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Abstract
Traceroute is the most widely used Internet diagnos-

tic tool today. Network operators use it to help identify
routing failures, poor performance, and router misconfig-
urations. Researchers use it to map the Internet, predict
performance, geolocate routers, and classify the perfor-
mance of ISPs. However, traceroute has a fundamental
limitation that affects all these applications: it does not
provide reverse path information. Although various pub-
lic traceroute servers across the Internet provide some
visibility, no general method exists for determining a re-
verse path from an arbitrary destination.

In this paper, we address this longstanding limitation
by building a reverse traceroute system. Our system pro-
vides the same information as traceroute, but for the re-
verse path, and it works in the same case as traceroute,
when the user may lack control of the destination. We
use a variety of measurement techniques to incrementally
piece together the path from the destination back to the
source. We deploy our system on PlanetLab and compare
reverse traceroute paths with traceroutes issued from the
destinations. In the median case our tool finds 87% of
the hops seen in a directly measured traceroute along the
same path, versus only 38% if one simply assumes the
path is symmetric, a common fallback given the lack of
available tools. We then illustrate how we can use our
reverse traceroute system to study previously unmeasur-
able aspects of the Internet: we present a case study of
how a content provider could use our tool to troubleshoot
poor path performance, we uncover more than a thousand
peer-to-peer AS links invisible to current topology map-
ping efforts, and we measure the latency of individual
backbone links with average error under a millisecond.

1 Introduction
Traceroute is a simple and widely used Internet diagnos-
tic tool. It measures the sequence of routers from the
source to the destination, supplemented by round-trip de-
lays to each hop. Operators use it to investigate routing
failures and performance problems [39]. Researchers use
it as the basis for Internet maps [1, 22, 34], path predic-
tion [22], geolocation [42, 14], ISP performance analy-
sis [25], and anomaly detection [46, 19, 44, 43].

However, traceroute has a fundamental limitation – it

∗Dept. of Computer Science, Univ. of Washington, Seattle.
†Dept. of Computer Science, Univ. of California, San Diego.
‡Dept. of Computer Science, Univ. of Minnesota.

provides no reverse path information, despite the fact that
policy routing and traffic engineering mean that paths
are generally asymmetric [15]. As Richard Steenbergen,
CTO for nLayer Communications, put it at a recent tuto-
rial for network operators on troubleshooting, “the num-
ber one go-to tool is traceroute,” but “asymmetric paths
[are] the number one plague of traceroute” because “the
reverse path itself is completely invisible” [39].

This invisibility hinders operators. For instance, al-
though Google has data centers distributed around the
world, 20% of client prefixes experience unreasonably
high latency, even with a nearby server. In working with
a Google group trying to improve this performance, we
found that we would have been able to more precisely
troubleshoot problems if we could measure the path from
clients back to Google [21].

Similarly, the lack of reverse path information restricts
researchers. Traceroute’s inability to measure reverse
paths forces unrealistic assumptions of symmetry on sys-
tems with goals ranging from path prediction [22], geolo-
cation [42, 14], ISP performance analysis [25], and pre-
fix hijack detection [46]. Recent work shows that mea-
sured topologies miss many of the Internet’s peer-to-peer
links [29, 16] because mapping projects [1, 22, 34] lack
the ability to measure paths from arbitrary destinations.

Faced with this shortcoming with the traceroute
tool, operators and researchers turn to various limited
workarounds. Surprisingly, network operators often re-
sort to posting problems on operator mailing lists ask-
ing others to issue traceroutes to help diagnosis [30, 41].
Public web-accessible traceroute servers hosted at vari-
ous locations around the world provide some help, but
their numbers are limited. Without a server in every net-
work, one cannot know whether any of those available
have a path similar to the one of interest. Further, they
are not intended for the heavy load incurred by regu-
lar monitoring. A few modern systems attempt to de-
ploy traceroute clients on end-user systems around the
world [34, 9], but none of them are close to allowing an
arbitrary user to trigger an on-demand traceroute towards
the user from anywhere in the world.

Our goal is to address this basic restriction of tracer-
oute by building a tool to provide the same basic infor-
mation as traceroute – IP-address-level hops along the
path, plus round-trip delay to each – but along the reverse
path from the destination back to the source. We have
implemented our reverse traceroute system and make
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it available at http://revtr.cs.washington.
edu. While traceroute runs as a stand-alone program
issuing probes on its own behalf, ours is a distributed
system comprised of a few tens to hundreds of vantage
points, owing to the difficulty in measuring reverse paths.
As with traceroute, our reverse traceroute tool does not
require control of the destination, and hence can be used
with arbitrary targets. All our tool requires of the target
destination is an ability to respond to probes, the same re-
quirement as standard traceroute. It does not require new
functionality from routers or other network components.

Our system builds a reverse path incrementally, using
a variety of methods to measure reverse hops, and stitch-
ing them together into a path. We combine the view of
multiple vantage points to gather information unavailable
from any single one. We start by measuring the paths
from the vantage points to the source. This limited atlas
of a few hundred or thousand routes to the source serves
to bootstrap the rest of our measurements, allowing us to
measure the path from an arbitrary destination by build-
ing back the path from the destination until it intersects
the atlas. We use three main measurement techniques
to build backwards. First, we rely on the fact that In-
ternet routing is generally destination-based, allowing us
to piece together the path one hop at a time. Second,
we employ the IP timestamp and record route options to
identify hops along the reverse path. Third, we use lim-
ited source spoofing – spoofing from one vantage point
as another – to use the vantage point in the best position
to make the measurement. This controlled spoofing al-
lows us to overcome many of the limitations inherent in
using IP options [36, 35, 13], while remaining safe, as the
spoofed source address is one of our hosts. Just as many
projects use traceroute, others have used record route and
spoofing for other purposes. Researchers used record
route to identify aliases and generate accurate topolo-
gies [35], and our earlier work used spoofing to char-
acterize reachability problems [19]. In this work, we are
the first to show that the combination of these techniques
can be used to measure arbitrary reverse paths.

Experienced users realize that, while traceroute is use-
ful, it has numerous limitations and caveats, and can be
potentially misleading [39]. Similarly, our tool has limi-
tations and caveats. Section 5.1 includes a thorough dis-
cussion of how the output of our tool might differ from
a direct traceroute from the destination to the source, as
well as how both might differ from the actual path tra-
versed by traffic. Just as traceroute provides little visibil-
ity when routers do not send TTL-expired messages, our
technique relies on routers honoring IP options. When
our measurement techniques fail to discern a hop along
the path, we fall back on assuming the hop is traversed
symmetrically; our evaluation results show that, in the
median (mean) case for paths between PlanetLab sites,

we measure 95% (87%) of hops without assuming sym-
metry. The need to assume symmetry in cases of an unre-
sponsive hop points to a limitation of our tool compared
to traceroute; whereas traceroute can often measure past
an unresponsive hop or towards an unreachable destina-
tion, our tool must sometimes guess that it is measuring
the proper path.

We rely on routers to be “friendly” to our techniques,
yet some of our techniques have the potential for abuse
and can be tricky for novices to use without causing dis-
turbances. As we ultimately want our tool widely used
operationally, we have attempted to pursue our approach
in a way that encourages continued router support. Our
system performs measurements in a way that empha-
sizes network friendliness, controlling probe rate across
all measurements. We presented the work early on at
NANOG [28] and RIPE [32] conferences, and so far the
response from operators has been positive towards sup-
porting our methods (including source spoofing). We be-
lieve the goal of wide use is best served by a single, co-
ordinated system that services requests from all users.

We evaluate the effectiveness of our system as de-
ployed today, though it should improve as we add van-
tage points. We find that, in the median (mean) case
for paths between PlanetLab sites, our technique reveals
87% (83%) of the routers and 100% (94%) of the points-
of-presence (PoPs), compared to a traceroute issued from
the destination. Paths between public traceroute servers
and PlanetLab show similar results. Because our tech-
nique requires software at the source, our evaluation is
limited to paths back to PlanetLab nodes we control. We
believe our reverse traceroute system can be useful in a
range of contexts, and we provide three illustrative exam-
ples. We present a case study of how a content provider
could use our tool to troubleshoot poor reverse path per-
formance. We also uncover thousands of links at core In-
ternet exchange points that are invisible to current topol-
ogy mapping efforts. We use our reverse traceroute tool
to measure link latencies in the Sprint backbone network
with less than a millisecond of error, on average.

2 Background
In this section, we provide the reader some background
on Internet routing and traceroute.
Internet routing: First, a router generally determines
the route on which to forward traffic based only on the
destination. With a few caveats such as load-balancing
and tunneling, the route from a given point towards a par-
ticular destination is consistent for all traffic, regardless
of its source. While certain tunnels may violate this as-
sumption, best practices encourage tunnels that appear as
atomic links. Second, asymmetry between forward and
reverse paths stems from multiple causes. An AS is free
to choose its next hop among the alternatives, whether or

2

http://revtr.cs.washington.edu
http://revtr.cs.washington.edu


not that leads to a symmetric route. Two adjacent ASes
may use different peering points in the two directions due
to policies such as early-exit/hot-potato routing. Even
within an individual AS, traffic engineering objectives
may lead to different paths.
Standard traceroute tool: Traceroute measures the se-
quence of routers from a source to a destination, with-
out requiring control of the destination. When traceroute
was originally developed, most paths were symmetric,
but that assumption no longer holds. Traceroute works
by sending a series of packets to the destination, each
time incrementing the time-to-live (TTL) from an ini-
tial value of one, in order to get ICMP TTL exceeded
responses from each router on the path in turn. Each
response will have an IP address of an interface of the
corresponding router. Additionally, traceroute measures
the time from the sending of each packet to the receipt of
the response, yielding a round-trip latency to each inter-
mediate router. Because the destination resets the TTL in
its reply, traceroute only works in the forward direction.

The path returned by traceroute is a feasible, but pos-
sibly inaccurate route. First, each hop comes from a
response to a different probe packet, and the differ-
ent probes may take different paths for reasons includ-
ing contemporaneous routing changes or load balancing.
The Paris traceroute customizes probe packets to pro-
vide consistent results across flow-based load balancers,
as well as to systematically explore the load-balancing
options [2]. For all our traceroutes, we use the Paris op-
tion that measures a single consistent path. Second, some
routers on the path may not respond. For example, some
routers may be configured to rate-limit responses or to
not respond at all. Third, probe traffic may be treated
differently than data traffic.

Despite these caveats, traceroute has proved to be ex-
tremely useful. Essential to traceroute’s utility is its uni-
versality, in that it does not require anything of the desti-
nation other than an ability to respond to probe packets.

3 Reverse Traceroute
We seek to build a reverse path tool equivalent to tracer-
oute. Like traceroute, ours should work universally with-
out requiring control of a destination, and it should use
only features available in the Internet as it exists today.
The reverse traceroute tool should return IP addresses of
routers along the reverse path from a destination back
to the source, as well as the round-trip delay from those
routers to the source.

At a high level, the source requests a path from our
system, which coordinates probes from the source and
from a set of distributed vantage points to discover
the path. First, distributed vantage points issue tracer-
outes to the source, yielding an atlas of paths towards
it (Fig. 1(a)). This atlas provides a rich, but limited in

scope, view of how parts of the Internet route towards
the source. We use this limited view to bootstrap mea-
surement of the desired path. Because Internet routing is
generally destination-based, we assume that the path to
the source from any hop in the atlas is fixed (over short
time periods) regardless of how any particular packet
reaches that hop; once the path from the destination to
the source reaches a hop in the atlas, we use the atlas
to derive the remainder of the path. Second, using tech-
niques we explain in Sections 3.1 and 3.2, we measure
the path back from the destination incrementally until it
intersects this atlas (Fig. 1(b)). Finally, as shown in an
example in Section 3.3, we merge the two components
of the path, the destination-specific part measured from
the destination until it intersects the atlas, and the atlas-
derived path from this intersection back to the source, to
yield a complete path (Fig. 1(c)).

3.1 Identify Reverse Hops with IP Options

We use two basic measurement primitives, the Record
Route and Timestamp IP options. While TTL values are
reset by the destination, restricting traceroute to measur-
ing only on the forward path, IP options are generally re-
flected in the reply from a destination, so routers along
both the forward and reverse path process them. We
briefly explain how the options work:
IP Record-route option (RR): With this option set, a
probe records the router interfaces it encounters. The IP
standard limits the number of recorded interfaces to 9;
once those fill, no more interfaces are recorded.
IP timestamp option (TS): IP allows probes to query a
set of specific routers for timestamps. Each probe can
specify up to four IP addresses, in order; if the probe
traverses the router matching the next IP address that has
yet to be stamped, the router records a timestamp. The
addresses are ordered, so a router will not timestamp if
its IP address is in the list but is not the next one.

We use these options to gather reverse hops as fol-
lows:

• RR-Ping(S → D): As shown in Figure 2(a)), the
source S issues an ICMP Echo Request (henceforth
ping) probe to D with the RR option enabled. If RR
slots remain when the destination sends its response,
then routers on the reverse path will record some of
that route. This allows a limited measurement of the
reverse path, as long as the destination is fewer than
9 hops from the source.

• TS-Query-Ping(S → D|D,R): As shown in Fig-
ure 2(b)), the source S issues an ICMP ping probe
to D with the timestamp query enabled for the or-
dered pair of IP addresses D and R. R will record
its timestamp only if it is encountered by the probe
after D has stamped the packet. In other words, if S
receives a timestamp for R, then it knows R appears
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(a) Vantage points traceroute to S, creating
an atlas of known paths.
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(b) Vantage points measure path from D un-
til it intersects a path in the atlas.
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(c) Combine to yield complete path.

Figure 1: High-level overview of the reverse traceroute technique. We explain how to measure from D back to the atlas in § 3.1- 3.2.

S

D

To: D
Fr: S
Record route:
_ _ _ _ _ _ _ _ _

1

To: S
Fr: D
Record route:
h1 h2 ... h7 D _

2

R

To: S
Fr: D
Record route:
h1 h2 ... h7 D R

3

(a) S sends a record-route ping. The header
includes slots for 9 IP addresses to be
recorded (1). If the packet reaches D with
slots remaining, D adds itself (2), and routers
on the reverse path fill the remaining slots (3).

S

D

To: D  
Fr: S
Timestamp: 
Is D on path?
Is R on path?

1

R

To: S
Fr: D
Timestamp:
D is on path!
Is R on path?

2

To: S
Fr: D
Timestamp:
D is on path!
R is on path!

3

(b) S sends a timestamp ping, asking first for
D to provide a stamp if encountered, then for
R to provide one (1). If D supports the times-
tamp option, it fills out a timestamp (2). Be-
cause the timestamp requests are ordered, R
only fills out a timestamp if encountered after
D, necessarily on the reverse path (3).

S

D

To: D
Fr: S (spoofed)
Record route:
_ _ _ _ _ _ _ _ _

1

To: S
Fr: D
Record route:
h1 h2 ... h7 D _

2

R

To: S
Fr: D
Record route:
h1 h2 ... h7 D R

3

V

(c) Vantage point V sends a record-route
ping to D, spoofing as S (1). D replies to
S (2), allowing S to discover that R is on the
reverse path (3). We use this technique when
S is out of record-route range of D, but V is
close enough.

Figure 2: Three measurement techniques that allow us to establish that R is on the reverse path from D back to S. In §4, we give
two techniques, akin to (c), that use spoofing to overcome limitations in timestamp support.

on the reverse path. For our purposes, the value of
the timestamp is meaningless; we just care whether
or not a particular router processes the packet. Thus,
if we guess a router on the return path, the TS option
can confirm our hypothesis.
We use existing network topology information –
specifically IP-level connectivity of routers from In-
ternet mapping efforts [22] – to determine candidate
sets of routers for the reverse path. Routers adja-
cent to D in the topology are potential next hops; we
use timestamp query probes to check whether any of
these potential next hops is on the path from D to S.

Note that there are some caveats to using the probes
outlined above. One is that from each vantage point,
only a fraction of routers will be reachable within record
route’s limit of 9 hops. Another is that some ISPs fil-
ter and drop probes with IP options set. Further, some
routers do not process the IP options in the prescribed

manner. Fortunately, we can overcome these limitations
in the common case by carefully orchestrating the mea-
surements from a diverse set of vantage points.

3.2 Spoof to Best Use Record Route

A source-spoofed probe (henceforth referred to as a
spoofed probe) is one in which the prober sets the source
address in the packet to one other than its own. We use
a limited form of spoofing, where we replace the source
address in a probe with the “true” source of the reverse
traceroute. This form of spoofing is an extremely power-
ful measurement tool. When V probes D spoofing as S,
D’s response will go to S; we refer to V as the spoofer
and S as the receiver. This method allows the probe to
traverse the path from D to S without having to traverse
the path from S to D and without having a vantage point
in D’s prefix. We could hypothetically achieve a simi-
lar probe trajectory using loose source routing (from V
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to S, but source routed through D) [31]. However, a
source-routed packet can be identified and filtered any-
where along the path, and such packets are widely fil-
tered [3], too often to be useful in our application. On the
other hand, if a spoofed packet is not ingress filtered near
the spoofer, it thereafter appears as a normal packet; we
can use a source capable of spoofing to probe along any
path. Based on our measurements to all routable prefixes,
many routers that filter packets with the source route op-
tion do not filter packets with the timestamp or record
route options. This difference is likely because source
routing can be used to violate routing policy, whereas
the timestamp and record route options cannot.

This arrangement allows us to use the most advanta-
geous vantage point with respect to the particular mea-
surement we want to perform. Our earlier system Hub-
ble used limited spoofing to check one-way reachabil-
ity [19]; we use it here to overcome limitations of IP
options. Without spoofing, RR’s 9 IP address limit re-
stricts it to being useful only when S is near the target.
However, as shown in Figure 2(c),if some vantage point
V is close enough to reach the target within 8 RR slots,
then we can probe from V spoofing as S to receive IP
addresses on the path back to S. Similarly, spoofing can
bypass problematic ASes and machines, such as those
that filter timestamp-enabled packets or those that do not
correctly implement the option.

Although spoofing is often associated with malicious
intent, we use it in a very controlled, safe fashion. A
node requests a reverse path measurement, then receives
responses to probes sent by vantage points spoofing as it.
No harm can come from causing one of our own nodes
to receive measurement packets. This form of spoofing
shares a purpose with the address rewriting done by mid-
dleboxes such as NATs, controlling the flow of traffic to a
cooperative machine, rather than with malicious spoofing
which seeks concealment. Since some ISPs filter spoofed
packets, we test from each host and only send further
spoofed probes where allowed. We have been issuing
spoofed probes for over two years without complaint.

Roughly 20% of PlanetLab sites allow spoofing; this
ability is not limited to PlanetLab: the Spoofer project
tested 12,000 clients and found that 31% could send
spoof packets [5]. Even if filtering increases, we believe,
based on positive feedback from operators, that the value
of our service will encourage an allowance (supported by
router ACLs) for a small number of measurement nodes
to issue spoofed probes using a restricted set of ports. An
even simpler approach is to have routers rate limit these
spoofed options packets (just as with UDP probes) and
filter spoofed probes sent to broadcast addresses, thereby
reducing the security concerns without diminishing their
utility for network measurements.

3.3 Incrementally Build Paths

IP option-enabled probes, coupled with spoofing as S
from another vantage point, give us the ability to measure
a reverse hop from D on the path back to S. We can use
the same techniques to stitch together a path incremen-
tally – once we know the path from D goes through R,
we need only determine the route at R towards S when
attempting to discover the next hop. Because Internet
routing is generally based on the destination, each inter-
mediate router R we find on the path can become the new
destination for a reverse traceroute back to the source.
Further, if R is on a path from some vantage point V
to S, then we can infer the rest of D’s return path from
R onward as being the same as V ’s. This assumption
holds even in cases of packet-, flow-, and destination-
based load balancing, so long as R balances traffic inde-
pendently of other routers and of the source.

Figure 3 illustrates how we can compose the above set
of techniques to determine the reverse path from D to S,
when we have control over S and a set of other vantage
points (V1, V2, V3). We assume that we have a partial
map of router-level connectivity, e.g., from a traditional
offline mapping effort.

We begin by having the vantage points issue tracer-
oute probes to S (Figures 1(a) and 3(a)). These serve as
a baseline set of observed routes towards S that can be
used to complete a partially inferred reverse path. We
then issue RR-Ping(S → D) to determine if the source
S is within 8 RR hops of the destination, i.e., whether
a ping probe from S can reach D without filling up its
entire quota of 9 RR hops (Figure 3(b))1. If the source
is within 8 RR hops of D, this probe would determine at
least the first hop on the reverse path, with further hops
recovered in an iterative manner.

If the source is not within 8 hops, we determine
whether some vantage point is within 8 RR hops of D
(Section 4.5 describes how we do this). Let V3 be one
such vantage point. We then issue a spoofed RR ping
probe from V3 to D with the source address set to S (Fig-
ure 3(c)). This probe traverses the path V3 → D → S
and records IP addresses encountered. The probe reveals
R1 to be on the reverse path from D to S. We then iter-
ate over this process, with the newly found reverse hop
as the target of our probes. For instance, we next de-
termine a vantage point that is within 8 RR hops of R1,
which could be a different vantage point V2. We use this
new vantage point to issue a spoofed RR ping probe to
determine the next hop on the reverse path (Figure 3(d)).

1This is not quite as simple as sending a TTL=8 limited probe, be-
cause of issues with record route implementations [35]. Some routers
on the forward path might not record their addresses, thereby freeing up
more slots for the reverse path, while some other routers might record
multiple addresses or might record their address but not decrement or
respond to TTL-limited probes.
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D
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(a) Vantage points traceroute to S, creating
an atlas of known paths.
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V1

D

V3
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To: D
Fr: S
Record route:
_ _ _ ... _ _ _

1
To: D
Fr: S
Record route:
h1 h2 ... h8 h9

2

(b) S sends an RR-Ping to D (1), but all the
RR slots fill along the forward path (2), so S
does not learn any reverse hops in the reply.

SS

V1

D

V3

V2

To: D
Fr: S
Record route:
_ _ _ ... _ _ _

1

To: S
Fr: D
Record route:
h1 ... h7 D _

2

To: S
Fr: D
Record route:
h1 ... h7 D R1 

3

(c) A vantage point V 3 that is closer to D
sends an RR-Ping spoofing as S (1). D
records its address (2), and the remaining slot
fills on the reverse path, revealing R1 (3).

SS

V1

R1 D

V3

V2

To: R1
Fr: S
Record route:
_ _ _ ... _ _ _

1

To: S
Fr: R1
Record route:
h1 ... h6 R1 R2 R3

2

(d) A vantage point V 2 close to R1 sends an
RR-Ping spoofing as S (1), discovering R2
and R3 on the reverse path (2).

S

V1

R1
R2

R3

R5

R4
D

V3

V2

To: R3
Fr: S
Timestamp: 
Is R3 on path?
Is R4 on path?

1

To: S
Fr: R3
Timestamp: 
R3 is on path!
Is R4 on path?

2
To: S
Fr: R3
Timestamp: 
R3 is on path!
R4 is on path!

3

(e) We use an Internet map to find routers
adjacent to R3, then send each a TS-Query-
Ping to verify which is on the reverse path.

SS

V1

R1
R2

R3

R4
D

V3

V2

(f) When we intersect a known path in our
traceroute atlas, we assume the rest of the
path from D follows that route.

Figure 3: Illustration of the incremental construction of a reverse path using diverse information sources.

In some cases, a single RR ping probe may determine
multiple hops, as in the illustration with R2 and R3.

Now, consider the case where neither S nor any of
the vantage points is within 8 hops of R3. In that case,
we consider the potential next hops to be routers adja-
cent to R3 in the known topology. We issue timestamp
probes to verify whether the next hop candidates R4 and
R5 respond to timestamp queries TS-Query-Ping(S →
D|D,R4) and TS-Query-Ping(S → D|D,R5) (as
shown in Figure 3(e)). When R4 responds, we know that
it is adjacent to R3 in the network topology and is on the
reverse path from R3, and so we assume it is the next hop
on the reverse path. We continue to perform incremen-
tal reverse hop discovery until we intersect with a known
path from a vantage point to S 2, at which point we con-
sider that to be the rest of the reverse path (Figures 1(c)
and 3(f)). Once the procedure has determined the hops in
the reverse path, we issue pings from the source to each
hop in order to determine the round-trip latencies.

Sometimes, we may be unable to measure a reverse
hop using any of our techniques, but we still want to
provide the user with useful information. When reverse

2Measurement techniques may discover different addresses on a
router [36], so we determine intersections using alias data from topol-
ogy mapping projects [20, 22, 35] and a state-of-the-art technique [4].

traceroute is unable to calculate the next hop in a path,
the source issues a standard traceroute to the last known
hop on the path. We then assume the last link is traversed
symmetrically, and we try to calculate the rest of the re-
verse path from there. In Section 5.1 and Section 5.2,
we present results that show that we usually do not have
to assume many symmetric hops and that, even with this
approximation, we still achieve highly accurate paths.

4 System Implementation

Section 3 describes how our techniques in theory would
allow us to measure a reverse path. In this section, we
discuss how we had to vary from that ideal description
in response to realities of available vantage points and of
router implementations. In addition, the following goals
drive our system design:

• Accuracy: It should be robust to variations in how
options-enabled packets are handled by routers.

• Coverage: The system should work for arbitrary des-
tinations irrespective of ISP-specific configurations.

• Scalability: It needs to be selective with the use of
vantage points and introduce as little measurement
traffic as possible.
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To: D  Fr: S
Timestamp: 
Is D on path?
Is R on path?
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To: S  Fr: D
Timestamp: 
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(a) S sends a timestamp ping to D (1) and
receives a reply, but D has not filled out a
timestamp (2).

S

D

To: V  Fr: D
Timestamp: 
Is R on path?

4 To: D  Fr: V
Timestamp: 
Is R on path?

3

V

(b) We find a V s.t., when V pings D asking
for R’s timestamp (3), it does not receive a
stamp (4). This response indicates that R is
not on V ’s path to D.

S

D

To: D  Fr: S
Timestamp: 
Is R on path?

5

V

To: S  Fr: D
Timestamp: 
R is on path

6

(c) V spoofs as S, pinging D (5), and S re-
ceives a timestamp for R (6). Because we
established that R is not on V ’s path to D, R
must be on the reverse path from D to S.

Figure 4: Example of how we discover a reverse hop with timestamp even though D does not stamp, as long as it replies.

4.1 Architecture

Our system consists of vantage points (VPs), which is-
sue measurements, a controller, which coordinates the
VPs to measure reverse paths, and sources, which re-
quest paths to them. We use a local machine at UW
as a controller. When a VP starts up, it registers with
the controller, which can then send it probe requests. A
source runs our software to issue standard traceroutes,
RR-Pings, and TS-Query-Pings, and to receive responses
to probes from VPs spoofing as the source. However,
it need not spoof packets itself. Currently, our source
software only runs on Linux and (like the ICMP tracer-
oute option traceroute -I) requires root permis-
sion. The controller receives requests from sources and
combines the measurements from VPs to report reverse
path information. While measuring a reverse traceroute,
the controller queues up all incoming requests. When the
ongoing measurement completes, the controller serves
all requests in the queue as a batch, in synchronized
rounds of probes. This design lets us carefully control
the rate at which we probe any particular router, as well
as to reuse measurements when a particular source re-
quests multiple destinations.

We use topology maps from iPlane [22]3 to identify
adjacent routers to test with TS-Query-Pings (Fig. 3(e)).
To increase the set of possible next-hop routers, we con-
sider the topology to be the union of maps from the pre-
vious 2 weeks. Since we verify the reverse hops using
option-enabled pings, stale topology information makes
our system less efficient but does not introduce error.

4.2 Current Deployment

Our current deployment uses one host at each of the more
than 200 active PlanetLab sites as VPs to build an atlas
of traceroutes to a source (Fig. 3(a)). Over the course of
our study, 60+ PlanetLab sites allowed spoofed probes
at least some of the time. We employ one host at each

3iPlane issues forward traceroutes from PlanetLab sites and tracer-
oute servers to around 140K prefixes.

of these sites as spoofing nodes. Routers upstream from
the other PlanetLab sites filter spoofed probes, so we
did not spoof from them. We also use one host at each
of 14 Measurement Lab sites [26], most of which al-
low spoofing. Various organizations provide public web-
accessible traceroute servers, and we employ 1200 of
them [3]. These nodes issue only traceroutes and cannot
set IP options, spoof, or receive spoofed probes. We use
them to expand the sets of known paths to our sources.

We have currently tested our client software only
on PlanetLab (Linux) machines. We make it avail-
able as a demo; our website http://revtr.cs.
washington.edu allows users to enter an IP address
and measure the reverse path back from it to a PlanetLab
node. Packaging the code for widespread deployment is
future work. Because we have dozens of operators ask-
ing to use the system, we are being patient to avoid a
launch that does not perform up to expectations.

4.3 Correcting for Variations in IP Options Support

We next explain how we compensate for variations in
support for the timestamp option. When checking if R
is on the reverse path from D, we normally ask for both
D’s and R’s timestamp, to force R to only stamp on the
reverse path. However, we found that, of the addresses in
a day’s iPlane atlas that respond to ping, 16.6% of the ad-
dresses respond to timestamp-enabled pings, but do not
stamp, so we cannot use that technique to know that R
stamped on the reverse path. Figure 4 illustrates how
we use spoofing to address this behavior. Essentially, we
find a VP V which we can establish does not have R on
its path to D, then V pings D spoofing as S, asking for
R’s timestamp (but not D’s). If S receives a stamp for
R, it proves R is on the reverse path from D. This tech-
nique will not work if all vantage points have R on their
paths. We examined iPlane traceroutes to destinations in
140,000 prefixes and found at least two adjacent hops for
55% of destinations.
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To: D  Fr: S
Timestamp:
Is D on path? 
Is R on path?
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To: D  Fr: S
Timestamp: 
Is D on path?
Is R on path?
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V
Figure 5: If a timestamp probe from S encounters a filter (1),
we can often bypass it by spoofing as S from a different vantage
point (2), as long as the filter is just on the forward path.

4.4 Avoiding Probe Filters to Improve Coverage

We next discuss techniques to improve the coverage of
our measurements. Some networks may filter ICMP
packets, and others filter packets with options enabled.
In the course of measuring a reverse path, if a source at-
tempts a TS or RR measurement and does not receive a
response, we retry the measurement with a VP spoofing
as the source. As seen in Figure 5, if filtering occurs only
along the source’s forward path, and the VP’s forward
path does not have a filter, the original source should re-
ceive the response.

We demonstrate the effectiveness of this approach on
a small sample of 1000 IP addresses selected at random
out of those in the iPlane topology known to respond
to timestamp probes. The 1000 destinations include ad-
dresses in 662 ASes. We chose 10 spoofing PlanetLab
vantage points we found to receive (non-spoofed) times-
tamp responses from the highest number of destinations,
plus one host at each of the 209 working non-spoofing
PlanetLab site. First, each non-spoofing node sent a se-
ries of timestamp pings to each destination; redundant
probes account for loss due to something other than per-
manent filters. Of the 209 hosts, 103 received responses
from at least 700 destinations; we dropped them from
the experiment, as they do not experience significant
filtering. Then, each spoofing vantage point sent 106
timestamp pings to each destination, spoofing as each
of the remaining PlanetLab hosts in turn. Of these, 63
failed to receive any responses to either spoofed or non-
spoofed probes; they are completely stuck behind filters
or were not working. For the remaining 43 hosts, Fig-
ure 6 shows how many destinations each host receives
responses from, both without and with spoofing. Our re-
sults show that some sites benefit significantly. In re-
verse traceroute’s timestamp measurements, whenever
the source does not receive a response, we retry with
5 spoofers. Since some vantage points have filter-free
paths to most destinations, we use the 5 best overall,
rather than choosing per destination. For the nodes that
experience widespread filtering, spoofing enables a sig-
nificant portion to still use timestamps as part of reverse
traceroute. As we show in Section 5.2, our timestamp
techniques help the overall coverage of the tool.
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Figure 6: For 43 PlanetLab nodes, the number of destina-
tions (out of 1000) from which the node receives timestamp
responses. The graph shows the total number of unique desti-
nations when sending the ping directly and then when also us-
ing 10 spoofers. The nodes are ordered by the total number of
responding destinations. Other PlanetLab sites were tested but
are not included in the graph: 103 did not experience significant
filtering and 63 did not receive responses even with spoofing.

4.5 Selective Use of Vantage Points for Scalability

With spoofed RR, only nearby spoofers can find reverse
hops, since each packet includes only 9 slots. Because
many routers rate limit after only a few probes, we can-
not send from many vantage points at once, in the hopes
that one will prove close enough – the router might drop
the probes from the VPs within range. Our goal is to de-
termine which VPs are likely to be near a router before
we probe it. Because Internet routing is generally based
on the destination’s prefix, a VP close to one address in
a prefix is likely close to other addresses in the prefix.

Each day, we harvest the set of router IP addresses
seen in the Internet atlas gathered by iPlane on the pre-
vious day and supplement the set with a recent list of
pingable addresses [17]. Each day, every VP issues a
record route ping to every address in the set. For each ad-
dress, we determine the set of VPs that were near enough
to discover reverse hops. We use this information in two
ways during a reverse traceroute. First, if we encounter
one of the probed addresses, we know the nearest VP to
use. Second, if we encounter a new address, the offline
probes provide a hint: the group of VPs within range of
some address in the same prefix. Selecting the minimal
number of vantage points to use from this group is an in-
stance of the well known set cover optimization problem.
We use the standard greedy algorithm to decide which
VPs to use for a prefix, ordered by the number of addi-
tional addresses they cover within the prefix.

For a representative day, Figure 7 shows the coverage
we achieve at given numbers of VPs per prefix. Our sys-
tem determines the covering VPs for all prefixes, but the
graph only includes prefixes for which we probed at least
15 addresses, as it is trivial to cover small prefixes. We
see that, for most prefixes, we only need a small number
of VPs. For example, in the median case, a single VP
suffices for over 95% of addresses in the prefix, and we
rarely need more than 4 VPs to cover the entire prefix.

8



Figure 7: For prefixes in which iPlane observed ≥ 15 ad-
dresses, the fraction of the addresses for which we can find
reverse hops using RR probes from a given number of vantage
points per prefix. Note that we only include addresses within
range of at least one vantage point. Prefixes with few addresses
are trivial to cover using a small number of vantage points, so
the graph excludes them to clearly show that we still only need
a small number for most prefixes.

5 Evaluation
To test how well our reverse traceroute system can deter-
mine reverse paths, we consider evaluation settings that
allow us to compare a reverse traceroute from D to S to
a direct traceroute from D to S. A complete evaluation
of the accuracy of our technique would require ground
truth information about the path back from the destina-
tion. Obviously, we lack ground truth for the Internet, but
we use two datasets, one PlanetLab-based and one using
public traceroute servers, in which we can compare to a
traceroute from D. For the reverse traceroute, we assume
we do not control D and must measure the path using the
techniques described in this paper. For the direct tracer-
oute, we do control D and can simply issue a standard
traceroute from D to S.

In the PlanetLab set, we employ as sources a host at
each of 11 PlanetLab sites chosen at random from the
spoofing nodes. As destinations, we use one host at each
of the 200 non-spoofing PlanetLab sites that were work-
ing. Although such a set is not representative of the en-
tire Internet, the destinations includes hosts in 35 coun-
tries. The measured reverse paths traversed 13 of the 14
transit-free commercial ISPs. Previous work observed
route load balancing in many such networks [2], provid-
ing a good test for our techniques.

In the traceroute server set, we employ as sources a
host at 10 of the same PlanetLab sites (one had gone
down in the meantime). The 1200 traceroute servers
we utilize belong to 186 different networks (many of
which offer multiple traceroute servers with different lo-
cations). For each source, we choose a traceroute server
at random from each of the 186 networks. We then is-
sue a traceroute from the server to the PlanetLab source.
Because in many cases we do not know the IP address
of the traceroute server, we use the first hop along its
path as the destination in our reverse traceroute measure-

ments. When measuring a reverse traceroute from this
destination back to the source, we exclude from our sys-
tem all traceroute servers in the same network, to avoid
providing our system with such similar paths as to make
its task trivial.

5.1 Accuracy

How similar are the hops on a reverse traceroute to
a direct traceroute from the destination back to the
source? For the PlanetLab dataset, the RevTR line in
Figure 8 depicts the fraction of hops seen on the direct
traceroute that are also seen by reverse traceroute. Fig-
ure 9 shows the same for the traceroute server dataset.
Note that, outside of this experimental setting, we would
not normally have access to the direct traceroute from
the destination. Using alias data from topology map-
ping projects [20, 22, 35] and aliases we discover us-
ing a state-of-the-art technique [4], we consider a tracer-
oute hop and a reverse traceroute hop to be the same
if they are aliases for the same router. We need to use
alias information because the techniques may find dif-
ferent IP addresses on the same router [36]. For ex-
ample, traceroute generally finds the ingress interface,
whereas record route often returns the egress or loopback
address. However, alias resolution is an active and chal-
lenging research area, and faulty aliases in the data we
employ could lead us to falsely label two hops as equiva-
lent. Conversely, missing aliases could cause us to label
as different two interfaces on the same router. Because
the alias sets we use are based on measurements from
PlanetLab or similar vantage points, we likely have more
complete alias data for our PlanetLab dataset than for our
traceroute server dataset.

Using the available alias data, we find that the paths
measured by our technique are quite similar to those seen
by traceroute. In the median (mean) case, we measure
87% (83%) of the hops in the traceroute for the Planet-
Lab dataset. For the traceroute server dataset, we mea-
sure 75% (74%) of the hops in the direct traceroute, but
28% (29%) of the the hops discovered by reverse tracer-
oute do not appear in the corresponding traceroute.

The figures also compare reverse traceroute to other
potential ways of estimating the reverse path. All tech-
niques used the same alias resolution. Researchers of-
ten (sometimes implicitly) assume symmetry, and opera-
tors likewise rely on forward path measurements when
they need reverse ones. The Guess Fwd lines depict
how many of the hops seen in a traceroute from R to
S are also seen in a traceroute from S to R. In the me-
dian (mean) case, the forward path shares 38% (39%)
of the reverse path’s hops for the PlanetLab dataset and
40% (43%) for the traceroute server dataset. Another
approach would be to measure traceroutes from a set of
vantage points to the source. Using iPlane’s PlanetLab
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Figure 8: For reverse traceroute and techniques for approximat-
ing the reverse path, the fraction of hops on a direct traceroute
from the destination to the source that the technique also dis-
covers. Uses our PlanetLab dataset (reverse paths from 200
PlanetLab destinations back to 11 PlanetLab sources). [Key
labels are in the same top-to-bottom order as the lines.]

and traceroute server measurements, the Intersect TR line
in Figure 8 shows how well this approach works, by as-
suming the reverse path is the same as the forward path
until it intersects one of the traceroutes 4. No system to-
day performs this type of path intersection on-demand
for users. In the median (mean) case, this traceroute in-
tersection shares 69% (67%) of the actual traceroute’s
hops. This result suggests that simply having a few hun-
dred or thousand traceroute vantage points is not enough
to reliably infer reverse paths; our system uses our novel
measurement techniques to build off these traceroutes
and achieve much better results.

What are the causes of differences between a reverse
traceroute and a directly measured traceroute? Al-
though it is common to think of the path given by tracer-
oute as the true path, in reality it is also subject to mea-
surement error. In this section, we discuss reasons tracer-
oute and reverse traceroute may differ from each other
and/or from the true path taken.
Assumptions of symmetry: When reverse traceroute is
unable to identify the next reverse hop, we resort to
assuming that hop is symmetric. These assumptions
may lead to inaccuracies. For the PlanetLab dataset, if
we consider only cases when we measure a complete
path without assuming symmetry, in the median (mean)
case reverse traceroute matches 93% (90%) of the tracer-
oute alias-level hops. Similarly, for the traceroute server
dataset, in the median (mean) case reverse traceroute
finds 83% (81%) of the traceroute hops. We discuss how
often we have to assume symmetry in Section 5.2.
Incomplete alias information: Many of the differences
between the paths found by reverse traceroute and tracer-
oute are due to missing alias information. Most alias-pair
identification relies on sending probes to the two IP ad-
dresses and comparing the IP-IDs of the responses. For
the PlanetLab dataset, of all the missing addresses seen

4We omit the line from Figure 9 to avoid clutter.

Revtr PoP-level

Guess Fwd PoP

Figure 9: For reverse traceroute and techniques for approxi-
mating the reverse path, the fraction of hops on a direct tracer-
oute from the destination to the source that the technique also
discovers. Our traceroute server dataset includes reverse paths
from servers in 186 networks back to 10 PlanetLab sources.
[Key labels are in the same top-to-bottom order as the lines.]

in a traceroute that are not aliases of any hop in the cor-
responding reverse traceroute, 88% do not allow for such
alias resolution [4]. Similarly, of all extra addresses seen
in some reverse traceroute that are not aliases of any hop
in the corresponding reverse traceroute, 82% do not al-
low for alias resolution. For the traceroute server dataset,
75% of the missing addresses and 74% of the extra ones
do not allow it. Even for addresses that do respond to
alias techniques, our alias sets are likely incomplete.

In these cases, it is possible or even likely that the two
measurement techniques observe IP addresses that ap-
pear different but are in fact aliases of the same router.
To partially examine how this lack of alias information
limits our comparison, we use iPlane’s Point-of-Presence
(PoP) clustering, which maps IP addresses to PoPs de-
fined by (AS,city) pairs [22]. For many applications such
as diagnosis of inflated latencies [21], PoP level gran-
ularity suffices. iPlane has PoP mappings for 71% of
the missing addresses in the PlanetLab dataset and 77%
of the extra ones. For the traceroute server dataset, for
which we have less alias information, it has mappings
for 79% of the missing addresses and 86% of the extra
ones. Figures 8 and 9 include PoP-Level lines showing
the fraction of traceroute hops seen by reverse traceroute,
if we consider PoP rather than router-alias-level compar-
ison. In the median case, the reverse traceroute includes
all the traceroute PoPs in both graphs (mean=94%, 84%).
If reverse traceroute were measuring a different path than
traceroute, then one would expect PoP-level comparisons
to differ about as much as alias-level ones. The implica-
tion of the measured PoP-level similarity is that, when
traceroute and reverse traceroute differ, they usually dif-
fer only in which router or interface in a PoP the path
traverses. As a point of comparison, Figure 9 includes a
PoP-level version of the Guess Fwd line; in the median
(mean) case, it includes only 60% (61%) of the PoPs; the
paths are quite asymmetric even at the PoP granularity.
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Load-balancing and contemporaneous path changes:
Another measurement artifact is that traceroute and re-
verse traceroute may uncover different, but equally valid,
paths, either due to following different load-balanced op-
tions or due to route changes during measurement. To
partly capture these effects, the Next Day lines in Fig-
ure 8 and 9 compare how many of the traceroutes’ hops
are also on traceroutes issued the following day. For
the PlanetLab dataset, 26% of the paths exhibit some
router-level variation from day to day. For the tracer-
oute dataset, 49% of paths changed at the router level
and (not shown in the graph) 15% changed at the PoP-
level. In a loose sense, these results suggest an upper
bound – even the same measurement issued at a different
time may yield a different path.
Hidden or anonymous routers: Previous work compar-
ing traceroute to record route paths found that 16% of IP
addresses appear with RR but do not appear in tracer-
outes [36, 35]. Hidden routers, such as those inside
some MPLS tunnels, do not decrement TTL. Anonymous
routers decrement TTL but do not send ICMP replies, ap-
pearing as ‘*’ in traceroute.
Exceptional handling of options packets: Packets with
IP options are generally diverted to a router’s route pro-
cessor and may be processed differently than on the line
card. For example, previous work suggests that pack-
ets with options are load-balanced per-packet, rather than
per-flow [35].

An additional source of discrepancies between the two
techniques is that traceroute and reverse traceroute make
different assumptions about routing. Our techniques as-
sume destination-based routing – if the path from D to
S passes through R, from that point on it is the same as
R’s path to S. An options packet reports only links it ac-
tually traversed. With traceroute, on the other hand, a
different packet uncovers each hop, and it assumes that
if R1 is at hop k and R2 is at hop k+1, then there is a link
R1–R2. However, it does not make the same assumption
about destination routing, as each probe uses (S,D) as the
source and destination. These differing assumptions lead
to two more causes of discrepancies between a traceroute
and a reverse traceroute:
Traceroute inferring false links: Although we use the
Paris traceroute technique for accurate traversal of flow-
based load balancers, it can still infer false links in the
case of packet-based balancing [2]. These spurious links
appear as discrepancies between traceroute and reverse
traceroute, but in reality show a limitation of traceroute.
Exceptions to destination-based routing: With many tun-
nels, an option-enabled probe will see the entire tunnel as
a single hop. With certain tunnels, however, our assump-
tion of destination-based routing may not hold. When
probed directly, an intermediate router inside the tunnel
may use a path to the destination other than the one that

Figure 10: For the PlanetLab dataset, the fraction of reverse
path hops measured, rather than assumed symmetric. The
graph includes results with subsets of the reverse traceroute
techniques.

continues through the tunnel. To partly capture the de-
gree of this effect, we perform a study that eliminates
it. From each of the 200 PlanetLab nodes used as desti-
nations in this section, we issue both a traceroute and an
RR ping to each of the 11 used as sources, so the RR ping
will have the same source and destination as the tracer-
oute (unlike with reverse traceroute’s RR probes to inter-
mediate routers). Since the RR slots may fill up before
the probe reaches the destination, we only check if the
traceroute matches the portion of the path that appears in
the RR. After alias resolution, the median fraction of RR
hops seen in the corresponding traceroute is 0.67, with
the other factors described in this section accounting for
the differences. This fraction is 0.2 lower than that for re-
verse traceroute, showing the difficulty in matching RR
hops to traceroute hops.

5.2 Coverage

In Section 5.1, we noted that our paths are more accu-
rate when our techniques succeed in measuring the en-
tire path without having to fall back to assuming a link is
symmetric. As seen in Figure 8, if forced to assume the
entire path is symmetric, in the median case we would
discover only 39% of the hops on a traceroute. In this
section, we investigate how often our techniques are able
to infer reverse hops, keeping us from reverting to as-
sumptions of symmetry. Using the PlanetLab dataset,
Figure 10 presents the results for our complete technique,
as well as for various combinations of the components of
our technique. The metric captured in the graph is the
fraction of hops in the reverse traceroute that were mea-
sured, rather than assumed symmetric.

Reverse traceroute finds most hops without assuming
symmetry. In the median path in the PlanetLab dataset,
we measure 95% of hops (mean=87%), and in 80% of
cases we are able to measure at least 78% of the path
without assumptions of symmetric. By contrast, the
traceroute intersection estimation technique from Fig-
ure 8 assumes in the median that the last 25% of the
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path is symmetric (mean=32%). Although not shown in
the graph, the results are similar for the traceroute server
dataset – in the median case, reverse traceroute measures
95% of hops (mean=92%) without assuming symmetry.

The graph also depicts the performance of our tech-
nique if we do not use spoofed record route pings or do
not use timestamping. In both cases, the performance
drops off somewhat without both probing methods.

5.3 Overhead

We assess the overhead of our technique using the tracer-
oute server dataset from Section 5.1, comparing the time
and number of probes required by our system to those
required by traceroute. The median (mean) time for one
of the 10 PlanetLab sites to issue a traceroute to one
of the 186 traceroute servers was 5 seconds (9.4 sec-
onds). Using our current system, as available on http:
//revtr.cs.washington.edu and described in
Section 4, the median (mean) time to measure a reverse
traceroute was 41 seconds (116.0 seconds), including the
time to send an initial forward traceroute (to determine if
the destination is reachable and to present a round-trip
path at the end). We have not yet pursued improving this
aspect of the system. In the future, we will investigate
lowering this delay by setting more aggressive timeouts
for flaky PlanetLab vantage points, by cutting down on
the communication overhead, and by attempting to adapt
our probing rate to the rate limit of the particular target.

For each reverse traceroute measurement, our sys-
tem sends the initial forward traceroute and a number
of options-enabled ping packets, some of which may be
spoofed. In cases when it is unable to determine the next
reverse hop, it sends a forward traceroute and assumes
the last hop is symmetric. In addition, we require tracer-
outes to build an atlas of paths to the source, and we use
ongoing background mapping to identify adjacencies and
to determine which vantage points are within RR-range
of which prefixes.

If we ignore the probing overhead of the traceroute
atlas and the mapping, in the median case, the only
traceroute required is the initial one (mean=1.2 tracer-
outes). In the median (mean) case, a reverse traceroute
requires 2 (2.6) record route packets, plus an additional
9 (21.2) spoofed RR packets. The median (mean) num-
ber of non-spoofed timestamp packets is 0 (5.1), and the
median (mean) number of spoofed timestamp packets is
also 0 (6.5). The median (mean) total number of op-
tions packets sent is 13 (35.4). As a point of compari-
son, traceroute uses around 45 probe packets on average,
3 for each of around 15 hops. At the end of a reverse
traceroute, we also send 3 pings to each hop to measure
latency. So, ignoring the creation of the various atlases,
reverse traceroute generally requires roughly 2-3x more
packets than traceroute.

IP address AS name Location RTT
132.170.3.1 UCF Orlando, FL 0ms

198.32.155.89 FloridaNet Orlando, FL 0ms
198.32.132.64 FloridaNet Jacksonville, FL 3ms
198.32.132.19 Cox Comm. Atlanta, GA 9ms

68.1.0.221 Cox Comm. Ashburn, VA 116ms
216.52.127.8 Internap Washington, DC 35ms

66.79.151.129 Internap Washington, DC 26ms
66.79.146.202 Internap Washington, DC 24ms
66.79.146.241 Internap Miami, FL 53ms
66.79.146.129 Internap Seattle, WA 149ms

Table 1: Traceroute giving forward path from University of
Central Florida to 66.79.146.129.

The atlases represent the majority of our probe over-
head. However, in many circumstances these atlases can
be reused and/or optimized for performance. For exam-
ple, if the source requests reverse paths for multiple des-
tinations within a short period of time [45], we can reuse
the atlas. As an optimization, we may need to only is-
sue those traceroutes that are likely to intersect [22], and
we can use known techniques to reduce the number of
probes to generate the atlas [11]. We borrow the adja-
cency information needed for our timestamp probes from
an existing mapping service [22]. To determine which
spoofing vantage points are likely within record route
range of a destination, we regularly issue probes from
every spoofer to a set of addresses in each prefix. In the
future, we plan to investigate if we can reduce this over-
head by probing only a single address within each prefix.

6 Applications of Reverse Traceroute
We believe many opportunities exist for improving sys-
tems and studies using reverse traceroute. We next dis-
cuss three such examples of how reverse traceroute can
be used in practice. We intend these sections to illustrate
a few ways in which one can apply our tool; they are not
complete studies of the problems.

6.1 Case study of debugging path inflation

Large content providers attempt to optimize client per-
formance by replicating their content across a geographi-
cally distributed set of servers. A client is then redirected
to the server to which it has minimum latency. Though
this improves the performance perceived by clients, it
can still leave room for improvement. Internet routes are
often inflated [37], which can lead to round-trip times
from a client to its nearest server being much higher than
what they should be given the server’s proximity. Us-
ing Google as an example, 20% of client prefixes experi-
ence more than 50ms latency over the minimum latency
to the prefix’s geographical region. Google wants a way
to identify which AS is the cause of inflation, but it is
hindered by the lack of information about reverse paths
back to their servers from clients [21].
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IP address AS name Location RTT
66.79.146.129 Internap Seattle, WA 148ms
66.79.146.225 Internap Seattle, WA 141ms
137.164.130.66 TransitRail Los Angeles, CA 118ms
137.164.129.15 TransitRail Los Angeles, CA 118ms
137.164.129.34 TransitRail Palo Alto, CA 109ms
137.164.129.2 TransitRail Seattle, WA 92ms
137.164.129.11 TransitRail Chicago, IL 41ms
137.164.131.165 TransitRail Ashburn, VA 23ms

132.170.3.1 UCF Orlando, FL 0ms
132.170.3.33 UCF Orlando, FL 0ms

Table 2: Reverse traceroute giving reverse path from
66.79.146.129 back to University of Central Florida. The
circuitous reverse path explains the huge RTT jump be-
tween the last two hops on the forward path. The third
hop, 137.164.130.66 (internap-peer.lsanca01.transitrail.net), is
a peering point between Internap and TransitRail in L.A.

As an illustration, we used reverse traceroute to di-
agnose an example of path inflation. We measured the
RTT on the path from the PlanetLab node at the Univer-
sity of Central Florida to the IP address 66.79.146.129,
which is in Seattle, to be 149ms. Table 1 shows the
forward path returned by traceroute, annotated with the
locations of intermediate hops inferred from their DNS
names. The path has some circuitousness going from Or-
lando to Washington via Ashburn and then returning to
Miami. But, that does not explain the steep rise in RTT
from 53ms to 149ms on the last segment of the path, be-
cause a hop from Miami to Seattle is expected to only
add 70ms to the RTT5.

To investigate the presence of reverse path inflation
back from the destination, we determined the reverse
path using reverse traceroute. Table 2 illustrates the re-
verse path, which is noticeably circuitous. Starting from
Seattle, the path goes through Los Angeles and Palo
Alto, and then returns to Seattle before reaching the des-
tination via Chicago and Ashburn. We verified with a
traceroute from a PlanetLab machine at the University
of Washington that TransitRail and Internap connect in
Seattle, suggesting that the inflation is due to a routing
misconfiguration. Private communication with an op-
erator at one of the networks confirmed that the detour
through Los Angeles was unintentional. Without the in-
sight into the reverse path provided by reverse traceroute,
such investigations would not be possible by the organi-
zations most affected by inflated routes.

6.2 Topology discovery

Studies of Internet topology rely on the set of available
vantage points and data collection points. With a limited
number available, routing policies bias what researchers
measure. As an example, with traceroute alone, topology

5Interestingly, the latency to Ashburn seems to also be inflated on
the reverse path.
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Figure 11: Example of our techniques aiding in topology dis-
covery. With traceroutes alone, V1 and V2 can measure only
the forward (solid) paths. If V2 is within 8 hops of D1, a record
route ping allows it to measure the link AS3-AS2, and a record
route ping spoofed as V1 allows it to measure AS3-AS5.

discovery is limited to measuring forward paths from a
few hundred vantage points to each other and to other
destinations. Reverse traceroute allows us to expose
many peer-to-peer links invisible to traceroute.

Figure 11 illustrates one way in which our techniques
can uncover links. Assume that AS3 has a peer-to-peer
business relationship with the other ASes. Because an
AS does not want to provide free transit, most routes
will traverse at most one peer-to-peer link. In this ex-
ample, traffic will traverse one of AS3’s peer links only
if it is sourced or destined from/to AS3. V1’s path to
AS3 goes through AS4, and V2’s path AS3 goes through
AS1. Topology-gathering systems that rely on traceroute
alone [22, 1, 34] will observe the links AS1-AS3, AS4-
AS3, and AS2-AS5. But, they will never traverse AS3-
AS5, or AS3-AS2, no matter what destinations they probe
(even ones not depicted). V2 can never traverse AS1-AS3-
AS5 in a forward path (assuming standard export poli-
cies), because that would traverse two peer-to-peer links.
However, if V2 is within 8 hops of D1, then it can issue a
record-route ping that will reveal AS3-AS2, and a spoofed
record route (spoofed as V1) to reveal AS3-AS5 6.

Furthermore, even services like RouteViews [27] and
RIS [33], with BGP feeds from many ASes, likely miss
these links. Typical export policies mean that only
routers in an AS or its customers see the AS’s peer-to-
peer links. Since RouteViews has vantage points in only
a small percentage of the ASes lower in the AS hierarchy,
it does not see most peer links [29, 16].

To demonstrate how reverse traceroute can aid in
topology mapping, we apply it to a recent study on map-
ping Internet exchange points (IXPs) [3]. That study
used existing measurements, novel techniques, and thou-
sands of traceroute servers to provide IXP peering matri-
ces that were as complete as possible. As part of the

6Note that, because we only query for hops already known to be
adjacent, our timestamp pings are not useful for topology discovery.
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study, the researchers published the list of ASes they
found to be peering at IXPs, the IXPs at which they
peered, and the IP addresses they used in those peerings.

We measured the reverse paths back from those IP ad-
dresses to all PlanetLab sites. We discovered 9096 IXP
peerings (triples of the two ASes and the IXP at which
they peer) that are not in the published dataset, adding
an additional 16% to the 58,534 peerings in their study.
As one example, we increased the number of peerings
found at the large London LINX exchange by 19%. If we
consider just the ASes observed peering and not which
IXP they were seen at, we found an additional 5057 AS
links not in the 51,832 known IXP AS links, an increase
of 10%. Of these AS links, 1910 do not appear in ei-
ther traceroute [22] or BGP [40] topologies – besides
not being known as IXP links, we are discovering links
not seen in some of the most complete topologies avail-
able. Further, of the links in both our data and UCLA’s
BGP topology, UCLA classifies 1596 as Customer-to-
Provider links, whereas the fact that we observed them at
IXPs strongly suggests they are Peer-to-Peer links. Al-
though the recent IXP study was by far the most exhaus-
tive yet, reverse traceroute provides a way to observe
even more of the topology.

6.3 Measuring one-way link latency

In addition to measuring a path, traceroute measures a
round-trip latency for each hop. Techniques for geoloca-
tion [42, 18], latency estimation [22], and ISP compar-
isons [25], among others, depend on link latency mea-
surements obtained by subtracting the RTT to either end-
point, then halving the difference (possibly with a filter
for obviously wrong values). This technique should yield
fairly accurate values if routes traverse the link symmet-
rically. However, previous work found that 88-98% of
paths are asymmetric [15] resulting in substantial errors
in link latency estimates [39]. More generally, the inabil-
ity to isolate individual links is a problem when using
network tomography to infer missing data – tomography
works best only when the links are traversed symmetri-
cally or when one knows both the forward and reverse
paths traversed by the packets [10, 6].

A few alternatives exist for estimating link latencies
but none are satisfactory. Rocketfuel infers link weights
used in routing decisions [23], which may or may not re-
flect latencies. The geographic locations of routers pro-
vide an estimate of link latency, but such information
may be missing, wrong, or outdated, and latency does not
always correspond closely to geographic distance [18].

In this section, we revisit the problem of estimating
link latencies since we now have a tool that provides re-
verse path information to complement traceroute’s for-
ward path information. Given path asymmetry, the re-
verse paths from intermediate routers likely differ from

Figure 12: Error in estimating latencies for Sprint inter-PoP
links. For each technique, we only include links for which it
provided an estimate: 61 of 89 links using traceroute, and 74
of 89 using reverse traceroute. Ground truth reported only to
0.5ms granularity.

the end-to-end traceroutes in both directions. Without re-
verse path information from the intermediate hops back
to the hosts, we cannot know which links a round-trip
latency includes. Measurements to endpoints and inter-
mediate hops yield a large set of paths, which we sim-
plify using IP address clustering [22]. We then generate
a set of linear constraints: for any intermediate hop R
observed from a source S, the sum of the link latencies
on the path from S to R plus the sum of the link laten-
cies on the path back from R must equal the round-trip
latency measured between S and R. We then solve this
set of constraints using least-squares minimization, and
we also identify the bound and free variables in the solu-
tion. Bound variables are those sufficiently constrained
for us to solve for the link latencies, and free variables
are those that remain under constrained.

We evaluate our approach on the Sprint backbone net-
work by comparing against inter-PoP latencies Sprint
measures and publishes [38]. We consider only the di-
rectly connected PoPs and halve the published round-trip
times to yield link latencies we use as ground truth, for
89 links between 42 PoPs. We observe 61 of the 89 links
along forward traceroutes and 79 with reverse traceroute.
We use these measurements to formulate constraints on
the inter-PoP links, based on round-trip latencies mea-
sured from PlanetLab nodes to the PoPs using ping. This
set of constraints allows us to solve for the latencies of
74 links, leaving 5 free and 10 unobserved.

As a comparison point, we use a traditional method
for estimating link latency from traceroutes [22]. For
each forward traceroute that traverses a particular Sprint
link, we sample the link latency as half the difference be-
tween the round-trip delay to either end, then estimate
the link latency to be the median of these samples across
all traceroutes. Figure 12 shows the error in the latency
estimates of the two techniques, compared to the pub-
lished ground truth. Our approach infers link latencies
with errors from 0ms to 2.2ms for the links, with a me-
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dian of 0.4ms and a mean of 0.6ms. Because Sprint re-
ports round-trip delays with millisecond granularity, the
values we use for ground truth have 0.5ms granularity,
so our median “error” is within the granularity of the
data. The estimation errors using the traditional tracer-
oute method range from 0ms to 22.2ms, with a median
of 4.1ms and a mean of 6.2ms – 10x our worst-case, me-
dian, and mean errors. Based on this initial study of a
single large network for which we have ground-truth, us-
ing reverse traceroute to generate and solve constraints
yields values very close to the actual latencies, whereas
the traditional approach does not.

7 Related work
Measurement techniques: Previous work concluded
that too many paths dropped packets with IP options
for options to form the basis of a system [13]. The
Passenger and DisCarte projects, however, showed that
the record route option, when set on traceroute pack-
ets, reduces false links, uncovers more routers, and pro-
vides more complete alias information [36, 35]. Hubble
demonstrated the use of spoofed packets to probe a path
in one direction without having to probe the other [19],
but it does not determine the routers along the reverse
path. Addressing this limitation in Hubble was part of
the original motivation for this work.

The contributions of these various projects is in how
they employ existing IP techniques – options and spoof-
ing – towards useful ends. Our work employs the same
IP techniques in new ways. We demonstrate how spoof-
ing with options can expose reverse paths. Whereas Pas-
senger and DisCarte used RR to improve forward path
information, we use RR in non-TTL-limited packets to
measure reverse paths. As far as we are aware, our work
is the first to productively employ the timestamp option.

Techniques for inferring reverse path information:
Various earlier techniques proposed methods for infer-
ring limited reverse path information. Before such pack-
ets were routinely filtered, one study employed loose
source-routing [31] to measure paths from numerous re-
mote sites. Other interesting work used return TTL val-
ues to estimate reverse routing maps towards sources;
however, the resulting maps contained less than half the
actual links, as well as containing multiple paths from
many locations [7]. PlanetSeer [43] and Hubble [19] in-
cluded techniques for isolating failures to either the for-
ward or reverse path; neither system, however, can give
information about where on a reverse path the failure oc-
curs. Netdiff inferred path asymmetry in cases where
hop counts differ greatly in the two directions [25]; how-
ever, as our example in Section 6.1 shows, very asym-
metric paths can have the same hop count. Tulip used
ICMP timestamps (not the IP timestamp option we use)

and other techniques to identify reordering and loss along
either the forward or reverse path [24].

Systems that would benefit from reverse path infor-
mation: Many systems seem well-designed to make use
of reverse path information, but, lacking it, make various
substitutions or compromises. We mention some recent
ones here. Geolocation systems use delay and path infor-
mation to constrain the position of targets [14, 18, 42],
but, lacking reverse path data, are under constrained.
iPlane shows that knowledge of a few traceroutes from
a prefix greatly improves path predictions [22], but lacks
vantage points in most. iSpy attempted to detect pre-
fix hijacks using forward-path traceroutes, yet the sig-
nature it looked for is based on the likely pattern of re-
verse paths [46]. Similarly, intriguing recent work on
inferring topology through passive observation of traf-
fic bases its technique on an implicit assumption that the
hop counts of forward and reverse paths are likely to be
the same [12]. Similarly, systems for network monitor-
ing often assume path symmetry [8, 25]. All these efforts
can potentially benefit from the work described here.

8 Conclusion
Although widely-used and popular, traceroute is fun-
damentally limited in that it cannot measure reverse
paths. This limitation leaves network operators and re-
searchers unable to answer important questions about In-
ternet topology and performance. To solve this problem,
we developed a reverse traceroute system to measure re-
verse paths from arbitrary destinations back to the user.
The system uses a variety of methods to incrementally
build a path back from the destination hop-by-hop, un-
til it reaches a known baseline path. We believe that our
system makes a strong argument for both the IP times-
tamp option and source spoofing as important measure-
ment tools, and we hope that PlanetLab and ISPs will
consider them valuable components of future measure-
ment testbeds.

Our reverse traceroute system is both effective – in
the median case finding all of the PoPs seen by a di-
rect traceroute along the same path – and useful. The
tool allows operators to conduct investigations impossi-
ble with existing tools, such as tracking down path in-
flation along a reverse route. Many operators seem to
view reverse traceroute as a useful tool – based on the
results presented in this paper, we received requests to
help us test the tool and offers of spoofing vantage points,
including hosts at all the PoPs of an international back-
bone network. The system’s probing methods have also
proved useful for topology mapping. In illustrative ex-
amples, we demonstrated how our system can discover
more than a thousand peer-to-peer links invisible to both
BGP route collectors and to traceroute-based mapping
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efforts, as well as how it can be used to accurately mea-
sure the latency of backbone links. We believe the accu-
racy and coverage of the tool will only improve as we add
additional vantage points. A demo of our tool is available
at http://revtr.cs.washington.edu.
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