
A BGP-based Mechanism for Lowest-Cost Routing∗

Joan Feigenbaum
†

Yale University
Computer Science Department

New Haven, CT 06520 USA

feigenbaum@cs.yale.edu

Christos Papadimitriou
‡

University of California at Berkeley
Computer Science Division
Berkeley, CA 94720 USA

christos@cs.berkeley.edu

Rahul Sami
§

Yale University
Computer Science Department

New Haven, CT 06520 USA

sami@cs.yale.edu

Scott Shenker
¶

ICSI
1947 Center Street

Berkeley, CA 94704 USA

shenker@icsi.berkeley.edu

ABSTRACT
The routing of traffic between Internet domains or Autonom-
ous Systems (ASs), a task known as interdomain routing, is
currently handled by the Border Gateway Protocol (BGP).
In this paper, we address the problem of interdomain routing
from a mechanism-design point of view. The application of
mechanism-design principles to the study of routing is the
subject of earlier work by Nisan and Ronen [14] and Hersh-
berger and Suri [10]. In this paper, we formulate and solve
a version of the routing-mechanism design problem that is
different from the previously studied version in three ways
that make it more accurately reflective of real-world inter-
domain routing: (1) we treat the nodes as strategic agents,
rather than the links; (2) our mechanism computes lowest-
cost routes for all source-destination pairs and payments for
transit nodes on all of the routes (rather than computing
routes and payments for only one source-destination pair at
a time, as is done in [14, 10]); (3) we show how to com-
pute our mechanism with a distributed algorithm that is a
straightforward extension to BGP and causes only modest

∗This work was supported by the DoD University Research
Initiative (URI) program administered by the Office of Naval
Research under Grant N00014-01-1-0795.†Supported in part by ONR grants N00014-01-1-0795 and
N00014-01-1-0447 and NSF grant CCR-0105337.
‡Supported in part by NSF grants ITR-0081698 and ITR-
0121555 and by an IBM Faculty Development Award.
§Supported by ONR grant N00014-01-1-0795.
¶Supported in part by NSF grants ITR-0081698 and ITR-
0121555.

increases in routing-table size and convergence time (in con-
trast with the centralized algorithms used in [14, 10]). This
approach of using an existing protocol as a substrate for dis-
tributed computation may prove useful in future development
of Internet algorithms generally, not only for routing or pric-
ing problems. Our design and analysis of a strategyproof,
BGP-based routing mechanism provides a new, promising di-
rection in distributed algorithmic mechanism design, which
has heretofore been focused mainly on multicast cost shar-
ing.

1. INTRODUCTION
The Internet is comprised of many separate administrative
domains or Autonomous Systems (ASs). Routing occurs on
two levels, intradomain and interdomain, implemented by
two different sets of protocols. Intradomain-routing proto-
cols, such as OSPF, route packets within a single AS. Inter-
domain routing, currently handled by the Border Gateway
Protocol (BGP), routes packets between ASs. Although
routing is a very well-studied problem, it has been app-
roached by computer scientists primarily from an engineer-
ing or “protocol-design” perspective.

In their seminal paper on algorithmic mechanism design,
Nisan and Ronen [14] advocate combining an economic, “inc-
entive-compatibility” approach with the more traditional
protocol-design approach to the problem. Internet rout-
ing is an extremely natural problem in which to consider
incentives, because ownership, operation, and use by nu-
merous independent, self-interested parties give the Internet
the characteristics of an economy as well as those of a com-
puter. In this paper, we continue the study of routing from
a mechanism-design perspective, concentrating specifically
on interdomain routing, for reasons explained below.

In our formulation of the routing-mechanism design prob-
lem, each AS incurs a per-packet cost for carrying traffic,
where the cost represents the additional load imposed on
the internal AS network by this traffic. To compensate for
these incurred costs, each AS is paid a price for carrying

transit traffic, which is traffic neither originating from nor
destined for that AS. It is through these costs and prices that
consideration of “incentive compatibility” is introduced to
the interdomain-routing framework, which, as currently im-
plemented, does not consider incentives. We are following
previous work on mechanism design for routing [14, 10] by
introducing incentives in this way. Our goal is to maximize
network efficiency by routing packets along the lowest-cost
paths (LCPs). Standard routing protocols (such as BGP)
can compute LCPs given a set of AS costs. However, under
many pricing schemes, an AS could be better off lying about
its costs;1 such lying would cause traffic to take nonoptimal
routes and thereby interfere with overall network efficiency.

To prevent this, we first ask how one can set the prices so
that ASs have no incentive to lie about their costs; as we
discuss in Section 2, such pricing schemes are called “strat-
egyproof.” We also require that ASs that carry no tran-
sit traffic receive no payment. We prove that there is only
one strategyproof pricing scheme with this property; it is a
member of the Vickrey-Clarke-Groves (VCG) class of mech-
anisms [21, 2, 9]. We next ask how the VCG prices should
be computed, and we provide a “BGP-based” distributed
algorithm that accomplishes this.

Our results contribute in several ways to the understand-
ing of how incentives and computation affect each other in
routing-protocol design. Nisan and Ronen [14] and Hersh-
berger and Suri [10] considered the LCP mechanism-design
problem, motivated in part by the desire to include incen-
tive issues in Internet-route selection. The LCP mechanism
studied in [14, 10] takes as input a biconnected graph, a sin-
gle source, a single destination, and a (claimed) transmission
cost for each link; the strategic agents are the links, and the
mechanism computes, in a strategyproof manner, both an
LCP for this single routing instance and a set of payments
to the links on the LCP. This mechanism is a member of the
VCG family and forms the point of departure for our work.
However, our formulation of the problem differs in three re-
spects, each of which makes the problem more representative
of real-world routing:

• First, in our formulation, it is the nodes that are the
strategic agents, not the links as in [14, 10]. We make
this choice, because we are trying to model interdo-
main routing. ASs actually are independent economic
actors who could strategize for financial advantage in
interdomain-routing decisions; in the BGP computa-
tional model into which we seek to incorporate incen-
tive issues, it is the nodes that represent ASs and that
are called upon to “advertise” their inputs to the pro-
tocol. Formulations in which the links are the strate-
gic agents might be more appropriate for intradomain
routing, but it is not clear that incentive issues are
relevant in that context; because all links and routers
within a domain are owned and managed by a single
entity, they are unlikely to display strategic behavior.

1There are two ways lying might increase the AS’s total wel-
fare: Announcing a lower-than-truthful cost might attract
more than enough additional traffic to offset the lower price,
or announcing a higher-than-truthful cost might produce an
increase in the price sufficient to offset any resulting decrease
in traffic.

• Second, instead of taking as input a single source-
destination pair and giving as output a single LCP,
our mechanism takes in n AS numbers and constructs
LCPs for all source-destination pairs. Once again, we
make this choice in order to model more accurately
what BGP actually does. This complicates the prob-
lem, because there are now n2 LCP instances to solve.

• Third, we compute the routes and the payments not
with a centralized algorithm, as is done in [14, 10],
but with a distributed protocol based on BGP. This is
necessary if the motivation for the mechanism-design
problem is Internet routing, because interdomain-route
computation is in fact done in a distributed fashion,
with the input data (AS-graph topology) and the out-
puts (interdomain routes) stored in a distributed fash-
ion as well. The various domains are administratively
separate and in some cases competitors, and there is
no obvious candidate for a centralized, trusted party
that could maintain an authoritative AS graph and tell
each of the ASs which routes to use. Real-world BGP
implementations could be extended easily to include
our pricing mechanism, and we prove that such an ex-
tension would cause only modest increases in routing-
table size and convergence time.

Our approach of using an existing network protocol as a
substrate for realistic distributed computations may prove
useful generally in Internet-algorithm design, not only in
routing or pricing problems. Algorithm design for the Inter-
net has the extra subtlety that adoption is not a decision by
a systems manager, concerned only with performance and
efficiency, but rather a careful compromise by a web of au-
tonomous entities, each with its own interests and legacies.
Backwards compatibility with an established protocol is a
constraint and criterion that is likely to become increasingly
important and prevalent.

Despite these efforts to formulate the problem realistically,
there are several aspects of reality that we deliberately ig-
nore. First, per-packet costs are undoubtedly not the best
cost model, e.g., in some cases transit costs are more ad-
ministrative than traffic-induced. Second, BGP allows an
AS to choose routes according to any one of a wide variety
of local policies; LCP routing is just one example of a valid
policy, and, in practice, many ASs do not use it [20]. Fur-
thermore, most ASs do not allow noncustomer transit traffic
on their network.2 In this paper, we ignore general policy
routing and transit restrictions; we only use LCPs. Lastly,
BGP does not currently consider general path costs; in the
cases in which AS policy seeks LCPs, the current BGP sim-
ply computes shortest AS paths in terms of number of AS
hops. This last aspect is minor, because it would be trivial
to modify BGP so that it computes LCPs; in what follows,
we assume that this modification has been made.

Because of these limitations, our results clearly do not con-
stitute a definitive solution to the incentive problem in in-
terdomain routing. Nonetheless, they represent measurable

2We say that two ASs are “interconnected” if there is a
traffic-carrying link between them. Interconnected ASs can
be peers, or one can be a customer of the other. Most ASs do
not accept transit traffic from peers, only from customers.

progress on two fronts. First, although it does not capture
all of the important features of interdomain routing, our
problem formulation is an improvement over the previous
ones in the algorithmic mechanism-design literature [14, 10],
as explained above. Second, we have expanded the scope of
distributed algorithmic mechanism design, which has hereto-
fore been focused mainly on multicast cost sharing [5, 3, 4].

In the next section, we give a brief review of algorithmic
mechanism design. In Section 3, we provide a formal state-
ment of the problem and in Section 4 derive the pricing
scheme. In Section 5, we describe the BGP-based computa-
tional model that we use for the distributed price-calculation
algorithm given in Section 6. We conclude in Section 7 with
a brief discussion of open problems and future work.

2. ALGORITHMIC MECHANISM DESIGN
The purpose of this section is to review the basics of algo-
rithmic mechanism design. Readers already familiar with
this area, e.g., through the early papers of Nisan and Ro-
nen [14] and Feigenbaum, Papadimitriou, and Shenker [5],
should skip to the next section.

In designing efficient, distributed algorithms and network
protocols, computer scientists typically assume either that
computational agents are obedient (i.e., that they follow
the protocol) or that they are Byzantine adversaries (i.e.,
that they may deviate from the protocol in arbitrary ways
that harm other users, even if the deviant behavior does
not bring them any obvious tangible benefits). In contrast,
economists design market mechanisms in which it is assumed
that agents are neither obedient nor adversarial but rather
strategic: They respond to well-defined incentives and will
deviate from the protocol only for tangible gain. Until re-
cently, computer scientists ignored incentive compatibility,
and economists ignored computational efficiency.

The emergence of the Internet as a standard, widely used
distributed-computing environment and of Internet-enabled
commerce (both in traditional, “real-world” goods and in
electronic goods and computing services themselves) has
drawn computer scientists’ attention to incentive-compat-
ibility questions in distributed computation. In particular,
there is growing interest in incentive compatibility in both
distributed and centralized computation in the theoretical
computer science community (see, e.g., [1, 5, 6, 10, 14, 17])
and in the “distributed agents” part of the AI community
(see, e.g., [13, 15, 16, 19, 22, 23]).

A standard economic model for the design and analysis of
scenarios in which the participants act according to their
own self-interest is as follows: There are n agents. Each
agent i, for i ∈ {1, . . . , n}, has some private information
ti, called its type. For each mechanism-design problem,
there is an output specification that maps each type vec-
tor t = (t1, . . . , tn) to a set of allowed outputs. Agent i’s
preferences are given by a valuation function vi that as-
signs a real number vi(ti, o) to each possible output o. For
example, in an instance of the task-allocation problem stud-
ied in the original paper of Nisan and Ronen [14], there
are k tasks z1, . . . , zk, agent i’s type ti = (ti

1, . . . , t
i
k) is the

set of minimum times in which it is capable of completing
each of the tasks, the space of feasible outputs consists of

all partitions Z = Z1 � . . . � Zn, in which Zi is the set of
tasks assigned to agent i, and the valuation functions are
vi(Z, ti) = −�zj∈Zi ti

j . Except for the private-type infor-

mation, everything else in the scenario is public knowledge.

A mechanism defines for each agent i a set of strategies
Ai. For each input vector (a1, . . . , an), i.e., the vector in
which i “plays” ai ∈ Ai, the mechanism computes an output
o = o(a1, . . . , an) and a payment vector p = (p1, . . . , pn),
where pi = pi(a1, . . . , an). Agent i’s utility is vi(ti, o) + pi,
and it is this quantity that the agent seeks to maximize. A
strategyproof mechanism is one in which types are part of
the strategy space Ai, and each agent maximizes his utility
by giving his type ti as input regardless of what other agents
do. In other words, the relation

vi(ti, o(a−i, ti)) + pi(a−i, ti) ≥ vi(ti, o(a−i, ai)) + pi(a−i, ai)

(where a−i denotes the vector of strategies of all players
except player i) must hold for all i and all possible values of
ti, a−i and ai.

Thus, the mechanism wants each agent to report his private
type truthfully, and it is allowed to pay agents in order to
provide incentives for them to do so. In the task-allocation
problem described above, an agent may be tempted to lie
about the times he requires to complete each task, in the
hope that his resulting allocation will have a higher valua-
tion. If tasks were allocated by a strategyproof mechanism,
he would have no incentive to do this, because his result-
ing payment would be lower; indeed it would be sufficiently
lower that his overall utility would be no greater than it
would have been if he had told the truth.

For a thorough introduction to economic mechanism design,
see Chapter 23 of the book by Mas-Colell, Whinston, and
Green [11].

In their seminal paper on algorithmic mechanism design,
Nisan and Ronen [14] add computational efficiency to the set
of concerns that must be addressed in the study of how pri-
vately known preferences of a large group of selfish entities
can be aggregated into a “social choice” that results in op-
timal allocation of resources. Succinctly stated, Nisan and
Ronen’s contribution to the mechanism-design framework
is the notion of a (centralized) polynomial-time mechanism,
i.e., one in which o() and the pi()’s are polynomial-time com-
putable. They also provide strategyproof, polynomial-time
mechanisms for some concrete problems of interest, includ-
ing LCPs and task allocation.

To achieve feasible algorithmic mechanisms within an Inter-
net infrastructure, the mechanism-design framework must
be enhanced with more than computational efficiency; it
also requires a distributed computational model. After all, if
one assumes that massive numbers of far-flung, independent
agents are involved in an optimization problem, one cannot
reasonably assume that a single, centralized “mechanism”
receives all of the inputs and doles out all of the outputs and
payments. The first work to address this issue is the multi-
cast cost-sharing paper of Feigenbaum, Papadimitriou, and
Shenker [5]. This work does not attempt to provide a general
decentralized-mechanism computational model. Rather, it
achieves the more modest goal of using the same network-

algorithmic infrastructure that is needed for multicast to
compute two natural mechanisms for assigning cost shares
to the recipients of the multicast. It puts forth a general con-
cept of “network complexity” that requires the distributed
algorithm executed over an interconnection network T to
be modest in four different respects: the total number of
messages that agents send over T , the maximum number of
messages sent over any one link in T , the maximum size of
a message, and the local computational burden on agents.

Routing has been part of the algorithmic mechanism-design
agenda from the beginning. Nisan and Ronen [14] pro-
vide a polynomial-time, strategyproof mechanism for opti-
mal route selection in a centralized computational model.
In their formulation, the network is modeled as an abstract
graph G = (V, E). Each edge e of the graph is an agent and
has a private type te, which represents the cost of sending
a message along this edge. The mechanism-design goal is
to find an LCP o between two designated nodes x and y.
The valuation of an agent e is −te if e is part of o and 0
otherwise. Nisan and Ronen show that the following simple
mechanism is strategyproof: The payment to agent e is 0 if
e is not on the LCP o, and the payment is dG|e=∞ − dG|e=0

if e is on o, where dG|e=c is the cost of the LCP through G
when the cost of e is set to be c. The graph needs to be bi-
connected to prevent the charging of monopoly prices. Note
that LCP computation and biconnectivity testing can both
be accomplished by standard, polynomial-time algorithms
in a centralized computation model.

As explained in the previous section, our goal in this paper is
to reformulate the LCP mechanism-design problem so that
it more accurately reflects the real-world problem that is the
motivation for studying it (i.e., interdomain routing) and to
develop a distributed algorithmic mechanism that can be
computed by a BGP-based protocol.

3. STATEMENT OF PROBLEM
The network has a set of nodes N , n = ‖N‖, where each
node is an AS. There is a set L of (bidirectional) links be-
tween nodes in N . We assume that this network, called the
AS graph, is biconnected; this is not a severe restriction, be-
cause the route-selection problem only arises when a node
has multiple potential routes to a destination. For any two
nodes i, j ∈ N , Tij is the intensity of traffic (number of
packets) originating from i destined for j.

We assume that a node k incurs a transit cost ck for each
transit packet it carries. In the terminology of Section 2,
ck is the type of agent k. For simplicity, we assume that
this cost is independent of which neighbor k received the
packet from and which neighbor k sends the packet to, but
our approach could be extended to handle a more general
case. We write c for the vector (c1, . . . , cn) of all transit
costs and c−k for the vector (c1, . . . , ck−1, ck+1, . . . cn) of all
costs except ck.

We also assume that each node k is given a payment pk to
compensate it for carrying transit traffic. In general, this
payment can depend on the costs c, the traffic matrix [Tij],
and the network topology. Our only assumption, which we
invoke in Section 4, is that nodes that carry no transit traffic
whatsoever receive no payment.

Our goal is to send each packet along the LCP, according to
the true cost vector c. We assume the presence of a routing
protocol like BGP that, given a set of node costs c, routes
packets along LCPs. Furthermore, we assume that, if there
are two LCPs between a particular source and destination,
the routing protocol has an appropriate way to break ties.
Let Ik(c; i, j) be the indicator function for the LCP from i
to j; i.e., Ik(c; i, j) = 1, if node k is an intermediate node
on the LCP from i to j, and Ik(c; i, j) = 0 otherwise. Note
that Ii(c; i, j) = Ij(c; i, j) = 0; only the transit node costs
are counted. The objective function we want to minimize is
the total cost V (c) of routing all packets:

V (c) =
�

i,j∈N

Tij

�
k∈N

Ik(c; i, j)ck

Minimizing V is equivalent to minimizing, for every i, j ∈ N ,
the cost of the path between i and j.

We treat the routing problem as a game in which the ASs are
the strategic agents. Each node plays the game by report-
ing a transit cost. A node’s transit cost is private informa-
tion not known to any other node, and thus no other agent
can assess the correctness of an agent’s claimed transit cost.
Moreover, V (·) is defined in terms of the true costs, whereas
the routing algorithm operates on the declared costs; the
only way we can be assured of minimizing V (·) is for agents
to input their true costs. Therefore, we must rely on the
pricing scheme to incentivize agents to do so.

To do so, we design an algorithmic mechanism as described
in Section 2. The mechanism takes as input the AS graph
and the vector c of declared costs3 and produces as out-
put the set of LCPs and prices.4 The pricing mechanism
must be strategyproof so that agents have no incentive to
lie about their costs. For a given cost vector c, the payment
pk minus the total costs incurred by a node k is τk(c) =
pk −�i,j Ti,jIk(c; i, j)ck. In the terminology of Section 2,

τk(·) is the utility of agent k. In this context, the mecha-
nism is strategyproof if for all x, τk(c) ≥ τk(c|kx), where the
expression c|kx means that (c|kx)i = ci, for all i �= k, and
(c|kx)k = x.

4. THE PRICING MECHANISM
Recall that we assume we have a biconnected graph with a
routing algorithm that, when given a vector of declared costs
c, will produce a set of LCPs, breaking ties in an appropriate
manner; these paths are represented by the indicator func-
tions {Ik(c; i, j)}k∈N . Furthermore, both the inputs and the
outputs are distributed, i.e., neither ever resides at a single
node in the network. In this section, we derive the pricing
scheme, and, in Sections 5 and 6, we describe the distributed
computation.

We require that the pricing mechanism be strategyproof and
that nodes that carry no transit traffic receive no payment.
We now show that these two conditions uniquely determine

3We will often use c to denote the declared costs and the
true costs; usually, the context will make clear which we
mean.
4BGP will take the AS graph and c as input and produce the
set of LCPs. We use this output of BGP in our mechanism
and do not alter this aspect of BGP in our algorithm.

the mechanism we must use. Moreover, we show that they
require that the payments take the form of a per-packet
price that depends on the source and destination; that is,
the payments pk must be expressible as

pk =
�

i,j∈N

Tijp
k
ij ,

where pk
ij is the per-packet price paid to node k for each

transit packet it carries that is sent from node i destined for
node j.

Theorem 1. When routing picks lowest-cost paths, and
the network is biconnected, there is a unique strategyproof
pricing mechanism that gives no payment to nodes that carry
no transit traffic. The payments to transit nodes are of the
form pk =

�
i,j∈N Tijp

k
ij, where

pk
ij = ckIk(c; i, j) +��

r∈N

Ir(c|k∞; i, j)cr −
�
r∈N

Ir(c; i, j)cr

�
.

Proof. Consider a vector of costs c. Let uk(c) denote
the total costs incurred by a node for this cost vector:

uk(c) = ck

�
i,j∈N

TijIk(c; i, j).

We can rewrite our objective function as

V (c) =
�

i,j∈N

Tij

�
k∈N

Ik(c; i, j)ck =
�
k∈N

uk(c).

Note that the routing function {Ik(c; i, j)}k∈N minimizes
this quantity. The characterization of VCG mechanisms, a
result due to Green and Laffont [7], states that the payments
for any strategyproof pricing mechanism minimizing a func-
tion of the form V (c) =

�
k∈N uk(c) must be expressible

as

pk = uk(c) − V (c) + hk(c−k),

where hk(·) is an arbitrary function of c−k. When ck = ∞,
we have Ik(c|k∞; i, j) = 0, for all i, j (because the graph is
biconnected, and all other costs are finite); so (1) pk = 0,
because we require that payments be 0, and (2) uk(c) = 0.
Thus,

hk(c−k) = V (c|k∞).

This, in turn, implies that

pk = V (c|k∞) + uk(c) − V (c)

=
�

i,j∈N

Tij

�
ckIk(c; i, j) +

�
r∈N

Ir(c|k∞; i, j)cr −
�
r∈N

Ir(c; i, j)cr

�

=
�

i,j∈N

Tijp
k
ij ,

where

pk
ij = ckIk(c; i, j) +��

r∈N

Ir(c|k∞; i, j)cr −
�
r∈N

Ir(c; i, j)cr

�
.

cY = 3

cX = 2

cB = 2

cA = 5

cD = 1
A

D

Y

Z

B

X

cZ = 4

Figure 1: Example AS graph from Section 4

�

This mechanism belongs to the Vickrey-Clarke-Groves (VCG)
family [21, 2, 9]. It is in essence a node-centric, all-pairs
extension of the LCP mechanism studied by Nisan and Ro-
nen [14] and Hershberger and Suri [10]. There are several
aspects of this result that are worth noting. First, although
the payments could have taken any form and could have de-
pended arbitrarily on the traffic matrix, it turns out the pay-
ments are a sum of per-packet payments that do not depend
on the traffic matrix. Second, the prices pk

i,j are zero if the
LCP between i and j does not traverse k. Thus, these pay-
ments can be computed, once one knows the prices, merely
by counting the packets as they enter the node. Third, al-
though the costs did not depend on the source and destina-
tion of the packet, the prices do. Lastly, the payment to a
node k for a packet from i to j is determined by the cost of
the LCP and the cost of the lowest-cost path that does not
path through k. We use the term k-avoiding path to refer to
a path that does not pass through node k.

For example, consider the AS graph in Figure 1, and suppose
the traffic consists of a single packet from X to Z. The LCP
is XBDZ, which has transit cost 3. How much should AS
D be paid? The lowest-cost D-avoiding path from X to Z is
XAZ, which has transit cost 5. Hence, Theorem 1 says that
D should be paid cD + [5 − 3] = 3. Similarly, AS B is paid
cB + [5 − 3] = 4. Note that the total payments to nodes on
the path is greater than the actual cost of the path. A more
extreme example of overcharging occurs in sending a packet
from Y to Z. The LCP is Y DZ, which has transit cost 1.
However, the next best path is Y BXAZ which has cost 9,
and hence D’s payment for this packet is 1 + [9 − 1] = 9,
even though D’s cost is still 1. We return to this issue of
“overcharging” in Section 7. These examples also show why
the network must be biconnected; if it weren’t, the payment
would be undefined.

5. BGP-BASED COMPUTATIONAL MODEL
We now seek to compute these prices pk

ij , using the current
BGP algorithm, which is the repository of interdomain rout-

ing information, as the computational substrate. We adopt
the abstract model of the BGP protocol described in [8],
which involves several simplifying assumptions. Specifically,
we assume that there is at most one link between any two
ASs, that the links are bidirectional, and that each AS can
be treated as an atomic entity without regard to intrado-
main routing issues. The network can then be modeled as
a graph in which every node represents an AS, and every
edge represents a bidirectional interconnection between the
corresponding ASs.

BGP is a path-vector protocol in which every node i stores,
for each AS j, the lowest-cost AS Path (the sequence of ASs
traversed) from i to j; in this vector, ASs are identified by
their AS numbers. In addition, in our treatment, the LCP
is also described by its total cost (the sum of the declared
AS costs). If d is the diameter of the network (the maxi-
mum number of ASs in an LCP), a router stores O(nd) AS
numbers and O(n) path costs. BGP’s route computation
is similar to all path-vector routing protocols. Each router
sends its routing table and, in our treatment, its declared
cost, to its neighbors, and each node can then, based on
this information, compute its own LCPs. When there is
more than one LCP, our model of BGP selects one of them
in a loop-free manner (to be defined more precisely below).
As mentioned earlier, we are making the oversimplifying as-
sumption that every node is using lowest cost as its routing
policy.

These routing-table exchanges only occur when a change is
detected; that is, a router only sends its routing table to its
neighbors when that table is different from what was sent
previously. Routing tables can change either because a link
was inserted or deleted (which would be detected by the
nodes on either end) or when updated routing-table infor-
mation is received from some other router that changes the
paths and/or costs in the current table.5

The computation of a single router can be viewed as con-
sisting of an infinite sequence of stages, where each stage
consists of receiving routing tables from its neighbors, fol-
lowed by local computation, followed (perhaps) by sending
its own routing table to its neighbors (if its own routing table
changed). The communication frequency is limited by the
need to keep network traffic low, and hence the local compu-
tation is unlikely to be a bottleneck. Thus, we adopt as our
measures of complexity the number of stages required for
convergence and the total communication (in terms of the
number of routing tables exchanged and the size of those
tables).

If we assume that all the nodes run synchronously (exchange
routing tables at the same time), BGP converges, i.e., com-
putes all LCPs, within d stages of computation (where,
again, d is the maximum number of AS hops in an LCP).

5In practice, BGP only sends the portion of the routing table
that has changed. Nodes keep the routing tables received
from each of their neighbors so that they can reconstruct
the new routing table from the incremental update. Because
the worst-case behavior is to send the entire routing table,
and we care about worst-case complexity, we ignore this
incremental aspect of BGP in the statements of our bounds.

Each stage involves O(nd) communication on any link.6

The computation performed at a node i in a single stage
is O(nd × degree(i)).

Because this level of complexity is already deemed feasible
in the current Internet, we seek to compute the prices with
a similar (or better) complexity and state requirements. We
describe such an algorithm in the next section.

6. DISTRIBUTED PRICE COMPUTATION
We want to compute the pk

ij using the BGP computational
model described in Section 5. The input to the calculation
is the cost vector c, with each ci known only to node i.
The output is the set of prices, with node i knowing all the
pk

ij values.7 In describing our algorithm we assume a static
environment (no route changes). The effect of removing this
assumption is that the process of “converging” begins again
each time a route is changed.

Our algorithm introduces additional state to the nodes and
to the message exchanges between nodes, but it does not
introduce any new messages to the protocol. In particular,
all messages are between neighbors in the AS graph. The
added state at each node consists of the reported cost of
each transit node and the set of prices. This is O(nd) ad-
ditional state, resulting in a small constant-factor increase
in the state requirements of BGP. The costs and prices will
be included in the routing message exchanges, and so there
will be a corresponding constant-factor increase in the com-
munication requirements of BGP.

We first investigate how the prices pk
ij at node i are related

to the prices at i’s neighbors.

Let P (c; i, j) denote the LCP from i to j for the vector of
declared costs c, and let c(i, j) denote the cost of this path.
Define P−k(c; i, j) to be the lowest-cost k-avoiding path from
i to j. Recall that, if there are multiple LCPs between two
nodes, the routing mechanism selects one of them in a loop-
free manner. Loop-free means that the routes are chosen
so that the overall set of LCPs from every other node to
j forms a tree. In other words, for each destination j, we
assume that the LCPs selected form a tree rooted at j; call
this tree T (j). For example, the tree T (Z) corresponding to
the graph in Figure 1 is shown in Figure 2. We say that D
is the parent of B in T (Z) or, equivalently, that B is a child
of D in T (Z).

We treat each destination j separately. Consider the com-
putation of pk

ij for some node i at another node k on the
path from i to j. Let a be a neighbor of i. There are four
cases:

• Case (i): a is i’s parent in T (j)
In this case, provided that a is not k, we can extend

6Because of the incremental nature of updates, where nodes
need only process and forward routing entries that have
changed, the communication and computational load is
likely to be much lower in practice.
7More precisely, these are the parts of the input and output
that we introduce; BGP, with its standard distributed input
(AS graph and costs) and distributed output (LCPs) is used
as a substrate.

cY = 3

cX = 2

cB = 2

cA = 5

cD = 1
A

D

Y

Z

B

X

cZ = 4

Figure 2: Tree T(Z) for the example in Figure 1

any k-avoiding path from a to j to a k-avoiding path
from i to j, and so the following inequality holds:

pk
ij ≤ pk

aj (1)

• Case (ii): a is i’s child in T (j)
Here, note that k must be on the LCP from a to j.
Further, given any k-avoiding path from a to j, we
can add or remove the link ia to get a k-avoiding path
from i to j, and so we have:

pk
ij ≤ pk

aj + ci + ca (2)

• Case (iii): a is not adjacent to i in T (j), and k is on
P (c; a, j).

pk
ij ≤ pk

aj + ca + c(a, j) − c(i, j) (3)

Consider P−k(c; a, j), the lowest-cost k-avoiding path
from a to j. We can always add the edge ia to this path
to get a k-avoiding path from i to j. The inequality is
then apparent by substituting the costs of the paths.

• Case (iv): a is not adjacent to i in T (j), and k is not
on P (c; a, j). In this case, we can add the edge ia to
P (c; a, j) to construct a k-avoiding path from i to j.
It is easy to see that

pk
ij ≤ ck + ca + c(a, j) − c(i, j) (4)

Note that these four cases are not exhaustive. In particular,
the case in which a = k is the parent of i are excluded. In
this case, the link ia will not be used in P−k(c; i, j); thus,
we can ignore neighbors in this category.

Let b be the neighbor of i on P−k(c; i, j); i.e., the link ib is
the first link on this path. We claim that, for this neighbor,
the upper bounds in the previous inequalities are tight:

Lemma 1. Let ib be the first link on P−k(c; i, j). Then,
the corresponding inequality (1)-(4) attains equality for b.

Proof. We can consider each of the four cases separately.

• Case (i):

Given that P−k(c; i, j) goes through its parent, it fol-
lows that b is not k, and so pk

ij = pk
bj .

• Case(ii): If P−k(c; i, j) passes through a child b, it is
easy to see that pk

ij = pk
bj + ci + cb.

• Case(iii): In this case, if P−k(c; i, j) passes through
b, it must contain P−k(c; b, j), and so Inequality 3 is
an exact equality.

• Case(iv): In this case, the lowest-cost k-avoiding path
through b must contain P (c; b, j), and so Inequality 4
is exact.

�

Inequalities (1)-(4) and Lemma 1 together mean that pk
ij is

exactly equal to the minimum, over all neighbors a of i, of
the right-hand side of the corresponding inequality.

Thus, we have the following distributed algorithm to com-
pute the payment values:

The Algorithm
Consider each destination j separately. The BGP table at i
contains the LCP to j:

P (c; i, j) ≡ vs, vs−1, · · · , v0 = j,

and the cost of this path, c(i, j), where vs, vs−1, · · · , v0 are
the nodes on the LCP to j and c(i, j) =

�s
r=1 cvr .

Note that each node can infer from the routing tables it
receives from its neighbors whether a is its parent, child, or
neither in the tree T (j), for each neighbor a.

At the beginning of the computation, all the entries of pvr
ij

are set to ∞. Whenever any entry of this price array changes,
the array and the path P (c; i, j) are sent to all neighbors of i.
As long as the network is static, the entries decrease mono-
tonically as the computation progresses. If the network is
dynamic, price computation (and, as explained above, con-
vergence) must start over whenever there is a route change.

When node i receives an updated price from a neighbor a,
it performs the following updates to its internal state.

• If a is i’s parent in T (j), then i scans the incoming
array and updates its own values if necessary:

pvr
ij = min(pvr

ij , pvr
aj) ∀r ≤ s − 1

• If a is a child of i in T (j), i updates its payment values
using

pvr
ij = min(pvr

ij , pvr
aj + ci + ca) ∀r ≤ s

• If a is neither a parent nor a child, i first scans a’s
updated path to find the nearest common ancestor vt.
Then i performs the following updates:

∀r ≤ t pvr
ij = min(pvr

ij , pvr
aj + ca + c(a, j) − c(i, j))

∀r > t pvr
ij = min(pvr

ij , ck + ca + c(a, j) − c(i, j))

The algorithm is summarized in Figure 3.

Correctness of the algorithm
Inequalities (1)-(4) can be used to show that the algorithm
never computes a value pk

ij that is too low. In order to show

that the pk
ij values will ultimately converge to their true

values, we observe that, for every node s on P−k(c; i, j),
the suffix of P−k(c; i, j) from s to j is either P (c; s, j) or
P−k(c; s, j). It follows that, in general, the path P−k(c; i, j)
consists of a sequence of nodes [vl, vl−1, ··, v1, um, um−1, ··, u1]
such that, for each ux, P (c; ux, j) is the suffix [ux, ux−1, ··, u1],
and, for each vy , P−k(c; vy , j) is the suffix [vy , vy−1, ··, v1, um,
um−1, ··, u1]. Note that, once the LCPs are computed, um

will know the correct P (c; um, j) and cost c(a, j). This in-
formation will be sent to v1 in the next update message from
um to v1; thus, v1 will then be able to compute the correct
P−k(c; v1, j) and pk

v1j . Proceeding by induction on y, we can

show that i will ultimately have all the correct pk
ij values.

In fact, the preceding inductive argument shows that all
prices will be stable after d′ stages, where d′ is the maximum
over all i, j, k, of the number of nodes on P−k(c; i, j). In
general, d′ can be much higher than the lowest-cost diameter
d of a graph. However, we don’t find that to be the case for
the current AS graph, as we explain in Section 7.

Using the Prices
At the end of the above price computation, each node i has
a full set of prices pk

ij . The next question is how we can use
these prices actually to compute the revenue due each node.

The simplest approach is to have each node i keep running
tallies of owed charges; that is, every time a packet is sent
from source i to a destination j, the counter for each node
k �= i, j that lies on the LCP is incremented by pk

ij . This
would require O(n) additional storage at each node. At vari-
ous intervals, nodes can send these quantities in to whatever
accounting and charging mechanisms are used to enforce the
pricing scheme. We assume that the submission of these
running totals is done infrequently enough that the commu-
nication overhead can be easily absorbed.

In summary, we have:

Theorem 2. Our algorithm computes the VCG prices cor-
rectly, uses routing tables of size O(nd) (i.e., imposes only a
constant-factor penalty on the BGP routing-table size), and
converges in at most (d + d′) stages (i.e., imposes only an
additive penalty of d′ stages on the worst-case BGP conver-
gence time).

7. CONCLUSIONS AND OPEN PROBLEMS
In this paper, we considered some incentive issues that arise
in interdomain routing. We asked what payments are needed
to elicit truthful revelation of AS transit costs and whether
they can be efficiently computed. We showed that the pay-
ments take the form of a per-packet price and that they
can be computed using a simple extension to BGP that
requires only a constant factor increase in communication
costs. There are several promising directions for additional
research.

Initialize ()

{
/* Compute routes, initialize payments */

for each destination j
Compute P (c; i, j) and c(i, j)
[vs, vs−1, · · · , v1] = P (c; i, j)
for each node k on P (c; i, j)

pk
ij := ∞

}

Update
�
a, j, c(a, j), P (c; a, j), [pu1

aj , pu2
aj , · · · , p

ul
aj]
�

{
/* Called when an UPDATE message is */

/* received from neighbor a, for dest. j */

/* u1, u2, · · ·ul are the transit nodes */

/* on the route P (c; a, j) from a to j */

modified := FALSE

if a is on P (c; i, j) /* parent */

/* ur = vr, for r = 1, 2, · · · l */

for each k in {v1, v2, · · · vl}
if pk

ij > pk
aj

pk
ij := pk

aj

modified := TRUE

else if i on P (c; a, j) /* child */

/* ur = vr, for r = 1, 2, · · · (l − 1) */

for each k in {v1, v2, · · · vl−1}
if pk

ij > pk
aj + ca + ci

pk
ij := pk

aj + ca + ci

modified := TRUE

else /*neither parent nor child*/

t := largest index such that ut = vt

for each k in {v1, v2, · · · vt}
if pk

ij > pk
aj + ca + c(a, j) − c(i, j)

pk
ij := pk

aj + ca + c(a, j) − c(i, j)
modified := TRUE

for each k in {vt+1 · · · vs}
if pk

ij > ck + ca + c(a, j) − c(i, j)
pk

ij := ck + ca + c(a, j) − c(i, j)
modified := TRUE

if modified = TRUE

/* Send UPDATE message to neighbors*/

for each neighbor b of i
send UPDATE

�
i, j, c(i, j), P (c; i, j),
[pv1

ij , pv2
ij , · · · , pvs

ij]
�
to b

}

Figure 3: Price-computation algorithm run by AS i

Our results are based on a simple model in which ASs at-
tempt to minimize per-packet transit costs. In practice, ASs
have more complex costs and route preferences, which are
embodied in their routing policies. We are currently extend-
ing the algorithmic-mechanism-design approach to handle
more general routing policies.

One important issue that is not yet completely resolved is
the need to reconcile the strategic model with the computa-
tional model. On the one hand, we acknowledge that ASs
may have incentives to lie about costs in order to gain finan-
cial advantage, and we provide a strategyproof mechanism
that removes these incentives. On the other hand, it is these
very ASs that implement the distributed algorithm we have
designed to compute this mechanism; even if the ASs in-
put their true costs, what is to stop them from running a
different algorithm that computes prices more favorable to
them? This issue does not arise in [14, 10], where the mech-
anism is a centralized computational device that is distinct
from the strategic agents who supply the inputs, or in previ-
ous work on distributed multicast cost-sharing mechanisms
[5, 3, 4], where the mechanism is a distributed computa-
tional device (i.e., a multicast tree) that is distinct from
the strategic agents (who are users resident at various nodes
of the tree but not in control of those nodes). If ASs are
required to sign all of the messages that they send and to
verify all of the messages that they receive from their neigh-
bors, then the protocol we gave in Section 6 can be modified
so that all forms of cheating are detectable [12]. Achieving
this goal without having to add public-key infrastructure (or
any other substantial new instrastructure or computational
capability) to the BGP-based computational model is the
subject of ongoing further work.

There is also the issue of overcharging. VCG mechanisms
have been criticized in the literature because there are graphs
in which the total price along a path, i.e., the sum of the per-
packet payments along the path, is much more than the true
cost of the path. Examples of this phenomenon were given
in Section 4. In the worst case, this total path price can be
arbitrarily higher than the total path cost [1]. Although this
is undesirable, it may be unavoidable, because VCG mech-
anisms are the only strategyproof pricing mechanisms for
protocols that always route along LCPs. In addition, our
distributed algorithm has a convergence time (measured in
number of stages) d′, whereas BGP’s convergence time is

d; in the worst case, d′
d

could be Ω(n). These are serious
problems that could undermine the viability of the pricing
scheme we present here. Thus, we ask whether these prob-
lems occur in practice.

To provide a partial answer to this question, we looked at
the prices that would be charged on the current AS graph
if we assumed that all transit costs were the same. Out
of a 9107-node AS graph, reflecting a recent snapshot of
the current Internet8, we selected a 5773-node biconnected
subset. We then computed d, d′, and the payments that
would result from our pricing scheme, assuming a transit
cost of 1 for each node. We find that d = 8 and d′ = 11,
and so the convergence time of the pricing algorithm is not

8These data were taken from Route Views [18], which col-
lates BGP tables from many sites across the Internet.

substantially worse than that of BGP. The highest transit
node price was 9, and, with uniform traffic between all pairs,
the mean node payment is 1.44. In fact, 64% of the node
prices were 1, and 28% of them were 2. Thus, overcharging
appears not to be a problem in this case, reflecting the high
connectivity of the current Internet. Of course, the values
of d and d′ and the overcharging margin would be different
with non-uniform transit costs; however, we expect them to
exhibit similar trends towards low d, d′, and overcharging
margin.

It would be interesting to ask whether this is because of the
incentive issues in AS-graph formation. In this paper, we
merely looked at the routing aspects of a given AS graph.
However, if one considers the incentives present when an
AS decides whether or not to connect to another AS, the
resulting transit prices would be a serious consideration. In
particular, we conjecture that high node prices will not be
sustainable in the Internet precisely because, if present, they
would give an incentive for another AS to establish a link to
capture part of that revenue, thereby driving down the tran-
sit prices. We are currently working on models of network
formation to verify this conjecture.

8. ACKNOWLEDGEMENTS
We thank Ramesh Govindan for providing us with a recent
AS graph and for teaching us about the intricacies of BGP.
We also thank Kunal Talwar for helpful discussions of the
role of incentives in AS-graph formation.

9. REFERENCES
[1] A. Archer and E. Tardos. Frugal path mechanisms. In

Proceedings of 13th Symposium on Discrete Algorithms,
ACM Press/SIAM, New York/Philadelphia, pages
991–999, 2002.

[2] E. Clarke. Multipart pricing of public goods. Public
Choice 11 (1971), pages 17–33.

[3] J. Feigenbaum, A. Krishnamurthy, R. Sami, and
S. Shenker. Approximation and Collusion in Multicast
Cost Sharing, submitted. Available in preprint form at
http://www.cs.yale.edu/homes/jf/FKSS1.ps.

[4] J. Feigenbaum, A. Krishnamurthy, R. Sami, and
S. Shenker. Hardness Results for Multicast Cost Sharing,
submitted. Available in preprint form at
http://www.cs.yale.edu/homes/jf/FKSS2.ps.

[5] J. Feigenbaum, C. Papadimitriou, and S. Shenker.
Sharing the cost of multicast transmissions. Journal of
Computer and System Sciences 63 (2001), pages 21–41.

[6] A. Fiat, A. Goldberg, J. Hartline, and A. Karlin.
Generalized Competitive Auctions. To appear in
Proceedings of the 34th Symposium on Theory of
Computing, ACM Press, New York, 2002.

[7] J. Green and J. Laffont. Incentives in public decision
making. In Studies in Public Economics. Volume 1,
North Holland, Amsterdam, pages 65–78, 1979.

[8] T. G. Griffin and G. Wilfong. An analysis of BGP
convergence properties. In Proceedings of SIGCOMM
’99, ACM Press, New York, pages 277–288, 1999.

[9] T. Groves. Incentives in teams. Econometrica 41
(1973), pages 617–663.

[10] J. Hershberger and S. Suri. Vickrey prices and
shortest paths: What is an edge worth? In Proceedings
of the 42nd Symposium on the Foundations of Computer
Science, IEEE Computer Society Press, Los Alamitos,
pages 129–140, 2001.

[11] A. Mas-Colell, M. Whinston, and J. Green.
Microeconomic Theory, Oxford University Press,
New York, 1995.

[12] J. Mitchell, R. Sami, K. Talwar, and V. Teague.
Private communication, December 2001.

[13] D. Monderer and M. Tennenholtz. Distributed Games:
From Mechanisms to Protocols. In Proceedings of the
16th National Conference on Artificial Intelligence ,
pages 32–37, 1999.

[14] N. Nisan and A. Ronen. Algorithmic mechanism
design. Games and Economic Behavior 35 (2001), pages
166-196.

[15] D. Parkes. iBundle: An efficient ascending price
bundle auction. In Proceedings of the 1st Conference on
Electronic Commerce, ACM Press, New York, pages
148–157, 1999.

[16] D. Parkes and L. Ungar. Iterative combinatorial
auctions: Theory and practice. In Proceedings of the
17th National Conference on Artificial Intelligence,
pages 71–81, 2000.

[17] T. Roughgarden and E. Tardos. How Bad is Selfish
Routing? To appear in Journal of the ACM.

[18] Route Views. University of Oregon Route Views
Project. http://www.routeviews.org

[19] T. Sandholm. Distributed rational decision making. In
G. Weiss, editor, Multiagent systems: A Modern
Introduction to Distributed Artificial Intelligence. MIT
Press, Cambridge, MA, pages 201–258, 1999.

[20] H. Tangmunarunkit, R. Govindan, and S. Shenker.
Internet path inflation due to policy routing. In
Proceeding of SPIE ITCom 2001, SPIE Press,
Bellingham, pages 19–24, 2001.

[21] W. Vickrey. Counterspeculation, auctions, and
competitive sealed tenders. Journal of Finance 16
(1961), pages 8–37.

[22] M. Wellman. A market-oriented programming
environment and its applications to distributed
multicommodity flow problems. Journal of AI Research
1 (1993), pages 1–23.

[23] M. Wellman, W. Walsh, P. Wurman, and
J. Mackie-Mason. Auctions for decentralized scheduling.
Games and Economic Behavior 35 (2001), pages
271–303.

