
One Tunnel is (Often) Enough

Simon Peter, Umar Javed, Qiao Zhang, Doug Woos, Thomas Anderson, Arvind Krishnamurthy
University of Washington

{simpeter, ujaved, qiao, dwoos, tom, arvind}@cs.washington.edu

ABSTRACT
A longstanding problem with the Internet is that it is vulnerable to
outages, black holes, hijacking and denial of service. Although ar-
chitectural solutions have been proposed to address many of these
issues, they have had difficulty being adopted due to the need for
widespread adoption before most users would see any benefit. This
is especially relevant as the Internet is increasingly used for appli-
cations where correct and continuous operation is essential.

In this paper, we study whether a simple, easy to implement
model is sufficient for addressing the aforementioned Internet vul-
nerabilities. Our model, called ARROW (Advertised Reliable Rout-
ing Over Waypoints), is designed to allow users to configure reli-
able and secure end to end paths through participating providers.
With ARROW, a highly reliable ISP offers tunneled transit through
its network, along with packet transformation at the ingress, as a
service to remote paying customers. Those customers can stitch
together reliable end to end paths through a combination of par-
ticipating and non-participating ISPs in order to improve the fault-
tolerance, robustness, and security of mission critical transmissions.
Unlike efforts to redesign the Internet from scratch, we show that
ARROW can address a set of well-known Internet vulnerabilities,
for most users, with the adoption of only a single transit ISP. To
demonstrate ARROW, we have added it to a small-scale wide-area
ISP we control. We evaluate its performance and failure recovery
properties in both simulation and live settings.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet-switching net-
works; C.2.2 [Network Protocols]: Routing protocols; C.2.5 [Local
and Wide-Area Networks]: Internet

Keywords
Internet; Source routing; Overlay networks; BGP; Reliability

1. INTRODUCTION
Increasingly, the Internet is being used for services where correct

and continuous operation is essential: home health monitoring, ac-
tive management of power sources on the electrical grid, 911 ser-
vice, and disaster response are just a few examples. In these and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.
ACM 978-1-4503-2836-4/14/08.
http://dx.doi.org/10.1145/2619239.2626318.

other cases, outages are not just an inconvenience, they are poten-
tially life threatening. Similarly, an economically important case is
presented by the outsourcing of enterprise IT infrastructure to the
cloud – connectivity outages to cloud servers can imply high costs
due to disruptions of day-to-day business activities.

However, the present Internet is not up to the task. For example,
router and link failures can trigger convergence delays in the Bor-
der Gateway Protocol (BGP). When combined with configuration
errors on backup paths, outages can last for hours up to days [14].
Often these outages are partial or asymmetric, indicating that a vi-
able path exists but the protocols and configurations are unable to
find it. Other triggers of outages: required maintenance tasks such
as software upgrades and policy reconfiguration, router misconfig-
uration, massive botnet denial-of-service attacks, router software
bugs, ambiguities in complex protocols, and malicious behavior by
competing ISPs. Even if the traffic is delivered, there are other vul-
nerabilities. Recently, intra-US traffic was intentionally re-routed
through Belarus [6], and earlier, traffic from the US Department
of Defense was routed through China [35]. The Internet lacks any
protocol mechanism to prevent this type of event from recurring.

Because of its scale, the Internet is of necessity multi-provider,
and routes often involve multiple organizations. While a number of
research projects have proposed tools to diagnose problems (e.g.,
[14, 16]), and fixes to specific issues, such as prefix hijacking [5,
17,21,23], route convergence [13], and denial-of-service [7,26,38],
there has been little progress towards deployment except in a few
cases. Part of the problem is incentives. Many of the proposed
solutions are only truly valuable if every ISP adopts; no one who
adopts first will gain any advantage.

Another part of the problem is completeness. Is there a set of
fixes that together would mean we could trust the Internet to reli-
ably deliver packets with reasonable latency? For example, Secure
BGP addresses some of the vulnerabilities surrounding spoofed
routes, but it doesn’t address denial of service or route convergence.
The commercial case for deploying a partial defense is weak.

We note that reliability is not equally important for all traffic.
Our goal is to design a system that will provide highly available
communication for selected customers as long as there is a pol-
icy compliant physical path, without diverting the traffic to non-
trustworthy ISPs. This property should hold despite node and link
failures, software upgrades, byzantine behavior by neighboring net-
works, and denial-of-service attacks by third parties.

In this paper, we propose, implement, and evaluate a system
called Advertised Reliable Routing Over Waypoints (ARROW) that
allows ISPs to sell reliability and security as a service, without
widespread adoption happening first. End users can obtain this ser-
vice from any ISP offering it, including ISPs that do not face end-
users and primarily serve the backbone of the Internet. At the core

of our system is a protocol to provision a tunnel across a remote
ISP; packets entering the tunnel are authenticated by the ISP, deliv-
ered to a specific exit PoP, and slightly re-written, e.g., to modify
the destination address. In providing ARROW, an ISP promises
only what it can guarantee itself: a high quality tunnel across its
own network. The customer is responsible for stitching together
ARROW into an end-to-end solution. Like local transit, ARROW
is paid for by the requestor, arranged over the web in much the
same way as one would purchase computing cycles in Amazon’s
EC2 cloud computing service.

ARROW shares similarities with Detour routing [29], the Inter-
net Indirection Infrastructure [31], Nira [37], pathlet routing [10],
and Platypus [27], among others. Unlike these earlier systems, the
ARROW model takes into account resource exhaustion and byzan-
tine attacks in addition to routing anomalies; experience has shown
that these attacks are common. More importantly, a number of tech-
nology trends have converged to merit a fresh look at Detour-like
systems for addressing Internet reliability:
• Large-scale ISPs have deployed sophisticated traffic and net-

work management, making their own networks much more re-
liable. How can we best leverage this for end-to-end resilience?
• The Internet has become flatter and is more densely intercon-

nected [20]. This has shortened BGP paths to the point that
a single, well-placed tunnel is often sufficient to avoid a wide
range of problems (as we show in §5).
• $5K PCs can cost-effectively process packets at Internet speeds

(40Gbps), allowing for easy deployment of ARROW and the
applications that build upon it.

In this paper, we present the design of ARROW, including how
its main requirements, incremental deployability, high availability,
and robustness, are achieved (§3). We present the ARROW API
that can be used by ISPs and end-users to find, reserve, and es-
tablish paths on the Internet (§3.2). We present our implementa-
tion of ARROW and describe its deployment on a faux ISP that
we control, including several applications we have built on top of
this deployment (§4). Finally, we evaluate ARROW both in sim-
ulation and experimentally (§5). Our evaluation shows ARROW’s
resilience against transient routing problems, IP prefix-hijacking,
inter-AS link failures, path performance problems, and ISP fail-
ures, with little overhead to Internet routing performance.

2. MOTIVATION
Consider the following example scenarios.

Example 1: Imagine a healthcare monitoring application that op-
erates over the Internet. The patient wears a monitoring device
sending measurements to a data center, where they are analyzed
in real-time. Anomalies are forwarded to alert human experts who
can ensure that no medical problem has occurred. To support such
applications the network must provide high availability because the
network may be part of a life-critical medical feedback loop with
timeliness constraints. It must also provide desired levels of quality
of service, i.e., provide high bandwidth streams with low loss rates.
These services should not be disrupted by transient changes in un-
derlying paths either due to cross-traffic or due to BGP dynamics.

Example 2: A large enterprise that is physically distributed across
multiple sites, such as a Fortune 500 company, needs to use the
Internet for inter-site communications, serving its customers, and
accessing outsourced IT services in the cloud. It might have mul-
tiple requirements for its communications: traffic should be com-
municated reliably even in the presence of outages, there should

be no information leakage due to traffic analysis, and traffic should
be robust to security attacks such as prefix hijacking. To address
these concerns, it wants to ensure that its traffic only traverses a
set of pre-approved, trustworthy providers or a predictable set of
ISPs that satisfy certain geographical/jurisdictional requirements.
This is impossible to guarantee today. Near the source, an ISP can
select BGP routes to a specific destination that obey certain restric-
tions. However, those routes can be changed by the downstream
ISPs without pre-approval or prior notice; BGP will inform the up-
stream users only after the fact. Near the destination, the ISP has
no standard way to signal that it should only be reached through
pre-approved paths or through a predictable set of trusted ISPs.

The previous examples highlight just a few problems of Internet
use for mission-critical services. A recent survey [32] enumerates
other known security vulnerabilities of the Internet. A few exam-
ples include disruption of service by resource exhaustion attacks
against network links and end hosts, prefix hijacks by malicious
ISPs, and byzantine errors by neighboring ISPs (e.g., intentional
disaggregation of addresses, causing router crashes).

Even without vulnerabilities to malicious attack, the Internet pro-
tocols are operationally fragile: Internet paths are often disrupted
for short periods of time as BGP paths converge. Common opera-
tional changes, such as reboots or rewiring, and divergence between
the control and data plane can also reduce availability. With today’s
protocols, an endpoint has no recourse in this case but to patiently
wait for the problem to be repaired.

In our work, a key observation is that the amount of traffic for
mission-critical applications can be quite small, especially com-
pared to normal everyday Internet use. Yet this traffic is often very
high value. Our proposal targets just these low-volume, high value
applications. Most users find most of their Internet traffic works
well enough most of the time, because much of the traffic on the
Internet is for content delivery from nearby cached copies. For this
type of traffic, the most critical factor is the reliability of the local
ISP. Internet reliability is of course still an issue for many users,
but it seems unlikely that this part of the problem requires an archi-
tectural fix beyond designing better tools for network operators to
diagnose their own networks.

Our focus is thus on developing a system that can enhance the re-
liability and performance of mission-critical traffic using solutions
that are incrementally deployable and provide benefits even when
it is deployed by a small number of ISPs. Further, re-architecting
the Internet from ground up seems overkill for such a small amount
of traffic, no matter how important in human or commercial terms.
Given the large number of known problems, it is unlikely that even
a well-designed set of changes would fix every problem, and a mas-
sive change to the Internet protocol suite would run the risk of hav-
ing unintended side effects.

3. ARROW DESIGN
We would like to develop a simple system that can be used to

provide highly available communication in addition to the Inter-
net’s normal uses as long as there is a usable and policy-compliant
physical path between a pair of endpoints. To this end, the key
requirements of our solution are:

Incremental Deployability: In today’s Internet, a provider ISP (or
ISPs) mediates Internet service. This poses a chicken and egg prob-
lem: an ISP can’t promise or charge for a new type of service unless
all, or almost all, other ISPs already provide the service. We want
to make it possible for end users, enterprises, and governments to
leverage reliable intradomain paths made available by remote ISPs,
without requiring global adoption of new protocols.

AT&TSprint

Comcast
AmazonFlakyISP

PowerData

ARROW ARROW

Level 3

ARROW ARROW

Figure 1: Three example ARROW paths from PowerData to
Amazon: the dotted lines represent the BGP path. The two
dashed lines are ARROW paths.

High Availability: We want endpoints to be able to establish one
or more high quality paths across the Internet, provided a physi-
cal path exists through ISPs willing to be paid for the service. For
availability, endpoints need the ability to route around persistent
reachability problems, as well as to establish multiple paths to min-
imize disruptions due to transient routing loops and blackholes.

Robustness: Because security attacks against the Internet are a
real threat, we need to provide endpoints the means to defend their
routes, both by proactive installation of desirable paths and filters
and reactive rerouting of traffic in response to degradation in packet
delivery.

In this section, we provide a brief overview of our approach be-
fore describing the key components of our design.

3.1 Overview
We provide an overview of our approach using a simple example

shown in Figure 1. A company called PowerData is using Amazon
cloud services for its day-to-day data storage. Using BGP, traffic
to Amazon would be routed via Comcast (PowerData’s upstream
ISP), Sprint, and either FlakyISP or AT&T. However, FlakyISP of-
ten drops packets and has caused PowerData’s service to be slow
whenever the path through FlakyISP is chosen by Sprint and Com-
cast. Note that, while PowerData can find out about the problem
using various available Internet measurement technologies, it has
limited or no control over the paths selected by Sprint (a remote
ISP) and Comcast (the local transit provider).

To remedy this, PowerData buys ARROW transit from AT&T,
which involves provisioning a path through AT&T and establish-
ing the appropriate packet forwarding rules to transmit PowerData
packets along to Amazon and received responses back to Power-
Data. This ensures that PowerData packets to and from Amazon
are routed around FlakyISP since it does not appear on any of the
paths between Comcast and AT&T nor does it appear on the paths
between AT&T and Amazon. Note that PowerData does not have
to provision paths across every ISP on its path to/from Amazon in
order to avoid FlakyISP. Rather, a limited amount of route control
at a remote ISP (AT&T in this example) suffices to achieve the de-
sired paths.

To ensure that reconfigurations and temporary outages (for ex-
ample, due to routing loops or misconfigurations) at Sprint and
AT&T do not impact PowerData’s service, PowerData also buys
ARROW transit from Level 3 and can fail-over to this path in case
of problems with the original path.

The example illustrates several properties of our proposed ap-
proach. First, the system is incrementally deployable by an ISP,
with incremental incentives to that ISP. An ISP can provide AR-
ROW even if none of its peer, customer or provider ISPs partici-

pate in the protocol. ARROW benefits from a network effect, but it
still provides value to enterprises and data centers needing to con-
trol routes even if only a few ISPs have adopted the approach. In
the example in Figure 1, ARROW is still useful to PowerData even
if Sprint does not provide ARROW transit.

Second, ARROW aims to require only modest changes to the ex-
isting Internet infrastructure to facilitate deployment. We assume
no changes to normal traffic, but we do require that mission criti-
cal traffic be specially encoded to simplify packet processing at the
router. Redesigning services to work with ARROW requires min-
imal programmer effort, the costs of which should be outweighed
by the benefits for mission-critical services. Alternately, we explain
how a local ISP could offer an end to end service to its clients, by
rebundling their mission critical traffic to use ARROW.

In the rest of this section, we present the ARROW design and
outline the key components of our proposal including:
• the management interface for setting up transit through a re-

mote ISP,
• the data plane operations required for supporting remote transit,
• the issues in setting up end-to-end paths, monitoring them, and

responding to changes in path quality, and
• business considerations that affect the adoption of the proposed

scheme.

3.2 Setting up Remote Transit
An ISP offering ARROW advertises its willingness to provide

its transit, for a fee, via SSL, much as is currently done for cloud
providers offering computer time. The control traffic (to find out
about advertised ARROW tunnels, and to request the tunnel) can
be carried over the existing Internet, or in turn use ARROW mech-
anisms to bootstrap more reliable routes that can be used for the
contol traffic.

The ISP operates a portal that provides interested users with an
interface for obtaining information regarding its ARROW service.
If transit is granted for a fee, registering with an ISP’s service would
typically involve an exchange of the customer’s credit card infor-
mation. An ISP can exercise fine-grained control over its ARROW
service, including between which of its peers to provide the ser-
vice, and whether to attach Service Level Agreements (SLAs) to it
that might provide bandwidth and latency guarantees. Other value-
added services might also be offered, such as DoS protection.

The portal should provide at least the following:
• All offered transit paths and services from a specific ingress

ISP (and optionally, ingress link) to a specific egress ISP (and
optionally, egress link), including backup ingress router IP ad-
dresses in case of failures,
• the pricing model of the offered transit paths and services, and
• the SLAs provided, such as bandwidth, latency, and maximum

packet loss rate guarantees.
In addition, the portal needs to provide the ability to obtain and

relinquish a path by returning or accepting a corresponding identi-
fication token, which we call an authenticator. The authenticator is
used in actual ARROW traffic to prove that the endpoint originat-
ing the packet is authorized to use the transit path. The router must
check the authenticator and drop the packet if it does not match. If
the authenticator is compromised, the only penalty is that the cus-
tomer of the service is charged for extra unrelated traffic traversing
the pipe. Techniques to safeguard the authenticator against eaves-
dropping, such as encoding it with the hash of the checksum of the
packet, may be used. Attackers can then only replay entire packets,
but they cannot use snooped authenticators for other packets.

Home ISP
Target ISP

ISP B

ISP A

ARROW ARROW

Internet atlas ISP C

ARROW ARROW

(1)
(2)

(3)

Figure 2: Example ARROW transit setup process. Blue routers
in ISPs A and C are ARROW-compatible, gray routers in ISP B
are not. Dashed lines show the path chosen in case (a). Dotted
lines show the detour taken via another ARROW ISP in case
(b). The BGP path in this example is Home-B-Target.

Finally, an RPC interface should be provided that allows clients
to stitch together transit segments of multiple providers into an end-
to-end path. The call may look like this:
chain_path(auth, nextHopAddr, nextHopAuth)
It causes the egress router of an existing ARROW tunnel seg-

ment (identified by its authenticator auth) to route tunnel traffic
to the IP address nextHopAddr and set the ARROW authentica-
tor of the next hop to nextHopAuth.

An end host contacts one or more of the ARROW ISPs on the
route via this interface and requests provisioned paths through the
individual networks. The ARROW customer then arranges for the
routing of the packet by associating with each hop the address for
each subsequent hop that needs to be traversed. We note that links
within an ISP might run out of excess capacity, but that only pre-
vents future ARROW tunnels from being set up; existing agree-
ments can stay in place. Market prices can then signal a need for
more capacity.

From the ISP-provided lists of ingress and egress points, end-
points are able to compile an atlas, which they can use to determine
a path to a destination. Any shortest path discovery algorithm can
be used on the atlas to determine which ISPs to use to create an
end-to-end circuit. We envision that, eventually, another Internet
webservice maintains the atlas and provides a path query interface,
returning paths according to any of a number of these algorithms.
Most of the information we require ISPs to advertise to potential
customers is already advertised to their direct peers, and much of it
is already publically available.

Figure 2 shows an example of an Internet endpoint arranging an
ARROW circuit with a target endpoint, registering with a number
of ISPs. It also shows how the circuit is maintained by each of the
ISPs. Two cases are considered:

(a) A tier 1 ISP A that is the provider for our home ISP sup-
ports ARROW and a circuit is created via this ISP. Other traffic is
routed via BGP through a non-ARROW supporting ISP B to the
final destination. The path in this case is Home-A-B-Target.

(b) An additional ARROW-supporting ISP C is configured to
avoid the non-ARROW ISP B. In this case, we configure ISP A
to forward packets to ISP C, via ARROW. The path in this case is
Home-A-C-Target.

In both cases, the endpoint first optionally contacts an Internet
atlas service to determine which ISPs to contract for ARROW ser-
vice (1). Then, the home endpoint contacts the portals of the appro-
priate ARROW ISPs on the circuit to create ARROW SLAs. This
typically has to happen in reverse order (2 and then 3), from des-
tination endpoint to source endpoint, so that next-hop information
can be given.

ARROW paths are unidirectional. The reverse path can be pro-
visioned either by the peer, or by the originator of the traffic. This

Src
Addr

Hop
Addr …Hop

Auth

IP envelope ARROW Transport

ARROW

Prot
Src

Addr
Dst

Addr

IP header

Figure 3: Relevant fields of an ARROW packet (in bold). Dst
Addr is the IP address of the final destination. Note that the
source endpoint IP address and other IP header fields are du-
plicated by the envelope IP header.

might depend upon the relationship of the peers. If the source party
is a customer of a cloud service, it makes sense for the source to
provision both paths. A peer-to-peer relationship can be provi-
sioned by either peer individually.

3.3 Data Forwarding
To route traffic via ARROW, the source (or its proxy) encapsu-

lates every IP data packet in a separate IP envelope, as shown in
Figure 3. The envelope also contains the authenticator in a special
field (Hop Auth). The envelope’s destination is set to the next AR-
ROW hop’s IP address (Hop Addr) and its next-level protocol field
is set to a value identifying ARROW (ARROW Prot).

The source then sends the packet normally through its local net-
work. If the customer has a chain of ARROW providers, then each
modifies the packet with the address and authenticator of the next
hop, according to its local ARROW forwarding table; the last ISP
in the chain removes the IP header encapsulation before forward-
ing. This model requires each ARROW router to have an appropri-
ate entry per ARROW tunnel in its forwarding table, contributing
to the growth of forwarding tables. Modern forwarding and ta-
ble storage techniques [28], however, make routing table scalability
less of a concern.

We do require some level of hardware support in routers, but it is
minimal and similar to the hardware already in place: in many ISPs,
ingress routers demux incoming traffic based on the destination ad-
dress to a specific MPLS tunnel to route the traffic across their
network. We can leverage similar hardware support in ARROW:
the ingress router must be able to demux on the ARROW address
(and if necessary the ARROW authenticator), route the packet us-
ing MPLS or other means, and then modify the header to insert
the next hop address and authenticator. Alternatively, ISPs can op-
erate high-speed software routers (e.g., RouteBricks [8], Packet-
Shader [11]) at ingress/egress PoPs to perform the necessary tasks
for ARROW traffic.

3.4 Failures and Performance Regressions
Failures. Most failures along an ARROW circuit can be handled
by ISPs directly. Some failures require endpoints to cooperate,
however. Specifically, in an ARROW circuit, failure can occur at
several different levels:
• failure of a router internal to an ISP,
• failure of a router at the edge of an ISP, or
• failure of a whole ISP.

If an internal router fails, the ISP is responsible for detecting
this failure and routing around it. ISPs today typically have multi-
ple redundant paths between the ingress and egress PoPs, and can
thus use MPLS mechanisms to configure backup paths and switch
the intradomain paths in a seamless manner. For instance, MPLS
Fast Reroute allows routers inside the ISP to redirect traffic onto a
predetermined backup path when they detect failures in upstream
routers [30].

Since edge routers correspond to boundaries between ISPs, edge
routers belonging to different ISPs need to cooperatively handle
failover. Thus, we have designed a failover protocol which must be
implemented by each participating ISP. Our implementation does
not perform failure detection, since we believe that in general the
endpoint will be able to do a better job of determining whether its
traffic is actually arriving at the server. Therefore, failover is an
endpoint-driven process in this case.

When the endpoint detects a failure along an ARROW path (i.e.,
it detects that its traffic is not successfully arriving at the desti-
nation), it sends a special probe packet along the same path. Each
ISP’s router is required to respond to the previous hop of the probe
packet and also forward it normally along the path. This is similar
to what happens when an IP packet has reached its end of life, ex-
cept that the packet is also forwarded and the response goes to the
previous hop instead of the source of the packet.

If the endpoint does not receive an acknowledgment from the
first ISP, it concludes that the first ISP is where the failure exists
and fails over to another edge router in the same ISP. If the first ISP
does receive the endpoint’s probe, it first acknowledges it so that
the endpoint doesn’t assume it has failed, then forwards the probe
to the second ISP. Thus, the probe is initiated by the endpoint but
is actually performed at each non-failing ISP node in the circuit.

For example, assume a circuit has been established between an
endpoint E, ISP A, ISP B, and a server S. Each ISP has three
routing nodes; we call them A1, A2, A3 and B1, B2, B3. When
the circuit is first established, it goes from E to A1 to B1 to S. At
some later time, B1 fails. E detects that S isn’t receiving its mes-
sages and initiates the failover process by sending a probe packet
toA1. A1 receives and acknowledges the probe, then forwards it to
B1. A1 does not receive an acknowledgment within a link-latency-
determined timeout, and concludes (correctly) that B1 has failed.
A1 then forwards the probe to B2, which acknowledges it. In re-
sponse, A1 updates its local state so that packets on the circuit go
to B2 rather than B1. Subsequent traffic is now routed through the
new circuit and E detects that the failover has succeeded.

If the ISP as a whole fails, the endpoint will need to provision an
alternate route. An endpoint can establish multiple ARROW paths
to the destination simultaneously and use them in conjunction with
the original path for fast failover.
Performance regressions. To help endpoints investigate circuit
performance, ISPs should provide a ping service at egress PoPs
to arbitrary IP addresses and ARROW routers need to be able to
respond to ICMP requests. Endpoints then have the ability to in-
dependently gather all required information to analyze the perfor-
mance of each circuit segment.

3.5 Security
The design presented thus far has a few security issues: AR-

ROW paths and their endpoints might be DoS-attacked, the avail-
ability of trusted ARROW ISPs might be spotty and traffic has to
traverse non-ARROW ISPs, and ARROW users themselves might
be malicious. We now address these issues.

DoS attacks. ARROW paths can be set up to resemble swarms
of packet forwarders [7] in order to increase path availability in
the face of DoS attacks. Figure 4 demonstrates how this can be
achieved: multiple ARROW segments are configured within one
ARROW supporting ISP to mitigate the effects of DoS attacks to
ARROW ingress points. Since ARROW clients can migrate their
traffic to another ingress PoP if their PoP is overloaded, attackers
have to overwhelm all provided ingress points simultaneously in
order to stop traffic to the destination. If the destination endpoint’s

Source ISP

Target ISP

ARROW ISP

ARROW

ARROW

ARROW

ARROW

Ingress

Ingress

Ingress

Secret IP

DoS Attacker

Figure 4: DoS attack prevention using ARROW.

IP address is kept secret, it does not matter whether the ARROW
supporting ISP is the endpoint’s local ISP or an arbitrary remote
ISP. Otherwise, if the provider of the destination endpoint provides
ARROW, the endpoint’s ISP can drop all non-ARROW traffic and
protect the endpoint in this way.

Securing spotty ARROW routes. To ensure that its packets tra-
verse only trusted ISPs, an endpoint can set up ARROW circuits
through each intermediate ISP in an end-to-end path. If some of the
intermediate ISPs don’t provide ARROW support, endpoints have
to resort to normal Internet routing between the ARROW ISPs.
This means that those hops are vulnerable to BGP effects such as
prefix hijacking and rerouting of packets through untrusted ISPs.
However, if the AS path lengths of the non-ARROW segments are
small, then only those ASes that are within the local neighborhood
of these segments would be able to mount an effective prefix hi-
jacking attack. Additionally, in order to disrupt an ARROW route,
the hijacking entity has to pollute the routing entry at a specific
egress PoP as opposed to any arbitrary PoP inside the ARROW
supporting ISP. Further, if an ARROW ISP is a provider of the non-
participating ISP (e.g., the ARROW ISP is a tier 1 ISP), then also
it is unlikely that prefix hijacking is effective—most ISPs in prac-
tice are configured to filter competing advertisements for addresses
originating in their direct customers/providers, so the ARROW ISP
would effectively filter out most forged announcements.

It is worth noting that if all we need is alternating compliant ISPs,
the average number of ARROW hops we would need for an end to
end path in today’s Internet is very small, typically one or two.
An endpoint can also constrain that all communications sent to it
should be through ARROW tunnels by providing other endpoints
with an ARROW address as opposed to its actual IP address.

In any case, it is important to know how many BGP hops are
between the ARROW hops to gauge the vulnerability of the con-
nection to attacks and failures. To figure out the number of inter-
mediate hops, sources can initiate a traceroute to originate from the
last ARROW supporting hop of the source end of the path, directed
at the first ARROW hop of the destination end of the path. This can
be done by sending a traceroute via ARROW from the source end-
point to the first ARROW hop of the destination end through the
existing partial circuit.

Misbehaving ARROW users. We have thus far assumed that AR-
ROW clients are well-behaved. A malicious or faulty client could
repeatedly send false failover notices, or set up an ARROW cir-
cuit with a loop. An ARROW-supporting ISP would need to de-
tect these scenarios (this is feasible because clients require strong
identities to buy ARROW service) and ignore or rate-limit failover
traffic from misbehaving customers.

3.6 Business issues
An ISP has an incentive to ensure correct forwarding of AR-

ROW traffic across its network, because it is receiving revenue in
addition to the price it is receiving for carrying the packet from

its immediate neighbor. Also, since endpoints have the ability to
switch over to pre-configured backup paths, it is in the ISP’s in-
terest to perform local fault recovery quickly if it wants to retain
the traffic from the ARROW customers. Further, since ARROW
would allow ISPs to attract traffic that they normally wouldn’t re-
ceive, there is an incentive for ISPs to implement ARROW even
when other ISPs don’t.

An ISP might intentionally disrupt traffic to an ARROW provider,
e.g., if it sees a packet destined for an ARROW address, it might
drop it. While a sufficient number of such misbehaving ISPs will
cause a problem regardless of the technology used, ARROW would
allow customers to route around them, and provide further incentive
(in the form of more potential customers) for other ISPs to adopt
ARROW. As another option, ARROW destined packets could be
encrypted when traversing non-cooperative ISPs, so that they ap-
pear to be SSL traffic.

Although ARROW will allow enterprises to contract for exactly
the amount of route control, resilience, and DoS protection that
they need, ISPs may also find it useful to leverage ARROW ser-
vices on behalf of their customers. That is, a customer-facing ISP
would arrange tunnels to important data services, and this would be
(nearly) transparent to the ISP’s customers, except that they would
find their Internet service through the ISP to be highly reliable. This
aggregation will be particularly valuable for thin devices that lack
the ability to monitor routes and perform route control on their own.

4. IMPLEMENTATION
In this section, we describe our implementation of ARROW and

its deployment. The deployment is a step toward building and run-
ning an ISP supporting ARROW, such that any Internet user will
be able to try out ARROW for themselves. To this end we leverage
the BGP Transit Portal [33] and PlanetLab VICCI clusters [34]. We
have also built several services designed to enhance end-to-end per-
formance and security on this deployment. These services include
a DoS prevention system akin to the one described in §3.5, and a
simple CDN.

4.1 Serval Implementation
We have integrated ARROW support into the Serval [25] proto-

col stack. Serval is a great fit for ARROW as it already supports
client-side failover for connection failures and we can extend this
support to failover among several ARROW paths. To extend Ser-
val to support ARROW, we have added a new packet header ex-
tension (header extensions are a Serval feature), which contains the
ARROW authenticator. This extension is included on every data
packet. If the source endpoint’s service access table contains a for-
ward rule with an ARROW authenticator annotation, this header
extension will be generated with the corresponding authenticator
and all data packets forwarded to the specified next-hop service
router. The service routers detect the ARROW extension and match
it in a special ARROW authenticator table to the next-hop IP ad-
dress, possibly with another ARROW annotation. Each packet’s
destination IP address and potentially ARROW authenticator is
rewritten according to this table.

4.2 Internet Atlas
To provide the Internet atlas service, each ARROW ISP contin-

uously performs measurements to generate and maintain a map of
Internet paths from each of its PoPs to each routable prefix, with
each path annotated with a rich set of attributes corresponding to
the latency, available bandwidth, and loss rate of the path.

These collected measurements are made available through a net-
work atlas service (with XMLRPC and SunRPC interfaces) so that

require ’atlas’

egress = ARGV[0]
prefixes = Array.new
(1..ARGV.length-1).each { |i|

prefixes.push(ARGV[i])
}

atlas = Atlas.new
prefixes.each{ |p|

atlas.addPath(egress, p)
}
responses = atlas.queryPendingPaths
responses.each{ |r|

if (r.latency < 300) # 300ms
puts(r.path.join(" "))

end
}

Figure 5: A Ruby program that returns all ARROW paths with
latency below 300 ms from a given egress PoP to a number of
given IP addresses. Hops on a path are separated by spaces,
paths are separated by newlines.

they can be queried dynamically for metrics, such as reachability,
latency and throughput performance, between an ARROW PoP and
an arbitrary IP address. It is kept up-to-date with live active probe
measurements, which are performed at regular intervals and also
selectively reprobed based on passive observation of BGP feeds.
As such, it can be used to determine the performance between any
two PoPs, as well as the performance to any Internet prefix from an
egress PoP. This is especially useful when choosing among multi-
ple ARROW-offering ISPs.

To determine whether keeping the network atlas up-to-date is
feasible, we have evaluated the average daily rate with which In-
ternet paths change at the PoP-level. To do so, we count daily
PoP-level changes in downstream paths from all tier-1 ASes to all
prefixes within the entire year 2012 of historical iPlane traceroute
measurements (cf. §5.4). We count in two ways: 1. also counting
paths with IP-level changes where we have no IP-to-PoP mapping,
and 2. where we ignore these changes. We arrive at an average rate
of 10% and 1%, respectively, of paths changing daily, which can be
processed efficiently at the atlas service.

The network atlas service expects a Ruby program on its input
and provides the output of that program as its result. The Ruby
program can make repeated queries to the database of collected
measurements (using the call queryPendingPaths), filter out unnec-
essary results, and report back to the endpoint a pruned list of paths
that match application-specific criteria. Figure 5 demonstrates a
program that returns all paths with a latency below 300ms from a
given egress PoP to a number of IP prefixes, given as a list of IP
addresses living within each prefix, respectively.

4.3 Wide Area Deployment
We have deployed ARROW nodes in the wide area using the

Transit Portal (TP) BGP testbed [33] and the VICCI set of geo-
graphically distributed compute clusters [34]. TP lets us announce
/24 prefixes using six US universities as our providers: Univer-
sity of Washington (UW), University of Wisconsin (WISC), Geor-
gia Tech (GATech), Princeton University, Clemson University and
University of Southern California (USC). VICCI clusters are co-
located with most of the TP sites, except for another VICCI cluster
site at Stanford University that is not co-located. We envision each
TP/VICCI site as a PoP for our ARROW ISP. An ARROW client
simply addresses packets to a specific IP address in the TP prefix.

The Portal software router then redirects these packets to an AR-
ROW software router via a VPN tunnel. We deploy the ARROW
routers on a co-located VICCI cluster.

For redundancy, ARROW routers have replicas that are kept con-
sistent via a distributed coordination service [12]. In a real de-
ployment, router-specific protocols would be used to keep standby
routers consistent with their primaries. Software routers run a Ser-
val routing component in user space (kernel modifications are not
allowed on VICCI); this is the data plane. Each router also runs an
ARROW circuit creation daemon, a replica manager, and a failover
management daemon; the control plane—implemented in Python.

4.4 ARROW Services
We have built several prototype services on our ARROW de-

ployment, to demonstrate the value of additional services deployed
with ARROW. We briefly describe two of these services in this sec-
tion: a DoS protection service and a content distribution network.

DoS Protection. We have implemented the Phalanx [7] DoS pro-
tection scheme and deployed it at ARROW software router nodes at
each Transit Portal PoP. The service can be offered to anyone on the
Internet wishing to obtain a DoS protection layer for their own ser-
vices. Phalanx achieves DoS protection by requiring clients to in-
terleave packets to the server through a predetermined sequence of
bandwidth-limiting proxy nodes (called mailboxes), each of which
has a different IP address. Since the attacker does not know this se-
quence, they can affect only a fraction of the traffic exchanged. The
client and server initially agree on the random sequence of mail-
boxes (through a secret key) before traffic can flow. The commu-
nication proceeds by the client sending a packet to the appropriate
mailbox and the server requesting the packet from that mailbox.
The router at the TP node forwards client packets and server re-
quests to the ARROW VICCI nodes where client packets are stored
until the server requests them.

Content Distribution Network. We have also implemented a sim-
ple CDN offering a traffic cache at each Transit Portal PoP. The
CDN consists of a controller and a group of geo-replicated cache
nodes. The controller is responsible for collecting content requests
and directs them to the cache replica with the lowest latency to
the requesting client. Each ISP offering CDN service is in a good
position to know this information for its PoPs. In our prototype de-
ployment, each replica stores a copy of each file. After receiving a
client request, the controller instructs the cache nodes to measure
their RTT latencies to the client and picks the one with the lowest
RTT to serve the content to the client.

5. EVALUATION
We evaluate ARROW via simulation on AS and PoP-level In-

ternet topology, as well as by measurement of our implementa-
tion, both when deployed on a local cluster of machines, as well
as within our large-scale deployment. Specifically, we seek to an-
swer the following questions:
• How are throughput and latency of Internet traffic affected when

an ARROW path (of various lengths) is used?
• How nimble are the individual failover mechanisms that are de-

ployed along an ARROW path?
• How quickly is ARROW able to re-establish end-to-end con-

nectivity in the event of a link failure on the Internet?
• How resilient are various ARROW deployments to (potentially

cascading) Internet link and AS failures and can we use AR-
ROW to avoid untrusted ISPs?

RTT [µs] Throughput [Gbits/s]
UDP/TCP 44/96/107 9.05/9.36/9.68

Serval 73/81.23/154 9.35/9.52/9.74
1 ARROW hop 113/131.96/290 9.37/9.55/9.85

2 ARROW hops 158/191.38/444 8.19/8.49/8.72

Table 1: RTT and throughput (min/avg/max) of different AR-
ROW path lengths vs. UDP/TCP and Serval.

Source

Forward
Hop 1

Forward
Hop 2

Backward
Hop 2

Backward
Hop 1

Dest

Figure 6: ARROW 6-node cluster deployment.

• How effectively do various ARROW deployments prevent IP
prefix-hijacking attacks?
• Is the end-to-end latency of ARROW paths comparable to that

of regular BGP paths?
We are especially concerned with evaluating whether a single

tunnel (one ARROW hop) is enough to provide all of the bene-
fits. Hence, with the exception of performance evaluation, we only
evaluate one-hop tunnels within the experiments in this section (as
opposed to the number of ARROW-supporting ASes, which we do
vary).

5.1 Performance Overhead
To evaluate the latency and throughput overheads of our AR-

ROW prototype, we have deployed it on a 6-node cluster. All nodes
run Linux 3.2.0 on Intel Xeon E5-2430 processors at 2.2 GHz clock
frequency, with 15 Mbytes total cache, 4 Gbytes memory, and In-
tel X520 dual-port 10 Gigabit Ethernet adapters, connected to a 10
Gigabit Ethernet switch. Figure 6 shows this setup.

In the cluster, one node acts as the source endpoint of a route
and another one as the destination. The other nodes are used as
ARROW routers. The deployment is symmetrical: Both forward
and reverse ARROW paths are established between source and tar-
get, over distinct nodes in the cluster. We can construct up to 2
ARROW hops in this symmetrical fashion. We determine the la-
tency along a path by measuring the average round-trip time (RTT)
of 100 individual 64 byte UDP packets to the destination which
echoes them back unmodified. We measure the average throughput
over 5 TCP transfers of a data stream over 10 seconds each, using
the iperf1 bandwidth measurement tool.

Table 1 shows the measurement results of different lengths of
ARROW routes compared to UDP/TCP and unmodified Serval.
The TCP, UDP and Serval measurements measure direct bandwidth
and RTT between two endpoints, without going through any inter-
mediate hops. The ARROW measurements forward packets ac-
cording to the experimental setup shown in Figure 6.

In terms of latency, ARROW adds an RTT overhead of 62%
over the baseline Serval implementation and 37% over UDP. A 2-
hop ARROW path has an overhead of 45% over the RTT latency
of a 1-hop path. Throughput is not affected by adding ARROW
to a 1-hop path. However, adding another ARROW hop impacts
throughput by 10%. This might be due to our switch not being able
to handle the bandwidth requirement.

We conclude that the overheads imposed by ARROW are small
enough to merit the deployment of a wide-area prototype. In a pro-
1http://iperf.sourceforge.net

 0

 500

 1000

 1500

 2000

 2500

Edge router PoP ISP

T
im

e
 t
o
 f
a
ilo

ve
r

[m
s]

With Consistency
Failover only

Figure 7: Time to failover for various component failures along
a ARROW path. The plot shows the median (min/max in error
bars) over 5 measurements, each with Zookeeper and without.

duction environment, purpose-built routers would likely be used.
They already support the required features: MPLS tunnels can be
used to forward packets among tunnel segments and Software De-
fined Networking (SDN) technology aids the setup and manage-
ment of tunnel segments.

5.2 Path Failover Latency
For ARROW to provide significant benefit versus BGP, it is im-

portant that its own paths are not prone to long failover times itself.
We examine the time taken to failover a complete path for each
endpoint-observable failure along that path within our wide-area
ARROW deployment.

The measured topology involves 3 PoPs (UW, Princeton, and
Stanford), as well as 3 ASes: Home, Transit, and Dest. Home meets
Transit at both UW and Princeton, and Transit meets Dest at Stan-
ford. Using the VICCI cluster nodes, we “deploy” three redundant
routers (one active, and two standby) of each AS at each PoP—six
routers total at each PoP and 18 routers in the entire topology.

We then establish an ARROW path from Home via Transit to
Dest. After the connection is established, we intentionally kill the
software on a router node to simulate a failure. To simulate an edge
router failure, we kill the active Transit ingress router at UW. For
a PoP failure, we kill all routers at UW. Finally, for an ISP failure,
we kill all Transit routers at both UW and Princeton.

Figure 7 shows the measured failover times over 5 measurements
for each of the 3 failure cases, as observed from the endpoint, i.e.
after the endpoint detected there is a failure until the connection is
restored. This involves the execution of the entire failover proto-
col, as described in §3.4. Failover times increase with the scope of
the failure. We also observe high failover times when the consis-
tency service is used. While some consistency service is necessary,
we believe that our choice of consistency service (Zookeeper [12])
could be optimized to remove some or all of this cost.

Edge routers exist within the same PoP and failure detection can
be very aggressive. Hence, this is the shortest failover time of only
340ms (30ms without consistency service). If an entire PoP fails,
none of the 3 edge router replicas are reachable and we have to
re-route to another PoP, which can be far away. This is the case
in our deployment (from UW to Princeton) and thus PoP failovers
take slightly longer, roughly 414ms (128ms without consistency
service). Finally, if an entire ISP fails, we have to probe several of
its PoPs until we determine that the ISP is down. The endpoint then
has to failover to a backup ARROW path. This takes on the order
of 1.8 seconds (1 second without consistency service).

Emulab
source UW dest

Original BGP path

BGP outage

ARROW ISP

GATech

USC

 WISC

New BGP path

ARROW path

Figure 8: Setup of the BGP outage experiment. We cause a fail-
ure at UW’s upstream link with GATech. BGP will eventually
failover to a path via USC. ARROW can use an alternative path
via WISC.

We conclude that most failures along an ARROW path can be
addressed in a timespan that is hardly noticeable to most users, es-
pecially when router consistency is optimized. Only whole ISP
failures take longer and might be noticeable at the endpoints. Com-
pared to the time it takes for BGP to converge after such failures,
ARROW still compares favorably in all of the cases.

5.3 End-to-end Recovery After BGP Outage
To examine how quickly end-to-end connectivity can be restored

using an ARROW backup path in the event of a BGP outage, we
conduct an experiment on our wide area deployment where we
forcibly take down a BGP link, similar to an experiment conducted
in RON [3]. The experiment setup is shown in Figure 8, where we
have a multi-homed destination at the UW, by announcing a pre-
fix through TP sites located at GATech and USC simultaneously.
Our source is an Emulab [9] node, and its original path to the UW
destination passes through GATech. We also have an ARROW de-
ployment at WISC that is reachable using a prefix announced only
through WISC. This provides us with a one-hop ARROW path
through WISC to UW. We then establish a regular UDP connec-
tion from the source node to a destination within the UW prefix
and continuously measure its throughput. We conduct this exper-
iment twice, once with a failover using ARROW and once with a
regular BGP failover.

The measured throughput over time is shown for both cases in
Figure 9. 7 seconds into the experiment, we shut down the VPN
tunnel between UW and GATech, resulting in a BGP session fail-
ure and an instantaneous loss of all packets along the path. The
failure eventually causes BGP to withdraw the route through GAT-
ech and converge to the new route through USC (red line). This
outage lasts for nearly 90 seconds until convergence to the new
route takes place. In contrast, the ARROW deployment is able to
detect and recover from the failure within a few hundred millisec-
onds (blue line). The source in this case detects the outage through
a sequence of unacknowledged packets and immediately starts for-
warding packets through the pre-established ARROW path.

We conclude that ARROW allows endpoints to failover an end-
to-end path within a timespan of a typical TCP timeout, which is
hardly noticeable at the endpoint and does not disrupt open connec-
tions, except for a short dip in throughput.

5.4 Simulation Dataset and Methodology
Next, we explore the potential reliability and performance prop-

erties of ARROW deployed at Internet-scale. For this purpose we
examine BGP and ARROW routing on Internet topology. We do

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100 110

R
e
ce

iv
e
d
 T

h
ro

u
g
h
p
u
t
[M

b
its

/s
]

Time [seconds]

ARROW path
BGP path

BGP outage
 at GATECH

Figure 9: Time-series showing throughput for a BGP failover
and a ARROW failover for the experiment in Figure 8. The link
fails at 7 seconds. BGP takes 90 seconds before convergence to
a new path. ARROW failover is on the order of hundreds of
milliseconds.

this using two methodologies: 1. we simulate the effects of BGP
routing decisions (§5.5 and §5.6) and 2. we use actual BGP routing
measurements collected by iPlane2 (§5.7, §5.8, and §5.9).

For the first method, we acquired the simulator used to eval-
uate Consensus Routing [13], which simulates routing decisions,
BGP protocol control traffic, and link failures. We use the Novem-
ber 2013 CAIDA AS-level connectivity graph [1], gathered from
RouteViews BGP tables [2], to simulate on a realistic Internet topol-
ogy. This dataset has a total of 29,730 ASes and 159,049 unique
AS-level links, annotated with the inferred business relationships
of the linked ASes (customer-provider or peer-peer). The simulator
uses standard route selection and advertisement policies of the In-
ternet, such as “valley-free” export and “hot potato” routing. More
detail about the simulator can be found in [13].

The iPlane dataset used in the second method is built using tracer-
outes from over 200 PlanetLab sites to more than 140,000 prefixes
(almost every routable prefix on the Internet). The iPlane dataset
also provides IP-to-AS mapping, IP-to-PoP mapping (where each
PoP is a set of routers from a single AS co-located at a given ge-
ographic location), and the RTTs of inter-PoP links. We use the
most recent iPlane snapshot collected in December 2013. This has
a total of 27,075 ASes and 106,621 unique AS-AS links. At the
PoP-level, it has 183,131 PoPs and 1,540,466 PoP-level links.

5.5 Resilience to Link Failures
We start by evaluating the resilience provided by ARROW in

case of link failures. For this evaluation, we choose only provider
links of multi-homed stub ASes in the topology. A multi-homed
stub AS is an AS with more than one provider and no customers;
our topology includes 20,338 such ASes. We focus on these be-
cause the stub AS has a valid physical route to the rest of the Inter-
net even if a provider link L fails and we argue that this is also the
worst possible case, as the Internet topology features much less re-
dundancy towards its leaves (the stub ASes). Link failures closer to
the core of the Internet would simply affect a much smaller fraction
of ASes for both ARROW and BGP.

We arrive at a total number of 47,652 unique failures (the num-
ber of parent links over all multi-homed stub ASes), affecting an
average of 4,404 AS paths for every multihomed AS. We fail each
link L of each multi-homed stub AS A, successively. For each
failure trial, we fail a link L, and see what fraction of ASes (on

2http://iplane.cs.washington.edu/data/data.
html

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
u
m

u
la

tiv
e
 f
ra

ct
io

n
 o

f
fa

ilu
re

 c
a
se

s

Weighted average length of outage per link failure [seconds]

ARROW
BGP

Figure 10: CDF showing the fraction of link failures resulting
in a certain amount of disconnectivity, weighted by the average
duration of the disconnectivity event.

the whole topology) are temporarily disconnected from the corre-
sponding stub AS A, due to BGP convergence effects. In some
cases, ASes become permanently disconnected, but we ignore these
in our results (note that ARROW might still provide them with a
valid route). We then also determine how long it takes, on average,
for these ASes to become re-connected. For each failed link, we
multiply the fraction of affected ASes by the length of the duration.
This is the result we use for the BGP line in Figure 10.

To plot the ARROW line, we select one random tier-1 AS as our
ARROW-supporting AS and fix it for all simulation runs. Then we
conduct the same failure simulations, but in addition, we check for
each affected AS whether it has a valid path to A via the chosen
ARROW AS. For the failover duration we choose a fixed time of 2
seconds, which is a conservative estimate for ARROW, given the
results in §5.3.

Figure 10 is a CDF plot of the results. The x-axis shows the frac-
tion of disconnectivity in the topology as the result of the failure,
weighted by the duration of the outage. For each such fraction f
on the x-axis we have the corresponding fraction of failures that re-
sulted in at most f disconnectivity on the y-axis. We crop the graph
at 100 seconds. The tail of BGP outages goes on until a maximum
of 418 seconds.

We can see that for 30% of link failures, BGP had an outage
of at least 2 seconds, with a long tail: 12% of outages have a du-
ration of at least a minute and 5% of outages last 100 seconds
and longer. All outages are handled by a single ARROW tier-1
relay node within 2 seconds (and likely much shorter, according
to §5.3). We conclude that a single tunnel is indeed enough to re-
cover from link failure disconnectivities in a time-span significantly
shorter than that of BGP in the worst possible case of a link failure
to a parent of a multi-homed stub AS.

5.6 Resilience to AS Failures
The failure of an entire Autonomous System (AS) is a rare occur-

rence, but we would still like to gauge the effectiveness of ARROW
routing around such catastrophic outages. To do this, we conduct a
similar simulation to the previous one, but this time we simulate a
simultaneous failure of all links of a particular AS. We picked 200
ASes at random from the set of all tier 2 and tier 3 transit ASes.
Figure 11 is a CDF plot of the results. The x and y axes are the
same as in Figure 10, except we crop the x-axis at 200 seconds.

We can see that around 60% of AS failures cause a BGP conver-
gence period of at least 2 seconds. The tail is long again, with more
than 50% of failures resulting in a convergence duration of at least
100 seconds. A single ARROW-supporting tier-1 AS provides in-
stant failover for more than 55% of the failures. If ARROW were

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

C
u
m

u
la

tiv
e
 f
ra

ct
io

n
 o

f
fa

ilu
re

s

Weighted average length of outage per AS failure [seconds]

4 ARROW ASes

1 ARROW AS

BGP

Figure 11: CDF showing the fraction of AS failures resulting
in a certain amount of disconnectivity, weighted by the average
duration of the disconnectivity event.

deployed at 4 tier-1 sites, a single tunnel can provide failover for
more than 70% of the failures. While a large number of failures
can be circumvented this way, the number is not as encouraging as
in Figure 10. This is because the interconnection density of tier-2
and tier-3 ASes is much higher than that of stub ASes and they are
also closer to an ARROW supporting tier-1.

We conclude that ARROW enables us to route around a large
number of transit AS failures. While a great improvement over
BGP, a multi-hop ARROW path might be required to increase the
number of preventable failures even further. We also note that these
results can serve as an indicator of how likely it is that ARROW can
be used to route around a transit AS that is otherwise not delivering
traffic in the way we expect or that we simply do not trust, provided
that it is not malicious. We will address one case of malicious ASes
(prefix hijacking) in §5.8.

5.7 Path Redundancy
It is clear that ARROW can be used to route around single defec-

tive links and misbehaving ISPs. To reduce the risk of encountering
a string of such misbehaviors, we ask if we can build an ARROW
path with (near-)complete AS-level redundancy. We define a path q
to be completely redundant to path p if the AS-hops in q is disjoint
from that of p, except for the source and destination ASes. We are
interested in the number of common hops (disregarding source and
destination) between the original path p and the ARROW path q
with the highest disjointedness. Figure 12 shows this distribution
over all paths in the iPlane dataset (approximately 5 million) for
ARROW deployments on 2 and 4 tier-1 and tier-2 ASes.

In the tier-1 case, almost 40% of the paths for the 2-AS deploy-
ment, and 50% for the 4-AS deployment provide completely dis-
joint paths. Almost 80% of the paths in both cases have less than
half of the ASes from the old path still present in the new ARROW
path. The significant redundancy with a small ARROW deploy-
ment can be explained by the rich peering provided by tier-1 ISPs
and the resulting high redundancy in the core of the Internet. This
is confirmed by comparing with the tier-2 case, where significantly
less redundancy is present.

We conclude that alternative ARROW paths ensure a high de-
gree of redundancy between the old and new paths, making AR-
ROW resilient even in the rare case of multiple cascading link and
AS-level misbehaviors.

5.8 Protection Against Prefix Hijacking
IP prefix hijacking is a serious challenge to the reliability and

security of the Internet. Since the Internet lacks any authoritative
information on the ownership of prefixes, IP prefix hijacking is ex-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
u
m

u
la

tiv
e
 f
ra

ct
io

n
 o

f
p
a
th

s

Fraction of AS hops that are common to both paths

4 ARROW T1 ASes
2 ARROW T1 ASes
4 ARROW T2 ASes
2 ARROW T2 ASes

Figure 12: CDF showing the number of common AS hops as a
fraction of p’s length (x-axis) versus the cumulative fraction of
paths with that amount of commonality (y-axis).

tremely hard to eliminate. ARROW can be used to mitigate the
effects of prefix hijacking. We imagine a scenario where the prefix
hijacking has already been detected. Specifically, given a standard
ARROW deployment on a small number of tier-1s, we ask what
fraction of sources still remain polluted (i.e., paths going through
any of the polluted ASes) for a particular prefix hijacking attack.

To simulate prefix hijacks, we select a victim AS and an attacker
AS, both stubs. We use all stubs in our iPlane topology as victims
and average the results over a random selection of 20 attackers for
each victim. This gives us a total of 16,160 victim ASes. For each
attack, we determine the set of polluted ASes as follows: an AS is
polluted if its BGP path to the attacker is shorter than its path to the
victim [39]. For each attack and a given ARROW deployment we
see what fraction of the sources remain unpolluted, i.e., able to send
traffic to the victim through any of the ARROW path segments.
Figure 13 shows the CCDF of the hijack attacks. The x-axis shows
the fraction of sources remaining polluted as a result of the attack
versus the corresponding fraction of attacks that resulted in at most
p pollution on the y-axis. We compare ARROW deployments of
various sizes with BGP routing.

We observe that all three deployments of ARROW provide sig-
nificant protection against prefix hijacks: For 75% of the attacks,
a single ARROW AS cuts down pollution to 5% or less. Without
ARROW the same scenario results in up to 30% pollution. An
ARROW deployment on only four tier-1s eliminates almost all of
the unreachability caused by prefix hijacks. We conclude that even
a small ARROW deployment provides an effective means to com-
bat prefix hijack attacks.

5.9 Reliable Performance
For redundant ARROW paths to be useful, it is important that

the performance of these paths is not significantly worse than the
original BGP path. We evaluate the performance of paths available
in an ARROW deployment compared to the respective BGP path.
For this purpose we use the PoP-level link latencies provided by
the iPlane dataset. Using the same methodology as in previous
subsections, we ask the question: what is the fraction of sources
that have an alternative ARROW path with an end-to-end latency
that is at most X% that of the original path?

We assume no overhead for ARROW routing in this simula-
tion and solely look at the measured path latencies from the iPlane
dataset. Hence, these results are slightly skewed towards ARROW
and we expect an experimental evaluation on a real deployment
to look slightly less encouraging for ARROW. Figure 14 shows a
CDF of the ratio of the end-to-end latency achieved by an ARROW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
C

D
F

 o
f
p
re

fix
 h

ija
ck

s

Fraction of sources still polluted

4 ARROW ASes

2 ARROW ASes

1 ARROW AS

BGP

Figure 13: CCDF showing the fraction of prefix hijack attacks
resulting in a certain amount of pollution, as measured by the
fraction of sources unable to reach the target as a result of the
attack.

path and the latency of the equivalent BGP path between the same
source and destination PoP for a total of 1,143,652 PoP-level paths.

We observe that in a deployment with 2 and 4 ARROW ASes,
only 24% and 20% of ARROW paths have a latency slightly (up
to 20%) worse than that of their equivalent BGP path, respectively.
With 2 ARROW ASes, more than 76% of the sources actually ex-
perience an improvement in the end-to-end latency while using an
ARROW path. As expected, the gains are even slightly higher for
a deployment of 4 ARROW ASes.

We conclude that ARROW does not degrade the end-to-end la-
tency for the vast majority of paths and, in fact, has the potential
to improve their performance. This can serve as an important fac-
tor for ISPs in attracting traffic from the greater Internet. It also
shows that using ARROW does not have to come at a performance
tradeoff for most users.

6. RELATED WORK
Our goal in this work is to quantify the extent that a simple re-

mote tunneling model such as ARROW can address a range of In-
ternet vulnerabilities, particularly given the recent trend towards a
flatter Internet topology [20] and very high-bandwidth servers.

Fifteen years ago, Detour [3, 29] observed that well-chosen in-
direct paths were often more reliable and higher performance than
direct paths through the Internet, although it stopped short of sug-
gesting this as a universal solution because processing costs would
have been prohibitive at the time. The success of various Detour-
like systems built by companies such as Akamai SureRoute and
others have shown that better Internet reliability is commercially
viable. Likewise the widespread move towards multihomed enter-
prises is proof of the value of improved reliability to end users.

Our work goes beyond earlier studies of Detour and multihoming
to consider the range of attacks, both inadvertent and intentional,
against the Internet. At an architectural level, a key distinction with
Detour is that ARROW routes are composable. A sequence of AR-
ROW circuits through participating providers will deliver packets
at a given rate along the path, barring failure. Detour routes provide
no such guarantee.

Source control over routing is an old idea. Loose source rout-
ing in the Internet is widely but not universally blocked [15] due
to concerns about its possible use in denial-of-service attacks. This
has led to a set of efforts that provide joint control over routes be-
tween the ISPs along the path and the endpoint. The most flexible
of these is Icing [24]. Icing attempts to head off subversion of
routing advertisements by asking every entity along the path to ap-

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

C
u
m

u
la

tiv
e
 f
ra

ct
io

n
 o

f
p
a
th

s

(end-to-end latency on NaaS path)/(end-to-end latency on BGP path)

4 ARROW ASes

2 ARROW ASes

Figure 14: CDF showing the ratio of end-to-end latency of an
ARROW path between a source and destination PoP and the
latency of the equivalent BGP path versus the cumulative frac-
tion of paths with up to that ratio. Two ARROW deployments
are shown.

prove the use of the entire path; no traffic flows unless everyone
agrees. Icing does not, however, attempt to address incremental or
partial adoption. Yang el al. [37] propose a solution that allows
both senders and receivers to choose AS-level routes to the Internet
core, with the end-to-end path the concatenation of the two seg-
ments. Routing as a Service [22] recognized the conflict between
users who want control over end-to-end paths and ISPs who desire
control over how their infrastructure is used. To resolve this con-
flict, the authors introduce a separate entity that contracts with both
ASes and customers and establishes paths that are acceptable to all
entities.

Although ARROW is in many ways a simpler model, our re-
sults should apply to these other models as well. A goal of our
work is to help answer whether a simpler model is sufficient for
addressing known malicious and non-malicious errors, as well as
to point a way towards incremental adoption of one of these more
far-reaching solutions.

We also borrow a number of ideas from other proposals. Dy-
namic resolution of circuit ID’s was introduced by ATM. Our topol-
ogy announcements are similar to those in pathlet routing [10], al-
though we assume users will want to bind traffic PoP to PoP rather
than only ISP to ISP. By handing topology announcements out of
band (that is, not via BGP), we make it easier for ISPs to add infor-
mation such as price and expected performance to various prefixes.
Using indirection as a method for addressing denial of service orig-
inated with the Internet Indirection Infrastructure (i3) [31]; packet
authenticators for governing access to a tunnel was introduced by
SOS and Mayday [4, 18].

Considerable effort has gone into incremental changes to BGP
to address specific vulnerabilities. For example, MIRO [36] is a
multi-path interdomain routing protocol that allows ISPs to nego-
tiate alternate paths as needed. MIRO is designed to be an incre-
mentally deployable extension to BGP. RBGP [19] proposes to use
pre-computed backup paths to provide reliable delivery during peri-
ods where the network is adapting to failures. ARROW has similar
goals, but obtains additional deployability benefits since it doesn’t
require changes to the inter-domain routing protocol. A single ISP
can unilaterally provide ARROW service and obtain revenues di-
rectly from end users who would benefit from the service.

7. CONCLUSION
The Internet is increasingly being used for critical services, such

as home health monitoring, management of the electrical grid, 911

IP service, and disaster response. The current Internet, however, is
unable to meet the availability demands of these emerging and fu-
ture uses. In this paper, we attempt to identify the minimal changes
needed for the Internet to support such mission critical data trans-
missions.

This paper presents a mechanism to enable end users, enter-
prises, and governments to stitch together reliable end to end paths
by leveraging highly reliable intradomain path segments. At the
core is a protocol called Advertised Reliable Routing Over Way-
points, which allows users to provision a path across a remote ISP.
We outlined the design of ARROW, examined how it can be used
to enhance the robustness and security of end-to-end paths, and de-
scribed an implementation of its key components. Our evaluations
show that ARROW imposes only minor overheads to Internet rout-
ing infrastructure and can provide significant resiliency and perfor-
mance benefits even when deployed by only a limited number of
ISPs. Finally, ARROW provides the fabric for additional services
that can be deployed on top of it. To show that this is feasible,
we presented two of our own implementations: a DoS protection
service and a content distribution network.

Acknowledgments
We would like to thank AMS-IX and the universities that gener-
ously host the Transit Portal testbed. This work was funded by
Cisco and NSF Grant CNS-1040663. Qiao Zhang was supported
by a Wilma Bradley Endowed Fellowship.

8. REFERENCES
[1] http://www.caida.org/data/active/

asrelationships/.
[2] http://www.routeviews.org.
[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.

Resilient overlay networks. In SOSP, 2001.
[4] D. G. Andersen. Mayday: Distributed filtering for internet

services. In USENIX Symposium on Internet Technologies
and Systems, 2003.

[5] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,
D. Moon, and S. Shenker. Accountable internet protocol
(aip). In SIGCOMM, 2008.

[6] J. Cowie. The new threat: Targeted internet traffic
misdirection.
http://www.renesys.com/2013/11/mitm-
internet-hijacking/. Retrieved 2014-05-20.

[7] C. Dixon, T. Anderson, and A. Krishnamurthy. Phalanx:
Withstanding multimillion-node botnets. In NSDI, 2008.

[8] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall,
G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
Routebricks: exploiting parallelism to scale software routers.
In SOSP, 2009.

[9] Emulab: A network emulation testbed.
http://www.emulab.net.

[10] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica. Pathlet
routing. In SIGCOMM, 2009.

[11] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a
gpu-accelerated software router. In SIGCOMM, 2010.

[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In USENIX
Annual Technical Conference, 2010.

[13] J. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and
A. Venkataramani. Consensus routing: the Internet as a
distributed system. In NSDI, 2008.

[14] E. Katz-Bassett, H. Madhyastha, J. John, A. Krishnamurthy,
D. Wetherall, and T. Anderson. Studying blackholes in the
Internet with Hubble. In NSDI, 2008.

[15] E. Katz-Bassett, H. V. Madhyastha, V. K. Adhikari, C. Scott,
J. Sherry, P. Van Wesep, T. Anderson, and A. Krishnamurthy.
Reverse traceroute. In NSDI, 2010.

[16] E. Katz-Bassett, C. Scott, D. R. Choffnes, I. Cunha,
V. Valancius, N. Feamster, H. V. Madhyastha, T. Anderson,
and A. Krishnamurthy. LIFEGUARD: practical repair of
persistent route failures. In SIGCOMM, 2012.

[17] S. Kent, C. Lynn, and K. Seo. Secure border gateway
protocol (S-BGP). IEEE Journal on Selected Areas in
Communications, 2000.

[18] A. Keromytis, V. Misra, and D. Rubenstein. SOS: An
architecture for mitigating DDoS attacks. IEEE Journal on
Selected Areas in Communications, 2003.

[19] N. Kushman, S. Kandula, and D. Katabi. R-BGP: Staying
Connected in a Connected World. In NSDI, 2007.

[20] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide,
and F. Jahanian. Internet inter-domain traffic. In SIGCOMM,
2010.

[21] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang.
PHAS: a Prefix Hijack Alert System. In USENIX Security
Symposium, August 2006.

[22] K. Lakshminarayanan, I. Stoica, S. Shenker, and J. Rexford.
Routing as a service. Technical Report UCB/EECS-2006-19,
UC Berkeley, 2006.

[23] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: secure
and adoptable source authentication. In NSDI, 2008.

[24] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller,
and A. Seehra. Verifying and enforcing network paths with
icing. In CoNEXT, 2011.

[25] E. Nordstrom, D. Shue, P. Gopalan, R. Kiefer, M. Arye,
S. Ko, J. Rexford, and M. J. Freedman. Serval: An End-Host
Stack for Service-Centric Networking. In NSDI, 2012.

[26] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and
Y.-C. Hu. Portcullis: protecting connection setup from
denial-of-capability attacks. In SIGCOMM, 2007.

[27] B. Raghavan and A. C. Snoeren. A system for authenticated
policy-compliant routing. In SIGCOMM, 2004.

[28] G. Rétvári, J. Tapolcai, A. Kőrösi, A. Majdán, and
Z. Heszberger. Compressing IP forwarding tables: Towards
entropy bounds and beyond. In SIGCOMM, 2013.

[29] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson.
The end-to-end effects of internet path selection. In
SIGCOMM, 1999.

[30] M. Shand and S. Bryant. IP Fast Reroute Framework. IETF
Draft, 2007.

[31] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet indirection infrastructure. In SIGCOMM, 2002.

[32] P. Trimintzios, C. Hall, R. Clayton, R. Anderson, and
E. Ouzounis. Resilience of the Internet Interconnection
Ecosystem. http://www.enisa.europa.eu/.

[33] V. Valancius, N. Feamster, J. Rexford, and A. Nakao.
Wide-area route control for distributed services. In USENIX
Annual Technical Conference, 2010.

[34] VICCI: A programmable cloud-computing research testbed.
http://www.vicci.org.

[35] S. Waterman. Internet traffic was routed via chinese servers.
http://www.washingtontimes.com/news/
2010/nov/15/internet-traffic-was-routed-
via-chinese-servers/. Retrieved 2014-05-20.

[36] W. Xu and J. Rexford. MIRO: multi-path interdomain
routing. In Proc. of SIGCOMM, 2006.

[37] X. Yang, D. Clark, and A. W. Berger. NIRA: A New
Inter-Domain Routing Architecture. IEEE/ACM
Transactions on Networking, 2007.

[38] X. Yang, D. Wetherall, and T. Anderson. TVA: A
DoS-limiting Network Architecture. IEEE/ACM
Transactions on Networking, 2008.

[39] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush.
iSPY: detecting IP prefix hijacking on my own. IEEE/ACM
Transactions on Networking, 18(6):1815–1828, Dec. 2010.

