
1770 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

STRAUSS: Spectral Transform Use in
Stochastic Circuit Synthesis

Armin Alaghi, Student Member, IEEE, and John P. Hayes, Life Fellow, IEEE

Abstract1—Stochastic computing (SC) is an approximate
computing technique that processes data in the form of long pseu-
dorandom bit-streams which can be interpreted as probabilities.
Its key advantages are low-complexity hardware and high-error
tolerance. SC has recently been finding application in several
important areas, including image processing, artificial neural net-
works, and low-density parity check decoding. Despite a long
history, SC still lacks a comprehensive design methodology, so
existing designs tend to be either ad hoc or based on specialized
design methods. In this paper, we demonstrate a fundamen-
tal relation between stochastic circuits and spectral transforms.
Based on this, we propose a general, transform-based approach
to the analysis and synthesis of SC circuits. We implemented
this approach in a program spectral transform use in stochas-
tic circuit synthesis (STRAUSS), which also includes a method
of optimizing stochastic number-generation circuitry. Finally, we
show that the area cost of the circuits generated by STRAUSS
is significantly smaller than that of previous work.

Index Terms—Design methodology, logic synthesis, prob-
abilistic methods, stochastic circuit optimization, stochastic
computing (SC).

I. INTRODUCTION

STOCHASTIC computing (SC) is an unconventional com-
puting technique introduced by Gaines [6], [7] and

Poppelbaum et al. [21] that processes long digital bit-streams
that have well-defined numerical values, but randomly gener-
ated bit-patterns. It employs simple logic circuits to perform
complex arithmetic operations For instance, multiplication can
be implemented by a single AND gate. A bit-stream X contain-
ing N1 1s and N0 0s denotes the number p = N1/(N1 + N0).
Since p lies in the real-number interval [0, 1], it is usually
interpreted as the probability of a 1 appearing at a randomly
chosen location in X or, equivalently, as the probability that X
outputs a 1 at a randomly chosen time.

With suitable interpretation (scaling) of the bit-streams’
numerical values, SC can essentially approximate any arith-
metic operation [6]. Fig. 1 shows a representative stochastic

Manuscript received August 25, 2014; revised December 18, 2014
and February 21, 2015; accepted April 15, 2015. Date of publication
May 12, 2015; date of current version October 16, 2015. This work was sup-
ported by the U.S. National Science Foundation under Grant CCF-1318091.
This paper was recommended by Associate Editor J. Cortadella.

The authors are with Advanced Computer Architecture Laboratory,
University of Michigan, Ann Arbor, MI 48109-2122 USA (e-mail:
alaghi@eecs.umich.edu; jhayes@eecs.umich.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2015.2432138
1Parts of this paper are based on “A spectral transform approach to stochas-

tic circuits,” which was presented at the International Conference on Computer
Design, Oct. 2012 [3].

Fig. 1. Stochastic circuit implementing Z = −(X1 + X2)/4.

circuit C which computes the arithmetic function

Z = −0.25(X1 + X2) (1)

involving addition, multiplication, and negation of N-bit num-
bers. (Why this is so will be explained later.) The accuracy
and precision of an SC computation like this depends on the
length and randomness of the input bit-streams. Fig. 1 shows
N = 12, but in practice N is often much longer. Note that,
the circuit C is a standard logic circuit defined by Boolean
algebra, but its stochastic behavior, as given in (1), is basi-
cally analog arithmetic over rational or real numbers. Also
note that, the circuit C has three auxiliary inputs (the ri inputs
in Fig. 1) that provide three-independent random numbers
of constant probability value 0.5, another typical feature of
stochastic circuits.

As Fig. 1 suggests SC is suitable for applications that
require large numbers of relatively low-precision operations.
Moreover, SC’s probabilistic aspect makes it tolerant of errors
of the soft and bit-flip type. Recent technology trends, such as
the need for massively parallel processing and the increasing
sensitivity of ICs to soft errors, have renewed interest in SC as
an attractive alternative to conventional binary computing in
a few important applications. For example, Alaghi et al. [2]
showed that SC can outperform binary computing in some
image-processing tasks. A recently discovered use of SC is in
low-density parity check (LDPC) decoding [8]; LDPC codes
are part of the IEEE WiFi standard [11]. Naderi et al. [18]
have implemented a stochastic LDPC decoder that has per-
formance comparable to that of conventional designs, but
uses less chip area. Another attractive feature of stochastic
circuits, reflecting their small size, is their low power require-
ment. Alaghi and Hayes [1] further discuss the benefits and
applications of SC in the contemporary design space.

Although SC has been known for decades, most SC designs
have been ad hoc in nature and tailored to very specific

0278-0070 c© 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ALAGHI AND HAYES: STRAUSS 1771

applications. Some are based on assembling circuits from
a fixed and limited library of SC components, e.g., multi-
pliers and adders. A first step toward systematic design of
stochastic circuits was taken by Qian and Riedel [22], who
developed a method of implementing arithmetic functions
based on Bernstein polynomials. Similar methods of syn-
thesis have been proposed targeting combinational [26] and
sequential circuits [16], [27].

Sequential circuits can, in general, implement a larger
class of stochastic functions, and may be more efficient in
implementing nonlinear functions such as tanh and exp [15].
However, their performance and accuracy are degraded by the
auto-correlations that may exist in the input bit-streams, as
well as the “warm-up” time needed for the circuits to arrive
at their steady-state distributions, two phenomena that do not
affect combinational circuits. Furthermore, there are many
examples of combinational stochastic circuits that are more
efficient than their sequential counterparts. Combinational
multipliers, which will be discussed later in this section,
do not have a low-cost sequential implementation. Another
example is the combinational edge-detection circuit proposed
in [2], which is significantly more efficient than the sequential
implementation of the same function [14].

Despite the fact that large stochastic systems such as LDPC
decoders [18] and even general-purpose machines [20] have
been successfully implemented, a comprehensive SC design
methodology has yet to appear.

This paper identifies and explores a fundamental relation
between SC circuits and spectral transforms like the Fourier
transform [10], [13]. Such transforms have many applica-
tions in engineering. For instance, consider the time-domain
impulse response of an analog filter. While it contains all
the information about the filter’s behavior, it is not easy to
extract the response of the filter to a given input signal. The
Fourier transform of the impulse response reveals the “hidden”
frequency-domain behavior of the system, from which its
response to a given input signal can readily be found.

The spectral transforms of interest in this paper map
Boolean functions (BFs) from the logic domain to the domain
of real numbers. We show that they lead to a unique multi-
linear polynomial representation of a given BF, which defines
its SC behavior. (A multilinear polynomial is a polynomial in
which terms may contain products of variables, but no vari-
able appears with a power of two or higher.) Based on this,
we derive methods of analyzing and synthesizing combina-
tional stochastic circuits. We present a synthesis algorithm
called spectral transform use in stochastic circuit synthe-
sis (STRAUSS), which applies to general polynomial types
and covers a wider range of (positive and negative) stochastic
number (SN) formats than previous work. Furthermore, it can
synthesize circuits with significantly lower area cost.

The main contributions of this paper are as follows.
1) The use of spectral transforms to link the structure and

behavior of stochastic circuits.
2) A general spectral algorithm for designing stochastic

circuits to implement arbitrary arithmetic functions.
3) A method of optimizing stochastic designs by sharing

SN generators.

(a)

(b) (c) (d)

Fig. 2. Stochastic multipliers: (a) UP, (b) BP, and (c) IBP. (d) Stochastic
adder for all three formats.

4) A cost comparison of circuits designed with the
proposed spectral method and previous nonspectral
approaches.

II. BASICS OF STOCHASTIC COMPUTING

This section reviews the basics of SC, and introduces the
terminology and notation used throughout this paper.

In SC, the numerical value associated with a 1-bit logic sig-
nal x is usually taken to be the probability of seeing a 1 on x.
We denote this value by X and refer to it as an SN that cor-
responds to signal x. (SNs that are carried by multiple logic
signals are not considered in this paper.) This is called the
unipolar (UP) format and represents real numbers over the unit
interval [0, 1], which is also the probability domain. Table I
shows three different but closely related formats for SNs. The
bipolar (BP) encoding is often preferred because it represents
signed numbers over the [−1,+1] interval in a natural way.
We introduce a new SN format called inverted bipolar (IBP)
which is the inverse of BP. While, the IBP and BP formats
are essentially equivalent, IBP is more convenient to use with
spectral transforms, where the Boolean values 0 and 1 are
replaced by +1 and −1, respectively. This small notational
change greatly simplifies the analysis and synthesis of circuits
in the spectral domain. To illustrate the various SN formats,
consider the bit-stream 0110101101 of length 10 containing
six 1s and four 0s. It represents the UP number 0.6, BP num-
ber 0.2, and IBP number −0.2. For most of this paper, we will
use the IBP format, unless stated otherwise.

Multiplication of UP numbers is implemented by a single
AND gate; see Fig. 2(a). The probability of seeing a 1 at
the output z is equal to the probability of seeing 1 at input x
multiplied by the probability of seeing a 1 at input y, assum-
ing the two probabilities are independent. Hence, Z = XY .
Fig. 2(b)–(c) shows stochastic multipliers for the BP and IBP
formats. Note that, the stochastic behavior of a circuit changes
with the SN format used. For example, the XOR gate of
Fig. 2(c), i.e., the IBP multiplier, realizes the following UP
operation:

Z = X(1 − Y) + (1 − X)Y.

The circuit of Fig. 1 is designed to operate on BP num-
bers; its XOR gate performs both multiplication and negation.
Once, we know the stochastic behavior of a circuit in one for-
mat, we can use the equations given in Table I to derive its
behavior in the other formats. In the next section, we will

1772 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

TABLE I
INTERPRETATIONS OF A BIT-STREAM OF LENGTH N

WITH N1 1S AND N0 0S

Fig. 3. Stochastic number generator (SNG).

show how spectral transforms can be employed to derive
the stochastic behavior of arbitrary logic circuits for any SN
format.

Stochastic addition is usually implemented by the multi-
plexer of Fig. 2(d), which is used with all three SN formats in
Table I. Note that, besides the main (data) inputs x and y, an
auxiliary signal r is applied to the multiplexer’s select input.
This consists of a uniform random bit-stream of constant value
R = 0.5 (in UP format), which serves as a scaling factor; r is
typically obtained from a (pseudo) random number generator,
such as a linear feedback shift register (LFSR) [12]. Since
adding two numbers from the interval [0, 1] (or [−1,+1])
can produce a sum in the interval [0, 2] (or [−2, 2]), scaling
by 0.5 brings the sum back into the original interval. In the
BP circuit of Fig. 1, the multiplexer computes 0.5(X1 + X2),
which the XOR gate then multiplies by another factor of 0.5
and negates. The BP constant 0.5 (which is 0.75 in UP format)
required by the XOR is generated by the OR gate.

To combine stochastic and conventional logic, interface cir-
cuits are needed that convert between (weighted) binary and
SN formats. Converting an SN to binary form requires count-
ing the number of 1s in the bit-stream, so a counter suffices
to implement it. Converting from binary to SN form requires
a more complex circuit. Fig. 3 shows a typical stochastic num-
ber generator (SNG) that converts a binary number of value
X to an SN of the same value in UP format. At each clock
cycle, it compares X with a binary number R that is uniformly
distributed in the [0, 1] interval (or equivalently, on m wires,
each of which carries an SN of UP value 1/2). The SNG out-
puts a bit-stream representing X, one bit per clock cycle. As
reported in [26], SNGs can consume as much as 80% of an
SC circuit’s total area, so reducing the number of SNGs is
a major design challenge in SC.

The accuracy and precision of SC depends on the length
of the bit-streams used and the degree of dependence or cor-
relation among the input bit-streams. For instance, the SNG
of Fig. 3, if clocked for 2m cycles, produces a 2m-bit SN
that has m bits of precision. If the bit-streams applied to

the circuit of Fig. 2(a) are correlated, say each has the same
bit-pattern of value X, then the output will also have value X
instead of X2. Hence, an AND gate will not perform multi-
plication accurately if its inputs are correlated. In this paper,
we make the usual assumption that the SNs applied to the pri-
mary inputs of our stochastic circuits are uncorrelated. Further
discussion of accuracy and correlation issues can be found
in [1] and [4].

III. SPECTRAL TRANSFORMS

We now introduce the spectral transforms used to ana-
lyze and synthesize stochastic circuits. An n-variable BF
f (x1, . . . , xn) maps Bn = {0, 1}n to B = {0, 1}. Here, Bn is
seen as a 2n-dimensional vector space, where each dimension
corresponds to a row of f ’s truth table (TT), or equivalently,
to an n-variable minterm. For example, if n = 2, f (x1, x2)

has the four-dimensional basis vectors m0 = (1, 0, 0, 0),

m1 = (0, 1, 0, 0), m2 = (0, 0, 1, 0), and m3 = (0, 0, 0, 1),
and can be written as

f (x1, x2) =
3∑

i=0

cimi. (2)

This is the familiar sum-of-minterms expansion of f, where
the ci’s are 0-1 coefficients that define f.

Example 1: If f1(x1, x2) = x1 ∨ x2, then f1(x1, x2) = m0 ∨
m2 ∨ m3, or in the column-vector form that we use later

f1(x1, x2) =

⎡

⎢⎢⎣

1
0
0
0

⎤

⎥⎥⎦ ∨

⎡

⎢⎢⎣

0
0
1
0

⎤

⎥⎥⎦ ∨

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

1
0
1
1

⎤

⎥⎥⎦. (3)

The last vector is essentially g’s TT. To save space, we also
write such vectors in the transposed form [1 0 1 1]T.

As Table I indicates, in the SC context we must deal
with real numbers ranging over intervals such as [0, 1] and
[−1, +1]. Given a BF such as f 1, we are interested in an equiv-
alent real function F̂1 defined on [−1, +1]n (or some other
appropriate domain) that specifies the SC behavior of f 1. This
function can be obtained by interpolating the TT values in the
real domain via a multilinear polynomial. For example, con-
sider the TT vector in (3). By replacing 0s and 1s with +1s
and −1s, respectively, we see that f 1 produces the TT vector
[−1 1 − 1 − 1]T for inputs (x1, x2) = (1, 1), (1,−1), (−1, 1),
and (−1,−1), in IBP format. These four discrete “TT points”
can be embedded in a continuous real-number function as
follows:

F̂1(X1, X2) =
(

1 + X1

2

)(
1 + X2

2

)
(−1)

+
(

1 + X1

2

)(
1 − X2

2

)
(+1)

+
(

1 − X1

2

)(
1 + X2

2

)
(−1)

+
(

1 − X1

2

)(
1 − X2

2

)
(−1).

Observe that each term of the foregoing expression assumes
the correct value 1 or −1 at each TT point. On expanding

ALAGHI AND HAYES: STRAUSS 1773

this expression, we get

F̂1(X1, X2) = 0.25
[
(1 + X2 + X1 + X1X2)(−1)

+ (1 − X2 + X1 − X1X2)(+1)

+ (1 + X2 − X1 − X1X2)(−1)

+ (1 − X2 − X1 + X1X2)(−1)
]

= −0.5 − 0.5X2 + 0.5X1 − 0.5X1X2. (4)

The polynomial (4) interpolates the TT values in the real num-
bers. It is linear with respect to variables X1 and X2, and is
referred to as multilinear. Most importantly as we will see, it
represents the stochastic behavior of the BF f 1.

More generally, given a BF f (x1, x2, . . . , xn), if n indepen-
dent SNs X1, X2, . . . , Xn, defined in an SC format, such as
UP, BP, or IBP, are the input arguments of f, the output is
another SN that is some function of X1, X2, . . . , Xn. We denote
this function by F̂(X1, X2, . . . , Xn) and refer to it as the SC
behavior of f. We will see that F̂ has a unique multilinear
form similar to that in (4), and can be determined by means
of spectral transforms.

The spectral transforms of interest execute a change of basis
from the minterm space of a BF f to a real-valued space.
We employ the Fourier transform F for BFs, which is also
known as the discrete Walsh transform in Hadamard order-
ing [13], [19]. Spectral transforms of this type have been
considered previously for a wide variety of logic design and
testing tasks [10], [13]. For BFs with large values of n, it may
be impractical to deal with 2n-dimensional spectra, although
concise representations of spectra for functions with hundreds
of variables are known [5]. This size issue is of much less
concern in SC, however, because the values of n tend to be
small, e.g., n = 2 in Fig. 1.

To compute the Fourier transform of a BF given as a TT
vector �f or equivalent, we first replace 0 and 1 by +1
and −1, respectively. The Fourier transform F = F (f) is
specified by

�F = 1

2n
Hn × �f (5)

where �F is the vector form of F denoting its spec-
tral coefficients or spectrum and Hn is the Walsh matrix
(with natural or Hadamard ordering) of dimension 2n defined
recursively by

H1 =
[+1 +1

+1 −1

]
Hn =

[
Hn−1 Hn−1
Hn−1 −Hn−1

]
.

Equation (5) is evaluated using the rules of linear algebra over
real numbers. In the case of f 1 from Example 1, we get

�F1 = 1

4
H2 × �f1 = 1

4

⎡

⎢⎢⎣

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎤

⎥⎥⎦ ×

⎡

⎢⎢⎣

−1
+1
−1
−1

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

−0.5
−0.5
+0.5
−0.5

⎤

⎥⎥⎦.

Fig. 4. Illustration of the spectral transformation of the function f 1 of
Example 1.

The result is the spectrum of f, and the corresponding basis is

[1 1 1 1]T, [1 − 1 1 − 1]T, [1 1, − 1, − 1]T,

[1 − 1 − 1, 1]T

defined by the rows or columns of H2. (Note that Hn

is symmetric.) These basis vectors resemble digital wave-
forms, and are analogous to harmonics in the sine–cosine
Fourier transform used for time–frequency conversions. More
specifically, they correspond to the four linear BFs: 1, x2, x1,
and x1 ⊕x2, where ⊕ denotes XOR. Recall that in the spectral
domain, XOR is replaced by multiplication.

Analogous to the sum-of-minterms expansion (2) for f 1 in
the Boolean domain, we write the transformed function as

F1(X1, X2) =
3∑

i=0

CiSi (6)

where the Si’s are the basis vectors 1, X2, X1, and X1X2, in
the spectral domain, and the Ci’s constitute the spectrum of f 1.
Hence, (6) becomes

F1(X1, X2) = −0.5 − 0.5X2 + 0.5X1 − 0.5X1X2.

This is a multilinear polynomial that interpolates (matches) the
original BF f at its four Boolean input coordinates (TT points),
namely (X1, X2) = (1, 1), (−1, 1), (1,−1), (−1,−1). This
transformation is illustrated in Fig. 4. Notice that the last
expression above is exactly the same as (4), and the process
of arriving at the two expressions is similar. So, we see intu-
itively that the Fourier transform of a BF defines its unique
SC behavior. This leads to the following theorem.

Theorem 1: If F̂ denotes the SC behavior of an n-variable
BF f in IBP format, and F = F (f) is f ’s Fourier transform,
then F̂ = F.

Proof: See the Appendix.
Thus, given a combinational circuit or BF, we can determine

its IBP behavior by computing its Fourier transform. A simple
interval conversion according to Table I is all that is required to
determine its behavior in other SN formats. The next example
illustrates this.

Example 2: According to Fig. 2, an XOR gate to
serves as an IBP multiplier. We can verify this as
follows. XOR has the TT vector �f2 = [1 −1 −1 1]T.

1774 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

Calculating its Fourier transform yields

�F2 = 1

4

⎡

⎢⎢⎣

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎤

⎥⎥⎦ ×

⎡

⎢⎢⎣

+1
−1
−1
+1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦

so F2(X1, X2) = X1X2. According to Theorem 1, the IBP
behavior of XOR is

F̂2(X1, X2) = F2(X1, X2) = X1X2.

Similarly, we know that a two-input AND gate acts as
a multiplier in UP format. In this case, �f3 = [1 1 1 −1]T and

�F3 = 1

4

⎡

⎢⎢⎣

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎤

⎥⎥⎦ ×

⎡

⎢⎢⎣

+1
+1
+1
−1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

+0.5
+0.5
+0.5
−0.5

⎤

⎥⎥⎦.

Thus

F3(X1, X2) = 0.5(1 + X1 + X2 − X1X2). (7)

Since, we want the AND behavior in UP format, we must
map (7) from IBP to UP. Let p1, p2, and p3 denote the
UP values of X1, X2, and F3, respectively. Table I implies
X1 = 1 − 2p1, X2 = 1 − 2p2, and F3 = 1 − 2p3. Hence

1 − 2p3 = 0.5
(
1 + 1 − 2p1 + 1 − 2p2

− 1 + 2p1 + 2p2 − 4p1p2
)

leading to the desired multiplication p3 = p1p2.
Finally, we note that the Fourier transform is invertible and

preserves all information about f. We can therefore retrieve the
original TT form by applying the inverse Fourier transform
f = F −1(F) to the spectrum. Since Hn is related to its own
inverse by a 2n factor, this may be calculated as follows:

�f = Hn × �F. (8)

This is the key link from the desired SC behavior F to a logic
function f that, with appropriate modifications, implements F.

As mentioned, the elements of �F correspond to polyno-
mial terms in the spectral domain. For n = 2, these terms
are 1, X2, X1, and X1, X2, respectively. In the general case, we
assign an n-bit binary number to each element of �F, starting
from all 0s. So the elements of �F are assigned to “000 . . . 0,”
“000 . . . 1,” . . . , “111 . . . 0,” and “111 . . . 1,” respectively. Now
to find the polynomial term corresponding to each element,
we get the assigned binary number and replace each 1 by the
corresponding Xi for that position, and replace each 0 by 1.
Hence, the terms corresponding to the first, second, and last
elements of �F are 1, Xn, and X1X2 . . . Xn, respectively.

IV. SPECTRAL TRANSFORM-BASED SYNTHESIS

The spectral transforms discussed so far have several useful
applications in the SC context. Besides analyzing BFs and
extracting their SC behavior, they can be used to systematically
design combinational SC circuits. But before discussing our
synthesis method (STRAUSS), a few preliminary concepts are
needed.

A. Stochastically Implementable Functions

Theorem 1 implies that a combinational circuit can imple-
ment a stochastic function F̂ given in multilinear polynomial
form, i.e., one in which terms may contain products of vari-
ables of degree at most one. The idea is then to apply the
inverse Fourier transform F −1 to F̂ and obtain the correspond-
ing BF �f in vector TT form, as in (8). However, applying F −1

to an arbitrary target function F̂ does not necessarily yield
a vector �f whose elements are the TT values +1 and −1.
In fact, we can have the following three possible outcomes.

1) All the elements of �f are +1 or −1, in which case �f is
the TT of a BF and is directly implementable by a logic
circuit.

2) All elements of �f lie in the interval [−1,+1], but some
have values {ci} other than +1 or −1. In that case,
the function is still implementable, but requires auxiliary
inputs and circuitry to generate the ci’s, as discussed in
Section V.

3) Some elements of �f are larger than +1 or less than −1,
in which case the function is not implementable. It is
still possible to implement a related function F̂′ that is
an approximate or scaled version of F̂.

We say polynomial F̂ is SC-implementable if we can
synthesize a stochastic circuit whose behavior is defined
by F̂. SC-implementable functions fall into the first two
categories above, and are distinguished by having inverse
Fourier transforms. The simple product function X1X2 is
SC-implementable, whereas the unscaled sum X1 + X2 is not.
We will refer to the latter as SC-unimplementable.

To illustrate the general case, consider the generic
two-variable polynomial

F̂(X1, X2) = a0 + a1X2 + a2X1 + a3X1X2.

Taking its inverse Fourier transform, we get

�f = H2 × �F =

⎡

⎢⎢⎣

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎤

⎥⎥⎦ ×

⎡

⎢⎢⎣

a0
a1
a2
a3

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

a0 + a1 + a2 + a3
a0 − a1 + a2 − a3
a0 + a1 − a2 − a3
a0 − a1 − a2 + a3

⎤

⎥⎥⎦.

In order for F̂ to be SC-implementable, the elements of
�f should be in the interval [−1,+1]. In other words, the
following constraints should be satisfied:

−1 ≤ a0 + a1 + a2 + a3 ≤ +1

−1 ≤ a0 − a1 + a2 − a3 ≤ +1

−1 ≤ a0 + a1 − a2 − a3 ≤ +1

−1 ≤ a0 − a1 − a2 + a3 ≤ +1.

Constraints of this kind can be obtained for polynomi-
als of n variables by applying the inverse Fourier transform
to them. Concepts similar to SC-implementable polynomials
are discussed by Qian and Riedel [22], [24]. They implement
stochastic functions in the form of Bernstein polynomials, and
define constraints on the coefficients of Bernstein polynomials
in order to distinguish implementable functions. As we will

ALAGHI AND HAYES: STRAUSS 1775

show later, that approach can also be interpreted in terms of
spectral transforms.

B. Target Function Conversion

In order to synthesize a stochastic circuit for an arbitrary
target function F̂, a few conversion steps are required. For
instance, the inverse Fourier transform can only produce suit-
able BFs when applied to multilinear functions [19]. Suppose
F̂ is an ordinary polynomial of degree n

F̂(X) = a0 + a1X + a2X2 + · · · + anXn

implying that it has nonlinear terms. We convert it to a multi-
linear polynomial P̂(X1, . . . , Xn) in which the nonlinear terms
of F̂, such as anXn, are replaced by multilinear terms like
anX1X2 . . . Xn. The new variables X1, X2, . . . , Xn are assumed
to be independent copies of the original variable X.

There are many possible ways to select a multilinear poly-
nomial P̂ that corresponds to F̂. A natural choice is one that
is symmetric with respect to all its variables thus

P̂(X1, . . . , Xn) = a0 + a1

n
(X1 + . . . + Xn)

+ a2(
n
2

) (X1X2 + X1X3 + . . . + Xn−1Xn)

+ · · · + anX1X2 . . . Xn.

However, asymmetric polynomials are also possible. For
instance

P̂(X1, . . . , Xn) = a0 + a1X1 + a2X1X2 + · · · + anX1 . . . Xn

is one of the possible asymmetric multilinear polynomials that
correspond to F̂. Existing synthesis methods [3], [22], [26]
assume symmetry, but as we will show for the first time in
Section VI, asymmetric multilinear polynomials may lead to
better implementations.

Finally, to synthesize a function F̂ from [0, 1]n to [0, 1] that
is SC-unimplementable, we convert it to an SC-implementable
polynomial by approximation. This step is a straightforward
polynomial fitting problem and can be easily solved by tools
such as MATLAB [17].

C. Synthesis Examples

The main steps of STRAUSS are listed in Fig. 6. We first
illustrate them with examples, and then discuss their details.

Example 3: Consider the problem of reverse engineering the
IBP multiplier, so the given function is F̂2(X1, X2) = X1X2.
Since this already has the desired multilinear polynomial form,
we can skip Step 1 of STRAUSS and proceed to Step 2, where
we use the inverse Fourier transform to obtain f 2’s TT vector

�f2 = H2 × �F2 =

⎡

⎢⎢⎣

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎤

⎥⎥⎦ ×

⎡

⎢⎢⎣

0
0
0
1

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

+1
−1
−1
+1

⎤

⎥⎥⎦.

The result �f2 only has +1 and −1 as elements, and is clearly
the TT of a two-input XOR gate.

Now consider the same problem for the UP multiplier
F̂3(X1, X2) = X1X2. Note that, this function will be differ-
ent from F̂2 because of the format change. Mapping F̂3 to the
IBP format yields

P̂3(X1, X2) = 1 − 2F̂3

(
1 − X1

2
,

1 − X2

2

)

= 0.5(1 + X1 + X2 − X1X2).

Applying the inverse Fourier transform to P̂3 produces the TT
[1 1 1 −1]T, which defines an AND gate.

Example 4: Suppose, we attempt to synthesize the arithmetic
sum function F̂4(X1, X2) = X1 +X2. This is also in multilinear
form, so we proceed with the inverse Fourier transform

�f4 = H2 × �F4 =

⎡

⎢⎢⎣

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎤

⎥⎥⎦ ×

⎡

⎢⎢⎣

0
1
1
0

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

2
0
0

−2

⎤

⎥⎥⎦.

Two elements of �f4 lie outside the interval [−1, +1], which
means that it is SC-unimplementable. The standard solution is
the scaled addition which substitutes s(X1 + X2) for X1 + X2,
where s is a scale factor that makes the function
SC-implementable; in this case s = 1/2. The new target
function is F̂5(X1, X2) = 1/2(X1 + X2), which yields

�f5 = H2 × �F5 =

⎡

⎢⎢⎣

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎤

⎥⎥⎦ ×

⎡

⎢⎢⎣

0
0.5
0.5
0

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

1
0
0

−1

⎤

⎥⎥⎦.

However, the result �f5 has elements other than +1 and −1,
namely 0, so a constant number generation step (Step 3) is
required. This is discussed in the next section.

V. CONSTANT-NUMBER GENERATION

The third step of STRAUSS, as seen in Fig. 6, is constant
number generation, a challenging problem in itself. We first
discuss the intuition behind this step. Then, we formally define
the problem and present several solutions.

Continuing Example 4 from the previous section, we derived
the TT �f5 = [

1 0 0 −1
]T for the stochastic add operation.

We can interpret this TT as follows. If both inputs are 0, then
a constant SN of value +1 (in IBP format) is sent out; if both
inputs are 1, then a constant SN of value −1 (in IBP format)
is sent out; if one input is 1 and the other is 0, a constant
SN of value 0 is sent out. Producing an SN with values other
than +1 or −1 requires additional inputs, i.e., random number

1776 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

Fig. 5. Two synthesized circuits for SC addition: (a) without and (b) with
optimizations.

Fig. 6. Main steps of the STRAUSS synthesis method.

sources. For the running example, we can replace the two-input
TT �f5, with the following three-input TT:

�f5 = [
1 1 1 −1 1 −1 −1 −1

]T

which is the BF f5(x1, x2, r) = (x1 ∧ r) ∨ (x2 ∧ r) ∨ (x1 ∧ x2),
where an auxiliary input r has been added to the function.
(This happens to be the majority function.) The r input must
be fed with the IBP SN 0, i.e., a pure random bit-stream.
Fig. 5(a) shows a straightforward AND–OR implementation
of f5.

It is possible to optimize the synthesized circuit further
by reordering the elements of �f5. For example, the following
TT has the same stochastic behavior of �f5 but has a simpler
implementation:

�f5 = [
1 1 −1 1 1 −1 −1 −1

]T
.

This is the BF f5(x1, x2, r) = (x1 ∧ r) ∨ (x2 ∧ r), which has
the AND–OR implementation of Fig. 5(b). It is obvious that
this new circuit is a 2-to-1 multiplexer with r as its select
input. This is precisely the standard scaled adder in the SC
literature [6].

Finding the best ordering of +1s and −1s of a TT is a dif-
ficult optimization task. We now formally define the constant
SN generation problem, and discuss our solution method for it.

Single SN Generation Problem: Given a constant num-
ber c ∈ [− 1,+1] and a desired precision m, we want to
find an m-input BF f (r1, . . . , rm) with k =
(1 − c) · 2m−1�
(or k = �(1 − c) · 2m−1
) minterms that has minimum cost.

When fed with pure random inputs, an m-input BF
f (r1, . . . , rm) with k = (1 − c) · 2m−1 minterms, will output
a 1 with a probability of k/2m. Thus, the IBP value generated
at the output of f is 1−2 ·(k/2m) = c. Note that, the precision
m only refers to the target constant c, and has no implications
on the run-time for SN generation.

It should be noted that the number of auxiliary inputs intro-
duced determines the precision of the constant numbers that
can be generated. With m+1 auxiliary inputs r1, . . . , rm, rm+1,
we can only generate the following numbers:

{−2m

2m
,
−2m + 1

2m
, . . . ,

−1

2m
,

0

2m
,

1

2m
, . . . ,

2m − 1

2m
,

2m

2m

}
.

Any other number c should be rounded to the closest number
from the above set. So for an arbitrary real-valued c, one has
to choose a value for m, taking into account that increasing m
provides better precision and accuracy but also increases the
cost of the circuit.

As the problem suggests, there may be many BFs that gen-
erate the same constant number, and our goal is to select one
with minimum cost. We use literal count as our cost crite-
rion, because it is easy to use and reflects both transistor
and gate count fairly accurately in standard CMOS logic [9].
For example, both the following BFs f6(r1, . . . , rm) = r1 and
f7(r1, . . . , rm) = r1 ⊕ · · · ⊕ rm have 2m−1 minterms and thus
generate the constant c = 0. But f 6 has a literal count of 1,
while f 7 has a literal count of 2(m − 1) using a chain or tree
of XOR gates. Note that, the cost of an XOR gate is twice the
cost of an elementary gate.

Qian and Riedel [23] give a method of synthesizing a mini-
mal two-level circuit that generates a given stochastic constant.
Qian et al. [25] discussed several other methods that synthe-
size multilevel circuits. The method of [25] does not directly
address the single SN generation problem defined in this paper,
so the optimality of that method will not be discussed here.
We now present a recursive algorithm called stochastic con-
stant generation (SCG) to obtain a minimal multilevel constant
generation circuit. This algorithm takes two parameters, the
number of inputs m and the number of minterms k, and returns
a TT of length 2m with k minterms. If k ≤ 2m−1, i.e., k is
at most half the TTs length, then SCG fills the first half of
the TT with 0s, and makes a recursive call with parameters
m − 1 and k. This recursion can be interpreted as follows.
SCG returns

f (r1, . . . , rm) = r1 ∧ f ′(r2, . . . , rm)

in which f ′ is a function with m−1 variables and k minterms.
If k > 2m−1, SCG fills the second half of the TT with 1s, and
makes a recursive call with parameters m − 1 and k − 2m−1.
Similarly, this recursion step can be interpreted as the
algorithm returning

f (r1, . . . , rm) = r1 ∨ f ′(r2, . . . , rm).

After m − 1 recursion steps, SCG returns a BF that is imple-
mented by a chain of at most m − 1 AND or OR gates. The
steps of the SCG procedure are given in Fig. 7. This algorithm
can also be used to solve the multiple constant SN generation
problem, as discussed below.

Example 5: Consider finding a seven-input function
f8(r1, . . . , r7) with 77 minterms. We call SCG(7, 77), which
returns a TT with 64 ones in the second half, and 13 ones in the
first half. The first half is now obtained by calling SCG(6, 13).
This recursion step corresponds to

f8(r1, . . . , r7) = r1 ∨ f ′
8(r2, . . . , r7)

ALAGHI AND HAYES: STRAUSS 1777

Fig. 7. Overview of the stochastic constant generation (SCG) procedure.

Fig. 8. Optimal circuit implementation for function f 8 of Example 5.

in which f ′
8 is the result of SCG(6, 13). Continuing down the

recursion path we see SCG(5, 13), SCG(4, 13), SCG(3, 5),
SCG(2, 1), SCG(1, 1), and SCG(0, 1) which is a terminal
case. The resulting function is hence

f8(r1, . . . , r7) = r1 ∨ r2r3(r4 ∨ r5 ∨ r6r7)

which has minimal literal count. The corresponding optimal
circuit implementation of f 8 is shown in Fig. 8.

The circuits generated by the SCG procedure are opti-
mal in terms of literal count. The proof is straightforward;
each input of the generated BF appears at most once in
the final expression. So if m inputs are required to gener-
ate a constant, the literal count of the generated circuit will
be m, which is the minimum possible literal count for an
m-input circuit. The constant number generators synthesized
by the method of [23] have near-optimal two-level imple-
mentations, but in most cases their literal count is greater
than m.

Next, we generalize the problem to multiple constants.
Note that, previous work, including the methods dis-
cussed in [23] and [25], does not address multiple-constant
generation.

Multiple SN Generation Problem: Given a set of con-
stant numbers {c1, . . . , cp} where ci ∈ [−1,+1], we want to
find p minimum-cost m-input BFs f1, . . . , fp with
(1 − c1) ·
2m−1�, . . . ,
(1 − cp) · 2m−1� minterms, respectively.

The multiple constant generation problem, which is step 3
of STRAUSS (see Fig. 6), is a difficult one, because there
are many possible opportunities for sharing gates between
the circuits for the ci’s. Since exhaustively searching among
them would be very inefficient, we propose a heuristic algo-
rithm based on the SCG procedure of Fig. 7. To generate all
the constants, we call SCG for each ci, and as SCG pro-
gresses, we keep a record of the constant SNs and circuits

it has generated so far. The generated circuits are stored in
a table and are reused if a previously generated SN is encoun-
tered. This approach is demonstrated in the following example
which illustrates a complete synthesis computation using
STRAUSS.

Example 6: Consider the target function F̂9(X) = 0.4375 −
0.25X − 0.5625X2. We want to use STRAUSS to synthesize
a stochastic circuit that implements F̂9. In Step 1 of Fig. 6,
F̂9 is reformulated as a multilinear polynomial P̂9 because
it contains a nonlinear term X2. This term is eliminated by
introducing two new inputs X1 and X2 to replace X thus

P̂9(X1, X2) = 0.4375 − 0.125(X1 + X2) − 0.5625X1X2.

This is only one of the many possible multilinear polynomials
that are equivalent to the target function F̂9.

For this example, we chose a symmetric multilinear
polynomial, but as we will show in the next section, STRAUSS
examines many possible polynomials (including asymmetric
ones) and chooses one that leads to a lower cost. At Step 2 of
STRAUSS, we have

�f9 = H2 × �P9 =

⎡

⎢⎢⎣

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎤

⎥⎥⎦ ×

⎡

⎢⎢⎣

+0.4375
−0.1250
−0.1250
−0.5625

⎤

⎥⎥⎦

=

⎡

⎢⎢⎣

−0.375
1
1

+0.125

⎤

⎥⎥⎦.

All the elements of �f9 are in the [−1, +1] interval, implying
that the function is SC-implementable. However, there exist
elements other than 1 and −1, namely, c1 = −0.375 and
c2 = −0.125, which require constant SN generation (Step 3).

To generate c1, the SCG procedure of Fig. 7 is called with
parameters m = 4 and k = 11. The choice of m = 4 stems
from the fact that it is the least number of inputs for a BF capa-
ble of generating c1. The parameter k comes from the formula
k = (1−c1) ·2m−1 discussed earlier. Calling SCG(4, 11) leads
to the recursive calls: SCG(3, 3), SCG(2, 3), SCG(1, 1), and
SCG(0, 1), and the following BF is returned:

fc1(r1, r2, r3, r4) = r1 ∨ (r2.(r3 ∨ r4)).

Next, SCG is called with parameters m = 4 and k = 7
to generate c2. Calling SCG(4, 7) entails recursive calls
SCG(3, 7) and SCG(2, 3), at which point the recursion stops
because the results of the previous calls (during the circuit
generation for c1) are reused. The returned BF is

fc2(r1, r2, r3, r4) = r1(r2 ∨ (r3 ∨ r4))

which shares a gate with fc1 . Step 3 is now done, and we have
a stochastic implementation of F̂9, namely

f9(x1, x2, r1, r2, r3, r4) = x′
1x′

2 fc1 ∨ x1x2 fc2 .

In the last step, f9 is optimized via conventional CAD tools.
Fig. 9(a) shows the final gate-level implementation of f9.
Notice the shared OR gate (r3 ∨ r4), which is used in both
fc1 and fc2. The inputs x1 and x2 must be fed with independent

1778 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

(b)(a)

Fig. 9. Stochastic implementation of F̂9(X) = 0.4375 − 0.25X − 0.5625X2

obtained by (a) STRAUSS and (b) the algorithm of [3].

bit-streams that carry the same SN X. These can be generated
by using two-independent SNGs, or just by shifting one bit-
stream in time and thus generating an independent copy of
it [12]. The auxiliary inputs, on the other hand, must be sup-
plied with pure random bit-streams. As shown in Fig. 9, we
connect the auxiliary inputs to a 4-bit LFSR, which gener-
ates four independent random bit-streams [12]. Fig. 9(b) shows
another SC implementation of F̂9 using the algorithm proposed
in [3]. As can be seen, the circuit generated by STRAUSS
yields a smaller area based on literal count. In the next section,
we discuss further optimizations used in STRAUSS.

VI. FURTHER OPTIMIZATIONS

Step 1 of STRAUSS involves converting the target func-
tion to a multilinear polynomial, which can be symmetric or
asymmetric. The synthesis method of [3] only uses symmetric
polynomials, but it is possible to further optimize the synthe-
sized circuit by considering both symmetric and asymmetric
polynomials.

We illustrate this with an example. Consider the target
function

F̂10(X) = 1

2

(
X3 + X

)
.

Converting F̂10 to symmetric multilinear form, we get

P̂10(X1, X2, X3) = 1

6
(X1 + X2 + X3) + 1

2
X1X2X3

which yields the following TT after applying the inverse
Fourier transform:

�f10 = [
1 −1/3 −1/3 1/3 −1/3 1/3 1/3 −1

]T
.

Since this has elements other than 1 and −1, namely, 1/3 and
−1/3, multiple-constant SN generation circuitry is required.
However, if we choose the following asymmetric multilinear
polynomial in the first step of STRAUSS, then:

P̂′
10(X1, X2, X3) = 1

2
(X1 + X2 − X3) + 1

2
X1X2X3.

The inverse Fourier transform produces

�f ′
10 = [

1 1 −1 1 −1 1 −1 −1
]T

Fig. 10. Summary of the asymmetric polynomial selection (APS) procedure.

which is simply the BF f ′
10(x1, x2, x3) = x1x2 ∨ x1x3 ∨ x2x3,

and requires no constant generation circuitry. This means
that significant cost savings may be possible if asymmetric
polynomials are considered.

A given SC-implementable polynomial can be mapped
to many different asymmetric multilinear polynomials
with the same SC behavior, some of which may be
SC-unimplementable. To distinguish between them, we need to
apply the inverse Fourier transform (Step 2 of STRAUSS) and
check if all the elements of the TT are in the interval [−1,+1].
However, applying the transform to all possible polynomials
is very time-consuming, making this approach infeasible. So
STRAUSS uses a different approach which is discussed below.
An overview of this asymmetric polynomial selection (APS)
algorithm is given in Fig. 10.

Given a target polynomial, we start with a symmetric mul-
tilinear polynomial—there is only one such polynomial—and
use the inverse Fourier transform to obtain a symmetric
TT (STT). Because of its symmetry, the STT includes repeated
elements. We then modify the repeated elements to obtain
an asymmetric TT of better cost. If we keep the new ele-
ments in the [−1,+1] interval, the newly obtained TT remains
SC-implementable. And as long as we keep the average of the
new elements the same as that of the old elements, the new
TT will have the same SC behavior as the STT.

As an example, consider a generic three-input STT

�f11 = [
c1 c2 c2 c3 c2 c3 c3 c4

]T

which has at most four distinct elements c1, . . . , c4. We can
replace the three c2’s with three new elements, c′

2, c′′
2, and c′′′

2 .
If the new elements are within the interval [−1,+1], and if
c′

2 + c′′
2 + c′′′

2 = 3c2, then the new TT

�f ′
11 = [

c1 c′
2 c′′

2 c3 c′′′
2 c3 c3 c4

]T

will have the same SC behavior as �f11. Since all the inputs of
the circuit have the same value X, the probabilities of getting
any of the c2 elements in �f11 will be the same. So by changing
the elements to c′

2, c′′
2, and c′′′

2 in �f ′
11 and keeping the average

the same as before (by assigning c′
2 + c′′

2 + c′′′
2 = 3c2), the SC

behavior of the TT remains unchanged. Similarly, the three
c3’s can also be replaced with new elements. The choice of the

ALAGHI AND HAYES: STRAUSS 1779

new elements directly affects the cost of the new TT. Elements
such as +1 and −1 are desirable because they can be generated
at no cost, while other elements require constant generation
circuitry.

For example, consider the following STT:

�f10 = [
1 −1/3 −1/3 1/3 −1/3 1/3 1/3 −1

]T

which has three −1/3s and three 1/3s. As shown earlier, we
can replace these elements with new elements and obtain

�f ′
10 = [

1 1 −1 1 −1 1 −1 −1
]T

which has the same SC behavior. Notice that, the three −1/3s
are replaced with two −1s and one +1, and the three 1/3s
are replaced with two +1s and one −1. Another choice of TT
with the same behavior is

�f ′′
10 = [

1 0 0 0 −1/3 1/3 0 −1
]T

but it clearly has a higher cost because it requires several
constant generation circuits, while �f ′

10 requires none. It can be
shown that given a set of symmetric elements, we can always
find a new set of elements with the same average, all of which,
except for at most one, are +1s or −1s.

Assume we have a set of k symmetric elements of value c.
If c > 0, then, we can replace the set with one +1 element
and k −1 new elements c′ of value (kc − 1)/(k − 1). The new
set has the same average as the old set

+1 + (k − 1)c′ = 1 + (k − 1)
kc − 1

k − 1
= kc.

Similarly, if c < 0, we can replace the set with one −1 and
k − 1 new elements c′ of value (kc + 1)/(k − 1). By repeating
this process on the new elements of the set, we obtain a set
that has at least k − 1 elements of value +1 or −1.

Another factor affecting cost is the order of the new
elements in the TT. For example, the two +1s and one
−1 replacing +1/3 can appear in three possible orders:
[+ 1 + 1 − 1], [+ 1 − 1 + 1], and [−1 + 1 + 1]. Similarly, the
new elements replacing −1/3s can also be reordered. So the
TT �f ′

10 can have nine different orderings
[+1 +1 −1 +1 −1 +1 −1 −1

]T

[+1 +1 −1 +1 −1 −1 +1 −1
]T

[+1 +1 −1 −1 −1 +1 +1 −1
]T

[+1 −1 +1 +1 −1 −1 −1 −1
]T

[+1 −1 +1 +1 −1 −1 +1 −1
]T

[+1 −1 +1 −1 −1 −1 +1 −1
]T

[+1 −1 −1 +1 +1 +1 −1 −1
]T

[+1 −1 −1 +1 +1 −1 +1 −1
]T

[+1 −1 −1 −1 +1 +1 +1 −1
]T

.

The number of different ways to order the TTs grows expo-
nentially with the number of inputs, so searching among all
of them is not possible for very large circuits. For such cases,
STRAUSS has a greedy search heuristic that usually finds
a good ordering. The heuristic starts from the STT and selects

a group of repeated elements (say c2 in �f11) and finds new
elements (c′

2, c′′
2, and c′′′

2) to replace them. Then it tries all
the possible orderings of this group, and selects one with the
minimum cost. The algorithm proceeds to the next group of
repeated elements (c3 in �f11). In doing so, the algorithm only
examines 3 + 3 = 6 orderings out of the 3 × 3 = 9 possible
orderings. Thus, the search becomes feasible for larger circuits.
Like most heuristics, this method does not always find an opti-
mal solution, but our experiments show that a near-optimum
polynomial is usually found. We also observed that in most
cases, there are multiple optimum and many near-optimum
polynomials, which favors the heuristic search.

It is worth noting that employing asymmetric polynomials
reduces the precision needed in the constant generation circuit,
and hence, can lead to cost savings. A good example is the
function F̂10 discussed earlier in this section. A symmetric TT
for this function is

�f10 = [
1 −1/3 −1/3 1/3 −1/3 1/3 1/3 −1

]T

which requires constant generation circuitry for 1/3 and −1/3.
When applying the SCG procedure (Fig. 7) to �f10, one has to
choose a precision m, and round the numbers 1/3 and −1/3 to
the precision closest to m. However, an asymmetric implemen-
tation of F̂10, namely

�f ′
10 = [

1 1 −1 1 −1 1 −1 −1
]T

needs no constant generation at all. It is as if the constants 1/3
and −1/3 are implemented with unlimited precision and at no
cost. We end this section by a complete example involving
a multivariate target function.

Example 7: Consider the target function F̂11(X, Y, Z) =
1/64(63 + X2 + Y2 + Z2 − X2Y2 − X2Z2 − Y2Z2 + X2Y2Z2).

Since the maximum degree of the polynomial is two, we will
need two-independent copies of each input. The corresponding
symmetric multilinear polynomial of F̂11 is

P̂11(X1, X2, Y1, Y2, Z1, Z2)

= 1

64
(63 + X1X2 + Y1Y2 + Z1Z2 − X1X2Y1Y2

− X1X2Z1Z2 − Y1Y2Z1Z2 + X1X2Y1Y2Z1Z2).

By applying the inverse Fourier transform on P̂11 (Step 2 of
STRAUSS), we obtain the symmetric TT vector

�f11 = [
1 7

8
7
8

1 1 . . . 7
8

7
8 1 1 1 1 1 1 1 1 1 1 7

8
7
8 1 1 7

8
7
8

1 1 1 1 1 1 1 . . . 1 1 1 1 1 1 1 1 1 1 1 1 1
]T

.

Steps 3 and 4 of STRAUSS yield the following BF:

f11(x1, x2, y1, y2, z1, z2, r1, r2, r3, r4)

= ((x1 ⊕ x2) ∨ (y1 ⊕ y2) ∨ (z1 ⊕ z2))

∧(r1 ∧ r2 ∧ r3 ∧ r4)

which requires four auxiliary inputs. A gate-level implemen-
tation of f 11 is shown in Fig. 11(a).

It is possible to further optimize this circuit by apply-
ing the APS procedure to F̂11. In the symmetric TT shown
above, there are eight symmetric elements with value 7/8.

1780 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

Fig. 11. Stochastic implementations for F̂11 of Example 7. (a) Symmetric.
(b) Asymmetric.

APS identifies this symmetric group and replaces it with
a group of seven elements of value 1 and one element of
value 0. After trying different possible orderings, APS returns
the following asymmetric TT (which is one of the eight
possible optimal TTs):

�f ′
11 = [1 1

1 1 . . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

1 1 1 . . . 1 1 1 1 1 1 1 1 1 1 1 1 1]T.

This yields the BF

f ′
11(x1, x2, y1, y2, z1, z2, r1) = x1 ∧ x2 ∧ y1 ∧ y2 ∧ z1 ∧ z2 ∧ r1

which requires only one auxiliary input. An implementation
of f ′

11 is shown in Fig. 11(b). The asymmetric polynomial
P̂′

11 that corresponds to f ′
11 has more terms than the sym-

metric polynomial P̂11 but, surprisingly, it yields a lower-cost
implementation. Note that, the APS procedure performs trans-
formations on the TT only and does not deal with different
(and in some cases complicated) polynomial terms. The first
16 terms of the asymmetric polynomial P̂′

11 are shown below
for illustration purposes only

P̂′
11(X1, X2, Y1, Y2, Z1, Z2)

= 1

64
(63 − X2 + X1 + X1X2 − Y2 − X2Y2 + X1Y2

+ X1X2Y2 + Y1 + X2Y1 − X1Y1 − X1X2Y1

+ Y1Y2 + X2Y1Y2 − X1Y1Y2 − X1X2Y1Y2 + · · ·).

VII. RELATED WORK AND EXPERIMENTAL RESULTS

Very little previous research has addressed the systematic
design of SC circuits. Qian and Riedel [22] have developed
a nonspectral method of implementing a single-variable SC
target function F̂(X) defined in UP format. They convert F̂(X)

Fig. 12. (a) ReSC architecture proposed in [26]. (b) Implementation of F̂9(X)

from Example 6 using this architecture.

to a Bernstein polynomial of the form

P̂(X) =
n∑

i=0

Ci

(
n
i

)
Xi(1 − X)n−i (9)

in which the Ci’s are constant coefficients. This polynomial is
then mapped to a specific style of logic circuit termed recon-
figurable SC architecture (ReSC) [26]. It consists of an n-input

adder that implements the terms

(
n
i

)
Xi(1 − X)n−i (called the

Bernstein terms) and a multiplexer that selects the Ci coef-
ficients. Fig. 12(a) shows the ReSC implementation of (9).
There are n independent inputs (xi’s) to the adder representing
the variable X, and n + 1 inputs to the multiplexer (ci’s) that
represent the coefficients Ci in (9). The probability of a num-

ber k at the output of the adder is equal to

(
n
k

)
Xk(1 − X)n−k,

i.e., the kth Bernstein term. Thus, the probability of having
a 1 at f is equal to the probability getting a 0 at the adder
and a 1 at c0, plus the probability of getting a 1 at the adder
and a 1 at c1, plus . . . , plus the probability of getting n at the
adder and a 1 at cn. These probabilities can be expressed as

F(X) =
n∑

i=0

Ci

(
n
i

)
Xi(1 − X)n−i

which is the same as (9). Note that, the xi inputs are indepen-
dent SNs representing the number X, similar to the x1 and x2
inputs of Fig. 9. This structure requires n SNGs to generate the
xi’s and n + 1 SNGs to generate the ci’s, which entails a sig-
nificant area cost. Similar to STRAUSS, this design approach
can be extended to multivariate functions [24], and to the BP
format.

We now show that the method of [26] can be reinterpreted
in terms of a spectral transform, a “Bernstein transform” B
with a basis different to that of the Fourier transform F .

Consider the two-variable BF f (x1, x2). We define a new
spectral basis for it is as follows: B0 = 0.25(1 + X1)(1 + X2),
B1 = 0.25(1 + X1)(1 − X2), B2 = 0.25(1 − X1)(1 + X2), and
B3 = 0.25(1 − X1)(1 − X2). (Note the difference between this
and the spectral basis of the two-variable Fourier transform,

ALAGHI AND HAYES: STRAUSS 1781

TABLE II
COMPARISON BETWEEN THE PROPOSED SYNTHESIS METHOD STRAUSS

AND THOSE OF [3] AND [26]; AREA IS IN UNIT CELLS FROM A

GENERIC LIBRARY AND INCLUDES THE LFSRS AND SNGS

USED FOR CONSTANT GENERATION

which is 1, X1, X2, and X1X2.) The resulting transform B of
f can then be written as

F(X1, X2) =
3∑

i=0

CiBi. (10)

This corresponds to the same multilinear expression generated
by the Fourier transform. To see this, expand (10) thus

F(X1, X2) = 0.25
(
C0(1 + X1)(1 + X2) + C1(1 + X1)(1 − X2)

+ C2(1 − X1)(1 + X2)

+ C3(1 − X1)(1 − X2)
)

= 0.25
(
C0 + C1 + C2 + C3

+ (C0 − C1 + C2 − C3)X2

+ (C0 + C1 − C2 − C3)X1

+ (C0 − C1 − C2 + C3)X1X2
)

which is the multilinear polynomial produced by the Fourier
transform, as the following equation demonstrates:

�F = 1

4

⎡

⎢⎢⎣

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎤

⎥⎥⎦ ×

⎡

⎢⎢⎣

C0
C1
C2
C3

⎤

⎥⎥⎦

= 1

4

⎡

⎢⎢⎣

C0 + C1 + C2 + C3
C0 − C1 + C2 − C3
C0 + C1 − C2 − C3
C0 − C1 − C2 + C3

⎤

⎥⎥⎦.

Despite their similarities, the circuits synthesized by
STRAUSS are quite different from those designed via the
ReSC architecture of [26]. Most importantly, ReSC does
not benefit from asymmetric polynomials or constant input
sharing. To illustrate this, we implemented the function F̂9 of
Example 6 using ReSC. Fig. 12(b) shows the result (adjusted
for the IBP format). Besides its adder and multiplexer, this
design contains three SNGs, each consisting of a 4-bit com-
parator and a 4-bit random number generator (or LFSR), as
in Fig. 3. Note, however, that this circuit can be optimized
using standard combinational techniques; the middle SNG, for
instance produces a 0, and so can be removed from the circuit.

To attempt a fair comparison, we used the Berkeley SIS syn-
thesis tool [28] to optimize this design and those of Fig. 9 and
to map them to a generic library of gates. The library includes
all the elementary gates and their relative area cost in terms
of unit cells in a 0.35µm technology. Table II compares the
three implementations, along with several other representative
circuits, with area cost reported in terms of unit cells. The
run-time of the circuits depend on the desired accuracy of the
user. In general, longer run-time leads to better accuracy. The
circuits compared in Table II achieve the same level of accu-
racy for a given run-time. These results show that STRAUSS
synthesizes circuits that are significantly smaller than those
designed by the techniques of [3] and [26]. The area reported
in Table II does not include the conversion circuits that may
be required for the primary inputs and outputs.

VIII. CONCLUSION

SC has re-emerged recently as an important technology for
certain applications needing low-cost massive parallelism, or
related features like very small circuit size or low power.
Although SC has been recognized for many years, its under-
lying theory is not well-developed. We have shown here that
well-defined transforms linking the Boolean and the spectral
domains exist, which provide fundamental theoretical insights
into SC behavior. We have also successfully applied spectral
transforms to the design of circuits in a way that natu-
rally accommodates the most useful SN formats. Furthermore,
we have presented a novel and general synthesis technique
STRAUSS for combinational circuit synthesis. Comparing this
paper to the major existing SC design method [26], we found
that the results generated by STRAUSS can lead to significant
cost savings.

APPENDIX

A. Proof of Theorem 1

We provide a proof by induction on n, the number of
variables of f. Suppose n = 1, so f is a single-variable
BF. Using the Boole–Shannon expansion theorem, we can
write f (x) = c0x⊕c1x where c0 = f (0) and c1 = f (1) are con-
stants. Now apply a bit-stream X of length N to the input x of f.
If this bit-stream contains N1 1s and N0 0s, it represents the
number (N0 −N1)/N in IBP format. The function f, therefore,
outputs another bit-stream with N1c1’s and N1c0’s represent-
ing the IBP number (N0C0 + N1C1)/N, where C0 = 1 − 2c0
and C1 = 1−2c1. Hence, for an arbitrary SN X = 1−2N0/N,
the output number is

F̂(X) = C0 + C1

2
+ C0 − C1

2
X (11)

which describes the SC behavior of f in the IBP format. Now

the TT of f is �f =
[

C0
C1

]
, so its Fourier transform is

�F = 1

2
H1 × �f = 1

2

[
1 1
1 −1

][
C0
C1

]
= 1

2

[
C0 + C1
C0 − C1

]
.

This corresponds to the polynomial

F(X) = 1

2

[
C0 + C1 + (C0 − C1)X

]
(12)

1782 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 34, NO. 11, NOVEMBER 2015

Fig. 13. Circuit illustrating the application of Boole–Shannon expansion to
the function f.

which is the same as (11), so the theorem holds for
single-variable functions.

Now as the induction hypothesis, assume the theorem holds
for all functions of up to n−1 variables. We want to show that
it also holds for the n-variable function f (x1, . . . , xn). Again
using Boole–Shannon expansion, we can write f (x1, . . . , xn) =
f0 · xn ⊕ f1 · xn, where f0 = f (x1, . . . , xn−1, 0) and f1 =
f (x1, . . . , xn−1, 1) are functions of n − 1 or fewer variables.
Fig. 13 illustrates how f is decomposed in this way. Thus, f ’s
SC behavior is, in terms of the behavior of a 2-to-1 multiplexer
(Fig. 13)

F̂(X1, . . . , Xn) = F̂0 + F̂1

2
+ F̂0 − F̂1

2
Xn (13)

where F̂0 and F̂1 denote the SC behavior of f0 and f1,
respectively.

We can express the TT of f in terms of the TTs of f0 and f1

as �f =
[�f0

�f1
]

. Accordingly, we can decompose the Fourier

transform calculation (5) into

�F = 1

2n
Hn × �f = 1

2
H1

⎡

⎢⎣

1

2n−1
Hn−1 × �f0

1

2n−1
Hn−1 × �f1

⎤

⎥⎦ = 1

2
H1

[�F0
�F1

]

where �F0 and �F1 are the Fourier transforms of f0 and f1,
respectively. The resulting polynomial is

F(X1, . . . , Xn) = 1

2
[F0 + F1 + (F0 − F1)Xn] (14)

which is the same as (13). Hence F̂ = F, and from
the principle of induction we conclude that the theorem
holds.

REFERENCES

[1] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,”
ACM Trans. Embedded Comput. Syst., vol. 12, no. 2s, pp. 92:1–92:12,
2013.

[2] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in Proc. Design Autom. Conf., Austin,
TX, USA, 2013, pp. 1–6.

[3] A. Alaghi and J. P. Hayes, “A spectral transform approach to stochastic
circuits,” Proc. Int. Conf. Comput. Design, Montreal, QC, Canada, 2012,
pp. 315–312.

[4] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in Proc. Int. Conf. Comput. Design, Asheville, NC, USA, 2013,
pp. 39–46.

[5] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang, “Spectral
transforms for large Boolean functions with applications to technol-
ogy mapping,” in Proc. Design Autom. Conf., Dallas, TX, USA, 1993,
pp. 54–60.

[6] B. R. Gaines, “Stochastic computing,” in Proc. Spring Joint Comput.
Conf. (AFIPS), Atlantic City, NJ, USA, 1967, pp. 149–156.

[7] B. R. Gaines, “Stochastic computing systems,” Advances in Information
Systems Science, vol. 2. New York, NY, USA: Springer, 1969,
pp. 37–172.

[8] W. J. Gross, V. C. Gaudet, and A. Milner, “Stochastic implementation
of LDPC decoders,” in Proc. Asilomar Conf. Signals Syst. Comput.,
Pacific Grove, CA, USA, 2005, pp. 713–717.

[9] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification
Algorithms. Boston, MA, USA: Kluwer Academic, 1996.

[10] S. M. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques for
Digital Logic. London, U.K.: Academic, 1985.

[11] Information Technology-Telecommunications and Information
Exchange Between Systems-Local and Metropolitan Area Networks,
IEEE Standard 802.11n, 2009. [Online]. Available:
http://standards.ieee.org

[12] P. Jeavons, D. A. Cohen, and J. Shawe-Taylor, “Generating binary
sequences for stochastic computing,” IEEE Trans. Inf. Theory, vol. 40,
no. 3, pp. 716–720, May 1994.

[13] M. G. Karpovsky, R. S. Stankovic, and J. T. Astola, Spectral Logic and
its Applications for the Design of Digital Devices. Hoboken, NJ, USA:
Wiley-Interscience, 2008.

[14] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams: Digital image processing case studies,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 3,
pp. 449–462, Mar. 2014.

[15] P. Li, D. J. Lilja, W. Qian, M. D. Riedel, and K. Bazargan, “Logical
computation on stochastic bit streams with linear finite-state machines,”
IEEE Trans. Comput., vol. 63, no. 6, pp. 1473–1485, Jun. 2014.

[16] P. Li, W. Qian, and D. J. Lilja, “A stochastic reconfigurable architecture
for fault-tolerant computation with sequential logic,” in Proc. Int. Conf.
Comput. Design, Montreal, QC, Canada, 2012, pp. 303–308.

[17] MATLAB and Statistics Toolbox Release 2012b, The MathWorks, Inc.,
Natick, MA, USA, 2012.

[18] A. Naderi, S. Mannor, M. Sawan, and W. J. Gross, “Delayed stochastic
decoding of LDPC codes,” IEEE Trans. Signal Process., vol. 59, no. 11,
pp. 5617–5626, Nov. 2011.

[19] R. O’Donnell, “Some topics in the analysis of Boolean functions,” in
Proc. ACM STOC Conf., Victoria, BC, Canada, 2008, pp. 569–578.

[20] W. J. Poppelbaum, “Statistical processors,” in Advances in Computers,
vol. 14, M. Rubinoff and M. C. Yovits, Eds. New York, NY, USA:
Academic Press, 1976, pp. 187–230.

[21] W. J. Poppelbaum, C. Afuso, and J. W. Esch, “Stochastic computing
elements and systems,” in Proc. Fall Joint Computer Conf. (AFIPS),
Anaheim, CA, USA, 1967, pp. 635–644.

[22] W. Qian and M. D. Riedel, “The synthesis of robust polynomial arith-
metic with stochastic logic,” in Proc. DAC, Anaheim, CA, USA, 2008,
pp. 648–653.

[23] W. Qian and M. D. Riedel, “Two-level logic synthesis for probabilistic
computation,” in Proc. Int. Workshop Logic Syn., Irvine, CA, USA, 2010,
pp. 1–9.

[24] W. Qian and M. D. Riedel, “Uniform approximation and Bernstein poly-
nomials with coefficients in the unit interval,” Eur. J. Combin., vol. 32,
no. 3, pp. 448–463, Apr. 2011.

[25] W. Qian, M. D. Riedel, H. Zhou, and J. Bruck, “Transforming proba-
bilities with combinational logic,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 30, no. 9, pp. 1279–1292, Sep. 2011.

[26] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An archi-
tecture for fault-tolerant computation with stochastic logic,” IEEE Trans.
Comput., vol. 60, no. 1, pp. 93–105, Jan. 2011.

[27] N. Saraf, K. Bazargan, D. J. Lilja, and M. D. Riedel, “Stochastic
functions using sequential logic,” in Proc. Int. Conf. Comput. Design,
Asheville, NC, USA, 2013, pp. 507–510.

[28] E. M. Sentovich et al., “SIS: A system for sequential circuit
synthesis,” Electron. Res. Lab., Univ. California, Berkeley, CA, USA,
Tech. Rep. UCB/ERL M92/41, 1992.

ALAGHI AND HAYES: STRAUSS 1783

Armin Alaghi (S’06) received the B.Sc. degree in
electrical engineering and the M.Sc. degree in com-
puter architecture from the University of Tehran,
Tehran, Iran, in 2006 and 2009, respectively. He
is currently pursuing the Ph.D. degree with the
Department of Electrical Engineering and Computer
Science, University of Michigan, Ann Arbor, MI,
USA.

From 2005 to 2009, he was a Research Assistant
with the Field-Programmable Gate-Array (FPGA)
Laboratory, University of Tehran, and the Computer-

Aided Design Laboratory, University of Tehran, where he was involved
in FPGA and network-on-chip testing. Since 2009, he has been with the
Advanced Computer Architecture Laboratory, University of Michigan. His
current research interests include digital system design, embedded systems,
very large-scale integration circuits, computer architecture, and electronic
design automation.

John P. Hayes (S’67–M’70–SM’81–F’85–LF’10)
received the B.E. degree from the National
University of Ireland, Dublin, Ireland, and the
M.S. and Ph.D. degrees from the University of
Illinois at Urbana-Champaign, USA, all in electri-
cal engineering.

He participated in the design of the ILLIAC III
computer with the University of Illinois. In
1970, he joined the Operations Research Group,
Shell Benelux Computing Center, The Hague,
The Netherlands, where he was involved in math-

ematical programming and software development. From 1972 to 1982, he
was a Faculty Member with the Departments of Electrical Engineering-
Systems and Computer Science, University of Southern California, Los
Angeles, CA, USA. Since 1982, he has been with the Department of
Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, MI, USA, where he holds the Claude E. Shannon Chair in
Engineering Science. His current research interests include computer-aided
design, verification, and testing, very large-scale integration circuits, computer
architecture, and unconventional computing systems. He has authored over
300 technical papers, several patents, and seven books, including Computer
Architecture and Organization (3rd ed., 1998), Quantum Circuit Simulation
(with G. F. Viamontes and I. L. Markov, 2009), and Design, Analysis and Test
of Logic Circuits Under Uncertainty (with S. Krishnaswamy and I. L. Markov,
2012).

Prof. Hayes was a recipient of the University of Michigan’s Distinguished
Faculty Achievement Award in 1999, the Alexander von Humboldt
Foundation’s Research Award in 2004, the IEEE Lifetime Contribution Medal
for outstanding contributions to test technology in 2013, and the ACM
Pioneering Achievement Award for contributions to logic design, fault tol-
erant computing, and testing in 2014. He was the Founding Director of
the Advanced Computer Architecture Laboratory, University of Michigan.
He has served as an Editor for various technical journals, such as the
Communications of the ACM and the IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS. He was elected as a fellow of ACM in 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

