generated Boolean function appears at most once
in the final expression. So if m inputs are required to generate a constant, the literal count
of the generated circuit will be m, which is the minimum possible literal count for an m-

f8
r1

r3
r2

r4
r5r6

r7

Figure 3.4: Optimal circuit implementation for function f8 of Example 3.5.

52

input circuit. The constant number generators synthesized by the method of [107] have
near-optimal two-level implementations, but in most cases their literal count is greater than
m. Next, we generalize the problem to multiple constants.

Multiple SN generation problem: Given a set of constant numbers {c0, ..., c2n−1}
where ci ∈ [−1,+1], we want to find 2n minimum-cost m-input BFs f1, ..., f2n−1 with
b(1− c0)2m−1c , ..., b(1− c2n−1)2m−1c minterms, respectively.

The multiple constant generation problem, which is Step 3 of STRAUSS (see Proce-
dure 3.1), is a difficult one, because there are many possible opportunities for sharing gates
between the circuits for the ci’s. Since exhaustively searching among them would be in-
efficient, we propose a heuristic algorithm based on the SCG procedure (Procedure 3.2).
To generate all the constants, we call SCG for each ci, and as SCG progresses, we keep
a record of the constant SNs and circuits it has generated so far. The generated circuits
are stored in a table and are reused if a previously generated SN is encountered. This ap-
proach is demonstrated in the following example which illustrates a complete synthesis
computation using STRAUSS.

Example 3.6: Consider the target function F̂9(X) = 0.4375 − 0.25X − 0.5625X2. We
want to use STRAUSS to synthesize a stochastic circuit that implements F̂9. In Step 1
of Procedure 3.1, F̂9 is reformulated as a multilinear polynomial P̂9 because it contains a
non-linear term X2. This term is eliminated by introducing two new inputs X1 and X2 to
replace X thus:

P̂9(X1, X2) = 0.4375− 0.125(X1 +X2)− 0.5625X1X2

This is only one of the many possible multilinear polynomials that are equivalent to the
target function F̂9, and is not necessarily the best choice.

For this example, we chose a symmetric multilinear polynomial, but as we will show in
the next section, STRAUSS examines many possible polynomials (including asymmetric
ones) and chooses one that leads to a lower cost. At Step 2 of STRAUSS, we have

~f9 = H2 × ~P9 =

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

×

+0.4375

−0.1250

−0.1250

−0.5625

 =

−0.375

+1

+1

+0.125

53

All the elements of ~f9 are in the [−1,+1] interval, implying that the function is SC-
implementable. However, there exist elements other than +1 and−1, namely, c0 = −0.375

and c3 = +0.125, which require constant SN generation (Step 3). In fact c1 = c2 = +1 are
also constant SNs, but they are trivial to generate.

To generate c0, the SCG procedure (Procedure 3.2) is called with parametersm = 4 and
k = 11. The choice of m = 4 stems from the fact that it is the least number of inputs for a
BF capable of generating c0. The parameter k comes from the formula k = (1 − c0)2m−1

discussed earlier. Calling SCG(4, 11) leads to the recursive calls: SCG(3, 3), SCG(2, 3),
SCG(1, 1), and SCG(0, 1), and the following BF is returned

fc0(r1, r2, r3, r4) = r1 ∨
(
r2(r3 ∨ r4)

)
Next, SCG is called with parameters m = 4 and k = 7 to generate c3. Calling

SCG(4, 7) entails recursive calls SCG(3, 7) and SCG(2, 3), at which point the recur-
sion stops because the results of the previous calls (during the circuit generation for c0) are
reused. The returned BF is

fc3(r1, r2, r3, r4) = r1
(
r2 ∨ (r3 ∨ r4)

)
which shares a gate with fc0 . Step 3 is now done, and we have a stochastic implementation
of F̂9, namely,

f9(x1, x2, r1, r2, r3, r4) = x̄1x̄2fc0 ∨ x1x2fc3

In the last step, f9 is optimized via conventional CAD tools. Figure 3.5a shows the
final gate-level implementation of f9. Notice the shared OR gate (r3 ∨ r4), which is used
in both fc0 and fc3 . The inputs x1 and x2 must be fed with independent bit-streams that
carry the same SN X . These can be generated by using two independent SNGs, or just
by shifting one bit-stream in time and thus generating an independent copy of it [57]. The
auxiliary inputs, on the other hand, must be supplied with pure random bit-streams. As
shown in Figure 3.5, we connect the auxiliary inputs to a 4-bit LFSR, which generates four
independent random bit-streams [57]. Figure 3.5b shows another SC implementation of F̂9

using an older version of STRAUSS that was presented in [1]. As can be seen, the circuit
generated by STRAUSS yields a smaller area based on literal count. In the next section,
we discuss some other optimizations used in STRAUSS.

54

3.4 Further Optimizations

Step 1 of STRAUSS involves converting the target function to a multilinear polynomial,
which can be symmetric or asymmetric. All the previous examples used symmetric poly-
nomials, but it is possible to further optimize the synthesized circuit by considering both
symmetric and asymmetric polynomials.

We illustrate this with an example. Consider the target function

F̂10(X) =
1

2
(X3 +X)

Converting F̂10 to symmetric multilinear form, we get

P̂10(X1, X2, X3) =
1

6
(X1 +X2 +X3) +

1

2
X1X2X3

x1

r1 r2 r3 r4

x2
f9

x1

r1 r2 r3 r4 LFSR

x2
r1

r2
r3
r4

r2
x1x2

r1

f9

(a) (b)

Figure 3.5: Stochastic implementation of F̂9(X) = 0.4375− 0.25X − 0.5625X2 obtained
by (a) STRAUSS and (b) the algorithm of [1].

55

which yields the following TT after applying the inverse Fourier transform

~f10 = [+1 −1
3
−1

3
+1

3
−1

3
+1

3
+1

3
−1]T

Since this has elements other than 1 and −1, namely, +1
3

and −1
3
, multiple-constant SN

generation circuitry is required. However, if we choose the following asymmetric multilin-
ear polynomial in the first step of STRAUSS

P̂ ′10(X1, X2, X3) =
1

2
(X1 +X2 −X3) +

1

2
X1X2X3

Then the inverse Fourier transform produces

~f ′10 = [+1 +1 −1 +1 −1 +1 −1 −1]T

which is simply the BF f ′10(x1, x2, x3) = x1x2 ∨ x1x̄3 ∨ x2x̄3, and requires no constant-
generation circuitry. This means that significant cost savings are possible if asymmetric
polynomials are considered.

A given SC-implementable polynomial can be mapped to many different asymmet-
ric multilinear polynomials with the same SC behavior, some of which may be SC-
unimplementable. To distinguish between them, we need to apply the inverse Fourier trans-
form (Step 2 of STRAUSS) and check if all the elements of the truth table are in the interval
[−1,+1]. However, applying the transform to all possible polynomials is time-consuming,
making this approach infeasible. So STRAUSS uses a different approach which is dis-
cussed below. An overview of this Asymmetric Polynomial Selection (APS) algorithm is
given in Procedure 3.3.

Given a target polynomial, we start with a symmetric multilinear polynomial2 and use
the inverse Fourier transform to obtain a symmetric truth-table (STT). Because of its sym-
metry, the STT includes repeated elements. We then modify the repeated elements to obtain
an asymmetric TT of better cost. If we keep the new elements in the [−1,+1] interval, the
newly obtained TT remains SC-implementable. And as long as we keep the average of
the new elements the same as that of the old elements, the new TT will have the same SC
behavior as the STT.

2There is only one way to convert any polynomial term into a set of multilinear terms that are symmetric
with respect to all the input variables.

56

Procedure APS(F̂) – Given a polynomial F̂ , find an asymmetric multilinear
– polynomial of near-optimal cost

Step 1. Convert F̂ to a symmetric multilinear polynomial P̂

Step 2. Apply the inverse Fourier transform to P̂ and obtain a symmetric truth-table ~f

Step 3. Pick a group of symmetric elements from ~f , and replace them with new
elements, all of which, except for at most one, must be +1 or −1

Step 4. Try all the possible orderings of the current group of elements, and select one of
lowest cost

Step 5. Repeat Steps 3 and 4 for all elements of ~f

Procedure 3.3: Summary of the asymmetric polynomial selection (APS) procedure.

As an example, consider a generic 3-input STT

~f11 = [c1 c2 c2 c3 c2 c3 c3 c4]
T

which has at most four distinct elements c1, ..., c4. We can replace the three c2’s with three
new elements, c′2, c′′2, and c′′′2 . If the new elements are within the interval [−1,+1], and if
c′2 + c′′2 + c′′′2 = 3c2, then the new TT

~f ′11 = [c1 c′2 c′′2 c3 c′′′2 c3 c3 c4]
T

will have the same SC behavior as ~f11. Since all the inputs of the circuit have the same
value X , the probabilities of getting any of the c2 elements in ~f11 will be the same. So
by changing the elements to c′2, c

′′
2, and c′′′2 in ~f11 and keeping the average the same as

before (by assigning c′2 + c′′2 + c′′′2 = 3c2), the SC behavior of the TT remains unchanged.
Similarly, the three c3’s can also be replaced with new elements. The choice of the new
elements directly affects the cost of the new TT. Elements such as +1 and −1 are desirable
because they can be generated at no cost, while other elements require constant generation
circuitry.

For example, consider the following STT

~f10 = [+1 −1
3
−1

3
+1

3
−1

3
+1

3
+1

3
−1]T

57

which has three−1
3
’s and three +1

3
’s. As shown earlier, we can replace these elements with

new elements and obtain

~f ′10 = [+1 +1 −1 +1 −1 +1 −1 −1]T

which has the same SC behavior. Notice that the three −1
3
’s are replaced with two −1’s

and one +1, and the three +1
3
’s are replaced with two +1’s and one −1. Another choice of

TT with the same behavior is

~f ′′10 = [+1 0 0 0 −1
3

+1
3

0 −1]T

but it clearly has a higher cost because it requires several constant-generation circuits, while
~f10 requires none. It can be shown that given a set of symmetric elements, we can always
find a new set of elements with the same average, all of which, except for at most one, are
+1’s or −1’s.

Assume we have a set of k symmetric elements of value c. If c > 0, then we can replace
the set with one +1 element and k− 1 new elements c′ of value (kc− 1)/(k− 1). The new
set has the same average as the old set:

+1 + (k − 1)c′ = 1 + (k − 1)
kc− 1

k − 1
= kc

Similarly, if c < 0, we can replace the set with one −1 and k − 1 new elements c′ of value
(kc+ 1)/(k− 1). By repeating this process on the new elements of the set, we obtain a set
that has at least k − 1 elements of value +1 or −1.

Another factor affecting cost is the order of the new elements in the TT. For example,
the two +1’s and one −1 replacing +1

3
can appear in three possible orders: [+1 +1 −1],

[+1 −1 +1], and [−1 +1 +1]. Similarly, the new elements replacing −1
3
’s can also

be reordered. So the TT ~f10 can have 9 different orderings:

[+1 +1 −1 +1 −1 +1 −1 −1]T

[+1 +1 −1 +1 −1 −1 +1 −1]T

[+1 +1 −1 −1 −1 +1 +1 −1]T

[+1 −1 +1 +1 −1 +1 −1 −1]T

58

[+1 −1 +1 +1 −1 −1 +1 −1]T

[+1 −1 +1 −1 −1 +1 +1 −1]T

[+1 −1 −1 +1 +1 +1 −1 −1]T

[+1 −1 −1 +1 +1 −1 +1 −1]T

[+1 −1 −1 −1 +1 +1 +1 −1]T

The number of different ways to order the TTs grows exponentially with the number
of inputs, so searching among all of them is not possible for large circuits. For such cases,
STRAUSS has a greedy search heuristic that usually finds a good ordering. The heuristic
starts from the STT and selects a group of repeated elements (say c2 in ~f11) and finds
new elements (c′2, c

′′
2 and c′′′2) to replace them. Then it tries all the possible orderings of this

group, and selects one with the minimum cost. The algorithm proceeds to the next group of
repeated elements (c3 in ~f11). In so doing, the algorithm only examines 3+3 = 6 orderings
out of the 3 × 3 = 9 possible orderings. Thus, the search becomes feasible for larger
circuits. Like most heuristics, this method does not always find an optimal solution, but
our experiments show that a near-optimum polynomial is usually found. We also observed
that in most cases, there are multiple optimum and many near-optimum polynomials, which
favors the heuristic search.

It is worth noting that employing asymmetric polynomials reduces the precision needed
in the constant generation circuit, and hence can lead to cost savings. A good example is
the function F̂10 discussed earlier in this section. A symmetric TT for this function is

~f10 = [+1 −1
3
−1

3
+1

3
−1

3
+1

3
+1

3
−1]T

which requires constant generation circuitry for 1
3

and −1
3
. When applying the SCG proce-

dure (Procedure 3.2) to ~f10 , one has to choose a precision m, and round the numbers 1
3

and
−1

3
to the precision closest to m. However, an asymmetric implementation of F̂10, namely,

~f ′10 = [+1 +1 −1 +1 −1 +1 −1 −1]T

needs no constant generation at all. It is as if the constants 1
3

and −1
3

are implemented with
unlimited precision and at no cost. We end this section with a complete example involving
a multivariate target function.

59

Example 3.7: Consider the target function F̂11(X, Y, Z) = 1
64

(63 + X2 + Y 2 + Z2 −
X2Y 2 − X2Z2 − Y 2Z2 + X2Y 2Z2). Since the maximum degree of the polynomial is
two, we will need two independent copies of each input. The corresponding symmetric
multilinear polynomial form of F̂11 is

P̂11(X1, X2, Y1, Y2, Z1, Z2) =
1

64
(63 +X1X2 + Y1Y2 + Z1Z2 −X1X2Y1Y2

−X1X2Z1Z2 − Y1Y2Z1Z2 +X1X2Y1Y2Z1Z2)

Applying the inverse Fourier transform on P̂11 (Step 2 of STRAUSS), yields the symmetric
TT vector

~f11 = [1 1
7

8

7

8
1 1

7

8

7

8
1 1 1 1 1 1

1 1 1 1
7

8

7

8
1 1

7

8

7

8
1 1]T

(This STT is of size 64 and is displayed in two lines due to spacing limits.) Steps 3 and 4
of STRAUSS yield the following Boolean function

f11(x1, x2, y1, y2, z1, z2, r1, r2, r3, r4) =
(
(x1⊕x2)∨(y1⊕y2)∨(z1⊕z2)

)
∧(r1∧r2∧r3∧r4)

which requires four auxiliary inputs. A gate-level implementation of f11 is shown in Figure
3.6a.

r1
r3

x1
x2

y1
y2

z1
z2

r2
r4

f11

r1

x1
x2

y1
y2

z1
z2

f11

(a) (b)

Figure 3.6: Stochastic implementations for F̂11 of Example 3.7: (a) symmetric and (b)
asymmetric.

60

It is possible to further optimize this circuit by applying the APS procedure to F̂11.
In the symmetric TT shown above, there are 8 symmetric elements with value 7

8
. APS

identifies this symmetric group and replaces it with a group of seven elements of value
1 and one element of value 0. After trying different possible orderings, APS returns the
following asymmetric TT (which is one of the 8 possible optimal TTs)

~f ′11 = [1 1

1 1 1 1 1 1 1 1 1 0 1]T

This yields the Boolean function

f ′11(x1, x2, y1, y2, z1, z2, r1) = x1 ∧ x̄2 ∧ y1 ∧ ȳ2 ∧ z1 ∧ z̄2 ∧ r1

which requires only one auxiliary input. An implementation of f ′11 is shown in Figure 3.6b.
The asymmetric polynomial P̂ ′11 corresponding to f ′11 has more terms than the symmet-
ric polynomial P̂11 but, surprisingly, it yields a lower-cost implementation. Note that the
APS procedure performs transformations on the TT only and does not deal with different
(and in some cases complicated) polynomial terms. The first 16 terms of the asymmetric
polynomial P̂11 are shown below for illustration purposes only.

P̂ ′11(X1, X2, Y1, Y2, Z1, Z2) =
1

64
(63−X2 +X1 +X1X2 − Y2 −X2Y2 +X1Y2

+X1X2Y2 + Y1 +X2Y1 −X1Y1 −X1X2Y1

+ Y1Y2 +X2Y1Y2 −X1Y1Y2 −X1X2Y1Y2 + ...)

3.5 Related Work and Experimental Results

Very little previous research has addressed the systematic design of SC circuits. Qian and
Riedel [106] have developed a non-spectral method of implementing a single-variable SC
target function F̂ (X) defined in UP format. They convert F̂ (X) to a Bernstein polynomial
of the form

P̂ (X) =
n∑

i=0

Ci

(
n

i

)
X i(1−X)n−i (3.11)

61

in which the Ci’s are constant coefficients. This polynomial is then mapped to a spe-
cific style of logic circuit termed ReSC (Reconfigurable SC Architecture) [109] which
was discussed in Section 2.5. It consists of an n-input adder that implements the terms(
n
i

)
X i(1 −X)n−i (called the Bernstein terms) and a multiplexer that selects the Ci coeffi-

cients. Figure 3.7 a shows the ReSC implementation of Eq. (3.11). There are n independent
inputs (xi’s) to the adder representing the variable X , and n + 1 inputs to the multiplexer
(ci’s) that represent the coefficientsCi in (3.11). The probability of a number k at the output
of the adder is equal to

(
n
k

)
Xk(1−X)n−k, i.e., the kth Bernstein term. Thus, the probability

of having a 1 at f is equal to the probability getting a 0 at the adder and a 1 at c0, plus the
probability of getting a 1 at the adder and a 1 at c1, plus ..., plus the probability of getting n
at the adder and a 1 at cn. These probabilities can be expressed as

F (X) =
n∑

i=0

Ci

(
n

i

)
X i(1−X)n−i

which is the same as (3.11). Note that the xi inputs are independent SNs representing the
number X , similar to the x1 and x2 inputs of Figure 3.5. This structure requires n SNGs
to generate the xi’s and n + 1 SNGs to generate the ci’s, which entails a significant area
cost. Similar to STRAUSS, this design approach can be extended to multivariate functions
[109], and to the bipolar format.

We now show that the method of [109] can be re-interpreted in terms of a spectral
transform, a “Bernstein transform” B with a basis different to that of the Fourier transform
F .

Consider the 2-variable BF f(x1, x2). Define a new spectral basis for it as follows:
B0 = 1

4
(1 + X1)(1 + X2), B1 = 1

4
(1 + X1)(1 − X2) , B2 = 1

4
(1 − X1)(1 + X2) and

B3 = 1
4
(1 −X1)(1 −X2). (Note the difference between this and the spectral basis of the

2-variable Fourier transform, which is 1, X1 , X2 and X1X2 .) The resulting transform B
of f can then be written as:

F (X1, X2) =
3∑

i=0

CiBi (3.12)

62

This corresponds to the same multilinear expression generated by the Fourier transform.
To see this, expand (3.12) thus:

F (X1, X2) =
1

4

(
C0(1 +X1)(1 +X2) + C1(1 +X1)(1−X2)

+ C2(1−X1)(1 +X2) + C3(1−X1)(1−X2)
)

=
1

4

(
(C0 + C1 + C2 + C3)

+ (C0 − C1 + C2 − C3)X2

+ (C0 + C1 − C2 − C3)X1

+ (C0 − C1 − C2 + C3)X1X2

)
which is the multilinear polynomial produced by the Fourier transform, as the following
equation demonstrates:

~F =
1

4

+1 +1 +1 +1

+1 −1 +1 −1

+1 +1 −1 −1

+1 −1 −1 +1

×

C0

C1

C2

C3

 =
1

4

C0 + C1 + C2 + C3

C0 − C1 + C2 − C3

C0 + C1 − C2 − C3

C0 − C1 − C2 + C3

Despite their similarities, the circuits synthesized by STRAUSS are quite different from

those designed with the ReSC architecture of [109]. Most importantly, ReSC does not ben-
efit from asymmetric polynomials or constant input sharing. To illustrate this, we imple-
mented the function F̂9 of Example 3.6 using ReSC. Figure 3.7b shows the result (adjusted
for the IBP format). Besides its adder and multiplexer, this design contains three SNGs,
each consisting of a 4-bit comparator and a 4-bit random number generator (or LFSR), as
in Figure 2.3a. Note, however, that this circuit can be optimized using standard combina-
tional techniques; the middle SNG, for instance produces a 0, and so can be removed from
the circuit.

To attempt a fair comparison, we used the Berkeley SIS synthesis tool [120] to optimize
this design and those of Figure 3.5 and to map them to a generic library of gates. The
library includes all the elementary gates and their relative area cost in terms of unit cells
in a 0.35µm CMOS technology. Table 3.1 compares the three implementations of this
function, along with several other representative circuits, with area cost reported in terms
of unit cells. The methods that are being compared are: (i) ReSC from [109], (ii) the older

63

Table 3.1: Comparison between the proposed synthesis method STRAUSS and those of [1]
and [109]; area is in unit cells from a generic library and includes the LFSRs and SNGs
used for constant generation.

Target design Qian et al. [109] Alaghi and Hayes [1] STRAUSS
F̂9 from Example 3.6 113 70 70
F̂10(X) = 1

2(X
3 +X) 174 112 10

Gamma correction [109] 962 314 276
Average of 10 random

target functions
426 151 125

version of STRAUSS from [1], and (iii) STRAUSS. The runtime of the circuits depends
on the desired accuracy of the user. In general, longer runtime leads to better accuracy.
The circuits compared in Table 3.1 achieve the same level of accuracy for a given runtime.
These results show that STRAUSS synthesizes circuits that are significantly smaller than
those designed by the techniques of [1] and [109]. The area reported in Table 3.1 does not
include the conversion circuits that may be required for the primary inputs and outputs.

x1

c0

c1

cn

... +

..

.

0

1

k

...
f

x2

xn

x1

SNG0000

+

0

1 f9

2

2

x2

4

SNG4

SNG4

1011

0111

(a) (b)

Figure 3.7: (a) ReSC architecture proposed in [109]; (b) Implementation of F̂9(X) from
Example 3.6 using this architecture.

64

3.6 Summary

This chapter dealt with the problem of automatically designing (synthesizing) a stochastic
circuit for a given target function. We have shown here that well-defined transforms linking
the Boolean and the spectral domains exist, which provide fundamental theoretical insights
into SC behavior. We have also successfully applied spectral transforms to the design of
circuits in a way that naturally accommodates the most useful stochastic number formats.
Furthermore, we have presented a novel and general synthesis technique STRAUSS for
combinational circuit synthesis. Comparing this work to the major existing SC design
method [109], we found that the results generated by STRAUSS can lead to significant
cost savings.

65

Chapter 4

Correlation in Stochastic Computing

This chapter discusses the role of correlation in stochastic computing (SC). We start by
introducing a concept called correlation insensitivity. Correlation insensitive (CI) functions
are not affected by correlations among their inputs. This concept can be exploited in SC,
as well as the closely related topic of statistical simulation (SS). For instance, inputs of a
CI function can share random number sources without compromising the output accuracy,
which in SC leads to significant cost savings.

After discussing CI functions, we show that systematic correlation in SC circuits can
change their underlying function in a useful way. To illustrate this, we introduce a new cor-
relation measure called SC correlation (SCC), that is suitable in quantifying the correlation
of arbitrary SNs. Finally, we show that SCC adds a new dimension to SC circuit design, and
in many cases leads to efficient implementation of useful functions. The material related to
CI is published in [6], while that related to SCC appears in [4]

4.1 Statistical Simulation and Correlation Insensitivity

In this section, we introduce the problem of statistical simulation, which has direct links to
SC and the problem of SN generation. After providing suitable definitions, we introduce
correlation insensitivity, and how it affects SS. Then we show how SC can also exploit
correlation insensitivity.

Each wire x in a stochastic circuit is associated with a Bernoulli random variable (BRV)
X with parameter pX , which is the probability of seeing a 1 on x. This is similar to the
notion of an SN in SC. In fact, as shown in the next chapter, we can define SNs in the
exact same way for error analysis purposes. The probability mass function (pmf) of X is

66

fX(k) = P{X = k}, where P{A} is the probability of event A. Since fX is a binary
function, fX(1) uniquely defines it. Note that fX(1) = pX .

The BRVs X1, ..., Xn associated with x1, ..., xn may be correlated. Hence, their proba-
bilistic behavior must be viewed as a joint probability distribution (or a joint pmf)

fX1...Xn = P{X1 = k1, ..., Xn = kn}

The joint pmf specifies the probability of each of the 2n possible combinations of Xi’s. In
the special case where all the Xi’s are independent, the joint pmf reduces to the product of
the marginal distributions of the individual BRVs.

fX1...Xn = fX1(k1)× ...× fXn(kn) (4.1)

Definition 4.1: Let z(x1, ..., xn) be the Boolean function realized by combinational circuit
C. Statistical simulation (SS) is the process of estimating the pmf fZ by applying samples
from a joint pmf fX1...Xn to C. Note that fZ can be calculated exactly using the following
equation:

fZ(1) =
1∑

k1=0

1∑
k2=0

...
1∑

kn=0

(
z(k1, k2, ..., kn)× fX1X2...Xn(k1, k2, ..., kn)

)
(4.2)

which, along with fZ(0) = 1− fZ(1), completely specifies fZ . Evaluating Eq. (4.2) is not
practical, however, because of its exponential growth with n. SS is a practical alternative
because it uses only a subset of the input combinations to estimate fZ .

As an example, consider the 2n+ 1-input circuit C of Figure 3.7a. If the inputs are in-
dependent BRVs with parameter 1/2, i.e., unbiased BRVs, then SS ofC involves generating
samples from 2n+ 1 independent random sources, and recording the frequency of 1’s and
0’s on the output to estimate its pmf. As we will show later in this section, the multiplexer
is correlation insensitive (CI) with respect to it data inputs, so we can use the same random
source for all the data inputs, hence reducing the required random sources to n+ 1.

In general, the input BRVs of a circuit can be biased, meaning that they can have a
parameter other than 1/2, and they also can be non-independent (correlated). In such cases,
the joint pmf of the inputs cannot be expressed in terms of individual pmfs, as in Eq. (4.1).
So for SS purposes, we must sample directly from the joint pmf. The theoretical analysis

67

presented here applies to the general case. However, for ease of presentation, and since
most applications employ independent inputs, we normally use examples that have inde-
pendent RVs at their primary inputs.

Figure 4.1 shows a typical set-up for SS of a circuit with n independent inputs. The
Bernoulli random variable generators produce BRVs with arbitrary parameter pXi

. They
each include a comparator (C) and an LFSR-based random number generator (RNG). In
each clock cycle, C compares two k-bit binary numbers: the desired parameter pXi

and a
number ri generated by the RNG. If ri < pXi

, then xi = 1; otherwise, xi = 0. Hence,
xi = 1 has probability pXi

, approximately. To generate n independent BRVs, n number
generators with independent RNGs are used. Note the similarity between a number gener-
ator and the SNG of Figure 2.3a.

Now let us look at another example of a CI function before formally defining the con-

cept. Consider the function z(x1, x4, x5) = x̄1x4∨x1x̄5 obtained by setting x2 = x3 = 1 in

Figure 4.2. This is essentially the 2-to-1 multiplexer function, so it has the special property

that inputs x4 and x5 cannot propagate to the output z simultaneously. In other words, x4

Comparator
k

A

B

A<B

Binary

number pX

k

Random no.

generator
xiC

x1

pXClock

r1

z

rn

Logic
circuit

Clock

1

xnpXn

C

C

RNG 1

RNG n

i

Bernoulli random variable generator

Figure 4.1: Statistical simulation set-up; random samples are generated at r1, ..., rn to esti-
mate probability distribution fZ .

68

and x5 never affect z at the same time. When x1 = 1, the path from x5 to z via G3 and G5

(highlighted in red, dashed) becomes active, and the path from x4 through G2 (highlighted

in blue) is blocked. If x1 = 0, the opposite happens. Assuming X1 is independent of the

other variables, we can write

fZ(1) = fX1
(0)fZx1

(1) + fX1
(1)fZx1

(1)

which is the probabilistic version of Boole-Shannon expansion (Theorem 4.1). zx1 = x4 is

the negative cofactor of z with respect to x1 obtained by setting x1 = 0 in z; zx1 = x̄5 is

the positive cofactor of z obtained by setting x1 = 1. Hence,

fZ(1) = fX1
(0).fX4

(1) + fX1
(1).fX5

(0)

implying that the output is a function of the marginal distributions fX4 and fX5 only, and
not of their joint pmf fX4X5 , as if X4 and X5 were independent BRVs. This is because x4
and x5 do not appear in the x1 cofactors of z simultaneously. A function like z is CI with
respect to x4 and x5 because its output pmf is unaffected by correlations between X4 and
X5.

x1

z

x2

x3

x4

x5

10

G1

G2

G3

G4

G5

G6

1

1

z = x'1x4 + x1x'5

Figure 4.2: Five-input circuit; paths from x4 (blue) and x5 (red, dashed) are activated by
different values of x1.

69

Theorem 4.1: (Probabilistic Boole-Shannon expansion) For a Boolean function

z(x1, ..., xn), if BRV X1 is independent of the remaining variables, then

fZ(1) = fX1
(0)fZx1

(1) + fX1
(1)fZx1

(1)

where Zx1 and Zx1 are the BRVs corresponding to the positive and negative cofactors,
respectively, of z with respect to x1.

Proof. The events X1 = 0 and X1 = 1 are complementary, so

fZ(1) = fZ|X1
(1).P{X1 = 0}+ fZ|X1

(1).P{X1 = 1}

= fZ|X1
(1).fX1

(0) + fZ|X1
(1).fX1

(1)
(4.3)

fZ|X1 (fZ|X1
) is the conditional distribution of Z with respect to the eventX1 = 1 (X1 = 0),

and is defined as fZ|X1(1) = fZX1(1, 1)/fX1(1). Since X1 is independent of the remaining

variables, we have fZ|X1(1) = fZx1
(1). Similarly, fZ|X1

(1) = fZx1
(1), so by Eq. (4.3)

fZ(1) = fX1
(0).fZx1

(1) + fX1
(1).fZx1

(1)

We are now ready to formally define CI.

Definition 4.2: A Boolean function z(x1, ..., xn) is correlation insensitive with respect to
variables x1 and x2 if the distribution (pmf) of Z only depends on the marginal probability
distributions fX2X3...Xn and fX1X3...Xn and not the joint pmf fX1...Xn . We refer to x1 and x2
as CI inputs of z.

Equivalently, we could define z(x1, ..., xn) as CI with respect to x1 and x2, if x1 and
x2 do not appear in the cofactors of z with respect to x3, ..., xn, simultaneously. This
equivalence is shown in the proof of Theorem 4.2.

Example 4.1: Consider again the function z(x1, x4, x5) = x̄1x4 ∨ x1x̄5 in Figure 4.2.
We will show that correlations between X4 and X5 do not affect the output pmf, whereas

70

correlations between X1 and X4 do. According to Eq. (4.2)

fZ(1) =
1∑

k1=0

1∑
k4=0

1∑
k5=0

(
z(k1, k4, k5)fX1X4X5(k1, k4, k5)

)
= fX1X4X5(0, 1, 0) + fX1X4X5(0, 1, 1) + fX1X4X5(1, 0, 0) + fX1X4X5(1, 1, 0)

The first two terms marginalize X5 and the last two terms marginalize X4, yielding

fZ(1) = fX1X4(0, 1) + fX1X5(1, 0)

Z’s pmf is a function of fX1X4 and fX1X5 only, so by Definition 4.2, z is CI with respect
to x4 and x5. The function z is not CI with respect to x1 and x4 (or x1 and x5), because
terms like fX1X4 (or fX1X5) appear in the pmf of Z. The rest of the example shows how
correlations between X4 and X5 leave Z unaffected, but those between X1 and X4 alter the
distribution of Z.
Case 1: All the input BRVs X1, X4, X5 are identically distributed and independent with
fXi

(1) = 0.5. Consequently,

fZ(1) = fX1X4(0, 1) + fX1X5(1, 0) = fX1(0)fX4(1) + fX1(1)fX5(0) = 0.5 (4.4)

Case 2: The input BRVs have the same marginal distribution as before (fXi
(1) = 0.5),

but now X4 and X5 are highly correlated with the following distribution, while X1 remains
independent

fX4X5(0, 0) = fX4X5(1, 1) = 0.5 and fX4X5(0, 1) = fX4X5(1, 0) = 0

We can also use a vector notation to represent the joint distribution of multiple variables. In
this case, we have ~fX4X5 = [0.5 0 0 0.5], where each element of the vector denotes to
the value of fX4X5 for a corresponding input combination (the first element corresponds to
X4X5 = 00, the second correspond toX4X5 = 01, etc.). In the current case, the correlation
between X4 and X5 leaves Z unaffected, following (4.4). This shows that Z is insensitive
to correlations between X4 and X5.
Case 3: Again fXi

(1) = 0.5 and X5 is independent. This time assume X1 and X4 are
highly correlated with joint distribution ~fX1X4 = [0.5 0 0 0.5]. The pmf of Z changes

71

to
fZ(1) = fX1X4(0, 1) + fX1X5(1, 0) = 0 + 0.25 = 0.25

indicating that z is not CI with respect to x1 and x4.

When a circuit’s output is CI with respect to two variables, SS can be performed as if
those inputs were highly correlated, even when they are independent. For example, if the
two inputs have the same probability, we can tie them together as if they were one. The
same concept applies to an SC circuit: CI inputs can share the same random source.

Next, we show that CI can be expressed in terms of the Boolean difference (BD). The
BD of z with respect to xi is dz/dxi = zxi

⊕ zxi
, where ⊕ denotes XOR (exclusive-OR),

and zxi
and zxi

are z’s cofactors with respect to xi [50]. For the function z = x̄1x4∨x1x̄5 of
Example 4.1, dz/dx1 = x4⊕ x̄5, dz/dx4 = x̄1 and dz/dx5 = x1. If dz/dx1 = 0, then x1 is
redundant, meaning that it has no influence on z. This enablesX1 to be marginalized out of
Eq. (4.2), making fZ a function of fX2...Xn only. In this case, according to Definition 4.2,
z is CI with respect to x1 and xj for any j = 2, 3, ..., n. This points to a method for
identifying CI functions.

Theorem 4.2: Function z(x1, x2, ..., xn) with n > 2 variables is CI with respect to x1 and
x2 if and only if for every cube (product term) c containing only variables x3, x4, ..., xn, at
least one input (x1 or x2) is redundant in the cofactor zc(x1, x2) or, equivalently

dzc/dx1 = 0 or dzc/dx2 = 0

Proof. (Sufficiency) For every combination of x3...xn, i.e., for every cube c containing
only the variables x3, x4, ..., xn, the cofactor zc is a function of one of the variables x1 or
x2, but not both. This means that dzc/dx1 = zc(0, x2) ⊕ zc(1, x2) = 0 or dzc/dx2 =

zc(x1, 0)⊕ zc(x1, 1) = 0, implying

zc(0, 0) = zc(1, 0) and zc(0, 1) = zc(1, 1)

or

zc(0, 0) = zc(0, 1) and zc(1, 0) = zc(1, 1)

(4.5)

72

Next, we express fZ(1) using Eq. (4.2) and unroll the first two sums (with respect to k1
and k2) to enumerate all the four possible cases of zc(0, 0), zc(0, 1), zc(1, 0) and zc(1, 1):

fZ(1) =
1∑

k3=0

...

1∑
kn=0

(
z(0, 0, k3, ..., kn)fX1X2...Xn(0, 0, k3, ..., kn)+

z(0, 1, k3, ..., kn)fX1X2...Xn(0, 1, k3, ..., kn)+

z(1, 0, k3, ..., kn)fX1X2...Xn(1, 0, k3, ..., kn)+

z(1, 1, k3, ..., kn)fX1X2...Xn(1, 1, k3, ..., kn)
)

(4.6)

Equation (4.5) implies that for each iteration of the preceding summation, we can marginal-
ize either X1 or X2, yielding

z(0, 0, k3, ..., kn)fX2...Xn(0, k3, ..., kn) + z(1, 1, k3, ..., kn)fX2...Xn(1, k3, ..., kn)

or

z(0, 0, k3, ..., kn)fX1...Xn(0, k3, ..., kn) + z(1, 1, k3, ..., kn)fX1...Xn(1, k3, ..., kn)

So the distribution of Z is a function of the marginal distributions fX2...Xn and fX1X3...Xn .
From Definition 4.2, z is CI with respect to x1 and x2.

(Necessity) By way of contradiction, if z is CI with respect to x1 and x2, but there is a
cube c with dzc/dx1 6= 0 and dzc/dx2 6= 0, then zc is a non-degenerate function of both x1
and x2. By enumerating all possibilities for zc—there are only 10 non-degenerate Boolean
functions of two variables—we see that for the particular iteration of (4.6) that corresponds
to c, none of the variables X1 and X2 can be marginalized. Hence, z is not CI with respect
to x1 and x2, a contradiction from which the necessary condition follows.

For Example 4.1, dzx1/dx4 = 0 , and dzx1/dx5 = 0, so in all the cofactors of z with
respect to the remaining variable x1, at least one of the variables x4 and x5 is redundant,
confirming that z is CI with respect to x4 and x5.

It is possible to have Boolean functions that are CI with respect to more than two vari-
ables. In the extreme case, a function can be CI with respect to all its inputs, in which case,
the function is just a constant and the output probability is either 0 or 1.

Definition 4.3: z(x1, ..., xn) is (strongly) correlation insensitive with respect to variable
set X = {x1, ..., xk}, if it is CI with respect to every pair xi, xj in X.

73

For example, the output of Figure 3.7a is CI with respect to every pair ci, cj , so it is
strongly CI with respect to {c1, ..., cn}. Correlation insensitivity occurs in several other
ways. A function may not be CI with respect to any pair of variables, but have a larger
subset of variables that do not affect the output at the same time.

Definition 4.4: z(x1, ..., xn) is weakly correlation insensitive (WCI) with respect to vari-
ables X = x1, ..., xk if the distribution of the BRV Z is only a function of the k marginal
probability distributions in which one of the BRVs X1, ..., Xk is marginalized out, i.e.,
fX2X3...XkXk+1...Xn , fX1X3X4...XkXk+1...Xn , ..., fX1X2X3...Xk−1Xk+1...Xn . X is called a WCI set
of z.

Weakly CI generalizes CI, so WCI sets can be expected to occur more often than
(strong) CI sets. A CI input-pair is a WCI set of size 2, because if the function z is CI
with respect to x1 and x2, then the BRV Z is a function of fX2...Xn and fX1X3...Xn only, so
by Definition 4.4, {x1, x2} is also a WCI set of z. Similarly, (strong) CI sets of variables
are special cases of WCI sets.

Identifying WCI sets is harder than finding CI pairs because more variables are in-
volved. If z(x1, ..., xn) is WCI with respect to {x1, x2, x3}, then for every cube c containing
x4, ..., xn, at least one variable from the set {X1, X2, X3} must be marginalized out in the
corresponding iteration of Eq. (4.2). This is only possible if some variable is redundant
in zc, or if zc is CI with respect to at least one pair of its variables. Hence, z is WCI with
respect to {x1, x2, x3} if and only if for every cube c containing the variables x4, ..., xn, the
cofactor zc is CI with respect to {x1, x2}, {x1, x3} or {x2, x3}.

Theorem 4.3: z is WCI with respect to X = {x1, ..., xk} if and only if for every cube c
containing the variables xk+1, ..., xn, zc is WCI with respect to at least one subset of size
k − 1 of X.

References [6] [136] discuss methods of quickly identifying CI in large circuits, and
show how it improves the quality and speed of SS. For the purpose of this dissertation, we
confine ourselves to showing how CI affects SC. Figure 4.3 illustrates the concept with a
small example. The original design of the SC adder of Figure 4.3a requires two independent
SNGs to generate the input SNs. However, as we showed in this section, z is CI with
respect to x and y, so a correlation between the corresponding SNs X and Y will not affect

74

Z. Consequently, we can use the same RNG for the purpose of generating X and Y , and
hence arrive at the circuit of Figure 4.3b, which has a reduced cost.

4.2 Correlation of Stochastic Numbers

In this section, we discuss how the correlation between two bit-streams should be measured
in the context of SC. Correlation refers to statistical similarity between two phenomena. As
discussed in detail in [44], the correlation of two sequences (bit-streams) is measured by
some form of covariance or inner product operation. With appropriate normalization, a cor-
relation value of +1 means maximum similarity, a correlation value −1 means minimum
similarity (maximum difference), and a correlation of 0 means the sequences are uncor-
related. While many measures of similarity exist [28], they are not very useful in the SC
context. The standard definition of correlation (also known as Pearson correlation [28])
ρ(X, Y), in particular, is unsuitable because it imposes constraints on the expected value
of the bit-streams. For example, ρ = +1 implies that the bit-streams must be identical.
A suitable similarity measure should be independent of, or orthogonal to, the data values;
in other words, it should not impose constraints on the data. We therefore propose a new
correlation measure defined as follows.

pX

x
r1

y

z

pY

r2

0

1

m

m

m

m

Clock

pX

x
r1

y

z

pY

0

1

m

m

m

m

r2=r1

(a)

(b)

RNG (LFSR) 1

Clock

RNG (LFSR) 2

Clock

RNG (LFSR) 1

C

C

C

C

r

r

Figure 4.3: Exploiting correlation insensitivity in an SC adder; (a) with independent RNGs
and (b) with a shared RNG.

75

Definition 4.5: The SC correlation SCC(X, Y) of two SNs X and Y is given by

SCC(X, Y) =

pX∧Y − pXpY

min(pX , pY)− pXpY
if pX∧Y > pXpY

pX∧Y − pXpY
pXpY −max(pX + pY − 1, 0)

otherwise
(4.7)

The starting point in constructing SCC(X, Y) is obtaining the bit-wise AND function
X ∧ Y (a kind of inner product) of the SNs, that is, finding pX∧Y . This is then centralized
by the uncorrelated value pXpY yielding pX∧Y − pXpY Finally, the centralized value is
normalized by dividing it by the maximum possible values. The centralization makes SCC
consistent with the definition of independence in [57] when SCC(X, Y) = 0, i.e., when
pX∧Y − pXpY = 0. The normalization guarantees that for two maximally similar (or
different) SNsX and Y , we get SCC(X, Y) = +1 (or−1). Unlike the standard correlation
measure ρ(X, Y), SCC does not vary with the SN values. All the intermediate values of
SCC are linearly interpolated between the independent case and the maximum similarity
(or difference) case. For example, SCC(X, Y) = 0.5 means that pX∧Y is half-way between
pXpY , i.e., the independent case, and min(pX , pY), i.e., the maximum overlap case.

We can also define SCC using the notation of [28], which allows easy comparison with
other correlation concepts. For two n-bit SNs X and Y , denote the number of overlapping
1’s by a, the number of overlapping 1’s of X and 0’s of Y by b, the number of overlap-
ping 0’s of X and 1’s of Y by c, and the number of overlapping 0’s on both SNs by d.
Clearly, a + b + c + d = n. We then have the following definition which is equivalent to
Definition 4.5:

SCC(X, Y) =

ad− bc

nmin(a+ b, a+ c)− (a+ b)(a+ c)
if ad > bc

ad− bc
(a+ b)(a+ c)− nmax(a− d, 0)

otherwise
(4.8)

The numerator ad− bc is common to many similarity measures including Pearson correla-
tion

ρ(X, Y) =
ad− bc√

(a+ b)(a+ c)(b+ d)(c+ d)

and it captures the overlap of 0’s and 1’s in the two bit-streams. The denominator, on the
other hand, is simply a normalization factor. While Pearson correlation is normalized by
the variance of the bit-streams, SCC is normalized so that the bit-streams with maximum

76

Table 4.1: Some SNs with their SCC and standard correlation values.
Stochastic numbers SC correlation SCC(X,Y) Standard correlation ρ(X,Y)

X = 11110000 Y = 11001100 0 0
X = 11110000 Y = 11110000 +1 +1
X = 11110000 Y = 00001111 −1 −1
X = 11111100 Y = 11110000 +1 +0.58
X = 11111100 Y = 00001111 −1 −0.58
X = 11111100 Y = 11100001 0 0
X = 11000000 Y = 11111100 +1 +0.33

(minimum) overlap of 1’s and 0’s lead to SCC = +1 (−1), independent of the values of
the SNs.

Table 4.1 shows examples of bit-streams with their ρ and SCC values. Note that ρ and
SCC are the same for independent SNs, and for SNs with equal values. When the SNs have
different values, SCC consistently gives the value +1 (or −1) for maximum (minimum)
overlap of 1’s and 0’s between the bit-streams, while ρ gives different values. This shows
that, unlike ρ, SCC is not affected by the values of the bit-streams.

As mentioned earlier, the function of a stochastic circuit can effectively be changed
by enforcing correlations among its inputs. The XOR gate of Figure 1.8 illustrates this.
Figure 4.4a shows the stochastic functions implemented by the same XOR gate at different
levels of SCC. In all cases, the output of the function remains the same at the four corners,
but the function changes greatly for the intermediate values. Figure 4.4b shows the same
function for various fixed values of pY and SCC.

4.3 Combinational Circuits

Every stochastic circuit implements a real-valued function F , which is interpreted as its
stochastic behavior. For example, the AND gate of Figure 1.3 implements the multiplica-
tion function pZ = F (pX , pY) = pXpY , assuming SCC(X, Y) = 0. The inputs of F are
the values of the SNs pX and pY . Hence, to obtain the stochastic behavior of a logic circuit,
we need to determine its corresponding probability function F .

We saw earlier that a circuit’s functionality can change in the presence of correla-
tion. The AND gate, for example, implements pZ = F (pX , pY) = min(pX , pY) if
SCC(X, Y) = +1. Based on Definition 4.5 and the subsequent discussion, the SC func-
tion of the AND gate for the case of, say SCC(X, Y) = 0.5, is half-way between its

77

SC function for SCC(X, Y) = 0 and SCC(X, Y) = +1. In general, we can express
a circuit’s functionality as a linear combination of its functions at SCC(X, Y) = 0 and
SCC(X, Y) = +1 or −1. Hence for any SCC, pZ can be written as

pZ(pX , pY) =

(
1 + SCC(X, Y)

)
.F0(pX , pY)

−SCC(X, Y).F−1(pX , pY)
if SCC(X, Y) > 0

(
1− SCC(X, Y)

)
.F0(pX , pY)

+SCC(X, Y).F+1(pX , pY)
otherwise

(4.9)

where F0(pX , pY), F−1(pX , pY) and F+1(pX , pY) are the functions of the same cir-
cuit at SCC(X, Y) = 0, −1 and +1, respectively. For the AND gate example, we
have F0(pX , pY) = pXpY , F−1(pX , pY) = max(pX + pY − 1, 0), and F+1(pX , pY) =

min(pX , pY).
In order to derive the stochastic behavior of a circuit C with correlated inputs, we use

the vector notation defined in Section 2.1. This notation is closely related to the notation
of probabilistic transfer matrices [69] which will be discussed in the next chapter. In this
notation, we use a vector III to represent a set of correlated inputs. Each element ik of III de-
notes the probability of one input combination. BFs (and elementary gates) are represented
by a vector MMM that shows their truth-table. Using this notation, we obtain the probability

 SCC = -1 SCC = -0.5 SCC = 0 SCC = 0.5 SCC = 1

pY = 0 pY = 0.25 pY = 0.5 pY = 0.75 pY = 1

SCC=-1

(b)

(a)

pX
pY

pZ

pX
pY

pZ

pX
pY

pZ

pX
pY

pZ

pX
pY

pZ

SCC=+1

SCC=-1

SCC=+1

-1/2

+1/2

SCC=0

SCC=-1

SCC=+1

pX

pZ

pX

pZ

pX

pZ

pX

pZ

pX

pZ

Figure 4.4: Functions implemented by an XOR gate (a) with different input SCC values,
and (b) with fixed values of pY .

78

Table 4.2: Functions used in the elements of input vector III of a two-input circuit.

F0(pX , pY), SCC = 0 F−1(pX , pY), SCC = −1 F+1(pX , pY), SCC = +1

i0 (1− pX)(1− pY) max(1− pX − pY , 0) min(1− pX , 1− pY)
i1 (1− pX)pY min(1− pX , pY) max(pY − pX , 0)
i2 pX(1− pY) min(pX , 1− pY) max(pX − pY , 0)
i3 pXpY max(pX + pY − 1, 0) min(pX , pY)

of seeing a 1 at the output z through pZ = III �MMM , where “�” denotes the inner product (See
Eq. (2.2)).

If C has two input bit-streams X and Y with correlation SCC, construct the input
vector III = [i0 i1 i2 i3], in which the ik’s are expressed in the form of Eq. (4.9). The
F0’s, F−1’s, and F+1’s corresponding to each ik are defined in Table 4.2. From these, we
can extract C’s stochastic behavior by computing the inner product of the vector III and the
circuit’s truth-table vectorMMM . For instance, if C is an XOR gate,

pZ =
[
i0 i1 i2 i3

]
�
[
0 1 1 0

]
= i1 + i2

yields the functions illustrated in Figure 4.4a for some representative values of SCC.
Only correlation corresponding to the special case SCC = 0 has been considered in

the literature. As we have just seen, other cases such as SCC = +1 lead to useful results.
The vector formulation of two-input SC circuits discussed above points to a method for
synthesizing stochastic circuits with correlated inputs. In this approach, a target function
F (pX , pY) is approximated by a function pZ = F ′(pX , pY) defined by

pZ =
[
i0 i1 i2 i3

]
�
[
t0 t1 t2 t3

]
(4.10)

in which the tk’s are the parameters of F ′ to be determined and the ik’s are expressed in the
form of Eq. (4.9) and Table 4.2. The process of approximation is to find the best tk’s and
the best SCC for which the following error function is minimized.

ε =

∫∫ 1,1

0,0

(
F (pX , pY)− F ′(pX , pY)

)2
dpXdpY (4.11)

This is done by adjusting the tk’s and the SCC using standard optimization techniques.
Because of the limited number of parameters and the well-behaved error function, this
problem is relatively easy to solve. Once the parameters are found, F ′ can be realized

79

by a logic circuit with the overall multiplexer-style structure shown in Figure 4.5, The
constant SNs needed for the four tk’s can be generated by up to four copies of the circuit
in Figure 2.3a. The resulting circuit can then be further optimized using conventional logic
synthesis methods and tools.

Generating two SNs X and Y with a desired level of SCC is a problem that has not
been studied before. We propose to use the circuit structure shown in Figure 4.6, which
generates X by means of a standard SN generator and, depending on the sign SCCsign and
magnitude SCCmagn of SCC, mixes uncorrelated and correlated versions of Y together.
For example, if SCC = +1, then Y is generated from the same random number source
used by X , so X and Y become highly correlated. Note that Figure 4.6 is a programmable

structure, and not all the components shown are needed in every design. For example, if
a circuit requires X and Y to be generated with SCC = +1, then the select inputs xy of
the multiplexer are set to 01, implying that random number generators 2 and 3, and their
associated circuits can be removed. Procedure 4.1 summarizes our proposed correlated

combinational circuit (CCC) synthesis algorithm.
As an example, consider the problem of synthesizing a circuit for the target function

F (pX , pY) = min(pX , pY) In Step 1 of CCC, pZ = F ′(pX , pY) is prepared in the form of
Eq. (4.10), and in Step 2 the error function ε is prepared in the form of Eq. (4.11). Then,
the tk’s and SCC are adjusted until ε is minimized. For the running example, ε = 0, i.e.,
the exact target function, can be achieved by assigning t0 = 0, t1 = 0, t2 = 0, t3 = 1

and SCC = +1. On plugging these values into the circuit of Figure 4.5, we obtain that of
Figure 4.7a, i.e., an AND gate. Observe that the AND implements min(pX , pY) only if its
inputs have SCC = +1. In order to generate X and Y , we use the circuit of Figure 4.6 and
plug in SCC = +1 (SCCsign = 0, SCCmagn = 1), yielding the circuit of Figure 4.7b. This

x

00

z

y

t0

t1

t2

t3

01

10

11

Figure 4.5: High-level structure of a synthesized two-input circuit with correlated inputs,
prior to simplification.

80

Procedure CCC(F (pX , pY)) – synthesizes F

Step 1. Determine a suitable approximating function pX = F ′(pX , pY) according to
Eq. (4.10) in which the input vector I is defined by Eq. (4.9) and Table 4.2.

Step 2. Determine the error function ε given by Eq. (4.11).

Step 3. Minimize ε by adjusting the tk and SCC parameters in F ′.

Step 4. Insert these parameters into the structure of Figure 6, and use standard logic
synthesis methods to optimize the resulting circuit.

Procedure 4.1: Procedure CCC to synthesize a stochastic function F ′(pX , pY) with corre-
lated inputs.

circuit is smaller than one employing two of the independent SN generators in Figure 2.3a,
so generating correlated SNs is cheaper than generating independent ones in this case.

Table 4.3 shows examples of circuits synthesized by the CCC algorithm. Most of the
target functions are useful non-linear functions that have no efficient stochastic implemen-
tation when the inputs are uncorrelated. The last synthesized function in the table is the
multiplexer-based scaled adder in which correlation of the input data does not matter. An-
other type of SC adder, a saturating adder, is also shown. This circuit adds its inputs

pX

Random no.

generator 1

pY

01

y
00

10

11

SCCsign

r1

r2

r3

SCCmagn

x

Random no.

generator 2

Random no.

generator 3

Figure 4.6: Generating SNs with a specified SCC.

81

pX

Random no.

generator 1

pY
y

r1

xx

y

(a)

z

(b)

Figure 4.7: Implementing the function F (pX , pY) = min(pX , pY): (a) synthesized stochas-
tic circuit, and (b) corresponding SN generator.

Table 4.3: Examples of synthesized stochastic circuits exploiting various correlation levels.

Target function [t0 t1 t2 t3] SCC Synthesized circuit
pZ = min(pX , pY) [0 0 0 1] +1 AND gate with positively correlated inputs
pZ = max(pX , pY) [0 1 1 1] +1 OR gate with positively correlated inputs

pZ = |pX − pY | [0 1 1 0] +1
XOR gate with positively correlated inputs;
implements absolute-valued subtraction

pZ = min(pX + pY , 1) [0 1 1 1] −1 XOR gate with negatively correlated inputs;
implements saturating addition

pZ = 1
2 (pX + pY) [0 1

2
1
2 1] Any

Multiplexer with arbitrary correlation among
its data inputs; implements scaled add

without scaling until the saturating value 1 is reached. Finally, observe that in some cases,
the circuits synthesized by CCC are the same as the standard designs. For example, the
smallest SC multiplier is the AND gate of Figure 1.3, which requires uncorrelated inputs.
This shows that the CCC is capable of replicating circuits synthesized by existing methods,
because SCC = 0 is also allowed in CCC.

Table 4.4 compares the circuits synthesized by CCC and those designed by the spec-
tral synthesis method of [1], which makes the usual independent-inputs assumption, i.e.,
SCC = 0. In addition to the circuits of Table 4.3, a few other functions were implemented.
Since it is normally impossible to implement real-valued functions exactly, some are ap-
proximated before synthesis. Area is estimated by mapping the circuits to a generic library
of cells using 0.35µm CMOS technology [120]. For a fair comparison, we also report the
measured mean error between the synthesized and target functions F ′ and F . The results
indicate that in most cases, the circuits synthesized by CCC are smaller and more accurate
than those designed by the method of [1].

When dealing with more than two signals, considering their pairwise SCC values may
be insufficient, as higher-order correlations can exist among groups of three or more of the
signals. To handle such cases, we suggest using vectors that are large enough to embed

82

Table 4.4: Comparison between circuits synthesized by CCC and those synthesized by the
spectral method of [1].

Target function
Synthesis method
and correlation

assumption

Area
(µm2)

Mean
error
(%)

pZ = min(pX + pY , 1)
Saturating adder

Method of [1] (SCC = 0) 1,628 10
CCC with SCC = −1 1,091 0

pZ = max(pX − pY , 0)
Saturating subtracter

Method of [1] (SCC = 0) 1,663 10
CCC with SCC = +1 1,118 0

pZ = pX × pY
Multiplier

Method of [1] (SCC = 0) 1,646 0
CCC with SCC = 0 1,646 0

pZ = 1
2 (pX + pY)

Scaled adder
Method of [1] (SCC = 0) 1,857 0

CCC with SCC = +1 1,320 0

pZ = (pXpY)
0.45 Method of [1] (SCC = 0) 1,980 12

CCC with SCC = +1 1,443 7

pZ = (1− pX − pY)2
Method of [1] (SCC = 0) 2,306 15

CCC with SCC = −1 1,760 9
A multivariate
polynomial

Method of [1] (SCC = 0) 2,086 9
CCC with SCC = 1

2 2,473 4

all the signal correlations of interest. Circuits with many inputs can also be designed by
decomposing the target function into subfunctions of two variables. The CCC method can
then be used to synthesize the pieces and put them back together. For example, consider the
four-variable function pZ = 1

2
(|pX − pY |+ |pV − pW |), which performs the useful image-

processing task of edge detection [3]. It decomposes into two absolute-valued subtraction
functions p′Z and p′′Z , which are then combined by a scaled add to produce pZ :

p′Z = |pX − pY |, p′′Z = |pV − pW |, pZ =
1

2
(p′Z + p′′Z)

x
0

1

y

v
w

z¢

z

z¢¢

r

Figure 4.8: Stochastic circuit for image edge detection [3].

83

All three of these functions can be synthesized by CCC, as indicated in Table 4.3. Figure 4.8
shows the result; the XOR gates perform absolute-valued subtraction, while the multiplexer
performs scaled addition. Note that the select input of the multiplexer is fed by an auxiliary
input r with pR = 1

2
.

4.4 Summary

In this chapter, we analyzed how correlation among SNs affects SC circuits. Most of the
previously designed SC circuits assume that their input SNs are independent (uncorrelated),
because it was believed that correlation leads to inaccurate computation. An example of
this issue was illustrated in Figure 1.3b, where correlated inputs hindered the multiplication
process. So the usual solution has been to avoid correlation entirely at the cost of introduc-
ing many independent stochastic number sources or re-randomizers. However, we showed
that correlation is not always undesirable. We introduced the concept of correlation insen-
sitivity, which was originally applied to a closely related problem in statistical simulation.
CI functions are not affected by correlations among their inputs, which means that the in-
puts can be fed by correlated bit-streams without affecting the probabilistic behavior of the
circuit. In the context of SC, CI inputs of a circuit can share random number sources (such
as LFSRs), which leads to significant cost savings.

Furthermore, we showed that contrary to what one would intuitively expect, correlation
can serve as a resource in designing stochastic circuits. To exploit this, we introduced a new
correlation measure called SCC, which is especially suited to quantifying the similarity of
SNs. Then we showed that systematic correlation can change the functionality of an SC
circuit in useful ways. In effect, correlation can be seen as a new dimension in SC circuit
design. Based on this, we discussed an extension of STRAUSS that exploits correlation.
Using this method, we demonstrated how to implement several useful functions such as
saturating addition and subtraction that had no previous efficient SC implementations. We
reported a comparative study indicating that the circuits with correlated inputs are generally
smaller and more accurate than combinational designs with independent inputs.

84

Chapter 5

Errors Affecting Stochastic Computing

In this chapter, we discuss and analyze errors that affect stochastic computing (SC). First,
we categorize the errors, and then we focus on environment-induced or soft errors, where
we show SC outperforms conventional binary circuits in terms of error tolerance. To ana-
lyze the effect of soft errors, we employ the well-known probabilistic transfer matrix (PTM)
tools [69] (a brief introduction will be provided). Finally, we show the SC circuits are also
tolerant of errors induced by aggressive voltage/frequency scaling; a frequently used power
reduction technique for contemporary circuits. This chapter’s material has been published
in [23] and [9].

5.1 Error Categories

There exist various error types that can affect the course of stochastic computation. Qian
et al. [109] provide a good error classification for their ReSC architectures. We generalize
their classification to cases where soft errors exist. Table 5.1 shows this classification. As
we will explain next, in some cases it is hard to draw a line between some categories, as
they may be closely related.
Approximation and Quantization Errors: When using a design method like STRAUSS
[8], a given target function is usually transformed into polynomial form before implemen-
tation. However, not every target function has a good polynomial fit, especially if the
function is highly non-linear and the fitted polynomial has a low degree. A straightforward
solution to address this error is to increase the degree of the fitting polynomial. This, how-
ever, comes at a great cost as shown in Chapter 3. A similar error appears during the design
flow (using STRAUSS, for instance), when constant numbers are needed. The precision

85

Table 5.1: Categories of errors affecting SC, and their possible causes and solutions.

Error Category Possible Cause Possible Solution

Approximation,
Quantization

Non-linear target functions,
Low-degree polynomial
approximation,
Low-precision constant
number generation

Increase polynomial degree,
Increase number of bits in constant number
generation

Random
fluctuation

Inherent randomness,
Short bit-stream length

Increase bit-streams length,
Use deterministic or low-discrepancy
sequences

Insufficient
randomness

Correlation,
Auto-correlation,
Poor random source
selection

Increase random sources,
De-correlate correlated signals,
Use re-randomizers to remove
auto-correlation,
Use better number sources (larger LFSRs)

Soft
errors

Environmental noise,
Component variability,
Voltage/frequency scaling

Use circuit-level error-resilience techniques,
Balance 0-to-1 and 1-to-0 errors

selected during the single constant generation (SCG) procedure (Procedure 3.2) quantizes
the original constant, and hence may produce a quantization error in the implemented func-
tion. Similar to the previous case, this error can be addressed by increasing the number of
bits used in the SCG process.
Random Fluctuations: Stochastic numbers (SNs) are naturally probabilistic, and so their
representation of a value is also probabilistic. When representing a number pZ using a bit-
stream of length N , we are in fact looking at N independent Bernoulli trials with probabil-
ity pZ of being successful (generating 1). The value represented by the bit-stream, i.e., the
number if 1’s in it, will hence have a binomial distribution with variance pZ(1 − pZ)/N .
So the number represented fluctuates, and the fluctuation is decreased by increasing the
length N of the bit-stream. As we will show in the next chapter, it is also possible to re-
duce the fluctuation error by using deterministic number sources such as low-discrepancy
sequences.
Insufficient Randomness: This error occurs when the number of random sources used in
a circuit is fewer than what is required. For instance, errors caused by correlation fall into
this category, because they can usually be corrected by using an additional random source
for one of the correlated signals. When feedback is present in the circuit, auto-correlation
within a signal can also produce this error, which again can be addressed by increasing the
randomness in the circuit, e.g., by adding re-randomizers in the feedback paths [126]. A

86

poor selection of random sources may also lead to insufficient randomness. For instance,
using an LFSR with a period smaller than N (the bit-stream length) will cause the LFSR
to repeat its sequence during the course of the computation, and hence produce errors.
While there are similarities between this error type and the random fluctuation error, we
distinguish this category by the following test. If the error is resolved by increasing the bit-
stream length N , then it is classified as the random fluctuation error, otherwise it is from
the insufficient randomness category.
Soft Errors: This category includes the errors that occur because of physical fluctuations
in circuit parameters, and are not unique to SC—they appear in non-SC circuits, too. Soft
errors of the bit-flip type fall into this category. These are errors that usually appear because
of noise induced by the environment, and they alter the circuit by flipping the state of a wire.
Errors due to circuit variations, or to aggressive voltage/frequency scaling, also fall into
this category. Soft errors are difficult to analyze and quantify. A big portion of this chapter
deals with analyzing SC in situations where soft errors exist, especially in the presence
of high error rates such as those encountered in avionics or spacecraft instrumentation
[40]. Addressing this type of error involves using circuit-level techniques, e.g., radiation
hardening against cosmic rays. In the case of SC, it is possible to exploit the redundant
coding of SNs to reduce the error. This can be done by balancing the number of 0-to-1 and
1-to-0 errors, so that they cancel each other out.

Before getting into the analysis of soft errors, we need to introduce the PTM tools that
we employ.

5.2 Probabilistic Transfer Matrices

A convenient tool for analyzing the probabilistic behavior of logic circuits is the probabilis-
tic transfer matrix (PTM) and its associated algebra [69]. PTMs were introduced to analyze
the reliability of conventional logic circuits. Their use may be limited by the fact that PTM
size grows exponentially with circuit size. This is less of a problem with stochastic circuits,
however, which typically consist of just a handful of gates.

In the PTM formulation, an n-input m-output combinational circuit’s normal (fault-
free) behavior is represented by a 2n × 2m zero-one matrix whose rows correspond to all
input combinations and whose columns correspond to all output combinations. This matrix,
which is referred to an ideal transfer matrix (ITM), is a slightly modified truth table. For

87

instance, a two-input AND gate has the ITM

JAND =

1 0

1 0

1 0

0 1

 (5.1)

where the rows correspond to xy = 00, 01, 10, 11 and the columns correspond to z = 0, 1.
A general PTM is obtained from the ITM by allowing the entry in row r and column c
to become any real number in the interval [0, 1] that denotes the conditional probability
of producing output c in response to input r. In the AND gate’s ITM JAND shown in Eq.
(5.1), the top row tells us that the AND produces output z = 0 with probability 1, and
output z = 1 with probability 0, in response to the input xy = 00. By choosing suitable
probability values, PTMs can be constructed to represent a remarkably wide range of error
scenarios [69]. For example, the effect of a bit-flip error e with rate pe on the output of the
AND gate multiplier is represented by the PTM

MAND =

1− pe pe

1− pe pe

1− pe pe

pe 1− pe

 (5.2)

Input-dependent bit-flips can be modeled by associating a different pe value with every row.
Observe that a PTM must satisfy the stochastic requirement that all entries in each row sum
to 1, and that the ITM is just the PTM for the error-free case.

Circuit PTMs can be manipulated by means of a well-defined algebra which loosely
resembles linear algebra. Every element or circuitC is represented by a PTM that describes
C’s logic function and error status; see Figure 5.1. An n-output fanout gate Fn copies an
input signal to its n outputs. Figure 5.1c shows the ITM for the 2-output fanout gate F2.
Wire permutations such as crossing wires are represented by the swap or crossover gate.
The ITM for an adjacent wire swap is shown in Figure 5.1d; any permutation of wires can
be modeled by a series of adjacent swaps. A wire corresponds to a 2 × 2 PTM; the ITM
case is just the identity matrix. A signal is represented by a 1×2 row vector [p0 p1], where
p0 and p1 are the probabilities of the signal being 0 and 1, respectively. Signal vectors may

88

be treated as a special kind of PTM, and can be manipulated with the same basic PTM
operations.

PTMs can be combined in two basic ways corresponding to the two basic circuit inter-
connection structures, series and parallel. The PTM of two circuits C1 and C2 connected in
series is the ordinary matrix product of their PTMs, i.e.,M1×M2. The PTM of two circuits
connected in parallel is the tensor product of the PTMs, denoted M1 ⊗M2. In the tensor
product, each element of the first matrix M1 is multiplied by the entire second matrix M2,
which leads to rapid growth in matrix size.

For example, consider again the faulty AND gate multiplier with pX = 0.2 and pY =

0.3, and pe = 0.05. To determine the probability of getting a 1 at the gate’s output, we
first form the input vectors, namely, Mx = [0.8 0.2] and My = [0.7 0.3]. These are then
combined via the tensor product

Mxy = Mx ⊗My =
[
0.56 0.24 0.14 0.06

]
(5.3)

to give the probabilities associated with all four possible input combinations. The resulting
input vector is multiplied by the PTM of the error-affected AND gate to obtain the circuit’s
output vector.

Mz∗ = Mxy ×MAND =
[
0.56 0.24 0.14 0.06

]
×

0.95 0.05

0.95 0.05

0.95 0.05

0.05 0.95

 =
[
0.896 0.104

]

 pe0 1 – pe0

 pe1 1 – pe1

 pe2 1 – pe2

1 – pe3 pe3

(b)(a) (c)

1 0 0 0

0 0 0 1

0 1

1 0

0 1

1 0

(d)

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

Figure 5.1: Representative PTMs: (a) NAND gate with four distinct input-dependent bit-
flip error rates, (b) NAND gate with its first input stuck-at-1, (c) fanout wiring network with
two output branches, and (d) swap or crossover gate that switches the order of two wires.

89

From this, we conclude that pz∗ , i.e., the probability of seeing a 1 in z∗, is 0.104 . Note
that the PTM MAND of the AND gate implicitly incorporates the bit-flip error, as is also the
case in (5.2).

5.3 Effect of Soft Errors on Stochastic Numbers and
Circuits

An SN X , as defined in Chapter 2, is a bit-stream carrying a probability value pX that
denotes 1 (success) or 0 (failure). It can therefore be viewed as a set of samples from a
real-valued random variable (RV) with a Bernoulli distribution in which the probability of
success is pX [124]. Since probabilistic behavior can be easily modeled and analyzed in
terms of Bernoulli RVs, we now use them to give a formal definition of SNs that abstracts
away from bit-stream formatting issues: a stochastic number X is a Bernoulli random
variable with parameter pX .

When dealing with RVs, we usually need to sample them in order to estimate their
values. The sampling process is, in fact, a very basic form of stochastic computing. For
instance, assume that the AND gate multiplier has two input SNs X and Y with known
values pX and pY , but the output is an SN Z of unknown value pZ . Stochastic computation
with this circuit involves generating samples for X and Y and measuring the success rate
at z, and hence estimating pZ . The expected rate of success at z can be calculated by the
expected value operator denoted as E[Z]. Consequently,

pZ = E[Z] = E[X × Y] = E[X]× E[Y] = pX × pY

assuming X and Y are independent RVs. For example, if pX = 0.2 and pY = 0.3, then
pZ = 0.06, which is the expected rate of success at z . In practice, the success rate is
affected by random fluctuations of the data, and usually has a different value p̂Z , which
we refer to as the estimated value in contrast with the exact value pZ . The estimated value
p̂Z is obtained by sampling the circuit/RV N times and recording the number N1 of 1’s
appearing at the output; this yields p̂Z = N1

N
. For example, if the RV Z, with the expected

value pZ = 0.3, is sampled 8 times, one possible outcome is 01100000, and the resulting
estimate is p̂Z = 2

8
= 0.25.

In general, p̂Z can be any of the 2N different bit-streams derived from random sources,
which allows pZ and p̂Z to differ, sometimes significantly, from one another. This differ-

90

ence between pZ and p̂Z is considered to be an error caused by randomness in the bit-stream
representation of pZ . Such random fluctuation errors are usually measured by the mean

square error (MSE) EZ = E[(pz − p̂Z)2]. In the case of the Bernoulli RVs of interest here,
we have [124]

EZ =
pZ(1− pZ)

N
(5.4)

Thus the MSE of an SN estimate can be reduced by increasing the number of samples i.e.,
the bit-stream length N . Note that EZ is a function of pZ and N only, implying that no
matter what the circuit is (whether the AND gate multiplier or any other circuit), once the
expected rate of success pZ at the output is calculated, we can use Eq. (5.4) to calculate its
MSE. Also note that the MSE changes with the value pZ of the SN. It is maximized when
pZ = 1/2, and it becomes zero for pZ = 0 or 1. We will now see that soft errors affect SNs
differently because their effect is minimized when pZ = 1/2.

Besides the random fluctuations inherent in the selection of a particular bit-stream to
represent Z in a stochastic circuit C, various nondeterministic physical phenomena associ-
ated with C itself and its environment affect the sampling process and distort the expected
values of Z. It is convenient to lump such effects into a bit-flip error e that occurs with
some probability pe. For example, it is often assumed in the literature [13] that e causes
bit-flips in z, which affect 0’s and 1’s with equal probability pe. Whatever, the error behav-
ior assumed, two basic questions should be addressed: How do we model the impact of e
on z, and how do we introduce e into a previously error-free stochastic circuit C? First, we
assume the error e to be a Bernoulli RV with parameter pe (the bit-flip rate), so it can be
treated like another SN associated with C. The circuit’s fault-free output z then changes
to an erroneous function z∗, as illustrated in Figure 5.2a for the AND gate multiplier. For
simulation purposes, it is convenient to have a mechanism for injecting the error in a way
that flips the normal signal z with probability pe, resulting in the erroneous output z∗. Fig-
ure 5.2b shows how to do this by inserting an XOR gate with input e into C’s output line.
For example, a bit-flip rate of pe = 0.05 with input values pX = 0.2 and pY = 0.3 changes
the expected success rate at the output of the AND gate multiplier from 0.06 to 0.104. An
analytical method of calculating the expected value pZ∗ and its MSE will be developed
next.

Consider an SN X with the expected value E[X] = pX . In a noisy environment, if X
is affected by bit-flip error e with expected value pe, the SN becomes X∗ = X ⊕ e. We

91

therefore have
pX∗ = E[X∗] = pX + pe(1− 2pX) (5.5)

Besides the expected value of X∗, we are interested in EX∗ , the mean square error of X∗,
which denotes the average error occurring in a stochastic circuit, i.e., the average difference
between the estimated value p̂X∗ and the exact value pX

EX∗ = E
[
(p̂X∗ − pX)2

]
Note that EX∗ reflects both the random fluctuations of the bit-stream representation and the
error e due to bit-flips. As mentioned earlier, X∗ is a Bernoulli RV defined by its expected
value, so using only Eq. (5.5), we should be able to find pX∗ and hence EX∗ analytically.
Assuming the estimated value pX∗ = 1

N

∑N
i=1X

∗
i obtained by summing N independent

samples of X∗, we get

EX∗ = E
[
(p̂X∗ − pX)2

]
= E

[
p̂2X∗ + p2X − 2pX p̂X∗

]
= E

[
p̂2X∗
]

+ E
[
p2X
]
− E

[
2pX p̂X∗

]
=
N2p2X∗ +NpX∗(1− pX∗)

N2
+ p2X − 2pXpX∗

= (pX∗ − pX)2 =
pX∗(1− pX∗)

N

(5.6)

There are two terms in the final result of (5.6). The first term is the difference between
the expected values of X and X∗, and its only cause is the bit-flip e. The second term is a
random fluctuation error that diminishes with increasing N . We can re-write EX∗ in terms
of pX and pe by substituting (5.5) into (5.6) thus:

EX∗ = p2e(1− 2pX)2 +
1

N

(
pX(1− pX) + pe(1− pe)

(
1− 4pX(1− pX)

))
(5.7)

x

y
e

z*

z
e z*

(a) (b)

x

y

Figure 5.2: Circuit models for a stochastic multiplier with a bit-flip error e affecting its
output: (a) internal or built-in error, and (b) externally injected error.

92

Observe that the MSE error depends on both pX and pe. For sufficiently large N , EX∗

becomes 0 when pX = 1
2
, while it becomes pe for pX = 1.

In a similar way, we can analyze the effect of bit-flip errors on conventional (non-
stochastic) binary numbers. An m-bit binary number B, affected by independent and iden-
tically distributed bit-flips on each bit becomes B∗, which can potentially be any m-bit
number with some probability. The error of B∗ and its probability of occurrence depend on
the number of bit-flips mbf . To find the MSE EB∗ in this case, we calculate the weighted
average error over all possible B∗ values.

EB∗ =
2m∑

B∗i =0

(B∗i −B)2p
mbf
e (1− pe)m−mbf

Using the above equations, we compare the effect of bit-flips on a 5-bit binary number and
an SN of length 32. Figure 5.3a shows the MSEs EX∗ and EB∗ at different bit-flips rates.
Initially, the SN has a higher error due to its random fluctuations. However, as pe increases,
SN outperforms the binary number with respect to error tolerance. Figure 5.3b shows
the MSEs EX∗ and EB∗ at different values of pX ; the MSEs in this case are averaged over
several bit-flip rates ranging from pe = 0.001 to 0.25. As can be seen,EX∗ is approximately
50% less than EB∗ . These analytical results are also confirmed in Figure 5.3 by Monte
Carlo simulation.

A key feature of our error analysis is the use of PTMs to estimate the impact of errors
on stochastic behavior. PTMs can be used to calculate the probability distribution of all

0.001

0.1

M
e

a
n

-s
q

u
a

re
 e

rr
o

r

E

Bit-flip rate

pe

0.01

0.1 0.2

0.01

0.02

0 0.4 0.60.2 0.8 1

Number value

pX

M
e

a
n

-s
q

u
a

re
 e

rr
o

r

E

 EB* - analytical

 EX* - analytical

 EB* - simulation

 EX* - simulation

(a) (b)

Figure 5.3: MSE of a stochastic number EX∗ and a binary number EB∗ in the presence of
bit-flips calculated using analytical and simulation methods; (a) for different values of pe
and (b) for different values of pX .

93

output combinations of a stochastic circuit C. Given specific input signal probabilities, the
input vector is multiplied by the PTM of the circuit C to obtain the output probabilities. For
example, consider again the AND gate of Figure 5.2 which is multiplying two SNs X and
Y and has output error pe. Generalizing Eq. (5.3) gives the 1× 4 input vector

Mxy =
[
(1− pX)(1− pY) (1− pX)pY pX(1− pY) pXpY

]
Now, consider two cases: first, the AND gate is error-free, and second, it contains the error
e defined by the PTM in (5.2). In the error-free case, the output vector is

Mxy × JAND =
[
1− pZ pZ

]
=
[
1− pXpY pXpY

]
indicating that the probability of output 1 is pXpY . If an error e is present, then usingMAND

from (5.2), the output becomes

Mxy ×MAND =

[
(1− pe)

(
(1− pX)(1− pY) + (1− pX)pY + pX(1− pY)

)
+ pepXpY

pe
(
(1− pX)(1− pY) + (1− pX)pY + pX(1− pY)

)
+ (1− pe)pXpY

]T

where T denotes matrix transposition (used to save space). This implies that the expected
value of the output is pZ∗ = pe

(
(1−pX)(1−pY)+(1−pX)pY +pX(1−pY)

)
+(1−pe)pXpY .

The MSE EZ∗ can now be calculated from Eq. (5.6).
We can readily generalize the above technique to arbitrary stochastic circuits to analyze

their stochastic behavior under single or multiple errors. First, generate the PTMs and
ITMs for each individual logic or wiring gate. Then, apply the ordinary and tensor products
repeatedly to calculate the PTM and ITM for the entire circuit [69]. Again, if the circuit
has n inputs and m outputs, its final PTM and ITM will both be 2n × 2m matrices.

Besides using the PTM method to analyze the behavior of a stochastic circuit in the
presence of errors, we can employ gate-level circuit simulation to achieve the same goal.
We inject the bit-flips into a gate via an XOR gate that flips the output signal z of C with
probability pe, resulting in a new erroneous signal z∗. For a circuit containing multiple
gates, the error is injected into every gate.

Consider, for example, the stochastic realization of scaled addition. This operation can
be implemented either by a majority circuit or a multiplexer [1], as shown in Figure 5.4ab.
The special input r is a constant scaling factor of value 0.5. The corresponding circuits with
XOR gates added for error injection are shown in Figure 5.4cd. To focus on the behavior

94

of the computational hardware (the logic gates) in the presence of errors, we assume the
data sources are not affected by errors.

Figure 5.5 presents error data obtained by PTM analysis and circuit simulation for the
two basic gate types AND and NOT, as well as the scaled adder circuits of Figure 5.4. The
error rates of all gates are assumed to be the same (pe1 = pe2 = pe3 = pe4 = pe), but they
are generated from independent random sources. We simulated the circuit with and without
the added XOR gates to get the expected error-free values and the values affected by soft
errors. The MSE is given by EZ∗ = E[(p̂Z∗ − pZ)2]. As Figure 5.5 shows, the analytical
and simulation results are quite consistent.

We also constructed PTMs MMAJ and MMUX for the circuits of Figure 5.4ab level by
level from the PTMs of their component gates, including wiring gates, according to the
method of [69]. The vertical lines on the figure separate the circuits into levels. In high-

x1

r

x2

z

x1

x2

z

x1

r

x2

z*
e2

e1

e3

e4
x1

x2

z*
e4

e2

e3

e1

(a) (b)

(c) (d)

r

r

L1 L2 L3 L4
L1 L2 L3 L4

F2

F2

F2

F2

swap

swap

Figure 5.4: Stochastic circuits for the scaled addition pZ = 0.5(pX1 + pX2): (a) majority-
based, (b) multiplexer-based, (c) majority-based with error injection, and (d) multiplexer-
based with error injection; dashed vertical lines separate levels of the circuits.

95

level symbolic form, we obtain the PTM expressions

MMAJ = (F2⊗F2⊗F2)×(I⊗swap⊗swap⊗I)×(AND2pe⊗AND2pe⊗AND2pe)×(OR3pe)

MMUX = (I ⊗ F2 ⊗ I)× (I ⊗ NOTpe ⊗ I ⊗ I)× (AND2pe ⊗ AND2pe)× (OR2pe)

Each parenthesized term in these equations corresponds to a circuit level, and the overall
PTM of a circuit is obtained by multiplying the PTMs of all its levels. For example, the first
level L1 of the majority circuit consists of three F2 gates in parallel, so L1 = (F2⊗F2⊗F2).
Similarly, we obtain L2 = (I ⊗ swap⊗ swap⊗ I), L3 = (AND2pe ⊗AND2pe ⊗AND2pe),
and L4 = (OR3pe). The PTM for the majority gate is then MMAJ = L1 × L2 × L3 × L4.
We use the same method to construct the PTM for the multiplexer.

Fully expanded to binary form, MMAJ and MMUX become 8 × 2 matrices, which we
derived from the above equations with the aid of MATLAB [84]. The ITMs JMAJ and JMUX

0.001

0.01

0.1

0.1 0.2 0.3 0.4

M
e

a
n
-s

q
u

a
re

 e
rr

o
r

E
Z

*

Bit-flip rate pe

0.001

0.01

0.1

0.1 0.2 0.3 0.4

M
e

a
n
-s

q
u

a
re

 e
rr

o
r

E
Z

*

Bit-flip rate pe

0.001

0.01

0.1

0.1 0.2 0.3 0.4

M
e

a
n
-s

q
u

a
re

 e
rr

o
r

E
Z

*

Bit-flip rate pe

0.001

0.01

0.1

0.1 0.2 0.3 0.4

M
e

a
n
-s

q
u

a
re

 e
rr

o
r

E
Z

*

Bit-flip rate pe

(d) MUX-based adder(c) MAJ-based adder

(b) NOT gate(a) AND gate

Figure 5.5: MSE at the outputs of representative stochastic circuits in the presence of soft-
errors calculated using analytical and simulation methods.

96

for the two circuits, which have pe = 0, take the form

JMAJ =

[
1 1 1 0 1 0 0 0

0 0 0 1 0 1 1 1

]T

JMUX =

[
1 1 1 0 0 0 1 0

0 0 0 1 1 1 0 1

]T

When errors are present, the 01 entries of JMAJ and JMUX must be replaced by complex
polynomial expressions involving the variable pe to obtain JMAJ and JMUX in expanded
form.

Knowing both the erroneous PTMs and the ITMs, we can calculate the corresponding
MSEs; see Figure 5.5. Again, the analytical results confirm the circuit simulations. In other
words, both circuit simulation and PTM manipulation are valid methods for estimating soft-
error effects in stochastic circuits. These results also show that when multiple errors are
present, the errors accumulate. Hence, when the error rate is low, the multi-gate adders
have worse MSE than single gates. When the error rate is high, for example, near 0.5, the
behavior of all the circuits tends to appear random, so that they all have approximately the
same MSE.

5.4 Case Study: Image Edge Detection

Edge detection is a fundamental operation in image processing and computer vision. Its
goal is to identify significant local changes of intensity in digital images. In this section,
we compare the error tolerance of two edge-detection circuits. The SC edge-detection
circuit was introduced in the previous chapter. More details of its designs and that of a
conventional edge-detection circuit will appear in the next chapter (see Figure 6.6).

We use PTMs to analyze the behavior of these circuits of under noisy conditions. The
effect of a bit-flip rate of pe on the output of every gate in the circuits is represented by
a suitable PTM. Suppose the PTMs for the stochastic and conventional edge detectors are
MSC and MConv., respectively. For each pixel and its 2 × 2 window, we generate the cor-
responding input vectors Min and M ′

in for the stochastic and conventional edge detectors,
respectively. The result of the edge-detection operation is then calculated asMin×MSC and
M ′

in×MConv.. In this example, we assume that 5-bit precision is required, so the bit-stream

97

length is 25 = 32 for the stochastic design. We do not consider any additional circuits that
might be needed for number conversion between the binary and stochastic formats.

Figure 5.6 compares the MSEs of the stochastic and conventional designs. As expected,
when the error rate is low, the stochastic circuit is more affected by random fluctuation
errors and performs worse than the conventional one. However, as the error rate increases,
the MSE of the conventional design increases rapidly. When the error rate is relatively high,
all the signal values become essentially random in both designs, so the MSEs coverage to
the same value. Note that this result is consistent with the results shown in Figure 5.5.

We have already discussed SC’s inherent error tolerance, but for the current example,
we give two more reasons as to why the SC circuit outperforms the conventional one. First,
the conventional circuit is significantly bigger than the SC circuit and has more gates that
are subject to noise. So at any point of time, the probability of seeing at least one bit-flip
in the conventional circuit is higher than in the SC circuit. Second, the conventional circuit
operates in only one (long) clock cycle. Should a bit-flip appear, the conventional circuit’s
output will become erroneous. On the other hand, the SC circuit distributes computation
over multiple (short) clock cycles which increases the chance of error cancellation.

Figure 5.7 compares the output image quality of the two edge detectors of Figure 6.6
in the presence of errors injected into them to simulate the impact of soft errors on the
edge-detection hardware. It shows that when noise causes the output of the conventional
circuit to become almost unrecognizable (at around pe = 2%), the stochastic circuit still
produces acceptable results. Note that this experiment is different from the noise injection
experiments previously done in [109] and [3] where noise was only injected into the input

0.01

0.05

M
e

a
n

-s
q

u
a

re
 e

rr
o

r

E
Z

*

0.04 0.08

Bit-flip rate

pe

Figure 5.6: MSE of stochastic and conventional edge-detection circuits in the presence of
soft-errors.

98

image signals and the image-processing circuitry was assumed to be error-free. In this later
experiment, noise is injected into the stochastic circuits themselves to demonstrate their
fault-tolerant behavior. Together, these two experiments show that when the conventional
design fails to produce recognizable results, stochastic computing can produce good results
in the presence of severe noise that affects both the input image and the edge-detection
circuit.

5.5 Effect of Voltage/Frequency Scaling on Stochastic
Circuits

In this section, we briefly discuss the effect of voltage/frequency scaling on SC circuits,
and we show how the errors caused by aggressive scaling can be reduced. Voltage scal-
ing, i.e., reducing the supply voltage of a circuit, reduces the circuit’s energy consumption
but increases its latency. If latency overhead is allowable by the application context, ag-
gressive voltage scaling can be applied at the cost of occasionally erroneous results. Thus,
voltage scaling allows designers to trade accuracy for energy. This approach has been ex-
tensively studied in the non-SC literature [53] [54] [60], and methods of tolerating and/or
correcting timing errors have been proposed. However, the probability of timing violations

Conventional

binary

Stochastic

computing

(a) (b) (c) (d)

Figure 5.7: Comparison of stochastic and conventional edge detection for different soft-
error rates (bit-flips percentages) in the edge-detection circuits: (a) 0.1%, (b) 0.5%, (c) 1%
and (d) 2%.

99

increases rapidly with voltage scaling, necessitating complicated error-correcting methods.
Frequency scaling is the process of overclocking a circuit in order to reduce its runtime at
the cost of similar timing errors.

As demonstrated in this chapter, SC circuits can resist high rates of soft errors, but some
level of error eventually appears in the output. However SC circuits’ error tolerance against
timing errors (caused by voltage/frequency scaling) is much higher. In other words, timing
errors have very little effect on the operation of an SC circuit. To show the intuition behind
this claim, consider an SC circuit e.g., a multiplier, where the bit-stream 001100100110

with value 5/12 appears at its output. By applying aggressive voltage scaling, we can
reduce the energy consumption of the circuit at the cost of timing errors that appear as
transition delays; a 0-to-1 (1-to-0) transition does not make it in time to be captured at the
end of the clock cycle. This means that a sequence 011 may appear as 001 in the output.
Assuming an extreme case where all the transitions experience a one-clock-cycle delay, we
get 000110010011 which also represents 5/12; i.e., zero error.

More generally, timing errors cause the circuit to miss some of the 0-to-1 (or 1-to-0)
transitions, leading to a 1/N change in the magnitude of Z. (N is the bit-stream length.)
Since the numbers of 0-to-1 and 1-to-0 transitions are almost the same for any bit-stream,
these timing errors tend to cancel each other out. This error cancellation is maximized if
the rates of 0-to-1 and 1-to-0 errors are exactly the same. Figure 5.8 shows the average
error on an SN for different rates of 0-to-1 and 1-to-0 timing errors. It can be seen that the
error magnitude is reduced when the rates of delay errors are the same.

0
0.2

0.4
0.6

0.8
1

0-to-1
error rate

0.2
0.4

0.6
0.81

0

0.1

0.2

A
ve

ra
ge

 e
rr

o
r

1-to-0
error rate

Figure 5.8: Error in the magnitude of an SN for different 0-to-1 and 1-to-0 timing error
rates.

100

Voltage/frequency scaling adds new dimensions to the accuracy-energy tradeoff pos-
sibilities for SC circuits. As mentioned earlier, the length N of a stochastic computation
controls the output accuracy. It also governs the total energy consumed by the circuit. Thus,
by decreasing N , one can trade accuracy for energy or power savings. This natural tradeoff
has been successfully used in the past [3]. By allowing voltage/frequency scaling, we pro-
vide SC circuits with three “control knobs”—(i) supply voltage Vdd, (ii) clock frequency f ,
and (iii) bit-stream length N—that control their accuracy and energy/power consumption.
Finding the best combination of the knobs is thus a new problem.

In [9], we pose and answer the following question: “Given an SC circuit, what is the
lowest energy required for computation with an average error goal of Egoal?” Previous
methods search for the minimum N for which the average error is less than Egoal. How-
ever, as discussed, it is possible to adjust all three parameters (supply voltage Vdd, clock
frequency f , and SN length N) concurrently in order to find the best answer to the ques-
tion. We will refer to the triplet (Vdd, f, N) as an operating point of an SC circuit. Now we
formalize the above question in the following problem statement.

Minimum-Energy Operating Point Problem. Given an SC circuit, find the operating
point (Vdd, f, N) that has the minimum energy consumption, while satisfying the accuracy
requirement of an average error less than Egoal.

We solve this problem using a straightforward search within the operating-point space.
We try different operating points and, for each, we evaluate the accuracy and energy of the
corresponding circuit using circuit simulations and statistical calculations. Then we will
choose the point that has the lowest energy while satisfying the accuracy requirements.

As illustrated in Figure 5.8, the accuracy of SC circuits can be improved if the rate
of 0-to-1 and 1-to-0 timing errors are balanced. This observation provides an opportunity
to optimize SC circuits against timing errors. We saw that different paths of the circuit
scale at a different rate when the supply voltage is reduced [9]. This causes the input
signals to propagate unevenly and have misaligned arrival times at the output, which leads
to unbalanced 0-to-1 and 1-to-0 error rates. To overcome this problem, we use logical and
physical design techniques to balance the path delays.

Circuits with a chain structure (such as the one showed in Figure 3.4) tend to have un-
balanced path delays. In contrast, circuits with a tree structure are more balanced and hence
are more tolerant of timing errors induced voltage/frequency scaling. So the employed syn-
thesis algorithm has an impact on the circuits ability to resist voltage scaling. For example,

101

circuits synthesized by Qian et al.’s ReSC [109] are more balanced than those synthesized
by STRAUSS [8].

Circuit-level modifications such as gate sizing and buffer insertion can also balance the
timing errors in SC circuits. For instance, buffers can be added to a path that is shorter
than then rest. Similarly, wire detours can be added to adjust a path’s delay. These modi-
fications, however, increase the circuit’s energy consumption so there is a tradeoff in using
them, making it a difficult optimization problem. In [9], we formulated and solved this
optimization problem for several representative circuits.

After optimizations, the representative SC circuits tolerated aggressive (up to 40%)
voltage reduction with no significant loss of accuracy. Circuits with balanced structures,
e.g., the edge-detection circuit introduced in the previous section, can tolerate voltage scal-
ing without extensive optimization. This eliminates the overhead of gate sizing and buffer
insertion and produces more efficient circuits.

A comparison between another optimized SC image processing circuit (gamma cor-
rection from [109]) and its conventional binary counterpart appears in Figure 5.9. Both
implemented using the 28nm fully depleted silicon on insulator (FDSOI) technology. Once
again, the SC circuit shows better tolerance against aggressive voltage scaling. In con-
trast, the binary circuits’ output quality quickly drops, even with modest voltage changes.
The error-tolerance of SC circuits enable significant energy savings. In the example of

V = 1V
SNR = 18.5dB

Per Pixel Energy =20.7pJ

V = 0.8V
SNR = 18.7dB

Per Pixel Energy =12.6pJ

V = 0.6V
SNR = 19.6dB

Per Pixel Energy =6.9pJ

V = 1V
SNR = 18.9dB

Per Pixel Energy =13.1pJ

V = 0.8V
SNR = 2.6dB

Per Pixel Energy =7.3pJ

V = 0.6V
SNR = 4.0dB

Per Pixel Energy =3.9pJ

Conventional
binary

Stochastic
computing

dd

dd

dd

dd

dd

dd

Input image

Input image

Figure 5.9: Voltage scaling results of gamma correction executed by conventional circuit
and stochastic circuit.

102

Figure 5.9, the SC circuit at Vdd = 0.6V achieves the same accuracy as the conventional
circuit at Vdd = 1V, while the SC circuit consumes about 44% less energy. Note that the
signal-to-noise ratio (SNR) of SC is not monotonic when the voltages are scaled. This is
because the random bit-stream sensitizes different paths when delays scale.

5.6 Summary

In this chapter we categorized the errors that affect SC circuits into four groups: (i) approx-
imation and quantization, (ii) random fluctuation, (iii) insufficient randomness, and (iv) soft
errors. We briefly discussed their causes and their possible solutions. We then focused on
soft errors and presented methods of analyzing SC circuits in their existence. In particular,
we showed how PTM tools can be used to evaluate the error behavior of SC circuits. We
observed that SC circuits are error-tolerant and can outperform conventional binary circuits
in noisy environments with high error rates. We also showed how SC circuits can be opti-
mized to resist timing errors that are induced by voltage/frequency scaling. This allows us
to reduce the supply voltage of the circuit, and hence reduce its energy consumption, with-
out compromising its accuracy. In an image-processing case study, we obtained a threefold
energy reduction with no significant accuracy loss.

103

Chapter 6

Stochastic Image Processing

This chapter discusses the application of stochastic computing (SC) to image processing.
We present a stochastic vision chip that eliminates the heavy cost of conversion units by
operating on sensor data directly. We also discuss how SC’s features can be exploited in
real-time image processing. We demonstrate the design of several representative image-
processing circuits, including an efficient edge-detection circuit, and compare them to con-
ventional binary counterparts. Finally, we show how progressive precision (PP) and be
exploited and guaranteed in SC circuits. To show this, we employ low-discrepancy (LD)
sequences that are commonly used in quasi-Monte Carlo (QMC) simulations. This chap-
ter’s material has been published in [3] and [5].

6.1 Vision Chip Overview

Vision chips are loosely classified as analog or digital (pulse domain), depending on the
type of circuitry used in the preprocessing stage to convert the sensed analog input signals
to digital form for final processing. Typical preprocessing circuits are analog-to-digital
converters (ADCs), noise filters, and edge detectors [12] [45] [59]. These steps may require
many operations per pixel, and consume most of the power of the system [135]. The design
of vision chips is challenging since it involves complex trade-offs among chip area, power,
speed and accuracy. It also requires some degree of parallel processing, which can be at
the level of individual pixels, groups of pixels, or the overall system [135].

We propose to use SC in order to overcome the challenges associated with vision chips.
SC and real-time image processing share some key properties. They both handle stream-
ing analog data (image intensities or probabilities), process the data digitally, and have

104

good noise tolerance. Several proposed vision chips encode the sensed light signals us-
ing pulse-frequency modulation (PFM) [51] [59] [125]. This means that pixel information
is conveyed by the frequency of a pulse train, as in biological neural networks and SC
circuits. SC thus has the potential to meet most of the challenging requirements of the reti-
nal implant application mentioned earlier: streaming neural-style data, small circuit size,
extremely low power, and insensitivity to noise.

It has been shown that SC can outperform conventional binary in some processing tasks
involving stored images [73] [109]. Ma et al. [78] demonstrate that SC is useful in fault-
tolerant image processing. To apply SC to stored images, data conversion between the
weighted-binary and stochastic domains is necessary, and as we showed in Chapter 2, the
conversion is very costly. However, we will demonstrate here that this cost can be avoided
in real-time image processing. The use of SC in real-time vision chips was briefly discussed
by Hammadou et al. in 2003 [51], but otherwise has received very little attention.

Vision chips vary widely in how their sensors and processing circuits are laid out [87]
[19]. In the simplest form, one processor handles all the pixels in series and no parallel
processing occurs. At the other extreme, each pixel has a processing element (PE) of its
own, providing maximum parallelism. Since conventional digital PEs can be large, this
approach does not scale well [135]. For real-time applications, one processor per pixel is
desirable and, as we show, is achievable using stochastic computing techniques.

We propose a vision chip with maximum parallelism using stochastic processing ele-
ments (SPEs) that are small and scale well. Our designs are also applicable to cases where
processing circuits are shared among pixels. Figure 6.1 shows a high-level view of the
proposed chip and its SPEs. For clarity, a 4 × 4 pixel array is shown, but it is possible
to have many more pixels on chip. In addition to the SPEs, the chip has shared resources
that manage random number generation and include a few counters based on LFSRs (linear
feedback shift registers). The area cost of these resources is minor since they are small and
their cost does not change with the pixel count.

As Figure 6.1 shows, vision chips have image sensors that convert the perceived light
intensity to an analog electrical voltage. To enable digital processing, this analog signal
must be converted to digital form using a conventional ADC or, in the SC case, an analog-
to-stochastic converter. As noted earlier, the cost of an analog-to-stochastic converter is
similar to that of a conventional ADC, which is depicted in Figure 6.2. In the conven-
tional case, the analog voltage from the sensor is converted to a digital number through a
comparison with a ramp voltage. The ramp voltage is generated by a counter and a digital-

105

to-analog converter (DAC). The analog comparator, fed by the sensor voltage and the ramp
voltage, directly triggers a second counter which produces the desired digital output. In the
SC case, the sensor voltage is converted to a stochastic number (SN) by comparing it to
a random voltage generated by an LFSR-based counter and a DAC. An SN appears at the
output of the comparator and can then be processed by an application-specific stochastic
circuit, such as an edge detector. The second counter is used to convert the final result to
weighted binary form. It should be clear from Figure 6.2 that analog-to-stochastic conver-
sion imposes little overhead as it employs essentially the same ADC circuits found in any
digital vision chip.

Although analog comparators are well understood, they still present some circuit de-
sign challenges; for instance, low-area comparators are susceptible to noise. It is feasible
to place comparators of suitable quality and size at every pixel [34]. In conventional digital

Shared resources

Stochastic processing element

SPE

Sensing circuit

Conversion circuit

Stochastic circuit
SPE SPE SPE

SPE SPE SPE SPE

SPE SPE SPE SPE

SPE SPE SPE SPE

Figure 6.1: Top-level view of an SC-based vision chip and its stochastic processing ele-
ments (SPEs).

Sensing

circuit
+

-
Digital

number
Counter

Analog

comparator

SC case: Implemented

by LFSR

DAC

Stochastic circuit for edge-detection, etc. inserted here

Ramp

voltage

Analog-to-

digital

converter

(ADC)

Counter

SC case: Replaced by

random voltage

Figure 6.2: Conventional ADC circuit for a vision chip with the changes (in red) needed
for analog-to-stochastic conversion.

106

image processors, a noise reduction step such as median filtering is needed [73]. In the pro-
posed SC vision chip, however, the impact of noise is minimal thanks to the error tolerance
of SNs, and a separate noise suppression step is unnecessary.

6.2 Image Processing Operations

This section discusses two basic image preprocessing categories, namely pixel-wise op-
erations and windowing operations, examples of which are implemented later. We then
present two ways to produce images with progressive quality improvement, which greatly
speed up stochastic processing.

Pixel-wise operations modify a pixel’s intensity value X independent of the values at
other pixels. They typically implement a real-valued function F (X) that adjusts intensity
values. A well-known example is gamma correction, which is used to compensate for
non-linearities in recording or display devices, or to increase pixel contrast [109]. One of
the simpler gamma-correction functions is F (X) = X0.45. To synthesize stochastic circuits
that implement functions like F (X), we use our STRAUSS method [8]. As we have seen in
Chapter 3, this approach produces efficient circuits for a broad class of arithmetic functions.

A second category of image-processing operations of concern are windowing opera-
tions, where a weighted moving-average operation is performed on a small window of
pixels, either to extract features of the image or to modify its quality. Examples of such op-
erations are edge detection, sharpening and blurring [45]. The pixel windows are typically
of size 2 × 2, 3 × 3, or 5 × 5. In order to design operations of this type, we mainly use
the components of Figure 2.2. An m-to-1 multiplexer with a random select input performs
averaging operations of the form Z = 1

m
(X1 + X2 + ... + Xm); if negative weights are

present, subtraction can be implemented by XOR or NOT gates.
Generating images that progressively improve is an important feature of image process-

ing because it enables a trade-off between accuracy and computation that can be exploited
in several ways. Image standards such as JPEG2000 [29] encode images of various quali-
ties simultaneously. A conventional method of reducing the quality of an image is to reduce
its number of pixels, i.e., its resolution. Figure 6.3 shows an image at several resolution
levels; clearly, the quality diminishes as the resolution decreases.

Processing images with multiple resolutions imposes some computational overhead.
However, we show by an example, that in the SC case, this overhead is minimal. Assume
that a given image is to be processed at its original resolution, and at a lower-quality level

107

with 16 times less resolution. In the latter case, intensity signals from 16 neighboring pixels
of the original image are averaged to produce a super-pixel.

Figure 6.4 shows this averaging process implemented by a 16-to-1 multiplexer. This
circuit processes each input individually, and records its results in the corresponding
counter. Meanwhile, it performs the same computation on the low-resolution super-pixel
and records that result in a separate counter. As seen in the figure, the overhead of a super-
pixel computation is only the additional counter.

As noted earlier, SNs have PP, meaning that short sub-sequences of an SN can provide
low-precision estimates of its value. This property can also be used to obtain images of
different qualities because we can have SN-encoded pixels with different precisions. This
approach is orthogonal to the previous spatial-resolution method, and, since it is an inherent
property of SC, it comes at essentially no cost. One simply uses the values appearing at the
output counters of Figure 6.4 at successive points of time.

Figure 6.5 shows how this property can be exploited in image processing. An edge-
detection operation is being performed on an image. The input image has 8 bits of precision

(a) (b) (c) (d)

Figure 6.3: An image at four different resolution levels: (a) 400 × 400, (b) 100 × 100, (c)
50× 50, and (d) 25× 25 pixels.

M

U

X

Window of 16 pixels

Stochastic

circuit

Counter for pixel 1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Counter for pixel 2

Counter for pixel 3

Counter for pixel 16

Counter for

super-pixel

Figure 6.4: Stochastic processing of 16 pixels individually and as a super-pixel.

108

(the precision of an image corresponds to its gray-scale resolution [45]), and hence requires
SN bit-streams of length 256. However, if the output image is checked at different points
of time, it can be seen that as early as 4 clock cycles into the computation, many edges of
the input image are detected, and after 32 clock cycles, almost all the edges are detected.

6.3 Implementations and Results

In this section, we demonstrate the design of image-processing circuits, including a high-
efficiency edge detection circuit. Edge detection is useful in image processing and com-
puter vision because it allows objects to be extracted from an image by highlighting their
edges. As mentioned in Chapter 1, this can be useful in retinal implants because it gener-
ates high-contrast images of the environment that greatly help a vision-impaired person to
navigate correctly and avoid obstacles.

Many edge-detection algorithms are known [45], and a few have been implemented
with (non-real-time) SC [73]. Here we use the Roberts cross algorithm [45]. It computes
a moving average of intensity values on a window of size 2 × 2 for each pixel Xi,j at row
i and column j of the image, and generates an output value Zi,j according to the following
formula.

Zi,j =
1

2

(
|Xi,j −Xi+1,j+1|+ |Xi,j+1 −Xi+1,j|

)
(6.1)

A stochastic implementation of this operation has been proposed by Li and Lilja [73], but it
uses relatively large sequential circuits to approximate the absolute value function. Instead,
we use the simple combinational SC components of Figure 2.2, which lead to a design
that is more than 20 times smaller than that of [73], but results in similar (or even better)
performance. Figure 6.6a shows the proposed stochastic circuit for edge detection. It uses
just two XOR gates to implement the subtractions in Eq. (6.1) and a multiplexer to perform

(a) (b) (c) (d)

Figure 6.5: Progressive precision results for edge detection: (a) input image; output image
after (b) 4, (c) 32, and (d) 256 clock cycles.

109

the addition. As discussed in Section 4.3 (Table 4.3), the input SNs must be maximally
correlated, i.e., they must have maximum overlap of 1’s and 0’s. This is assured by using
a common random number source in their conversion circuitry. The multiplexer’s select
input is fed with a random input r, which is produced at minimal cost since it is shared
among the SPEs. In contrast, the corresponding binary design (Figure 6.6b), assuming
8-bit precision, contains several big arithmetic units such as adders and subtracters.

As proof-of-concept, we implemented and validated the SC edge-detection circuit (and
the other examples in this section) on a Xilinx Virtex-5 FPGA chip. Figure 6.7 illustrates
the FPGA board (XUPV5-LX110T) used for our experiments, along with a representative
image-processing task, namely, gamma correction. As seen in the figure, gamma correction
corrects the brightness of the image and improves its visibility. It is important to note that
the FPGA implementation was only used to verify the functionality of the circuits, and not
for performance comparison. The output generated by the circuit is validated by comparing
it to an expected output generated via conventional approaches.

xi,j
xi+1,j+1
xi+1,j
xi,j+1

zi,j

Random

input r = 0.5

0

1

(a) (b)

8

8

8

Abs. value
circuit 8

88

8

Adder
Xi+1,j+1

Xi,j

Xi,j+1

Xi+1,j

Subtracter

Zi,j

Abs. value
circuit

Figure 6.6: Edge detectors: (a) stochastic and (b) conventional designs.

Figure 6.7: FPGA setup for emulating image-processing tasks, in this case, gamma correc-
tion.

110

Table 6.1: Synthesis results for the edge-detection circuits.

Implementation Area
(µm2)

Delay
(ns)

Power
@20MHz

(µW)

Energy
(nJ)

Area × Delay
(µm2 × ps)

Conventional
weighted-binary 6928 19.49 7767.9 0.39 135.03

Previous SC
design [73] 4312 1300 2213.7 28.34 5607.67

SC design
proposed here 200 58.88 88.7 1.14 11.78

In order to compare the proposed edge-detection design with previous work, we used
the SIS synthesis CAD tools [120]. Table 6.1 summarizes the results. All the numbers are
estimated values based on a generic library of cells using 0.35µm CMOS technology. The
delay of each circuit is obtained by multiplying the clock period by the number of cycles
required to perform the operation. The conventional binary design shown in Figure 6.6b
implements Eq. (6.1) in a single clock cycle. The SC designs, on the other hand, require
256 cycles for the full 8 bits of precision. The dynamic power consumption of the circuits
are also estimated using the SIS tools [120].

The results reveal that the proposed edge-detection circuit is strictly better than the
previous SC design [73]. Our SC design is about 30 times smaller than the conventional
designs, and only 3 times slower. From the area-delay numbers, we see that the SC design
has a significant cost advantage. The dynamic power consumption of each circuit is also
reported in Table 6.1, which indicates that for a given clock frequency (in this case 20MHz),
SC has significantly lower power consumption. However, since a stochastic circuit with
fixed precision runs for a longer time, its energy consumption eventually becomes higher
than that of a conventional design. We do not report the leakage power/ energy of these
circuits, but since leakage power is directly proportional to area, we can conclude that the
leakage power of the SC circuits is lower than the conventional case.

Also of interest is the performance of the edge-detection circuit when producing images
with progressive quality improvement. The examples in Figure 6.5 suggest that the runtime
of the edge-detection circuit can be further reduced (by a factor of 8) without compromising
accuracy. This implies that edge detection requires less precision (than the original 8 bits),
so for a fair comparison, we also implemented a low-precision version of the conventional
edge-detection circuit. As can be seen from Table 6.2, the stochastic design is strictly
better than the conventional one. Also, the stochastic edge-detection is so efficient that

111

Table 6.2: Synthesis results for low-precision edge-detection circuits.

Implementation Area
(µm2)

Delay
(ns)

Power
@20MHz

(µW)

Energy
(nJ)

Area × Delay
(µm2 × ps)

Conventional
weighted-binary 4344 7.66 5156.8 0.26 33.28

SC design
proposed here 200 7.36 88.7 0.14 1.47

can operate in real-time (15 frames per second) at 1nW power consumption. This number
might be further reduced by switching to sub-threshold technologies.

Besides edge detectors, we designed several other stochastic image-processing circuits
and evaluated their performance compared to alternative designs. We used STRAUSS [8] to
obtain the gamma-correction circuit in Figure 6.8a. A flip-flop is used in this design in order
to produce a second uncorrelated copy of the input bit-stream. The function implemented
approximates the target function Zi,j = X0.45

i,j but produces acceptable results, as seen in
Figure 6.7. Figure 6.8b shows a conventional binary implementation of the same function.
Like our edge-detection circuit, the stochastic gamma-correction circuit has a random input
of probability 0.25 produced by a vision chip’s shared resources.

Table 6.3 shows the synthesis results of our gamma-correction circuit, along with a
conventional design of the same precision, and a previous SC design [109]. The design of
[109] has better accuracy, but is much costlier. The table also includes synthesis results for
two other image-processing tasks, namely, blurring and gradient calculation. These results
are consistent with those we obtained for edge detection.

(a) (b)

xi,j D Q

Random input
r = 0.25

zi,j

8

0.75

1.5

8

0.25

AdderSubtracter

Multi
-plier

Multi
-plier

8

Xi,j

Zi,j

Xi,j

Figure 6.8: Gamma correctors: (a) stochastic and (b) conventional.

112

Table 6.3: Synthesis results for gamma-correction, blurring, and gradient calculation cir-
cuits.

Task Design
method

Area
(µm2)

Delay
(ns)

Power
@20MHz

(µW)

Energy
(nJ)

Area × Delay
(µm2 × ps)

G
am

m
a

co
rr

ec
tio

n

Conventional
binary 10576 27.2 21486 1.07 287.77

Previous SC
method [109] 1416 5365 970.3 49.68 7597.9

This
work 168 15.4 55.8 0.71 2.58

B
lu

rr
in

g Conventional
binary 19464 32.6 13196 0.66 634.92

This
work 664 589 433.4 5.55 390.96

G
ra

di
en

t
ca

lc
ul

at
io

n Conventional
binary 1520 3.4 716.6 0.04 5.20

This
work 72 51.2 26.9 0.34 3.69

6.4 Guaranteeing Progressive Precision

Progressive precision (PP) was defined earlier as a property of SNs in which initial subse-
quences provide an estimation of the SNs’ value. We also showed how it can lead to early
edge detection (see Figure 6.5). This section analyzes this property more rigorously and
presents methods of guaranteeing and exploiting it.

First, we will need to revisit the definitions of precision and accuracy. The precision

of an SN X of length N may be defined as log2N bits, while the accuracy of X is its
closeness to a target value denoted by p∗X , which may be stated in terms of acceptable error
bounds. To increase precision by 1 bit, an SN’s length must be doubled. Accuracy targets,
however, may demand even longer bit-streams. PP enables accuracy to be traded for speed:
if the first N ′ < N result bits of an N -bit stochastic computation provide a sufficiently
good approximation to a desired result, the computation can be stopped early.

Technically, all SNs have PP to some extent. Some SNs are said to have “good” PP,
implying that their first bits provide a good estimation of the final value, other have a “bad”
(or poor) PP. For example, consider the following two SNs

X : 1010101010101110

Y : 1111111110000000

113

both representing the number 9/16. X has good PP because its first 8 bits (10101010)
represent 4/8 ' 9/16. Y on the other hand has bad PP because its first 8 bits represent the
number 1 6' 9/16. Figure 6.9 shows how good and bad PP affect edge detection. SNs with
good PP reveal edges early into the computation. In order to guarantee good PP, we need
to quantify it. First, we introduce an error measure called bit-error.

Definition 6.1: Let X be an SN of length N with value pX and let p∗X denote its exact
value. Then the bit-error of X is defined as εX = N.|pX − p∗X |.

The bit-error indicates how many bits pX is away from p∗X for the precision level cor-
responding to N . The exact value p∗X is often known from the context. For instance, the
output of a stochastic multiplier with inputs X and Y has the exact value p∗Z = pXpY ,
which serves to measure the output error εZ . We are now ready to define a measure to
quantify PP.

Definition 6.2: An N -bit SN is k-PP if the bit-error of its initial sub-sequence of length 2i

is at most k for all i.

For example, let X = 0111111111110000 and let the exact value p∗X = 10/16.
The initial sub-sequences of length 2, 4, 8, and 16 are 01, 0111, 01111111, and
0111111111110000, respectively. The corresponding bit-errors of the sub-sequences are,
from Definition 6.1: 0.25, 0.5, 2 and 1, respectively. This means that X is 2-PP because the

(a)

(b)

4 cycles 64 cycles 512 cycles

Figure 6.9: (a) Good PP and (b) bad PP in edge detection.

114

maximum bit-error of its initial sub-sequences is 2. The number Y = 0111110111110000,
on the other hand, is 1-PP because the bit-errors of the initial subsequences have values
0.25, 0.5, 1 and 0, respectively. We say Y has better PP than X because the errors of its
initial sub-sequences are lower.

A key insight of our approach is establishing a link between SC and Monte Carlo (MC).
To illustrate this, we interpret an SC circuit as implicitly defining a small MC problem.
Consider the circuit C in Figure 6.10 which is a stochastic multiplier supplied by two
inputs X and Y derived from SNGs like that of Figure 2.3a. The MC problem defined
by C is the following: given the input probability pX and pY , find an estimate pZ of the
exact value p∗Z = pXpY by applying independent uniform random samples to r1 and r2.
The direct MC approach [52] to solving this problem is to generate N independent random
samples at r1 and r2. It can be shown that the expected value of the estimated pZ is indeed
p∗Z = pXpY and its variance is p∗Z(1−p∗Z)/N . The variance reflects the random fluctuations
around p∗Z , and implies that pZ converges toward p∗Z at the rate O

(
1/
√
N
)

.

The O
(

1/
√
N
)

rate of convergence happens when random or pseudo-random sources
(like LFSRs) are used in Figure 6.10. Unfortunately, the SNs generated by LFSRs have a
relatively poor PP because they have uneven spacing of 1’s and 0’s [44]. In the example of
Figure 6.10, LFSRs produce outputs with 20-PP whenN = 512. To generate SNs with bet-
ter PP, we introduce a new class of random number sources that produce low-discrepancy

(LD) sequences, in which 1’s and 0’s are uniformly spaced, so they do not suffer from ran-
dom fluctuations. They are widely used in quasi-Monte Carlo (QMC) sampling [94] [31],
but have not been previously applied to SC. Other benefits of LD include deterministic
error bounds and fast convergence. We present circuits employing LD sequences that are
faster and more accurate than existing SC designs. For example, in image edge detection
using LD sequences with good PP, as shown in Figure 6.9a, many edges are detected after

pX

Sample source 1 X

Clock

r1

Sample source 2

Clock

Y

Z

A

B

A<B

pY

r2
A

B

A<B

Figure 6.10: SC multiplication viewed as a Monte Carlo problem.

115

only 4 clock cycles, so the computation can stop early in most cases, as opposed to full-
scale computation with 512 clock cycles. But if bit-streams with bad PP are used, we get
the output edges shown in Figure 6.9b, where many edges remain undetected even after 64
clock cycles.

Figure 6.11a illustrates the PP behavior of three different types of SNs as they converge
toward the target. The SNs generated from random and pseudo-random (LFSR-based)
sample sets converge slowly and fluctuate a lot before settling at or near the target value.
These are examples of bad PP. The SN generated using low-discrepancy sequences, on the
other hand, quickly and monotonically converges to the target value. To further illustrate
the convergence behavior of the different SNs, we plot the average error of several SNs as
their length increases; see Figure 6.11b. The error of the LD-based SNs drops much faster
than the others. This implies that the initial subsequences of the LD case provide a good
early estimate of the target value, implying good PP.

To generate LD sequences in SC, we propose to use Halton sequences [94]. To obtain
samples for a Halton sequence, the interval [0, 1] is divided into b equal partitions, where
b is a prime number. Then b − 1 samples are selected from the partitions, after which
each partition is recursively divided into another b partitions and are sampled in a similar

(b)

pX*

|p
X
 -

 p
X
*
|

log2n(a)
log2n

Figure 6.11: SN generation illustrating PP; (a) numerical value pX for p∗X = 0.63, and (b)
average absolute error |pX − p∗X | for all p∗X’s.

116

fashion. The following sequence shows the first 8 samples of a Halton sequence with b = 2

1

2
,

1

4
,

3

4
,

1

8
,

5

8
,

3

8
,

7

8
,

1

16
,

9

16
, ...

which is also known as the van der Corput sequence [94]. For b = 3 the first 8 samples are

1

3
,

2

3
,

1

9
,

4

9
,

7

9
,

2

9
,

5

9
,

8

9
,

1

27
, ...

Halton sequences are among the less complicated LD sequences, and they show good
performance for problems like those posed by stochastic circuits. Figure 6.12 shows the
structure of our Halton sequence generator. It consists of a binary-coded base-b counter,
where b is a prime number. The order of the output digits is reversed and the resulting num-
ber is converted to a binary number so that it fits into the SNG framework of Figure 2.2a.
For example, for b = 3, the (binary- coded ternary) counter generates the sequence:

000, 001, 002, 010, 011, ..., 220, 221, 222

Then, the order of the digits is reversed thus:

000, 100, 200, 010, 110, ..., 022, 122, 222

(which requires no logic) and the reordered digits are converted to equivalent binary num-
bers. Each base-3 digit is converted using a digit converter, then the results are summed to
generate the desired sequence of binary numbers

00000, 01011, 10101, ..., 10100, 11111

When b = 2, Figure 6.12 reduces to a simple binary counter. For n inputs, we need n copies
of the circuit of Figure 6.12 with different prime bases. The 2-input circuit of Figure 6.10,
requires two Halton sequence generators having b = 2 and 3. The output Z then becomes
a 3-PP SN, in contrast with the 20-PP SNs produced by pseudo-random sequences.

So LD sequences can guarantee a good PP at the output. Now let us see how this good
PP can be exploited in the example of Figure 6.10. Suppose that with the given inputs pX

117

and pY , we are interested in the function

F1(pX , pY) =

{
1 if p∗Z = pXpY ≥ 0.5

0 otherwise

Assuming 8 bits of precision are required, a conventional non-stochastic design would use
an 8-bit multiplier along with a comparator to implement the decision p∗Z ≥ 0.5. It would
also perform the desired operation in one clock cycle. On the other hand, an SC imple-
mentation would use a circuit like that of Figure 6.10, where the AND gate implements
multiplication. An additional circuit (such as a counter acting as a stochastic-to-binary
converter and a comparator) would be needed to implement the decision. Using LFSR se-
quences, the SC design would be expected to need N = 1, 024 clock cycles to produce a
satisfactory result with an error rate of less than 1%.

Applying LD sequences to an SC multiplier produces a 3-PP output Z, so the initial
sub-sequences of Z are at most 3 bits away from the target result. Suppose the initial sub-
sequence of length 16� N = 1, 024 is Z16 = 0010000101001000, denoting pZ16 = 4/16,
which means that p∗Z = 4/16 ± 3/16 < 0.5, and hence F1(pX , pY) = 0. In this case, the
computation of F1 can stop after 16 clock cycles. In general, the computation can stop after

Mod-b

counter

Least

significant digit

Mod-b

counter

Mod-b

counter

Most

significant digit

Adder

Digit

converter

Binary coded base b counter

Digit

converter

Digit

converter

Figure 6.12: SN generation illustrating PP; (a) numerical value pX for p∗X = 0.63, and (b)
average absolute error |pX − p∗X | for all p∗X’s.

118

N ′ clock cycles if pZN′
> 0.5 + 3/N ′ or pZN′

< 0.5− 3/N ′. It turns out that for uniformly
distributed values of pX and pY , the average runtime per input of the design exploiting PP
is only 59 cycles.

For uniformly distributed values of pX and pY , nearly 40% of the input combinations
lead to a computation that can be stopped after 16 clock cycles. These inputs correspond
to the largest shaded region in Figure 6.13. Nearly 33% of the input combinations can be
stopped after 32 clock cycles. It turns out that only 3% of the input combinations need a
full-precision computation. The average runtime per input of the design exploiting PP is
thus 59.31 cycles, a more than fivefold runtime reduction over existing SC designs. Ap-
plying the same approach to the edge-detection circuit of Section 6.3 we achieve a tenfold
runtime reduction, making it even more efficient.

6.5 Summary

In this chapter, we have shown that SC is practical for real-time image processing. Com-
plex image-processing tasks can be implemented with only a few gates, thus enabling on-
chip massively parallel processing at the pixel level. We presented designs for SC image-
processing circuits that outperform existing designs (both conventional and SC) in most
aspects. In particular, we designed an edge-detection circuit that is strictly better than
equivalent conventional designs. This highly efficient circuit seems ideal for vision chips

pX

pY

Figure 6.13: Input regions for which computation of F1 can stop after 2k clock cycles, for
3 < k < 9.

119

and retinal implants. We also designed other representative image-processing circuits and
made detailed comparisons with alternative implementations. The SC circuits are, in gen-
eral, significantly smaller than conventional designs, and are more efficient in terms of
power consumption and area-delay product. Furthermore, we demonstrated a method of
exploiting PP in SC circuits by employing LD sequences that lead to fast output conver-
gence. This leads to significant runtime reduction, and hence lower energy consumption in
SC circuits.

120

Chapter 7

Concluding Remarks

The preceding chapters presented some of the major challenges posed by stochastic com-
puting (SC) as well as our solutions to address them. We now summarize our contributions
and point to several possible directions to extend this work.

7.1 Summary of Contributions

Our research started in 2010 with a survey of SC’s history and applications. SC was first
introduced in the 1960s as a hybrid analog-digital computing technique that enabled de-
signers to implement complicated arithmetic functions with only a handful of transistors.
But as the transistors became cheaper over time, this benefit faded away and circuits that
operated on weighted binary numbers became more attractive. Even though the weighted
binary circuits were less efficient in hardware cost and chip area, they were preferred over
SC circuit due to their high speed and precision. For this reason, SC was only considered
for a limited set of applications, such as neural networks.

With the development of modern mobile applications and embedded systems, IC design
challenges have now shifted to the energy/power consumption of the circuits, because most
of these circuits operate on batteries (or harvested energy). In some applications such as
medical implants, other physical limitations, such as the heat amount generated by the
circuits, define their power consumption. For these reasons, we concluded that SC should
be revisited, because the area efficiency of SC circuits can make them a viable alternative
to conventional binary circuits. In addition, SC’s natural probabilistic behavior and error
tolerance seems well-suited to nanoscale CMOS devices, as well as the emerging “beyond
CMOS” nanotechnologies such as memristors [66], carbon nanotube field-effect transistors
(CNTFETs) [122], and magnetic-tunnel junction device [97].

121

In our survey paper [2], we identified the main challenges of SC which became the focus
of our subsequent research. First of all, SC lacked a comprehensive design method. Most
of the previous designs were ad hoc, or based on pre-designed small components. Second,
SC suffered from low precision, low accuracy and low speed, which limited the scope of
SC’s applications. In addition, circuits that convert numbers from/to SNs are costly, and
if used extensively, they can defeat the purpose of employing SC. All of these challenges
point to a bigger question: is there an application that (i) avoids the cost of conversion
units, (ii) does not require high precision and speed, and (iii) can benefit from SC’s good
properties such as fault tolerance and area efficiency? Our research has addressed many of
these challenges.

We introduced a general design method called STRAUSS (Spectral TRAnsform Use in
Stochastic circuit Synthesis) which, as evident from its name, is based on spectral trans-
forms. We proved that there is a key relation between the Fourier transform of a Boolean
function (BF), and the stochastic function (SF) implemented by it: the Fourier transform of
a BF (corresponding to a circuit C) produces a polynomial which is the SF implemented
by C. This makes the Fourier transform an important tool because it allows us to directly
extract the stochastic behavior of an arbitrary combinational circuit.

Furthermore, the Fourier transform is reversible, meaning that it preserves all the in-
formation of the original BF. Consequently, we can apply the inverse Fourier transform to
a polynomial and obtain its corresponding BF. This became the basis of our STRAUSS
design method. Given a target SF F , we approximate it with a polynomial P (if not in
that form already), and then apply the inverse Fourier transform to P to obtain its corre-
sponding BF f . We then use standard circuit optimization techniques to implement f . We
showed the details of the process of arbitrary functions, and developed several optimization
techniques such as sharing constant number generator circuits and using asymmetric poly-
nomials. Finally, we showed that for several representative target functions, the circuits
design using STRAUSS were significantly more efficient than those designed by previous
methods. STRAUSS enables SC circuits to be included in standard (or approximate [117])
hardware-software co-design approaches.

We then focused on a major and poorly understood source of inaccuracy in SC cir-
cuits, namely, correlation. Avoiding correlation requires many independent stochastic num-
ber generators (SNGs) which are very costly. We identified and analyzed a class of BFs
called correlation insensitive (CI), which are not affected by correlations among their in-
put stochastic numbers (SNs). This property allows us to avoid the extra cost of SNGs

122

by sharing random number sources between the inputs. We showed that exploiting CI can
significantly reduce circuit cost.

If a function is not CI, systematic correlation changes its functionality. For example,
the SC AND-gate multiplier implements Z = X instead of the expected Z = X×X = X2

when fed by two SNs with identical bit patterns. This change of functionality was usually
regarded as inaccuracy and was generally avoided by producing independent (uncorrelated)
SNs. However, we determined that the assumption “correlation leads to inaccuracy” is not
always true. For instance, we showed that the XOR gate with BF z = x⊕y implements the
SF Z = X+Y −2XY when fed by independent SNs, but it also implements Z = |X−Y |
(absolute-valued subtraction) when fed by suitably correlated inputs. The latter turns out to
be a useful function in several applications. In fact, the case of XOR with correlated inputs
has a double bonus, because not only does it provide a useful function, it also requires
fewer random sources leading to lower overall cost.

Building on this idea, we extended our synthesis method (STRAUSS) to allow the de-
sign of circuits with correlated inputs. First, we introduced a new correlation measure to
quantify the correlation between SNs. We found that standard correlation measures such as
Pearson correlation [28] are not suited for SC because they impose constraints on the val-
ues of the SNs. Our correlation metric called SC correlation (SCC) measures the similarity
of two SNs, without constraining their values. SCC adds a new dimension to the design
space of stochastic circuits and allows efficient implementation of useful functions such as
min/max functions, saturating addition, and an absolute-valued subtraction.

The contributions mentioned above helped us design efficient and accurate stochas-
tic circuits. Based on them, we found and established an important application of SC to
real-time image-processing for retinal implants. These are tiny circuits that have strict en-
ergy/power constraints. We designed several efficient image-processing circuit, including
an edge-detection circuit that exploits most of the techniques discussed earlier, such as
CI and progressive precision (PP). We also showed that costly SNGs can be avoided if
SC circuits are used in pre-processing sensor data, because they can operate on stochasti-
cally encoded signals that exist within analog-to-digital converters (ADCs). We presented
a method of guaranteeing PP SC circuits by employing low-discrepancy (LD) sequences
instead of LFSR sequences. This slight modification leads to significant runtime reduction,
and hence addresses one of the biggest challenges of SC.

Finally, we analyzed SC’s robustness and error tolerance against various error types. We
saw that SC circuits are tolerant of soft errors caused by cosmic radiations or manufactur-

123

ing variability. We also found that SC circuits tolerate errors induced by voltage/frequency
overscaling techniques. Voltage/frequency overscaling is usually used to reduce the en-
ergy/power of a digital circuit at the cost of accuracy. The accuracy of conventional cir-
cuits quickly drops with scaling due to timing violations. However, SC’s redundant en-
coding makes it robust against aggressive scaling. We showed that in a representative
image-processing circuit, even a 40% voltage reduction—which saves energy by a factor
of 3—leads to no loss of accuracy. The results suggest that SC has a great potential in
energy/power-limited applications.

7.2 Future Directions

Despite the recent increased interest in SC, there are still many open research problems in
the field. In this section, we highlight some of these problems, and point to directions that
we believe are important.

Besides the early prototype machines and the few recently fabricated chips [37] [72],
most current SC designs are verified via digital simulation or FPGA emulation, which hide
important circuit-level details from the designers. So there is a great need for more fabri-
cated SC systems for different applications to provide real-world data on their performance.
In general, building big SC systems is still a major challenge. While the theory of design-
ing small arithmetic circuits is fairly well developed, many problems still arise when we
connect multiple SC circuits. These problems become more complicated when there is a
feedback loop present, because the feedback may cause (auto-)correlation within the SNs
and hence change the functionality of the circuit. For instance, the iterative decoding of
LDPC codes requires multiple use of the same components, whose outputs are fed back to
their inputs. In such cases, extra care must be taken when re-using SNs; in the worst case
the SNs must be “decorrelated” or “re-randomized”, imposing significant costs [126].

Storing SNs also becomes an issue in bigger systems such as instruction-set proces-
sors, as intermediate results are required to be stored often. In a conventional processor,
intermediate results are efficiently stored in registers (or memory); the weighted binary
encoding insures dense storage. However, storing SNs is very expensive as their length
grows exponentially with their precision. Most existing SC circuits avoid storage either by
converting the results to binary [109] (which is also costly) or by operating on a stream of
data [3], both of which limit the application scope of SC. So to have SC processors, we

124

need to directly address the storage problem, and design efficient SC storage units. This
would significantly expand the application scope of SC.

The recent interest in memristors [66] and magnetic-tunnel junction devices [97] as SN
generators suggests opportunities to use them as storage units. For example, Onizawa et
al. [97] propose an efficient analog-to-stochastic converter, which alongside an analog in-
tegrator, can be an SN storage unit. The integrator accumulates the SN pulses and converts
them to an analog signal that is proportional to the rate of the pulses. The analog signal
is then fed to the analog-to-stochastic converter for regeneration. Memristors may also be
used in a similar way and are hence good candidates for SN storage.

Another direction to continue this line of research is to extend the discussed design
methods (e.g., STRAUSS [8]) to sequential circuits. The existing sequential circuit design
methods are restricted to very specific finite-state machine structures [74], as we saw in
Chapter 2. In [4] we showed how arbitrary SC sequential circuits can be analyzed by
converting their state transition function into a set of linear equations. The solution to
this set of equations produces the SF implemented by the circuit. The reverse engineering
problem, i.e., coming up with a set of sequential equations whose solution is a desired
target function, is an interesting and non-trivial problem. The number of different equation
sets possible rapidly increase with the number of inputs and the number of states in the
circuit, making it impractical to perform exhaustive search. Saraf et al. [119] have taken
important steps in generalizing the previous design methods, but their approach is still quite
limited. Building on their work, we have shown that circuits with completely different
state-machine structures can produce the same SF [7]. For examples, the circuits shown in
Figure 7.1 implement the same SF Z(X) = (2X − 2)/(X − 2). This observation suggests
that we may be able to shrink the search space for a target set of equations by eliminating
the equivalent sets.

z

y

x

(a)

D Q

z

y

x

D Q

(b)

Figure 7.1: Two sequential circuits implementing Z(X) = (2X − 2)/(X − 2).

125

SC applications used to be limited to a few specific domains, such as neural networks,
image processing, and LDPC decoding. We showed that SC has a great promise in real-time
image processing applications and medical implants. However, SC’s application domain
still remains small, compared to the domain of digital circuits. We believe that the theory
and the techniques presented in this dissertation bring fresh perspective to the SC field. In
particular, energy/power-constrained mobile embedded systems can greatly benefit from
our methods. As we showed in Chapter 5, SC’s error tolerance is a powerful property
that can be exploited to reduce the energy consumption of the circuits. In short, we think
that finding and establishing new SC applications is an interesting and promising research
direction.

Finally, we emphasize that SC has a great potential in medical applications that in-
volve computation on neural signals. The encoding methods of neural signals and SNs are
similar, which has the potential to allow SC circuits to operate on neural signals directly.
The methods and the concepts presented in this dissertation equip the IC designers with
many cost-saving and error-reducing techniques, and thus enable the use of SC in medical
applications that cannot be tackled efficiently with conventional approaches.

126

BIBLIOGRAPHY

[1] A. Alaghi and J. P. Hayes, “A spectral transform approach to stochastic circuits,” Proc.
ICCD, pp. 315–312, 2012. doi:10.1109/ICCD.2012.6378658

[2] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Trans. Embedded
Computing Systems, pp. 92:1–92:12, 2013. doi:10.1145/2465787.2465794

[3] A. Alaghi, C. Li and J. P. Hayes, “Stochastic circuits for real-time image-processing
applications,” Proc. DAC, pp. 136:1–136:6, 2013. doi:10.1145/2463209.2488901

[4] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit design,” Proc.
ICCD, pp. 39–46, 2013. doi:10.1109/ICCD.2013.6657023

[5] A. Alaghi and J. P. Hayes, “Fast and accurate computation using stochastic circuits,”
Proc. DATE, pp. 76:1–76:4, 2014. doi:10.7873/DATE.2014.089

[6] A. Alaghi and J. P. Hayes, “Dimension reduction in statistical simulation of digital
circuits,” Proc. Symp. on Theory of Modeling and Simulation, pp. 1–8, 2015.

[7] A. Alaghi and J. P. Hayes, “On the functions realized by stochastic computing circuits,”
Proc. Great Lakes Symp. VLSI, pp. 311–336, 2015. doi:10.1145/2742060.2743758

[8] A. Alaghi and J. P. Hayes, “STRAUSS: spectral transform use in stochastic circuit
synthesis,” IEEE Trans. on CAD, 2015. doi:10.1109/TCAD.2015.2432138

[9] A. Alaghi et al., “Optimizing stochastic circuits for accuracy-energy tradeoffs,” Proc.
ICCAD (to appear), 2015.

[10] H. Aliee and H. R. Zarandi, “Fault tree analysis using stochastic logic: a reliable and
high speed computing,” Proc. Reliability and Maintainability Symp., pp. 1–6, 2011.
doi:10.1109/RAMS.2011.5754466

[11] R. Alt, J. L. Lamotte and S. Markov, “On the solution to numerical problems using
stochastic arithmetic,” Proc. Symp. Scientific Computing, Computer Arithmetic and
Validated Numerics, p. 6, 2006. doi:10.1109/SCAN.2006.35

[12] F. Andoh et al., “A digital pixel image sensor for real-time readout,” IEEE Trans.
Electron Dev., 47, 11, pp. 2123–2127, 2000. doi:10.1109/16.877174

127

http://dx.doi.org/10.1109/ICCD.2012.6378658
http://dx.doi.org/10.1145/2465787.2465794
http://dx.doi.org/10.1145/2463209.2488901
http://dx.doi.org/10.1109/ICCD.2013.6657023
http://dx.doi.org/10.7873/DATE.2014.089
http://dx.doi.org/10.1145/2742060.2743758
http://dx.doi.org/10.1109/TCAD.2015.2432138
http://dx.doi.org/10.1109/RAMS.2011.5754466
http://dx.doi.org/10.1109/SCAN.2006.35
http://dx.doi.org/10.1109/16.877174

[13] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor tech-
nologies,” IEEE Trans. Device and Materials Reliability, 5, 3, pp. 305–316, 2005.
doi:10.1109/TDMR.2005.853449

[14] S. Borkar, “Designing reliable systems from unreliable components: the chal-
lenges of transistor variability and degradation,” IEEE Micro, 25, pp. 10–16, 2005.
doi:10.1109/MM.2005.110

[15] D. Braendler, T. Hendtlass and P. O’Donoghue, “Deterministic bit-stream dig-
ital neurons,” IEEE Trans. Neural Networks, 13, 6, pp. 1514–1525, 2002.
doi:10.1109/TNN.2002.804284

[16] B. D. Brown and H. C. Card, “Stochastic neural computation. I. Computational ele-
ments,” IEEE Trans. Computers, 50, 9, pp. 891–905, 2001. doi:10.1109/12.954505

[17] E. N. Brown et al., “Multiple neural spike train data analysis: state-of-the-art and
future challenges,” Nature Neuroscience, 7, pp. 456–461, 2004. doi:10.1038/nn1228

[18] V. Canals et al., “A new stochastic computing methodology for efficient neural net-
work implementation,” IEEE Trans. Neural Networks and Learning Systems, 2015.
doi:10.1109/TNNLS.2015.2413754

[19] Centeye Inc., Introduction to Current Centeye Vision Chips,
http://centeye.com/technology/vision-chips/, Feb. 2011.

[20] L. N. Chakrapani et al., “Ultra-efficient (embedded) SoC architectures based
on probabilistic CMOS (PCMOS) technology,” Proc. DATE, pp. 1–6, 2006.
doi:10.1109/DATE.2006.243978

[21] H. Chen and J. Han, “Stochastic computational models for accurate reliability
evaluation of logic circuits,” Proc. Great Lakes Symp. VLSI, pp. 61–66, 2010.
doi:10.1145/1785481.1785497

[22] T. H. Chen and J. P. Hayes, “Design of stochastic Viterbi decoders for convolutional
codes,” Proc. DDECS, pp. 66–71, 2013. doi:10.1109/DDECS.2013.6549790

[23] T. H. Chen, A. Alaghi and J. P. Hayes, “Behavior of stochastic circuits under severe
error conditions,” it - Information Technology, pp. 182–191, 2014. doi:10.1515/itit-
2013-1042

[24] T. H. Chen and J. P. Hayes, “Analyzing and controlling accuracy in stochastic cir-
cuits,” Proc. ICCD, pp. 367–373, 2014. doi:10.1109/ICCD.2014.6974707

[25] T. H. Chen and J. P. Hayes, “Equivalence among stochastic logic circuits and its ap-
plication,” Proc. DAC, pp. 131:1–131:6, 2015. doi:10.1145/2744769.2744837

128

http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/TNN.2002.804284
http://dx.doi.org/10.1109/12.954505
http://dx.doi.org/10.1038/nn1228
http://dx.doi.org/10.1109/TNNLS.2015.2413754
http://dx.doi.org/10.1109/DATE.2006.243978
http://dx.doi.org/10.1145/1785481.1785497
http://dx.doi.org/10.1109/DDECS.2013.6549790
http://dx.doi.org/10.1515/itit-2013-1042
http://dx.doi.org/10.1515/itit-2013-1042
http://dx.doi.org/10.1109/ICCD.2014.6974707
http://dx.doi.org/10.1145/2744769.2744837

[26] T. H. Chen and J. P. Hayes, “Design of stochastic Viterbi decoders for convolutional
codes,” Proc. Design and Diagnostics of Electronic Circuits and Systems (DDECS),
pp. 66–71, 2013. doi:10.1109/DDECS.2013.6549790

[27] V. K. Chippa et al., “StoRM: a stochastic recognition and mining processor,” Proc.
ISLPED, pp. 39-44, 2014. doi:10.1145/2627369.2627645

[28] S. S. Choi, S. H. Cha and C. Tappert, “A survey of binary similarity and distance
measures,” Journ. Systemics, Cybernetics and Informatics, 8, pp. 43–48, 2010.

[29] C. Christopoulos, A. Skodras and T. Ebrahimi, “The JPEG2000 still image coding
system: an overview,” IEEE Trans. Consumer Electronics, 46, 4, pp. 1103–1127, 2000.
doi:10.1109/30.920468

[30] H. Chun, Y. Yang and T. Lehmann, “Safety ensuring retinal prosthesis with precise
charge calance and low power consumption,” IEEE Trans. Biomedical Circuits and
Systems, vol. 8, no. 1, pp. 108–118, 2014. doi:10.1109/TBCAS.2013.2257171

[31] I.L. Dalal, D. Stefan and J. Harwayne-Gidansky, “Low discrepancy sequences
for MC simulations on reconfigurable platforms,” Proc. ASAP, pp. 108–113, 2008.
doi:10.1109/ASAP.2008.4580163

[32] J. A. Dickson, R. D. McLeod and H. C. Card, “Stochastic arithmetic implementations
of neural networks with in situ learning,” Proc. Intl. Conf. Neural Networks, pp. 711–
716. doi:10.1109/ICNN.1993.298642

[33] A. Dinu, M. N. Cirstea, and M. McCormick, “Stochastic implementation of
motor controllers,” Proc. IEEE Symp. Industrial Electronics, pp. 639–644, 2002.
doi:10.1109/ISIE.2002.1026366

[34] P. Dudek and P. J. Hicks, “A general-purpose processor-per-pixel analog
SIMD vision chip,” IEEE Trans. Ccts. and Sys. I, 52, 1, pp. 13–20, 2005.
doi:10.1109/TCSI.2004.840093

[35] H. Esmaeilzadeh et al., “Architecture support for disciplined approximate program-
ming,” In Proc. ASPLOS, pp. 301–312, 2012. doi:10.1145/2150976.2151008

[36] ETSI, European Telecommunications Standards Institute Standard TR 102 376
V1.1.1: Digital Video Broadcasting (DVB). User guidelines for the Second Generation
System for Broadcasting, Interactive Services, News Gathering and Other Broadband
Satellite Applications, 2005. http://www.etsi.org.

[37] D. Fick et al., “Mixed-signal stochastic computation demonstrated in an image sensor
with integrated 2D edge detection and noise filtering,” Proc. CICC, pp. 1–4, 2014.
doi:10.1109/CICC.2014.6946130

129

http://dx.doi.org/10.1109/DDECS.2013.6549790
http://dx.doi.org/10.1145/2627369.2627645
http://dx.doi.org/10.1109/30.920468
http://dx.doi.org/10.1109/TBCAS.2013.2257171
http://dx.doi.org/10.1109/ASAP.2008.4580163
http://dx.doi.org/10.1109/ICNN.1993.298642
http://dx.doi.org/10.1109/ISIE.2002.1026366
http://dx.doi.org/10.1109/TCSI.2004.840093
http://dx.doi.org/10.1145/2150976.2151008
http://dx.doi.org/10.1109/CICC.2014.6946130

[38] B. R. Gaines, “Stochastic computing,” Proc. AFIPS Spring Joint Computer Conf., pp.
149–156, 1967. doi:10.1145/1465482.1465505

[39] B. R. Gaines, “Stochastic computing systems,” Advances in Information Systems Sci-
ence, pp. 37–172, 1969. doi:10.1007/978-1-4899-5841-9 2

[40] J. Gal-Edd and C. C. Fatig, “L2-James webb space telescope opera-
tionally friendly environment?” Proc. Aerospace Conf., pp. 105–110, 2004.
doi:10.1109/AERO.2004.1367595

[41] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inform. Theory, 8, pp.
21–28, 1962. doi:10.1109/TIT.1962.1057683

[42] V. C. Gaudet and A. C. Rapley, “Iterative decoding using stochastic computation,”
Electronics Letters, 39, 3, pp. 299–301, 2003. doi:10.1049/el:20030217

[43] S. W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA, 1981.

[44] S.W. Golomb and G. Gong, Signal Design for Good Correlation, New York: Cam-
bridge Univ. Press, 2004.

[45] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed., Prentice Hall,
2002.

[46] D. Graham-Rowe, “A bionic eye comes to market,” MIT Technology Review, March
2011. Retrieved July 2015.

[47] W. J. Gross, V. C. Gaudet and A. Milner, “Stochastic implementation of LDPC de-
coders,” Proc. Asilomar Conf. Signals, Systems and Computers, pp. 713–717, 2005.
doi:10.1109/ACSSC.2005.1599845

[48] S. Gupta and K. Gopalakrishnan, “Revisiting stochastic computation: approximate
estimation of machine learning kernels,” Workshop on Approximate Computing Across
the System Stack, 2014.

[49] P. K. Gupta and R. Kumaresan, “Binary multiplication with PN sequences,”
IEEE Trans. Acoustics, Speech and Signal Processing, 36, 4, pp. 603–606, 1988.
doi:10.1109/29.1564

[50] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms, Kluwer
Academic Publishers, 1996.

[51] T. Hammadou et al., “A 96 × 64 intelligent digital pixel array with ex-
tended binary stochastic arithmetic,” Proc. ISCAS, pp. IV:772–IV:775, 2003.
doi:10.1109/ISCAS.2003.1206298

130

http://dx.doi.org/10.1145/1465482.1465505
http://dx.doi.org/10.1007/978-1-4899-5841-9_2
http://dx.doi.org/10.1109/AERO.2004.1367595
http://dx.doi.org/10.1109/TIT.1962.1057683
http://dx.doi.org/10.1049/el:20030217
http://dx.doi.org/10.1109/ACSSC.2005.1599845
http://dx.doi.org/10.1109/29.1564
http://dx.doi.org/10.1109/ISCAS.2003.1206298

[52] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods. London: Methuen,
1964.

[53] K. He, A. Gerstlauer and M. Orshansky, “Low-energy signal processing
using circuit-level timing-error acceptance,” Proc. ICICDT, pp. 1–4, 2012.
doi:10.1109/ICICDT.2012.6232873

[54] R. Hegde and N.R.Shanbhag, “Soft digital signal processing,” IEEE Trans. VLSI, 9,
6, pp. 813–823, 2001. doi:10.1109/92.974895

[55] S. L. Hurst, D. M. Miller and J. C. Muzio, Spectral Techniques in Digital Logic,
Academic Press, 1985.

[56] IEEE, IEEE Standard 802.11n for Information Technology-Telecommunications and
Information Exchange Between Systems-Local and Metropolitan Area Networks, 2009,
http://standards.ieee.org

[57] P. Jeavons, D. A. Cohen and J. Shawe-Taylor, “Generating binary sequences for
stochastic computing,” IEEE Trans. Information Theory, 40, 3, pp. 716–720, 1994.
doi:10.1109/18.335883

[58] Y. Ji et al., “A hardware implementation of a radial basis function neural network us-
ing stochastic logic,” Proc. DATE, pp. 880–883, 2015. doi:: 10.7873/DATE.2015.0377

[59] K. Kagawa et al., “Pulse-domain digital image processing for vision chips employing
low-voltage operation in deep-submicrometer technologies,” IEEE Jour. Sel. Topics in
Quantum Electronics, 10, 4, pp. 816–828, 2004. doi:10.1109/JSTQE.2004.833888

[60] A. B. Kahng et al., “Slack redistribution for graceful degradation under voltage over-
scaling,” In Proc. ASP-DAC, pp. 825–831, 2010. doi:10.1109/ASPDAC.2010.5419690

[61] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate arithmetic
designs,” Proc. DAC, pp. 820–825, 2012. doi:10.1145/2228360.2228509

[62] M. G. Karpovsky, R. S. Stankovic and J. T. Astola , Spectral Logic and its Applica-
tions for the Design of Digital Devices, Wiley-Interscience, 2008.

[63] J. F. Keane and L. E. Atlas, “Impulses and stochastic arithmetic for signal processing,”
Proc. Intl. Conf. on Acoustics, Speech and Signal Processing, pp. 1257–1260, 2001.
doi:10.1109/ICASSP.2001.941153

[64] S. K. Kelly et al., “A hermetic wireless subretinal neurostimulator for vi-
sion prostheses,” IEEE Trans. Biomedical Eng., 58, 11, pp. 3197–3205, 2011.
doi:10.1109/TBME.2011.2165713

131

http://dx.doi.org/10.1109/ICICDT.2012.6232873
http://dx.doi.org/10.1109/92.974895
http://dx.doi.org/10.1109/18.335883
http://dx.doi.org/: 10.7873/DATE.2015.0377
http://dx.doi.org/10.1109/JSTQE.2004.833888
http://dx.doi.org/10.1109/ASPDAC.2010.5419690
http://dx.doi.org/10.1145/2228360.2228509
http://dx.doi.org/10.1109/ICASSP.2001.941153
http://dx.doi.org/10.1109/TBME.2011.2165713

[65] Y. C. Kim and M. A. Shanblatt, “Architecture and statistical model of a pulse-mode
digital multilayer neural network,” IEEE Trans. Neural Networks, 6, 5, pp. 1109–1118,
1995. doi:10.1109/72.410355

[66] P. Knag et al., “A native stochastic computing architecture enabled by memristors,”
IEEE Trans. Nanotech., 13, 2, pp. 283–293, 2014. doi:10.1109/TNANO.2014.2300342

[67] I. Koren and C. M. Krishna, Fault-Tolerant Systems, Morgan-Kaufmann, San Fran-
cisco, 2007.

[68] S. Krishnaswamy, I. L. Markov and J. P. Hayes, “Tracking uncertainty with proba-
bilistic logic circuit testing,” IEEE Design and Test of Computers, 24, 4, pp. 312–321,
2007. doi:10.1109/MDT.2007.146

[69] S. Krishnaswamy, G. F. Viamontes, I. L. Markov and J. P. Hayes, “Probabilistic trans-
fer matrices in symbolic reliability analysis of logic circuits,” ACM Trans. Design Au-
tom. Electron. Sys., 13, pp. 8:1–8:35, 2008. doi:10.1145/1297666.1297674

[70] F. R. Kschischang, B. J. Frey and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inform. Theory, 47, 2, pp. 498–519, 2001.
doi:10.1109/18.910572

[71] R. Kuehnel, “Binomial logic: extending stochastic computing to high-bandwidth sig-
nals,” Proc. Asilomar Conf. Signals, Systems and Computers, pp. 1089–1093, 2002.
doi:10.1109/ACSSC.2002.1196952

[72] X. R. Lee, C. L. Chen, H. C. Chang and C. Y. Lee, “A 7.92 Gb/s 437.2 mW stochas-
tic LDPC decoder chip for IEEE 802.15.3c applications,” IEEE Trans. Circuits and
Systems I, vol. 62, no. 2, pp. 507–516, 2015. doi:10.1109/TCSI.2014.2360331

[73] P. Li and D. J. Liljia, “Using stochastic computing to implement dig-
ital image processing algorithms,” Proc. ICCD, pp. 154–161, 2011.
doi:10.1109/ICCD.2011.6081391

[74] P. Li and D. J. Liljia, W. Qian, K. Bazargan and M. Riedel, “The synthesis of complex
arithmetic computation on stochastic bit streams using sequential logic,” Proc. ICCAD,
pp. 480–487, 2012. doi:10.1145/2429384.2429483

[75] X. Li, W. Qian, M. D. Riedel, K. Bazargan and D. J. Lilja, “A reconfigurable stochas-
tic architecture for highly reliable computing,” Proc. Great Lakes Symp. VLSI, pp. 315–
320, 2009. doi:10.1145/1531542.1531615

[76] G. G. Lorentz, Bernstein Polynomials 2nd Ed., Chelsea, New York, 1986.

[77] J. T. Ludwig, S. H. Nawab and A. P. Chandrakasan, “Low-power digital filtering using
approximate processing,” IEEE JSSC, 31, 3, pp. 395–400, 1996. doi:10.1109/4.494201

132

http://dx.doi.org/10.1109/72.410355
http://dx.doi.org/10.1109/TNANO.2014.2300342
http://dx.doi.org/10.1109/MDT.2007.146
http://dx.doi.org/10.1145/1297666.1297674
http://dx.doi.org/10.1109/18.910572
http://dx.doi.org/10.1109/ACSSC.2002.1196952
http://dx.doi.org/10.1109/TCSI.2014.2360331
http://dx.doi.org/10.1109/ICCD.2011.6081391
http://dx.doi.org/10.1145/2429384.2429483
http://dx.doi.org/10.1145/1531542.1531615
http://dx.doi.org/10.1109/4.494201

[78] C. Ma, S. Zhong and H. Dang, “High fault tolerant image processing system based
on stochastic computing,” Proc. Intl. Conf. Computer Science and Service System, pp.
1587–1590, 2012. doi:10.1109/CSSS.2012.397

[79] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of
low density parity check codes,” Electronic Letters, 33, 6, pp. 457-458, 1997.
doi:10.1049/el:19970362

[80] B. J. MacLennan, “Analog computation,” Encyclopedia of Complexity and System
Science, Springer, pp. 271–294, 2009.

[81] R. Manohar, “Comparing stochastic and deterministic computing,” Computer Archi-
tecture Letters, 2015. doi:10.1109/LCA.2015.2412553

[82] S. L. T. Marin, J. M. Q. Reboul and L. G. Franquelo, “Digital stochastic realization of
complex analog controllers,” IEEE Trans. Industrial Electronics, 49, 5, pp. 1101–1109,
2002. doi:10.1109/TIE.2002.803233

[83] P. Mars and H. R. McLean, “High-speed matrix inversion by stochastic computer,”
Electronic Letters, 12, 18 pp. 457–459, 1976. doi:10.1049/el:19760347

[84] MathWorks, Inc., MATLAB and Statistics Toolbox Release 2012b, Natick, Mas-
sachusetts.

[85] S.-J. Min, E.-W. Lee and S.-I. Chae, “A study on the stochastic computation us-
ing the ratio of one pulses and zero pulses,” Proc. ISCAS 6, pp. 471–474, 1994.
doi:10.1109/ISCAS.1994.409628

[86] J. Misra and I. Saha, “Artificial neural networks in hardware: A sur-
vey of two decades of progress,” Neurocomput. 74, 1-3, pp. 239–255, 2010.
doi:10.1016/j.neucom.2010.03.021

[87] A. Moini, Vision Chips, Kluwer, 1999.

[88] W. Mokwa, “Retinal implants to restore vision in blind people,” Proc. Intl. Conf.
Transducers, pp. 2825–2830, 2011. doi:10.1109/TRANSDUCERS.2011.5969883

[89] B. Moons and M. Verhelst, “Energy-efficiency and accuracy of stochastic comput-
ing circuits in emerging technologies,” IEEE Jour. Emerging and Selected Topics in
Circuits and Systems, 4, 4, pp. 475–486, 2014. doi:10.1109/JETCAS.2014.2361070

[90] A. Morro et al., “Ultra-fast data-mining hardware architecture based on stochastic
computing,” PLoS ONE, 10, 5, 2015. doi:10.1371/journal.pone.0124176

[91] A. Naderi, S. Mannor, M. Sawan and W. J. Gross, “Delayed stochastic decod-
ing of LDPC codes,” IEEE Trans. Signal Processing, 59, 11, pp. 5617–5626, 2011.
doi:10.1109/TSP.2011.2163630

133

http://dx.doi.org/10.1109/CSSS.2012.397
http://dx.doi.org/10.1049/el:19970362
http://dx.doi.org/10.1109/LCA.2015.2412553
http://dx.doi.org/10.1109/TIE.2002.803233
http://dx.doi.org/10.1049/el:19760347
http://dx.doi.org/10.1109/ISCAS.1994.409628
http://dx.doi.org/10.1016/j.neucom.2010.03.021
http://dx.doi.org/10.1109/TRANSDUCERS.2011.5969883
http://dx.doi.org/10.1109/JETCAS.2014.2361070
http://dx.doi.org/10.1371/journal.pone.0124176
http://dx.doi.org/10.1109/TSP.2011.2163630

[92] M. H. Najafi and M. E. Salehi, “A fast fault-tolerant architecture for Sauvola local
image thresholding algorithm using stochastic computing,” IEEE Trans. VLSI, 2015.
doi:10.1109/TVLSI.2015.2415932

[93] K. Nepal, R. I. Bahar, J. Mundy, W. R. Patterson and A. Zaslavsky, “Designing logic
circuits for probabilistic computation in the presence of noise,” Proc. DAC, pp. 485–
490, 2005. doi:10.1109/DAC.2005.193858

[94] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods,
SIAM Series in App. Math., 32, Philadelphia, 1992. doi:10.1137/1.9781611970081

[95] R. O’Donnell, “Some topics in the analysis of Boolean functions,” Proc. ACM STOC
Conf., pp. 569–578, 2008. doi:10.1145/1374376.1374458

[96] J. Ohta et al., “Large-scale integration-based stimulus electrodes for retinal prosthe-
sis,” Artificial Sight, Biological and Medical Physics, Biomedical Engineering, pp.
151–168, 2007. doi:10.1007/978-0-387-49331-2 8

[97] N. Onizawa et al., “Analog-to-stochastic converter using magnetic-tunnel junction de-
vices,” Proc. NANOARCH, pp. 59–64, 2014. doi:10.1109/NANOARCH.2014.6880490

[98] N. L. Opie et al., “Heating of the eye by a retinal prosthesis: modeling, ca-
daver and in vivo studies,” IEEE Trans. Biomed. Engin., 59, pp. 339–345, 2012.
doi:10.1109/TBME.2011.2171961

[99] A. Paler, A. Alaghi, I. Polian and J. P. Hayes, “Tomographic testing and validation of
probabilistic circuits,” Proc. ETS, pp. 63–68, 2011. doi:10.1109/ETS.2011.43

[100] K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general combina-
tional networks,” IEEE Trans. Computers, C-24, 6, pp. 668–670, 1975. doi:10.1109/T-
C.1975.224279

[101] D. Pejic and V. Vujicic, “Accuracy limit of high precision stochastic watt-hour me-
ter,” IEEE Trans. Instrum. Meas., 49, 3, pp. 617–620, 2000. doi:10.1109/19.850404

[102] E. M. Petriu et al., “Instrumentation applications of multibit random-data
representation,” IEEE Trans. Instrum. Meas., 52, 1, pp. 175–181, 2003.
doi:10.1109/TIM.2003.809492

[103] W. J. Poppelbaum, C. Afuso and J. W. Esch, “Stochastic computing ele-
ments and systems,” Proc. AFIPS Fall Joint Computer Conf., pp. 635–644, 1967.
doi:10.1145/1465611.1465696

[104] W. J. Poppelbaum, “Statistical processors,” Advances in Computers, pp. 187–230,
1976. doi:10.1016/S0065-2458(08)60452-0

134

http://dx.doi.org/10.1109/TVLSI.2015.2415932
http://dx.doi.org/10.1109/DAC.2005.193858
http://dx.doi.org/10.1137/1.9781611970081
http://dx.doi.org/10.1145/1374376.1374458
http://dx.doi.org/10.1007/978-0-387-49331-2_8
http://dx.doi.org/10.1109/NANOARCH.2014.6880490
http://dx.doi.org/10.1109/TBME.2011.2171961
http://dx.doi.org/10.1109/ETS.2011.43
http://dx.doi.org/10.1109/T-C.1975.224279
http://dx.doi.org/10.1109/T-C.1975.224279
http://dx.doi.org/10.1109/19.850404
http://dx.doi.org/10.1109/TIM.2003.809492
http://dx.doi.org/10.1145/1465611.1465696
http://dx.doi.org/10.1016/S0065-2458(08)60452-0

[105] B. Pratt et al., “Fine-grain SEU mitigation for FPGAs using par-
tial TMR,” IEEE Trans. Nuclear Science, vol. 55, pp. 2274–2280, 2008.
doi:10.1109/TNS.2008.2000852

[106] W. Qian and M. D, Riedel, “The synthesis of robust polynomial arithmetic with
stochastic logic,” Proc. DAC, pp. 648–653, 2008. doi:10.1145/1391469.1391636

[107] W. Qian and M. D. Riedel, “Two-level logic synthesis for probabilistic computation,”
Intl. Workshop on Logic and Synthesis, 2010.

[108] W. Qian and M. D. Riedel, “Uniform approximation and Bernstein polynomials with
coefficients in the unit interval,” European Journal of Combinatorics, 32, 3, pp. 448–
463, 2011. doi:10.1016/j.ejc.2010.11.004

[109] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An architecture for
fault-tolerant computation with stochastic logic,” IEEE Trans. Computers, 60, 1, pp.
93–105, 2011. doi:10.1109/TC.2010.202

[110] W. Qian et al., “Transforming probabilities with combinational logic,” IEEE TCAD,
30, 9, pp. 1279–1292, 2011. doi:10.1109/TCAD.2011.2144630

[111] RAND Corp., A Million Random Digits with 100,000 Normal Deviates, Glencoe,
IL: Free Press, 1955, Reprinted by RAND Corp. in 2001.

[112] T. R. N. Rao. Error Coding for Arithmetic Processors, Academic Press, Orlando,
1974.

[113] S. T. Ribeiro, “Random-pulse machines,” IEEE Trans. Electronic Computers, EC-
16, 3, pp. 261–276, 1967. doi:10.1109/PGEC.1967.264662

[114] R. Rojas, Neural Networks, A Systematic Introduction, Springer-Verlag, Berlin, New
York, 1996.

[115] M. Samadi et al., “SAGE: self-tuning approximation for graphics engines,” Proc.
MICRO, pp. 13–24, 2013. doi:10.1145/2540708.2540711

[116] M. Samadi et al., “Paraprox: pattern-based approximation for data paral-
lel applications,” SIGARCH Comput. Arch. News, 42, 1, pp. 35–50, 2014.
doi:10.1145/2654822.2541948

[117] A. Sampson, J. Bornholt and L. Ceze, “Hardware-software co-design: not just
a cliché,” Summit on Advances in Programming Languages, pp. 262–273, 2015.
doi:10.4230/LIPIcs.SNAPL.2015.262

[118] K. Sanni et al., “FPGA implementation of a deep belief network architecture for
character recognition using stochastic computation,” Proc. Conf. Information Sciences
and Systems, pp. 1–5, 2015. doi:10.1109/CISS.2015.7086904

135

http://dx.doi.org/10.1109/TNS.2008.2000852
http://dx.doi.org/10.1145/1391469.1391636
http://dx.doi.org/10.1016/j.ejc.2010.11.004
http://dx.doi.org/10.1109/TC.2010.202
http://dx.doi.org/10.1109/TCAD.2011.2144630
http://dx.doi.org/10.1109/PGEC.1967.264662
http://dx.doi.org/10.1145/2540708.2540711
http://dx.doi.org/10.1145/2654822.2541948
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2015.262
http://dx.doi.org/10.1109/CISS.2015.7086904

[119] N. Saraf et al., “Stochastic functions using sequential logic,” Proc. ICCD, pp. 507–
510, 2013. doi:10.1109/ICCD.2013.6657094

[120] E. M. Sentovich et al., “SIS: A system for sequential circuit synthesis,” Univ. of Cal-
ifornia, Berkeley, Tech. Report, UCB/ERL M92/41, Electronics Research Lab, 1992.

[121] N. R. Shanbhag, R. A. Abdallah, R. Kumar and D. L. Jones, “Stochastic computa-
tion,” Proc. DAC, pp. 859–864, 2010. doi:10.1145/1837274.1837491

[122] M. M. Shulaker et al., “Carbon nanotube computer,” Nature, vol. 501, pp. 526–530,
2013. doi:10.1038/nature12502

[123] A. Singhee and R. A. Rutenbar, “Why quasi-Monte Carlo is better than Monte Carlo
or latin hypercube sampling for statistical circuit analysis,” IEEE Trans. CAD, 29, 11,
pp. 1763–1776, 2010. doi:10.1109/TCAD.2010.2062750

[124] H. Stark and J. W. Woods, Probability and Random Processes with Applications to
Image Processing, 3rd ed., Prentice Hall, 2002.

[125] F. Taherian and D. Asemani, “Design and implementation of digital image process-
ing techniques in pulse-domain,” Proc. Asia Pacific Conf. Ccts. and Sys. (APCCAS),
pp. 895–898, 2010. doi:10.1109/APCCAS.2010.5775031

[126] S. S. Tehrani et al., “Majority-based tracking forecast memories for stochastic
LDPC decoding,” IEEE Trans. Signal Processing, 58, 9, pp. 4883–4896, 2010.
doi:10.1109/TSP.2010.2051434

[127] P. S. Ting and J. P. Hayes, “Stochastic logic realization of matrix opera-
tions,” Proc. Euromicro Conference Digital System Design, pp. 356–364, 2014.
doi:10.1109/DSD.2014.75

[128] M. S. Tomlinson Jr., D. J. Walker and M. A. Sivilotti, “A digital neural network
architecture for VLSI,” Proc. Intl. Joint Conf. Neural Networks, pp. 545–550, 1990.
doi:10.1109/IJCNN.1990.137764

[129] S. L. Toral, J. M. Quero and L. G. Franquelo, “Stochastic pulse coded arithmetic,”
Proc. ISCAS, pp. 599–602, 2000. doi:10.1109/ISCAS.2000.857166

[130] M. van Daalen et al., “Device for generating binary sequences for stochastic com-
puting,” Electronic Letters 29, 1, pp. 80-81, 1993. doi:10.1049/el:19930052

[131] Various authors, Proc. Intl. Symp. Stochastic Computing and its Applications,
Toulouse, 1978.

[132] R. Venkatesan et al., “Spintastic: spin-based stochastic logic for energy-efficient
computing,” Proc. DATE, pp. 1575–1578, 2015. doi:10.7873/DATE.2015.0460

136

http://dx.doi.org/10.1109/ICCD.2013.6657094
http://dx.doi.org/10.1145/1837274.1837491
http://dx.doi.org/10.1038/nature12502
http://dx.doi.org/10.1109/TCAD.2010.2062750
http://dx.doi.org/10.1109/APCCAS.2010.5775031
http://dx.doi.org/10.1109/TSP.2010.2051434
http://dx.doi.org/10.1109/DSD.2014.75
http://dx.doi.org/10.1109/IJCNN.1990.137764
http://dx.doi.org/10.1109/ISCAS.2000.857166
http://dx.doi.org/10.1049/el:19930052
http://dx.doi.org/10.7873/DATE.2015.0460

[133] B. Vigoda, Analog Logic: Continuous-Time Analog Circuits for Statistical Signal
Processing, Ph.D. dissertation, Massachusetts Institute of Technology, 2003.

[134] J. von Neumann, “Probabilistic logics and the synthesis of reliable organisms from
unreliable components,” Automata Studies, Princeton Univ. Press, pp. 43–98, 1956.

[135] H. Yamashita and C. G. Sodini, “A CMOS imager with a programmable bit-serial
column-parallel SIMD/MIMD processor,” IEEE Trans. Electron Dev., 56, 11, pp.
2534–2545, 2009. doi:10.1109/TED.2009.2030718

[136] C.-C. Yu, A. Alaghi and J. P. Hayes, “Scalable sampling methodology for logic
simulation: reduced-ordered Monte Carlo,” Proc. ICCAD, pp. 195–201, 2012.
doi:10.1145/2429384.2429422

[137] B. Yuan and K. K. Parhi, “ Reduced-latency LLR-based SC List Decoder for Polar
Codes,” Proc. GLSVLSI, pp. 107–110, 2015. doi:10.1145/2742060.2742108

[138] B. Zelkin, “Arithmetic unit using stochastic data processing,” U.S. Patent 6,745,219
B1, 2004.

[139] D. Zhang and H. Li, “A stochastic-based FPGA controller for an induction motor
drive with integrated neural network algorithms,” IEEE Trans. Industrial Electronics,
55, 2, pp. 551–561, 2008. doi:10.1109/TIE.2007.911946

[140] Z. Zhang, V. Anantharam, M. J. Wainwright, and B. Nikolic, “An efficient
10GBASE-T ethernet LDPC decoder design with low error floors,” IEEE JSSC, 45,
4, pp. 843–855, 2010. doi:10.1109/JSSC.2010.2042255

137

http://dx.doi.org/10.1109/TED.2009.2030718
http://dx.doi.org/10.1145/2429384.2429422
http://dx.doi.org/10.1145/2742060.2742108
http://dx.doi.org/10.1109/TIE.2007.911946
http://dx.doi.org/10.1109/JSSC.2010.2042255

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Abstract
	Introduction
	Motivation
	Stochastic Computing
	Dissertation Summary

	Stochastic Computing Basics
	Stochastic Numbers and Functions
	Basic SC Components and Conversion Circuits
	Accuracy and Precision
	History and Applications
	Recent Developments
	Summary

	Design of Stochastic Circuits
	Spectral Transforms
	 Synthesis based on Spectral Transforms
	Constant Number Generation
	Further Optimizations
	Related Work and Experimental Results
	Summary

	Correlation in Stochastic Computing
	Statistical Simulation and Correlation Insensitivity
	Correlation of Stochastic Numbers
	Combinational Circuits
	Summary

	Errors Affecting Stochastic Computing
	Error Categories
	Probabilistic Transfer Matrices
	Effect of Soft Errors on Stochastic Numbers and Circuits
	Case Study: Image Edge Detection
	Effect of Voltage/Frequency Scaling on Stochastic Circuits
	Summary

	Stochastic Image Processing
	 Vision Chip Overview
	Image Processing Operations
	Implementations and Results
	Guaranteeing Progressive Precision
	Summary

	Concluding Remarks
	Summary of Contributions
	Future Directions

	Bibliography

