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We obtain the first non-trivial time–space tradeoff lower bound for func-
tions f: {0, 1}nQ {0, 1} on general branching programs by exhibiting a
Boolean function f that requires exponential size to be computed by any
branching program of length (1+e) n, for some constant e > 0. We also give
the first separation result between the syntactic and semantic read-k models
(A. Borodin et al., Comput. Complexity 3 (1993), 1–18) for k > 1 by showing
that polynomial-size semantic read-twice branching programs can compute
functions that require exponential size on any semantic read-k branching
program. We also show a time–space tradeoff result on the more general
R-way branching program model (Borodin et al., 1993): for any k, we give a
function that requires exponential size to be computed by length kn q-way



branching programs, for some q=q(k). This result gives a similar tradeoff
for RAMs, and thus provides the first nontrivial time–space tradedoff for
decision problems in this model. © 2001 Elsevier Science (USA)

1. INTRODUCTION

One of the long-standing open questions of complexity theory is whether poly-
nimial-time is the same as log-space. One approach to this problem has been to
look at tradeoffs between time and space for natural problems in P. For example,
does the addition of a restriction on the space allowed prevent one from solving
problems in P within specific polynomial time bounds? Despite significant progress
given by the recent time-space tradeoff lower bounds for SAT by Fortnow [For97]
and its subsequent improvements [LV99, FvM00], this question remains unsolved.

One natural model for studying this question is the Boolean branching program
model, which simultaneously captures time and space in a clean combinatorial
manner. In this model, a program for computing a function f(x1, x2, ..., xn) is
represented as a DAG with a unique start node. Each non-sink node is labeled by a
variable, and the arcs out of a node correspond to the possible values of the vari-
able. Each node is also labeled by a (possibly null) output value. Executing the
program on a given input corresponds to following a path from the start node using
the values of the input variables to determine the arcs to follow and outputting the
sequence of output values at those nodes. The maximum length of a path corre-
sponds to time and the logarithm of the number of nodes corresponds to space. An
algorithm running simultaneously in linear time and logarithmic space corresponds
to a linear-length, polynomial-size branching program. Thus the question of finding
explicit functions in P for which no such branching program exists has been of
significant research interest.

This paper gives the results on two distinct problems for branching programs,
which we summarize in the next two subsections.

1.1. Lower Bounds for Single-Output Functions

There has been a great deal of success in proving time-space tradeoff lower
bounds for multi-output functions in FP such as sorting, pattern matching, matrix-
vector product, and hashing [BC82, Bea91, Abr90, MNT93]. However, for
single-output functions (those whose output is one bit), prior to the work in this
paper, there were apparently no lower bounds known better than n+C (for con-
stant C) for any explicit n variable function. The existing techniques for multi-
variate functions involve some sort of ‘‘progress measure’’ which quantifies how
much of the output has been produced. These techniques do not seem to give any
non-trivial bounds for functions with a single output bit. For example, it is not
known how to relate the apparently very similar problems of sorting and element
distinctness, athough time-space tradeoffs for element distinctness on the structured
comparison branching problem have been shown [BFMadH+87, Yao88].

The branching program model allows the domain of the variables to be any finite
set. For variables taking values in a q element set, the nodes in the program
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have out-degree q, corresponding to the possible values. While the case of greatest
interest is the case that variables are 2-valued, the general q-valued case is an
intersting challenge, which can potentially provide insights into the 2-valued case.
Our first result is to exhibit, for each odd prime power q, an explicit family of
functions Fq=(f

(q)
n : n a positive power of 2) such that f (q)n is a function from

GF(q)n to {0, 1}, and for any k there is a q(k) such that branching programs of
depth kn for functions in family Fq require size 2S where S=W(n(log q)1− e), for
any e > 0. In particular, if one chooses q=G(n) then any branching program of
length o(n log log n) require size at least 2S where S=n log1− e n for any e > 0. As
noted by Borodin and Cook [BC82], this result gives a similar tradeoff for RAMs,
and thus provides the first nontrivial time-space tradeoff for decision problems in
this model.

With respect to the branching program model this result is not entirely satisfying,
because of the dependence on q. For each k, the q required for the bound can be
quite large. For q-valued variables, the number of bits that would be needed to
represent the input is n log2 q and the length bound is smaller than this quantity.
What we really want is a lower bound that is super-linear in the number of input
bits.

Our second lower bound pertains to the more interesting model of single output
functions on 2-valued variables, i.e., Boolean functions. Previously, the only size-
depth tradeoffs for explicit functions were results in [KW88] that showed that for
branching programs of depth exactly n, the size must be exponential. For this
model, we obtain the first non-trivial length lower bound for polynomial size
branching programs for functions whose output is a single bit: we exhibit an explicit
family of functions in P and show that any sub-exponential size program for it must
have length at least 1.0178n. While this is only just barely non-trivial, it is the first
such result in which the length divided by the number of variables is bounded away
from one.5

5 Since the publication of a preliminary version of our results, Ajtai [Ajt99b, Ajt98, Ajt99a] used
related techniques to exhibit an explicit family of boolean functions for which any linear size branching
program must have exponential size. Subsequently, Ajtai’s bounds were quantitatively improved, and
also extended to randomized computation [BSSV00].

The proofs use a variety of techniques, some of which extend techniques of
[BRS93, Tha98]. First, we show that if function f has a small size and length
branching program, then it is possible to write f in the form Ji Mj T ij where each
function T ij is a decision tree of ‘‘small’’ height, and where the number of terms in
the expression is not too large. (This generalizes a similar construction for the
special cases of syntactic read-k and oblivious branching programs, in [BRS93]). So
proving a size lower bound trade-off for branching programs for f reduces to
showing that no such representation exists.

Each of the inner M terms is called a decision forest, and each must accept a
subset of the 1’s of f. We then show that the set of inputs accepted by a decision
forest whose component trees are shallow can be decomposed into not too many
pseudo-rectangles, which are objects related to, but more general than, the
rectangles that are routinely analyzed in communication complexity. We derive two
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such decomposition results for decision forests. In the first (and easier) decomposi-
tion result, the upper bound on the number of pseudo-rectangles is non-trivial only
in the case that the underlying domain of the functions is large. To get a non-trivial
bound for the boolean domain, we prove a second decomposition result which
applies to a very restrictive situation, when the decision forest consists of two trees,
each of depth slightly more than n/2. The proof uses an interesting entropy
argument.

Combining the decompositions associated to each decision forest in the J for f
gives a decomposition of the original function f into pseudo-rectangles, where we
can bound the number of pseudo-rectangles in the decomposition. Expanding on
arguments in [BSR93, Tha98], we show that certain explicit functions, can not be
decomposed into such a small number of pseudo-rectangles. In the large domain
case, this will give exponential size lower bounds for linear depth branching
programs that compute these functions. In the boolean domain case, the exponen-
tial size lower bounds are derived only for branching programs of depth less than
1.0178n.

The explicit functions for which we prove our lower bounds in both the q-way
and Boolean branching program models are based on quadratic forms xTMx where
the n×n matrixM is a (possibly slightly modified) Sylvester or Generalized Fourier
Transform matrix.

1.2. Semantic versus Syntactic Read-k Branching Programs
As a step towards proving super-polynomial size lower bounds for linear length

branching programs, a natural restriction is to require that each input bit be read at
most some fixed number of times. This led to the definition of read-k branching
programs [Weg87] in which each input can be read at most k times. Many lower
bounds have been shown for several functions on read-once branching programs
(for example, see [Weg86, BHST87, Weg88, Raz91, SS93, G9́7]).

(Another restricted class of branching programs that has been studied is the class
of oblivious branching programs. An oblivious branching program is a leveled
program where all nodes at the same level are labeled by the same variable (so that
the variable read at a particular time step is independent of the path followed). For
oblivious branching programs, linear length and read-k for some constant k are
essentially the same and several size-length tradeoff lower bounds for oblivious
branching programs have been shown using this connection [AM88, BNS92].
Oblivious read-once branching programs, known as OBDD’s, have been very useful
as representations of functions used in verification [Bry86, BCL+94] and so have
generated significant independent interest.

Borodin, Razborov, and Smolensky [BRS93] observed that read-k branching
program come in two flavors, syntactic read-k in which all paths in the branching
program must satisfy the read-k restriction and the more general semantic read-k in
which only the paths consistent with some input must satisfy the restriction. They
also proved strong size lower bounds for the syntactic read-k model. However,
obtaining super-polynomial size lower bounds even for semantic read-twice
branching programs has been an open question.6 (It is easy to bserve that there is

6 The new results of [Ajt99b] mentioned earlier yield such bounds.
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no distinction between syntactic read-once and semantic read-once branching
programs.)

Here, we show the first separation between the syntactic and semantic read-k
models for k > 1 by showing that the polynomial-size semantic read-twice branch-
ing programs can compute functions that require exponential size for any syntactic
read-k branching programs. The functions we construct are based on a class of
functions that were by introduced by Thathachar [Tha98] to show that for each
k \ 1, the syntactic read-k model is more powerful than the syntactic read-(k+1)
model. These functions are exponentially hard for syntactic read-k, and while they
also seem to be hard for semantic read-k, we are able to construct a modified
version of these functions so as to make them easy for semantic read-twice while
still retaining hardness for syntactic read-k.

2. NOTATION

For an integer n, [n] denotes the set {1, ..., n}.

2.1. Variables, Assignments, and Functions

Throughout, X is a set of variables (usually {x1, ..., xn}) taking values from some
finite set D. We say X is a D-valued variable set, or d-valued if d=|D|. An input s

is a point in DX, the set of mappings from X to D, and we identify this set, in the
usual way, with Dn. If Y ıX, a point of DY is a partial input to X. If r is a partial
input, we write vars(r) for the set of variables that are assigned by r. The size of a
partial input r is |vars(r)|.

A decision function f over X is a function mapping Dn to {0, 1}. In the case
|D|=2, f is a Boolean function. Given a partial input r, the restriction of f by
r, fKr is the function on XŒ=X\vars(r) such that for s ¥ DXŒ, fKr(s)=f(s, r).
For b ¥ {0, 1}, a b-certificate for f is a partial input r such that fKr is the constant
with value b.

Let f and g be boolean functions on Dn. We say that g is a portion of f if
g−1(1) ı f−1(1), i.e., g [ f.

If A1, A2, ..., At are subsets of X we say that f is (A1, A2, ..., At)-free if f can be
written as M t

i=1 gi, where each gi does not depend on the values of variables in Ai.
If A1, A2 are disjoint subsets of X, we say that f is a pseudo-rectangle with asso-
ciated sets A1, A2 if f is (A1, A2)-free. If |A1 |=|A2 |=a and |A2 | \ a, we say that f is
a pseudo-rectangle to order a or an a-pseudo-rectangle. If a is not an integer then an
a-pseudo-rectangle means a KaL- pseudo-rectangle.

The name pseudo-rectangle is motivated by the following. A function f on vari-
able set Y is a rectangle with respect to the partition Y1, Y2 of Y if f−1(1) can be
written in the form C1×C2 where Ci is a set of assignments to Yi. A function f is a
pseudo-rectangle with associated sets A1, A2, if and only if for each input r to
X−A1−A2, the restriction fKr is a rectangle with respect to the partition A1, A2 of
the remaining variables.
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2.2. Branching Programs, Decision Trees, and Decision Forests

Since we are only concerned here with the computation of decision functions
(those whose output is a single bit), we present our definitions of branching
programs only for this case. A non-deterministic branching program B on a D-valued
variable set X is an acyclic directed graph with the following properties:

• There is a unique source node, denoted startB.

• Every sink node v has a label output(v), which is 0 or 1.

• Each non-sink node v is labeled by a variable x(v) ¥X

• Each arc a is labeled by an element value(a) of D.

We say that an input s is consistent with an arc a, where a=(u, v), if the value given
by s to x(u) is value(a). We extend this definition to any path P: s is consistent
with P if it is consistent with each arc in P. A path P is maximal if it starts at startB
and ends at a sink. A path that ends at a sink with output value 1, resp. 0, is a
1-path, resp. 0-path.

We say that B accepts the input s if there is a maximal 1-path that is consistent
with s. We view B as a boolean function from Dn by defining B(s)=1 if and only
if B accepts s.

Two measures associated with B are size which equals the number of nodes, and
length which is the length of the longest path.

(In [BRS93], a non-deterministic branching program also contains free arcs,
namely arcs which are consistent with any input. Such a branching program can be
modified to one without free arcs with no change in length and at most a quadratic
blow-up in size.)

A branching program is deterministic if there are exactly |D| arcs out of each non-
sink node, each with a different value. For a deterministic program, each input is
consistent with exactly one maximal path. Intuitively, a deterministic program is
‘‘executed’’ on input s by starting at startB, reading the variable x(startB) and
following the unique arc labeled by s(x(startB)). This process is continued until a
sink is reached and the output of the computation is the output value of the sink.
The non-deterministic version can be similarly viewed as a process, where from each
node, v, one can choose from among the arcs labeled s(x(v)) (if any); the output of
the function is 1 if and only if some sequence of allowable choices leads to a sink
node with output value 1.

A branching program of length d is leveled if the nodes can be partitioned into d
sets V0, V1, ..., Vd where V0 is the source, Vd is the set of sink nodes and every arc out
of Vi goes to Vi+1, for 0 [ i [ d. It is well known [Pip79] that every branching
program P of size s and length d, can be converted into a leveled branching
program PŒ of length d that has at most s nodes in each of its levels and computes
the same function as P (and is deterministic if P is).

A branching program is oblivious if it is leveled and for each level, all of the
nodes on the level are labeled by the same variable.

A decision tree is a branching program B whose underlying graph is a tree rooted
at startB. In particular, a decision tree is leveled. Every function on n variables is

TIME–SPACE TRADEOFFS FOR BRANCHING PROGRAMS 547



computable by a deterministic decision tree of length n. Following common
practice, the length of a decision tree is referred to as its height.

A decision forest is an M of decision trees. More precisely, a (r, e) decision forest
P over D is a collection T1, ..., Tr of decision trees on Dn such that each tree has
height at most KenL. The function computed by P is M r

i=1 Ti. A decision forest is
deterministic if each of its component trees is, and is oblivious if each of its
component trees is oblivious.

3. MAIN DECOMPOSITION THEOREMS

The general approach that we take towards proving size-length tradeoff lower
bounds is to show that if f can be computed by a branching program of small
length and size then f (or a large portion of f) can be expressed as an J of not too
many ‘‘simple’’ functions fi. In our main theorems, this notion of ‘‘simple’’ will
mean that each fi is a bn-pseudo-rectangle for some appropriate parameter b. We
obtain branching program lower bounds for a particular function f by showing
that no large portion of f can be so expressed.

Theorem 1. Let k, n, s ¥ N with n \ k(k+1)2 22(k+4). Let f be a boolean function
on Dn for some finite set D. If f can be computated by a (non-deterministic) branching
program of length kn and size s then f may be written as

f=I
m

i=1
fi,

where each fi is a bn-pseudo-rectangle and m[ 24(k+2) bn(2s)k(k+1) 2
k+4
for b=1/2k+2.

This theorem is quite general but, as we will see, the upper bound that it provides
on m is so large, that it only yields a non-trivial size-length tradeoff when the size of
the domain D is sufficiently large when compared to k. To obtain our lower bound
for functions on {0, 1}n we prove a more specialized decomposition theorem that
applies only to deterministic branching programs of length at most (1+e) n.
In order to state this decomposition theorem it will be convenient to make the
following technical definition. For e, d ¥ (0, 1/4) define

b(e, d)=e+d+(1+e) H 12(e+d

1+e
2+2H(d),

where H(p)=−p log2 p−(1−p) log2(1−p) is the binary entropy function. The
function b(e, d) will arise as the result of a calculation in the proof of the next
theorem. The key properties for our purposes are that if e, d > 0 with e+d [ 1/4
then b(e, d) increases with either e or d and tends to 0 if both e and d tend to 0.

Theorem 2. Let e > 0, and suppose that f is a boolean function on {0, 1}n, for
sufficiently large n, that can be computed by a deterministic branching program of
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length (1+e) n and size s. Let the size of the smallest 1-certificate of f be at least
(1−d) n. If d+e [ 1/4 then, for any c ¥ (0, 1), we can express f as:

f=f0 K1I
m

i=1
fi 2 ,

where m [ s 2cn, |f−10 (1)| [ s2
(1+b(e, d)/2− c/2)n, and, for i \ 1, each fi is a (1− e−d) n/2-

pseudo-rectangle.

In the remainder of this section we outline the overall strategy for the proofs of
these theorems in the deterministic case.

In order to obtain these decompositions of (portions of) f into pseudo-rectangles
of large order, assuming that f is computable by a decision tree of length kn and
size s, we first express f as an J of not too many functions Pj, each of which is a
‘‘little bit simple,’’ in that it can be computed by an (r, k/r) decision forest where
r \ k can be chosen arbitrarily. This decomposition, which we prove in Section 5,
has the feature that the only place where the size bound enters is in the number of
functions Pj.

The more interesting parts of our arguments are those showing that each Pj (or a
large portion thereof) can be written as an J of not too many pseudo-rectangles. In
the proof of Theorem 1 this is shown as follows. We choose the value of r so that
the depth (k/r) n of each decision tree is sufficiently small compared to n. Thus on
any input x, each constituent decision tree of the (r, k/r) forest reads only a small
fraction of the bits of x. We find a pair of large sets of variables, A1(x) and A2(x),
so that every constituent decision tree does not read any variables in at least one of
A1(x) or A2(x) on input x. Theorem 1 then follows by counting the number of
possible choices of the Ai(x) and the way they partition the set of trees.

In the proof of Theorem 2, we choose r=2, so each decision tree T1, T2 examines
only a little more than half the variables on any input. We thus obtain, more directly,
a pair, S1(x) and S2(x), of sets of variables that are not read by the corresponding
decision trees on input x. Using this, and the lack of coordination possible between
the two trees when the function only has large 1-certificates, we show that all but a
small fraction of inputs x are associated with a small number of pairs of sets.

In the next section, we show how these decompositions may be combined with
various properties of functions to derive our size-length lower bound tradeoffs and
give bounds for certain explicit functions. In the following five sections we give all
the details necessary for the obtaining these lower bounds. We prove the decompo-
sition into decision forests in Section 5; give the detailed proofs of Theorem 1 and 2
in Sections 6 and 7. In Sections 8 and 9, we give the detailed proofs that the explicit
functions we define have the desired properties.

4. SIZE-LENGTH TRADEOFF LOWER BOUNDS

4.1. General Bounds

We now show how to convert the decomposition theorems of the previous
section into lower bound tradeoffs for branching program computation of specific
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functions. Since our decompositions represent portions of f as bn-pseudo-rectangles,
we make the following definitions:

Given a decision function f on domain Dn and b ¥ [0, 1], let

• g(f) be such that |f−1(1)|=|D| (1−g(f)) n

• Yf(b) be the largest c such that every bn-pseudo-rectangle g that is a portion
of f has |g−1(1)| [ |D| (1− c) n.

The reader should keep in mind that g(f) ¥ [0, 1] and that ‘‘small’’ values of
g(f) indicate that f−1(1) is ‘‘big’’. Also, for each b ¥ [0, 1], Yf(b) ¥ [0, 1] and a
lower bound on Yf(b) implies an upper bound on the size of the largest bn-pseudo-
rectangle contained in f.

We use Theorem 1 to get the following lower bound on the size of any depth kn
branching program for computing f, in terms of these two parameters:

Corollary 3. Let n, k ¥ N with n \ (k+1) 2k+4. Let f be a boolean function on
Dn for some finite set D. Then any (nondeterministic) length kn branching program
that computes f has size at least

1
2
1 |D|Yf(b)−g(f)
24(k+2) b
2n/(k(k+1) 2

k+4)

,

where b=1/2k+2.

Proof. Apply Theorem 1 to f to get the specified decomposition f=Jm
i=1 fi.

Then each fi is a portion of f that is an bn-pseudo-rectangle with b=1/2k+2 and
one of them must have |f−1i (1)| \ |f

−1(1)|/m. This impliesm \ |f−1(1)|/|D|1−Yf(b) n=
|D| (Yf(b)−g(f)) n.

Combining this with the upper bound on m given by Theorem 1 gives

|D| (Yf(b)−g(f)) n [ 24(k+2) bn(2s)k(k+1) 2
k+4
,

and the corollary follows. L

Remark. If all 0-certificates of f have size at least t=(1−d) n, then g(f) [
d+1/n, since every assignment to the first t−1 variables can be extended to an
element of f−1(1). Thus we can replace the exponent Yf(b)−g(f) by Yf(b)−
d−1/n in the above corollary.

We will apply this result for functions f for which the expression Yf(b)−g(f) is
bounded below by some e > 0. In such a case, if |D| is large enough (depending only
on k) then |D| e is at least the square of the denominator 24(k+1) b, and the above
expression is at least |D| eŒn for some eŒ > 0 depending only on k.

If |D| [ 22(k+2) then Corollary 3 is not useful. This is because for any function f
one can construct a bn-pseudo-rectangle that is a portion of f and is 1 on a large
fraction of f−1(1): Let A1 and A2 be arbitrary disjoint variable subsets of size KbnL
and let A0=X−A1−A2. Among the elements of f−1(1), choose the most popular
assignment s1 to A1. So at least f−1(1) |D|−KbnL points of f−1(1) are consistent with
s1. Let g1 accept input s if and only if the input sŒ, obtained by modifying s on A1
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to s1, is in f−1(1); let g2 accept s if and only if s agrees with s1 to A1. Because g1
does not depend on A1 and g2 does not depend on A2, g=g1 Ng2 is a pseudo-
rectangle. Moreover it is a portion of f accepting at least |f−1(1)| |D|−KbnL \
|f−1(1)| |D|−2bn inputs by the bound on n. Thus Yf(b)−g(f) [ 2b and for
|D| [ 22(k+2) the size lower bound provided by Corollary 1 is less than 1.

In the Boolean case, we use Theorem 2 to derive:

Corollary 4. Let e > 0, and suppose that f is a boolean function on {0, 1}n, for
sufficiently large n, that can be computed by a deterministic branching program of
length (1+e) n and size s. Let the smallest 1-certificate of f be of size at least
(1−d) n. If d+e [ 1/4 then

s \ 1
2 2
an,

where a=1
3 Yf((1− e−d)/2))− 13 b(e, d)−g(f).

Proof. Suppose we have a function f: {0, 1}nQ {0, 1} with all 1-certificates of
size at least (1−d) n computed by a branching program of depth (1+e) n. For any
c ¥ (0, 1), we can find f0, ..., fm as in Theorem 2. For each i \ 1, fi is a bn-pseudo-
rectangle for b=(1− e−d)/2. By the definition of Yf(b), for each i \ 1,
|f−1i (1)| [ 2

(1−Yf(b)) n, so, using the bounds of Theorem 2 on m and |f−10 (1)|, we
have

|f−1(1)| [ s2 (c+1−Yf(b)) n+s2 (1+b(e, d)/2− c/2) n

Choosing c=2Yf(b)/3+b(e, d)/3 to make the two summands equal, and
rewriting the inequality to lower bound s yields the desired lower bound. L

If the value a in the conclusion of the corollary can be bounded below by a
positive constant independent of n we get a strong lower bound. This will happen,
for example, if f is chosen to be a function for which Yf(

1
4) can be bounded away

from 0 (independent of n) and for which both the smallest 1-certificate and |f−1(1)|
are large and if e is chosen to be small enough. By the remark after the previous
corollary it suffices to have both the smallest 0-certificates and 1-certificates be
sufficiently close to n.

4.2. Tradeoffs for Explicit Functions

We now describe families of explicit functions for which the lower bounds of
Corollaries 3 and 4 yield exponential size lower bounds on branching programs
with certain length upper bounds. The functions are based on quadratic forms.
(Similar functions based on bilinear forms were considered in [BRS93].) Let
M=Mn be an n×n matrix over GF(q). Define the function QFM: GF(q)nQ {0, 1}
to be true if and only if for any input s (viewed as a vector of length n),
sTMs=0(mod q). We define the function BQFM to be the restriction of QFM to
the domain {0, 1}n.

We consider these functions for the class of Sylvester matrices. For n=2k, the
n×n Sylvester matrix N has rows and columns indexed by binary vectors of length
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k. The (i, j)th entry of N is (−1)Oi, jP, where Oi, jP denotes the inner product of i
and j modulo 2.

For any odd prime power q, we can interpret the Sylvester matrix as a quadratic
form over GF(q)n. Sylvester matrices are examples of Generalized Fourier Trans-
form (GFT) matrices (see [BSR93]). For any finite Abelian group G, let Gg be the
set of multiplicative characters of G, i.e., functions q: GQ GF(q)g that satisfy
q(g1 g2)=q(g1) q(g2) for any g1, g2 ¥ G. Provided that q is relatively prime to |G|,
it is well known (see, e.g., [BRS93]), that there are |G| distinct characters and that
they are linearly independent when viewed as vectors over GF(q). Let N=NG, Gg be
the matrix in which the (g, q)th element equals q(g), for all g ¥ G and q ¥ Gg. Syl-
vester matrices of dimension 2k×2k can be shown to be special cases of GFT
matrices corresponding to the additive group of GF(2)k.

If N is any square matrix, the modification of N, N[0], is the matrix obtained by
setting the diagonal entries of N to 0.

The following lemma, which we prove in Section 8, will allow us to apply
Corollary 3 and get branching program lower bounds in the case D is large.

Lemma 5. LetM be a GFT matrix over GF(q), where q is an odd prime power.

1. Let D be a subset of GF(q) of size at least 2. If f is the restriction of either
QFM or QFM[0] to the domain Dn, then Yf(b) \ b2.

2. If f=QFM[0] then every 0-certificate and every 1-certificate of f has size at
least n−1.

In the case of large D, we use Corollary 3 to obtain:

Theorem 6. There is a constant c > 0 such that the following holds. Let k be a
positive integer and e ¥ (0, 1). Let q be a prime power that satisfies log log q \ c

e k,
and let n be an integer satisfying n \ 22k+5. Let N[0] be the modification of an n×n
GFT matrix over GF(q). Then any non-deterministic branching program for QFN[0] of
length kn requires size at least 2S where S=n log1− e q.

Proof. The function f=QFN0 is a function on Dn where |D|=q. Let
b=1/2k+2. By Lemma 5 and the remark following Corollary 3, Yf(b)−g(f) \
b2− 2n , which is at least b2/2 by the hypothesis on n. For c large enough (inde-
pendent of k), the hypothesis on q implies qb/4 > 24(k+1), which implies that
qYf(b)−g(f)/24(k+1) b \ qb

2/4. Corollary 3 now implies a size bound of the form
qnb

2/(4k(k+1) 2k+4). Using the hypothesis on q (with c large enough), this is lower
bounded by 2n(log q)

1− e
as required. L

It is illuminating to formulate a version of the above theorem in which the
parameters q and k are chosen to depend on n. Let c be the constant of the above
theorem. Given n and e, let k=Nec log log nM and let q be the smallest prime greater
than or equal to n (so q < 2n.) Then the hypothesis of the above theorem is satisfied
and we obtain:

Corollary 7. Let N be an n×n Sylvester matrix and consider the associated
function QFN[0] defined on a domain D of size q, n [ q < 2n. For any e > 0 there is a
constant cŒ > 0 such that any (nondeterministic) branching program of length at most
cŒn log log n requires size at least 2S to compute QRN[0], where S=W(n log1− e n).
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To prove lower bounds in the case that D is a boolean domain, we consider the
function BQFM, whereM is a Sylvester matrix. In Section 9, we will prove:

Lemma 8. If M is the Sylvester matrix over GF(3), and f=BQFM then every
0-certificate and every 1-certificate of f has size greater than n−24`n log n.

Using Lemma 5 and 8 together with Corollary 4 we obtain:

Theorem 9. Any deterministic branching program of length 1.0178n computing
BQFN, where N is the n×n Sylvester matrix over GF(3), requires size 2W(n).

Proof. Fix n large enough and let N be the n×n Sylvester matrix over GF(3),
and let f=BQFN. Applying Corollary 4, we want to show that for the given
e=0.0178n, that a > 0. By Lemma 8, every 0-certificate and 1-certificate of f has
size at least (1−d) n where d is o(1) in n and, using the remark following Corollary
3, g(f) [ 1

n+d which is also o(1) in n. Therefore by Lemma 5, Yf(b) \ b2, we get:
a=1

3 (
(1− e)2

4 − e−(1+e) H( 2e1+e ))+o(1). It can be checked that for e [ 0.0178, the
expression upper bounding a is strictly positive. Hence, any branching program of
length at most 1.0178n that computes BQFN must have exponential size. L

5. DECOMPOSITION INTO DECISION FORESTS

Lemma 10. Let k ¥ R and n, s ¥ N. Let f be a boolean function on Dn for some
finite set D. If f can be computed by a branching program of length kn and size s then
for any integer r \ k, f can be expressed as:

f=I
u

i=1
Pi,

where u [ s r−1 and each Pi is a (r,
k
r )-decision forest.

Furthermore, (i) if the branching program is deterministic then each of the decision
forests Pi is deterministic and the sets P

−1
i (1) are pairwise disjoint, and (ii) if the

branching program is oblivious then each of the decision forests is oblivious.

Proof. Let B be any branching program of size s computing f of length d [ kn.
As mentioned in Section 2.2, there is a leveled branching program BŒ of length d
with at most s nodes per level that also computes f. For distinct nodes v and w of
the branching program, let fv, w denote the function on Dn which is 1 on input s if,
starting from v, there is a path consistent with s that leads to w. It is easy to see
that if v is at level i and w is level j > i, then fv, w can be computed by a decision tree
of height j− i. Furthermore each such decision tree is deterministic and/or
oblivious if B is. For 1 [ i [ r−1, define li=Kidr L. Note that l1 < · · · < lr−1 < d
divides the integral [0, d] into r intervals each of size at most Kdr L [ Kknr L. An input is
accepted by P if and only if there is a sequence of nodes v0, v1, v2, ..., vr−1, vr, where
v0 is the start node, vr is the accepting node and for i ¥ [r−1], vi is at level li, such
that fvi−1, vi (s)=1 for each i ¥ [r]. Therefore

f= I
v1, ..., vr−1

L
r−1

i=0
fvi, vi+1 .
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There are at most s r−1 terms in the J, and each term is a (r, kr ) decision forest.
Finally, note that, in the deterministic case, each input follows a unique path, and

so is accepted by at most one of the decision forests. L

The oblivious version of this lemma was implicit in [BRS93] which gave a
similar oblivious decomposition in the case of syntactic read-k branching programs.
(For the definition of syntactic read-k, see Section 10.)

6. TRADEOFFS OVER LARGE DOMAINS AND FOR OBLIVIOUS
BRANCHING PROGRAMS

In this section we prove Theorem 1 which says that every function computable by
a branching program of suitably small depth and size can be decomposed as the J
of not too many pseudo-rectangles of large order. We will use Lemma 10 to write f
as a J of functions that are each computed by shallow decision forests. So it will
suffice to find a suitable decomposition of functions computed by a shallow
decision forest into pseudo-rectangles. To do this we will use the following combi-
natorial lemma which will allow us to find for a given decision forest and input s,
two large sets A1 and A2 so that on input s, each decision tree in the forest looks at
no variables in A1 or no variables in A2. This lemma is a generalization of a lemma
from [Tha98].

6.1. A Combinatorial Lemma

Lemma 11. Let k, p, n be positive integers with p=(k+1) 2k+4 and let n \ 8kp.
Let b=1/2k+2 and r=kp. Suppose that S1, ..., Sr are subsets of [n], each of size at
least Nn(1− 1p )M. Then there is a partition (I1, I2) of [r] and two disjoint sets A1, A2,
each of size at least bn such that A1 ı4i ¥ I1 Si and A2 ı4i ¥ I2 Si.

We derive this lemma as a corollary of the following:

Lemma 12. Let F denote a family of non-empty sets each containing at most m
elements. Let X=1Y ¥F Y and suppose |X|=n. Let l=;Y ¥F |Y|/n. Then, X has
disjoint sets S and T, each of size at least (1−d) 2−ln, where d=`lm 21+l/n, such
that each Y ¥F is disjoint from S or from T.

The quantity l can be interpreted naturally as the average number of times each
element in X is covered in F. The lemma is a straightforward strengthening of a
lemma of [Tha98], in which l is replaced by the maximum number of times each
element of X is covered.

Using Lemma 12, we prove Lemma 11. If |4i Si | \ 2KbnL, we can choose A1 and
A2 to be any even (or nearly even) partition of 4i Si and I1 and I2 be be any parti-
tion of [r]. Otherwise, let S −i=X\Si, and define the family F to consist of S −i for
1 [ i [ kp, and singleton sets {j} for each j ¨1i S −i so that the union of F is [n].
The number of singleton sets is at most 2KbnL−1. Therefore, the sum of the sizes of
the sets in F is at most 2KbnL−1+kpKn/pL [ (k+2b) n+1+kp [ (k+2b+1/4) n,
by the hypothesis on n. In the terminology of Lemma 12, we have l [ (k+2b+
1/4) n/n=k+2b+1/4 [ k+1/2. Moreover, setting m=Kn/pL, it follows that

554 BEAME, JAYRAM, AND SAKS



lm [ (k+2b+1/4)(n/p+1) [ (k+1) n/p. Applying Lemma 12 with l and m,
there exists a pair of disjoint sets A1 and A2 each of size at least (1−d) n/2k+1,
where

d==lm21+l

n
[=(k+1) n2

k+2

np
==(k+1) 2

k+2

(k+1) 2k+4
=
1
2
,

such that each S −i is disjoint from either A1 or A2. In other words, there exist sets A1
and A2 each of size at least bn, and a partition of [kp] into I1 and I2 such that Si
contains A1 if i ¥ I1, and Si contains A2 if i ¥ I2. This proves Lemma 11.

To prove Lemma 12, we use two elementary inequalities due to Chebyschev. The
first appears in any elementary probability text, and the second can be found, for
example, in [HLP52, Theorem 43, p. 43]).

Proposition 13. Let E[Zx] denote the mean and var[Zx] denote the variance of
a random variable Zx. Then, for any d > 0,

Prob[|Z−E[Z]| > d ·E[Z]] <
var[Z]

d2 ·E[Z]2

Proposition 14. Let a1, ..., aN be a non-decreasing sequence and b1, ..., bN be a
non-increasing sequence of non-negative numbers. Then, ; i aibi [ (; i ai)(; i bi)/N.

Proof of Lemma 12. Randomly color each set Y ¥F red or blue uniformly and
independently. Call an element red (resp. blue) if all the sets containing it are red
(resp. blue), and let S (resp. T) be the set of red (resp. blue) elements. Since every
element of X occurs in at least one set, it follows that S and T are disjoint. More-
over, for each Y ¥F, either Y 5 S or Y 5 T is empty. To complete the proof, we
show that with positive probability both S and T have at least (1−d) 2−ln elements.

For x ¥X, let dx denote the number of sets that contain x. We have the elemen-
tary equality ;x ¥X dx=;Y ¥F |Y|=ln. Let Zx be the 0-1 indicator random vari-
able for the event ‘‘x ¥ S’’. By the definition of S, this event occurs with probability
2−dx, implying that E[Zx]=Prob[Zx=1]=2−dx. Let Z=;x Zx and observe that
Z=|S|. Using the arithmetic-geometric mean inequality, we obtain

E[Z]=C
x
E[Zx]=C

x
2−dx \ 2−;x dx/nn=2−ln. (1)

Next, we show that Z is close to its expected value with high probability. The
variance of Z is given by

var[Z]=C
x
var[Zx]+C

x ] y
cov(Zx, Zy), (2)

where cov(Zx, Zy)=E[ZxZy]−E[Zx] E[Zy] denotes the covariance of Zx and
Zy. Consider the first term in the right hand side of (2). For any x, Zx is a Bernoulli
random variable, so var[Zx]=E[Zx](1−E[Zx]) [ E[Zx], implying that

C
x
var[Zx] [ E[Z] (3)
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To bound the second term in the right hand side of (2), observe that if no set Y
contains both x and y, the events Zx and Zy are independent implying that
cov(Zx, Zy)=0. Thus, we are only interested in those pairs (x, y) such that some
set contains both x and y. For any fixed x, the number of such pairs (x, y) is at
most (m−1) dx. For each pair, cov(Zx, Zy) [ E[ZxZy] [ E[Zx]=2−dx. Therefore,

C
x ] y

cov(Zx, Zy) [ (m−1) C
x
dx2−dx.

The last term above can be bounded as follows: Order the x’s so that the
sequence {dx} is non-decreasing. Proposition 14 can be applied to the sequences
{dx} and {2−dx} to give

C
x ] y

cov(Zx, Zy) [
(m−1)(;x 2−dx)(;x dx)

n
=l(m−1) E[Z], (4)

The equality follows from (;X dx)/n=l, and ;x 2−dx=E[Z]. Substitute the
bounds in (3) and (4) in (2). We obtain

var[Z] [ (l(m−1)+1) E[Z] [ lmE[Z],

where the last inequality holds because each x ¥X occurs in at least one set, imply-
ing that l=;x dx/n \ 1. Using Proposition 13, we have

Prob[Z < (1−d) ·E[Z]] <
var[Z]

d2 ·E[Z]2
[

lm
d2E[Z]

Substituting for d as given by the statement of the lemma, and using (1), we obtain

Prob[Z < (1−d) ·E[Z]] <
lmn

lm21+lE[Z]
=

n
21+lE[Z]

[
n

21+l2−ln
=
1
2
.

Similarly, we obtain Prob[|T| < (1−d) ·E[Z]] < 1/2. Thus with positive proba-
bility both S and T have size at least (1−d) 2−l. We conclude that there is a
coloring of the Y’s such that the induced S and T satisfy the lemma. L

6.2. Oblivious Branching Programs

As a warm-up for the proof of Theorem 1, we show how Lemma 11 yields a time–
space tradeoff for oblivious branching programs.

Theorem 15. Let k, n, s ¥ N with n \ k(k+1) 2k+7. Let f be a boolean function
on Dn on a finite set D. If f can be computed by an oblivious branching program of
length kn and size s then f can be expressed as

f=I
m

i=1
fi,

where m [ sk(k+1) 2
k+4−1 and each fi is a bn-pseudo-rectangle for b=1/2k+2.
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Proof. Let f be as hypothesized. Apply lemma 10 with r=kp and p=
(k+1) 2k+4, to get a decomposition of f as a M Pi of s r oblivious decision forests
each consisting of r trees of depth at most Kn/pL. Consider one such forest Pi=
T1, ..., Tr and let Si be the variables that don’t appear in tree Ti, so
|Si | \ Nn(1−1/p)M. By Lemma 11, for p=(k+1) 2k+4 and b=1/2k+2, there are sets
A1, A2 of size at least bn and a partition of [r] into I1, I2 such that for j=1, 2,
gj=Mi ¥ Ij Ti does not depend on Aj. Thus Pi is, in fact, a bn-pseudo-rectangle. L

In the same way that Theorem 1 was used to deduce Corollary 3, we can use
Theorem 15 to deduce the following lower bound result for oblivious branching
programs. (Again, something similar is implicit in [BRS93]).

Corollary 16. Let n, k ¥ N with n \ k(k+1) 2k+7. Let f be a boolean function
on Dn for some finite set D. Then any (nondeterministic) oblivious length kn branch-
ing program that computes f has size at least

|D| (Yf(b)−g(f)) n/(k(k+1) 2
k+4),

where b=1/2k+2.

Note that, in contrast with the bound of Corollary 3, this gives exponential size
lower bounds even for |D|=2 in the case of oblivious branching programs.

6.3. Proof of Theorem 1

Let k, n, s, D and f be as hypothesized in the theorem. As in the oblivious case,
setting p=(k+1) 2k+4 and using Lemma 10, we can write f=Jm

i=1 Pi where
m [ skp−1 and each of the Pi was a bn-pseudo-rectangle for appropriate b. For
arbitrary decision forests this need not be true; instead we show that each decision
forest can be written as an J of not too many bn-pseudo-rectangles.

Lemma 17. Let k, p, n be positive integers with p=(k+1) 2k+4, and n \ 8kp. Let
b=1/2k+2. Let P=(T1, ..., Tkp) be a (kp,

1
p ) decision forest. Then P can be written as

P=I
t

i=1
hi,

where t [ 24b(k+2) n+kp, and each hi is a bn-pseudo-rectangle.

Applying this lemma to each Pi in the representation of f, we can write f as a J
of at most skp−124b(k+2) n+kp functions that are each bn-pseudo-rectangles, as required
to prove the theorem. So it remains to prove the lemma.

Proof. Let T1, ..., Tkp be the decision trees of P. For each input s, let Si(s) be
the set of variables that are not read by Ti on input s. Note that each set Si(s) has
size at least n(1− 1p)−1. Consider all quadruples (A1, A2, I1, I2) where |A1 |=
|A2 |=bn are disjoint sets of variables and I1, I2 are complementary subsets of
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{1, 2, ..., kp}. Call such a quadruple eligible. Note that the number of eligible qua-
druples is bounded above by 2kp( nbn)

2 [ 2kp22H(b) n, using the standard inequality for
binomial coefficients given below in Proposition 25. Since b [ 1/2, −b log2 b \

−(1−b) log2(1−b) and so H(b) [ −2b log2 b. Thus the number of eligible qua-
druples is at most 2kp+4(k+2) bn.

We say that (A1, A2, I1, I2) covers input s if for each i ¥ I1, A1 ı Si(s) and for
each i ¥ I2, A2 ı Si(s). Observe that Lemma 11 implies that each s is covered by
some eligible quadruple (A1, A2, I1, I2).

For each pair (A, I) where A is a variable subset and I ı {1, 2..., kp}, define the
function gA, I that accepts s if and only if, for every i ¥ I, A ı Si(s) and Ti accepts s.
It is easy to see that gA, I does not depend on the variables in A. Also for any
eligible quadruple (A1, A2, I1, I2), the bn-pseudo-rectangle gA1, A2, I1, I2=gA1, I1 NgA2, I2
accepts exactly the set of 1’s of f that are covered by the quadruple. Thus f=
J(A1, A2, I1, I2)gA1, A2, I1, I2 , and this representation satisfies the conclusion of the
lemma. L

7. BOOLEAN BRANCHING PROGRAM DECOMPOSITION

In this section, we prove Theorem 2. Let f be a function and B be a branching
program for f of size at most s and length at most (1+e) n. We first apply Lemma
10 with r=2 and k=1+e. Thus we can write f=J s

j=1 Pj where each Pj is a
(2, (1+e)/2)-decision forest, and we may assume that Pj is deterministic since we
are only considering deterministic branching programs. We will prove the following:

Lemma 18. Let P=(T1, T2) be a deterministic (2,
1+e
2 n)-decision forest with

e ¥ (0, 1) and suppose that the smallest 1-certificate of P is of size at least (1−d) n. If
d+e [ 1/4 then, for any c ¥ (0, 1), we can write P as:

P=h0 KI
t

i=1
hi,

where t [ 2cm, each hi is a N(1− e−d) n/2M-pseudo-rectangle and |h −10 (1)| [
2 (1+b(e, d)/2− c/2) n.

Using the lemma, we easily complete the proof of Theorem 2. Let P1, ..., Ps be
the decision forests in the representation of f in Lemma 10. Observing that any
1-certificate of a Pj must also be a 1-certificate of f, we apply Lemma 18 to each Pj.
For 0 [ i [ 2cn, let h ji be the functions appearing in the representation of Pj. Let
f0=J s

j=1 h
j
0. Then

f=f0 KI
i, j
h ji

where 1 [ j [ s and 1 [ i [ 2cn, as required to prove the Theorem.
So it remains to prove the lemma. Let P=(T1, T2) be a decision forest satisfying

the hypotheses of the lemma. We may assume that every path in T1 and T2 has size
exactly 1+e

2 n. As in the previous proof, we define Si(s), for input s and i=1, 2, to
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be the set of variables that are not read by Ti on input s. We say that Si(s) is the set
of variables missed by s in Ti. Note that |Si(s)| is 1− e

2 n. For any subset S of
variables, and for i=1, 2, let Missi(S) be the set of inputs s such that S ı Si(s),
i.e., those inputs for which Ti(s) avoids S. Define Accepti(S) to be the set of inputs
accepted by Ti that are in Missi(S). Define the function g iS which is 1 on the inputs
in Accepti(S). Observe that the function g iS does not depend on the variables of S.

For a pair of sets (S1, S2) define Miss(S1, S2)=Miss1(S1) 5 Miss2(S2) and
Accept(S1, S2)=Accept1(S1) 5 Accept2(S2). Also, let gS1, S2=g

1
S1 Ng

2
S2 . Let Q be

the set of pairs of sets (S1, S2) of variables each of size 1− e
2 n. Observe that each

input s belongs to exactly one of the sets Miss(S1, S2) for (S1, S2) ¥ Q, namely
Miss(S1(s), S2(s)) and if s is accepted by P it is accepted by exactly one of the
functions gS1, S2 for (S1, S2) ¥ Q, namely gS1(s), S2(s). Thus P=J(S1, S2) ¥ Q gS1, S2 . Now,
in general, the sets S1 and S2 may not be disjoint. By dividing their overlap evenly,
we can find two disjoint sets U1 and U2 of size at least N

(1− e) n− |S1 5 S2|
2 M , such that

U1 ı S1 and U2 ı S2. Therefore gS1, S2 is a N
(1− e) n− |S1 5 S2|

2 M-pseudo-rectangle.
Next we show that the functions gS1, S2 with |S1 5 S2 | > dn are identically 0, and

hence can be omitted from the J. For such a term, gS1, S2 does not depend on
S1 5 S2. If s is accepted by gS1, S2 then any input that agrees with s outside of
S1 5 S2 must also be accepted, which means that the projection of s on
X0(S1 5 S2) is a 1-certificate of P. But this contradicts the definition of d. Hence,
letting R denote the set of pairs (S1, S2) ¥ Q such that |S1 5 S2 | [ dn, we have
P=J(S1, S2) ¥ P gS1, S2 . As noted, each of these terms is a N(1− e−d)2 M-pseudo-rectangle.
Thus we have expressed P as an J of functions of the required form. However, the
number of terms is too large (close to 2n, while we want at most 2nn terms for some
small n).

Next we divide the terms of the J into two parts depending on the size of
Miss(S1, S2). Let 0 [ c [ 1. Call a pair (S1, S2) ¥ R common if Miss(S1, S2) \ 2 (1− c) n,
and rare otherwise, and denote the sets of common and rare pairs by Rcommon and
Rrare. Define the two functions:

grare= I
(S1, S2) ¥ Rrare

gS1, S2 ,

and

gcommon= I
(S1, S2) ¥ Rcommon

gS1, S2 .

Thus P=gcommon Kgrare. Now, by definition of Rcommon, and the fact that the sets
Miss(S1, S2) are disjoint for (S1, S2) ¥ Q, the number of pairs (S1, S2) ¥ Rcommon is at
most 2cn. Thus, writing P=grare KJ(S1, S2) ¥ Rcommon gS1, S2 , we have P in the exact form
required for the lemma, provided that we can upper-bound |g −1rare(1)| appropriately.

The set of inputs accepted by grare is the union of Accept(S1, S2) over all rare
pairs; this is clearly contained in the union of Miss(S1, S2) over all rare pairs. Call
this latter union A. Thus it suffices to prove:
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Lemma 19. Let P=(T1, T2) be a (2,
1+e
2 n)-decision forest with e ¥ (0, 1). Let the

size of the smallest 1-certificate of P be at least (1−d) n and suppose that d+e [

1/4. Let c ¥ (0, 1) and let A=1(S1, S2) ¥ Rrare Miss(S1, S2). Then

log2 |A| [ 11−
c−b(e, d)
2
2 n. (5)

This lemma is the crux of the argument. Its proof uses elementary information
theory. We review some basic definitions and results. Let W be an arbitrary proba-
bility space. For any event A, we write Prob[A] for the probability of A. If C is a
random variable taking values in a finite set S, the binary entropy H(C) is defined
to be −; s ¥ S Prob[C=s] log2 Prob[C=s].

Proposition 20. If C is a random variable taking values in S thenH(C) [ log2 |S|.

If A is an arbitrary event (measurable subset) of the probability space then
the conditional entropy of C given A is H(C | A)=−; s ¥ S Prob[C=s | A] log2
Prob[C=s | A].

Proposition 21. Let C be some random variable taking values in S and let A be
an event. Let SC(A) denote the set of s ¥ S such that Prob[C=s | A] > 0. Then
H(C | A) \ log2 Prob[A]−maxs ¥ SC(A) log2 Prob[C=s].

Proof.

H(C | A)=− C
s ¥ S

Prob[C=s | A] log2 Prob[C=s | A]

\ − max
s ¥ SC(A)

log2 Prob[C=s | A]

\ − max
s ¥ SC(A)

log2
Prob[C=s]

Prob[A]

\ log2 Prob[A]− max
s ¥ SC(A)

log2 Prob[C=s] L

If B1 and B2 are random variables on the same probability space taking values in
S1 and S2, respectively H(B1, B2) is the entropy of the random variable consisting
of the pair (B1, B2). The conditional entropy of B1 given B2 is defined by
H(B1 |B2)=H(B1, B2)−H(B2)=; s ¥ S2 H(B1 |B2=s) ·Prob[B2=s]. The mutual
information of B1 and B2 is defined to be I(B1, B2)=H(B1)+H(B2)−H(B1, B2).

Proposition 22. Let B1, B2 be random variables taking values on finite sets S1
and S2. Then

1. H(B1, B2)=H(B1 |B2)+H(B2 |B1)+I(B1, B2).

2. H(B1, B2) [H(B1)+H(B2).

3. H(B1 |B2) [ maxs ¥ S2 H(B1 |B2=s).

Given two random variables B, C we say that B determines C if C is a function of
B. We have:
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Proposition 23. 1. If B and C are random variables such that B determines C
then (a) H(C) [H(B) and (b) H(C |B)=0.

2. If B1, B2, C1, C2 are random variables such that B1 determines C1 and B2
determines C2 then I(C1, C2) [ I(B1, B2).

Proposition 24. Let B1, B2 and C1, C2 be pairs of random variables such that Bi
determines Ci for i=1, 2. Then

H(B1, B2)+H(C1, C2) [H(B1)+H(B2)+H(C1 |C2)+H(C2 |C1).

Proof. By Proposition 22(1) and Proposition 23(2),

H(C1, C2)=H(C1 |C2)+H(C2 |C1)+I(C2, C1)

[H(C1 |C2)+H(C2 |C1)+I(B2, B1)

=H(C1 |C2)+H(C2 |C1)+H(B1)+H(B2)−H(B1, B2). L

We will need a well known technical fact concerning sums of binomial
coefficients (whose proof we give since we don’t know a reference).

Proposition 25. If k [ n/2, log2(; i [ k (
n
i)) [ nH(k/n).

Proof. By the binomial theorem, for any p [ 1/2, we have 1 \; i [ k p i(1−p)n−i

(ni) \ p
k(1−p)n−k; i [ k (

n
i). Setting p=k/n and taking logarithms yields the desired

inequality. L

Proof of Lemma 19. Consider the probability space on {0, 1}X (which we iden-
tify with {0, 1}n), with the uniform distribution. Events in this probability space
correspond to subsets C of {0, 1}n. The probability of C is Prob[C]=|C|/2n. For a
subset (event) C, let m[C]=log2 |C|=n+log2 Prob[C].

We define the following random variables. For i=1, 2, let Pi be the path taken
in Ti and Si be the set of variables missed in Ti by a random input. Observe that Si
is a function of Pi.

The basic intuition for the proof is this. We are trying to upper bound the size A
by something like 2 (1− n) n where n > 0, i.e., that m[A] [ (1− n) n. Note that A is
defined to be the event that (S1, S2) ¥ Rrare, and so by Proposition 21,
m[A] [H(S1, S2 | A)+max(S1, S2) ¥ Rrare m[(S1, S2)=(S1, S2)]. The second term is at
most (1− c) n by the definition of Rrare. Thus we want to upper bound
H(S1, S2 | A)=H(S1 | S2, A)+H(S2 | S1, A)+I(S1, S2 | A) by cŒn, where cŒ is a
constant less than c. Now observe that given A, |S1 5 S2 | is small, and therefore S1
and S2 are ‘‘approximately’’ complementary subsets of variables, and so one of
them approximately determines the other. This allows us to conclude that the first
two terms in the sum are small. We use Proposition 23 to upper bound the third
term by I(P1, P2 | A). Intuitively, this represents the amount of information P1
reveals about P2 (and vice versa) given that A holds. Now A implies that P1 and P2
read very few variables in common, and this can be used to show that the mutual
information is small. Although the intuition is based on mutual information, in the
formal argument we use Proposition 24 and do not explicitly mention mutual
information.
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We now proceed with the proof by considering H(P1, P2 | A)+H(S1, S2 | A). As
noted, Proposition 21 implies H(S1, S2 | A) \ m[A]−(1− c) n. To apply the same
proposition to H(P1, P2 | A) we note that any pair of paths (P1, P2) corresponding
to a point in s ¥ A together specify at least (1−d) n variables and so m[(P1, P2)=
(P1, P2)] [ dn. ConsequentlyH(P1, P2 | A) \ m[A]−dn and so

H(P1, P2 | A)+H(S1, S2 | A) \ 2m[A]−(1− c+d) n.

On the other hand, by Proposition 24,

H(P1, P2 | A)+H(S1, S2 | A) [H(P1 | A)+H(P2 | A)+H(S1 | S2, A)+H(S2 | S1, A)

[ (1+e) n+H(S1 | S2, A)+H(S2 | S1, A)

where the last inequality comes from Proposition 20 and the fact that the number
of paths in each tree is 2 (1+e) n/2.

Since the two remaining terms are symmetric it remains to upper bound
H(S1 | S2, A). Define the random variables I=S1 5 S2 and J=X−(S1 2 S2) and
observe that the triple (S2, I, J) determines S1. Hence

H(S1 | S2, A) [H(S2, I, J | S2, A) by Proposition 23(1)

[H(S2 | S2, A)+H(I | S2, A)+H(J | S2, A) by Proposition 22(2)

=H(I | S2, A)+H(J | S2, A) by Proposition 23(1)

Since A implies |I| [ dn, Proposition 20 and Proposition 25 imply that
H(I | S2, A) [ log2 ; i [ dn (

n
i) [ nH(d). Now, by Proposition 22(3), H(J | S2, A) [

maxS2 H(J | S2=S2, A). Given A, |J| [ (d+e) n and given S2=S2, J is contained in
S2 which is a set of size (1+e) n/2. Again, using Proposition 20 and Proposition 25
we conclude H(J | S2, A) [ n

1+e
2 H(

2(e+d)
1+e ) (here we use the hypothesis that

e+d [ 1/4) Thus

H(S1 | S2, A) [ 5
1+e

2
H 12(e+d)

1+e
2+H(d)6 n

and so

2m[A]−(1− c+d) n [H(P1, P2 | A)+H(S1, S2 | A)

[ 11+e+2 51+e

2
H 12(e+d)

1+e
2+H(d)62 n.

Solving, we fine

m[A] [ 11+1
2
5e+d+(1+e) H 12(e+d)

1+e
2+2H(d)− c62 n

=11+b(e, d)− c

2
2 n,

which is what we wanted to prove. L
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8. PROOF OF LEMMA 5

For the first part of the lemma, we want to prove a lower bound on Yf(b) where
f is a restriction of QFM or QFM[0] for a GFT matrix M. We start with a lemma
that holds for arbitrary symmetric matrices over a finite field. For a n×n matrixM
and any b ¥ (0, 1), define FM(b) to be 1/n times the minimum rank of any
KbnL× KbnL minor of M that does not include any diagonal element of M.
Trivially, FM(b)=FN(b) if M and N have the same off-diagonal elements; in
particular FM(b)=FM[0](b).

Lemma 26. Let M be a symmetric matrix over GF(q) with q odd and let D ı

GF(q) with |D| \ 2. Let f be the restriction of QFM to Dn. Then Yf(b) \ FM(b) for
b ¥ [0, 1].

Proof. Let g be a bn-pseudo-rectangle that is a portion of f. Let A1 and A2 be
the associated sets and let g1 be the function on X−A1 and g2 the function on
X−A2 such that g=g1 Ng2. Our goal is to show that |g −1(1)| [ |D| (1−FM(b)) n.

Let us denote assignments to X as (r, s1, s2) where r is an assignment to the
variables outside of A1 2 A2, and sj is an assignment to Aj. For fixed r, there are
|D|2KbnL assignments (r, s1, s2) that extend it. Let C=C(r) denote the subset of
these assignments that are accepted by g. We will show that |C| [ |D| (2KbnL−FM(b)) n; by
summing over the |D|n−2KbnL choices of r, we get |g −1(1)| [ |D| (1−FM(b)) n as required.

So let us prove the upper bound on |C|. Since gi does not depend on Ai, C=
{r}×S1×S2, where

S1={s1: (r, s1, s2) ¥ C for some s2}

S2={s2: (r, s1, s2) ¥ C for some s1}.

Substitute the values assigned by r into (r, s1, s2)TM(r, s1, s2). Because M is
symmetric, we obtain a polynomial of the form sT1Ns2+F1(s1)+F2(s2), where N is
a KbnL× KbnL matrix equal to twice the minor of M indexed by A1×A2 and each Fi
is a polynomial function. Lemma 27 below, which is a slight generalization of
results in [BRS93, Tha98], immediately implies the required bound |C|.

Lemma 27. Let N be a t× t matrix over GF(q). For i=1, 2, let Fi: GF(q) tQ
GF(q) be arbitrary functions, and let F denote the function from GF(q) t×
GF(q) t to GF(q) given by F(s1, s2)=sT1Ns2+F1(s1)+F2(s2). For a set D ı GF(q),
suppose that S1, S2 ı D t satisfy that for every (s1, s2) ¥ S1×S2, F(s1, s2)=c for
some constant c. Then |S1×S2 | [ |D|2t− rank(N).

Proof. For i=1, 2 fix some sg
i ¥ Si. Then for any (s1, s2) ¥ S1×S2, we have

(s1−sg
1 )
TN(s2−sg

2 )=F(s1, s2)+F(s
g
1 , s

g
2 )−F(s1, s

g
2 )−F(s

g
1 , s2)=0. Defining

Vi for i=1, 2 to be the linear span of Sg
i={s−sg

i : s ¥ Si} we have that vT1Nv2=0
for all v1 ¥ V1 and v2 ¥ V2. This implies dim(V1)+dim(V2) [ 2t− rank(N). The
lemma now follows since |Si |=|S

g
i | [ |D|

dim(Vi). L

This completes the proof of Lemma 26. L
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Next we want to apply Lemma 26 in the case thatM is a GFT matrix, and to do
this we want to lower bound FM(b). Recall that a GFT matrix group G of order n
over field GF(q), with q and n relatively prime, is a square matrix N whose rows are
indexed by elements of G and whose columns correspond to distinct characters of G
over GF(q). The two key properties of N are: (1) It has rank n, and (2) For
elements g1, g2 ¥ G and j ¥ [n], Ng1g2, j=Ng1, jNg2, j.

Lemma 28. Let N be a GFT metrix corresponding to the group G of order n, over
the field GF(q) with q relatively prime to n. Any u×t minor of N has rank at least
ut/n.

This lemma both simplifies and improves a bound in [BRS93] which showed
that every u×t minor of such a matrix has rank at least ut/(g(n, u, t) n), where
g(n, u, t) is a function that is typically logarithmic in n. (This new bound also
improves the lower bound on the size of read-k branching programs proved in that
paper by shaving off a factor of k in the exponent.)

Proof. For H ı G and any set C of columns, let NH, C denote the sub-matrix of
N indexed by H×C. Fix U of size u and J of size t, and consider the rank of NU, J.
Since N is nonsingular, NG, J has rank t implying that it has a t× t minor NW, J, for
some W ı G, of full rank. Furthermore, for any g ¥ G, the matrix NgW, J is also a
t× t matrix of full rank since, by property (2) above of GFT matrices, for j ¥ J the
jth column of NgW, J is the jth column of NW, J multiplied by the nonzero value Ng, j.
Thus for any g ¥ G the submatrix NgW 5 U, J of NU, J has rank |gW 5 U|, so it
suffices to show that we can choose g so that |gW 5 U| \ ut/n. Choose g ¥ G at
random. For each gg ¥W, Prob[ggg ¥ U]=Prob[g ¥ U(gg) −1]=u/n. By linearity
of expectation, the expected number of gg ¥W for which ggg ¥ U is ut/n. Therefore,
for some fixed g, |gW 5 U| \ ut/n and so NgW 5 U, J has rank at least ut/n. L

It follows from Lemma 28 that for a GFT matrix N, FN(b) \ b2. Combining this
with Lemma 26, we have Yf(b) \ b2 as required to prove the first part of Lemma 5.

We now turn to the second part. LetM be a GFT matrix. It suffices to show that
for any partial assignment r that fixes all but 2 variables, z1, z2 of X, the restriction
QFM[0]Kr is not the constant function. Since M is symmetric, and its off-diagonal
elements are non-zero, the restriction satisfies QFM[0]Kr=2a(z1+b)(z2+c)+d for
some constants a ] 0, b, c, d ¥ GF(q). Since q is odd, setting z1 to any value in
GF(q)−{−b}, this becomes aŒ(z2+c)+d for some aŒ ] 0 which takes on all
possible values in GF(q) by varying z2. Thus QFM[0]Kr is non-constant.

9. PROOF OF LEMMA 8

Let M be the n×n Sylvester matrix over GF(3), and let f=BQFM. As in the
second half of Lemma 5 we want to show that to make f constant, we need to fix
almost all of the variables. The argument used for the second half of Lemma 5 does
not work here, because the values of z1, z2 are restricted to {0, 1}. We first need a
lemma showing that in every sufficiently large principal minor of M, there exist
principal minors whose entries sum to arbitrary values.
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Lemma 29. Let M be the n×n Sylvester matrix over GF(3) where n=2k. Let
I ı [n] be an arbitrary subset of size at least 4`n log n. For every a ¥ GF(3), there
exists J ı I, with |J| [ 3 such that the sum of the entries inMJ, J is a.

Proof. For a=0, set J=”. So assume a ¥ {1, −1}. Recall that the rows and
columns of the Sylvester matrix are indexed by binary vectors of length k, which are
identified naturally with subsets [k] and we view I as a collection of 4`n log n
such subsets. For a=1 and for a=−1, we want a sub-collection J of I such that
the sum of entries inMJ, J is a. The fact, which we leave the reader to verify, gives a
criterion for a collection of size 3 to satisfy this.

Proposition 30. Suppose A0, B1, B2 are distinct subsets of [k] such that
|A0 |, |B1 |, and |B2 | are all even or all odd and let J={A0, B1, B2}.

1. If |A0 5 B1 | and |A0 5 B2 | are both even and |B1 5 B2 | is odd then the sum of
entries inMJ, J is −1.

2. If |A0 5 B1 | and |A0 5 B2 | are both odd an |B1 5 B2 | is even then the sum of
entries inMJ, J is+1.

We will also need the so-called ‘‘Eventown-Oddtown’’ theorems (see [BF92]),
stated as a proposition below. We sketch the proof for the sake of completeness.

Proposition 31. Let F be a family of sets. We say that F has property Pi, e
(respectively Pi, o) if the common intersection of every collection of i distinct sets from
F is even (respectively odd). The following table gives an upper bound on the size of
any family of subsets of [k] satisfying some of these properties:

: P1, e P1, o
P2, e 2k/2 k
P2, o k 2k/2

Proof Sketch. All these bounds can be proved using simple linear algebra by
associating each set with its characteristic function, which can also viewed as
vector of length k over GF(2). Let |F|=m and let S be the associated set of m
characteristic vectors.

First, suppose F satisfies P1, o and P2, e. Define an m×k matrix M (called the
incidence matrix) whose row vectors belong to S. Consider the m×m matrixMMT.
The (i, j)th entry equals the parity of intersection of the ith and jth sets. By the
property satisfied by F, it follows thatMMT is an identity matrix of order m. Since
rank is sub-multiplicative, and bounded by both the row and column dimension,
m=rank(MMT) [ rank(M) [ k.

Next, consider the case where F satisfies P1, e and P2, o. Define two families of sets

G={A 2 {k+1} : A ¥F} 2 {[k]}

H={A 2 {k+1} : A ¥F} 2 {1}

Observe that |G|=|H|=m+1. Now let M and N be the (m+1)×(k+1)
incidence matrices of G and H respectively. Consider the (m+1)×(m+1)
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matrix MNT. Each diagonal entry equals 1 and the remaining entries except for
those in the (m+1)st column equal 0. Thus MNT is an upper triangular matrix
with all diagonal entries non-zero, implying that m+1=rank(MNT) [ rank(M) [
k+1, which finishes the proof for this case.

For the case where F satisfies P1, e and P2, e, the vector space orthogonal to S,
namely S + , contains S as a subset. Since the sum of dimensions of S and S + is k,
the dimension of S is at most k/2, implying the bound on the size of S.

The last case where F satisfies P1, o and P2, o follows from the previous case by
fixing a vector s ¥ S and applying the above argument to SŒ={v−s : v ¥ S}. L

Continuing the proof of Lemma 29, we now show that I contains a collection
J={A0, B1, B2} such that they all have even size or all have odd size, and exactly
one pair of them has intersection of odd size. Then by the first part of Proposition
30, the sum of entries inMJ, J is −1. A similar argument handles the other case.

Since |I| \ 4`n log n, there is a sub-family F of size at least 2`n log n such
that every set in F has even size or every set in F has odd size. Define a graph on
vertex set F where there is an edge between A, B ¥F if |A 5 B| is odd, and let a be
the size of the largest independent set and w be the size of the largest clique. If there
is no triple A0, B1, B2 as required to apply Proposition 30, then the graph is a union
of disjoint complete graphs, which implies that |F| [ aw. But Proposition 31
implies aw [ k2k/2=`n log n < |F|, which is a contradiction proving that the
required triple exists. L

We now have the tools to prove Lemma 8. Let r be a partial assignment to all
but 24`n log n variables of X and let Z ıX be the variables unset by r. Then for
an assignment s to Z we have: Then BQFMKr(s)=sTBs+A·s+C, where B
denotes the sub-matrix of M corresponding to the rows and columns of Z, and the
vector A and scalar C are determined by r and M. It suffices to show that
q(s)=sTBs+A·s takes on all possible values in GF(3) for the various choices of
0–1 assignments s to Z.

Setting all variables to 0 makes the function 0. Fix a ¥ {−1, 1}. Our goal is to
identify three variables such that setting then to 1 and everything else to 0 will make
the function equal to a. Classify each variable xj by the pair (Mj, j, Aj) ¥
{−1, 1}×{−1, 0, 1}. There are 6 possible values of this pair, and so there is a set
of at least 4`n log n variables ZŒ ı Z that belong to the same class. If we set any
three variables in ZŒ to 1, and everything else to 0, q(s) evaluates to the sum of the
off-diagonal entries in the 3×3 principal minor corresponding to these variables.
By Lemma 29 such a minor exists whose sum evaluates to a (mod 3), and the
lemma follows.

10. SEMANTIC VERSUS SYNTACTIC BRANCHING PROGRAMS

A path P in a branching program is a semantic path if it is consistent with some
input. A path is not semantic if and only if there is some pair of nodes u and w on
the path that have the same variable label x, such that the arcs following them have
different labels. If Z is a subset of variables and k is an integer, a path P is read-k
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on Z, if no variable of Z appears in P more than k times. We say that B is syntactic
(respectively, semantic) read-k on Z if every path (respectively, every semantic path)
in B is read-k on Z. (If Z contains all the variables, we omit the qualifying phrase
‘‘on Z’’ which conforms to the standard definition.)

In this section we exhibit, for every k, a simple function fk that can be computed
in linear size by a semantic read-twice branching program but requires an exponen-
tial size syntactic read-k branching program. The key to defining our functions is
the construction of functions gk on variable set X 2 Y, that can be computed by
linear size branching programs that are semantic read-twice on X but require
exponential size on any branching program that is syntactic read-k on X. Before we
give the construction of gk, we describe how the function fk is computed from gk.

Definition 32. Let g be a boolean function on variable set X 2 Y and let
Y1, Y2, ..., Yk be disjoint copies of Y. The kth extension of g on Y, denoted by g (k), is
defined over variable setX 2 Y1 2 · · · 2 Yk. For x ¥ {0, 1}X and y1 ¥ {0, 1}Y1, ..., yk ¥
{0, 1}Yk, g(x, y1, ..., yk)=1 if and only if (i) g(x, y1)=1 and (ii) y1=·· ·=yk.

The relationship between computing g and its kth extension on Y is given by the
following lemma:

Lemma 33. Let g be a Boolean function on variable set X 2 Y, and let g (k) be its
kth extension on Y.

1. If g can be computed by branching program P that is syntactic read-k on Y,
then g (k) can be computed by a branching program Q that is syntactic read-twice on
1i Yi and satisfies size(Q)=size(P)+O(; i |Yi |). Furthermore, any syntactic or
semantic properties of P with respect to X also hold in Q.

2. If g (k) can be computed by a syntactic read-k branching program, then g can
be computed by a branching program that is syntactic read-k on X and has the same
size.

Proof. Part 2 is easy: if QŒ computes g (k), construct a branching program for g
by replacing each occurrence of a variable of any Yi in QŒ by its corresponding
variable of Y; the resulting branching program remains syntactic read-k on X and
has the same size.

For Part 1, Q consists of two blocks and accepts an input if and only if both
blocks accept. On input x, y1, ..., yk, the first block of Q checks that y1=·· ·=yk.
This can be done in size O(; i |Yi |), looking at each variable exactly once. For the
second block, transform P as follows: at any node n accessing a variable v of Y, let i
be the maximum number of occurrences of v along any path from the source to n

and replace v with its corresponding variable in Yi.
Observe that Q is syntactic read-twice on 1i Yi and has the desired size.

Moreover, the first block of Q does not access X, and the second block of Q has the
same graph structure as P and the nodes labeled with variables in X are identical in
both. It follows that the syntactic or semantic properties with respect to X are
identical. L
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Suppose that for positive integer k, g is a function on X 2 Y that satisfies: (i) it
can be computed efficiently by a branching program that is syntactic read-k on Y
and semantic read-once on X and (ii) it requires exponential size to be computed by
any branching program that is syntactic read-k on X. Lemma 33 implies that its
kth extension on Y, g (k) can be computed efficiently by a semantic read-twice
branching program but requires an exponential size syntactic read-k branching
program. Thus g (k) witnesses the desired separation. Our goal is to construct for
each k \ 2 a function gk on X 2 Y that satisfies (i) and (ii) above. We now do this.

Definition 34. • For positive integers n and k, we refer to the set [n]k as the
k-dimensional hypercube of side n. A point v of the hypercube is denoted
(v0, v1, ..., vk−1), with coordinates indexed from 0. For d in {0, ..., k−1} and
i ¥ [n], the ith d-plane is the set Pdi={v ¥ [n]

k : vd=i}, i.e., Pdi is the ith
hyperplane perpendicular to the d axis.

• Without loss of generality, let k+1=2r for some integer r. Let X and Y be
two sets of variables. The variables of X correspond to the points of v ¥ [n]k+1 and
take on values in {−1, 1} which are also treated as elements of GF(3) and
the variables of Y correspond to ordered pairs (v, d) where v ¥ [n]k+1 and d ¥
{0, ..., r−1} and take on boolean values. Henceforth, x denotes an assignment to X
and y denotes an assignment to Y. The assignment x can be viewed as an array x
indexed by [n]k+1 with entries in {−1, 1}. An assignment to Y can be viewed as an
array y also indexed by [n]k+1 whose entries are binary strings yv=y

r−1
v , ..., y

0
v ,

each such string is interpreted as an integer in the range {0, ..., k}.

• For d ¥ {0, ..., k} and i ¥ [n],P i
d(x) denotes the product of the entries of x

that lie on the ith d plane and let Sd(x)=;n
i=1 P i

d(x). Here all arithmetic is over
GF(3).

• For d ¥ {0, ..., k−1}, let Xd=Xd(y) be the set of those v ¥ [n]k for which
yv=d. The sets {Xd: 0 [ d [ k} partition X. The variables in Xd are said to be
active for d.

• Given assignments x and y to X and Y, define xd to be the assignment to X
given by

xdv=3
xv
1

if v ¥Xd

otherwise.

• Define the function Hd on X 2 Y by Hd(x, y)=Sd(xd).

• Define the function gk on X 2 Y

gk(x,y)= L
d ¥ {0,...,k}

(Hd(x,y) — 0 (mod 3))

Note that for each d, Hd(x, y) can be computed by a branching program of size
O(|Xd|+|Y|) that reads each variable of Y 2Xd exactly once and reads no other
variables of X. Since the set Xd depends on Y, the branching program depends
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syntactically on all of the variables of X, but semantically only on Xd. Thus
gk(x, y) can be computed by a branching program of size O(|X|+(k+1) |Y|)
that is syntactic read-(k+1) on Y and semantic read-once on X. On the other hand,
we have the following hardness result.

Theorem 35. Any non-deterministic branching program that is syntactic read-k
on X requires exponential size to compute gk.

As noted above, Lemma 33 then implies:

Corollary 36. Let fk=g
(k+1)
k be the (k+1)st extension of gk on Y. There is a

simple semantic read-twice branching program of linear size computing fk. On the
other hand, any non-deterministic syntactic read-k branching program for fk requires
exponential size.

The proof of Theorem 35 relies heavily on machinery developed in [BRS93,
Tha98]. If d ¥ {0, ..., k} and J ı [n], a (d, J) transversal is a pair A, B of disjoint
subsets A={aj: j ¥ J} and B={bj: j ¥ J} of [n]k+1 where aj, bj both belong to the
jth d-plane. We call a function R on variables set X a planar pseudo-rectangle of
order m if for some d and J of size m there is a (d, J)-transversal A, B such that R
can be expressed as RŒNRœ where RŒ depends only on X0B and Rœ depends only
on X0A.

Proposition 37 ([BRS93, Tha98]). Let f be a Boolean function on variable set
X=[n]k+1. Let m=n/(6(k+1) 2k+1) and p=36 ·k · 2k. Suppose |R −1(1)| [ t
for any planar pseudo-rectangle R of order m that is portion of f. Then, any non-
deterministic branching program for f that is syntactic read-k requires size
(|f −1(1)|/t)1/(2kp).

The above proposition can be extended to handle branching programs that are
syntactic read-k on a subset of the variables. Suppose f is a Boolean function on
X 2 Y. We say that a function R on X 2 Y is a planar pseudo-rectangle of order m
on X if for some d and J of size m there is a (d, J)-transversal A, B such that
R=RŒNRœ, where RŒ depends on Y 2X0B and Rœ depends on Y 2X0A.

We have the following straightforward extension of Proposition 37:

Proposition 38. Let g be a Boolean function on variables set X 2 Y. Let
m=n/(6(k+1) 2k+1) and p=36 ·k · 2k. Suppose |R −1(1)| [ t for any planar pseudo-
rectangle R of order m on X that is a portion of g. Then, any non-deterministic
branching program for g that is syntactic read-k on X requires size (|f −1(1)|/t)1/(2kp).

Proof (Sketch). Let P be a branching program computing g. The proof is
essentially the same as that of Proposition 37. A critical part of the proof of Prop-
osition 37 involves keeping track of variables read along the various paths. We have
to only modify the proof so that along each path in P, we keep track of the
variables in X but ignore the variables in Y. L

To apply Proposition 38 we first need to lower bound |g −1k (1)|.

Claim 39. |g −1k (1)| \ 2
|X 2 Y|−3(r+1)(k+1)
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Proof. For each d ¥ [0, k], let Id={v ¥ [n]k+1 : vd ¥ {2, 3, 4} and vdŒ=1, for
dŒ ] d}. Let X −d (resp., Y −d) be the set of variables of X (resp. Y) corresponding to
the indices Id. Let XŒ=1d ¥ [0, k] X −d and YŒ=1d ¥ [0, k] Y −d. Fix any assignment r to
(X 2 Y)−(XŒ 2 YŒ); we show that it can always be completed to some assignment
such that for each d, Hd(X, Y) — 0 (mod 3), thus satisfying gk(X, Y). Because
|XŒ 2 YŒ|=3(r+1)(k+1), the claim follows.

Fix the variables in Y −d so that for each d, the variables in X −d are active for d.
This is possible since the various Id are disjoint. Fix any d and write X −d=
{z1, z2, z3}. Substituting the values according to r, Hd(X, Y) can be written as
; i uizi+b, for some constants u1, u2, u3 ¥ {−1, 1}, and b. It is not too hard to
show for any b, u1, u2, u3 that there is a setting of the zi’s in {−1, 1} so that
; i uizi+b=0 (mod 3) Repeating this for all d’s gives a satisfying assignment for
gk(X, Y). L

Next we upper bound the size of a planar pseudo-rectangle of order m that is a
portion of gk.

Claim 40 Let R=RŒ 2 Rœ be a planar pseudo-rectangle of order m with
associated (d, J)-transversal A, B. If R is a portion of gk, then |R−1(1)| [
2 |X 2 Y|−m/(4(k+1)2).

Proof of Claim 40. By definition, there exists a d and an index set J ı [n] of
size m such that A={aj: j ¥ J} and B={bj: j ¥ J} is a (d, J)-transversal. For an
assignment p of Y, we say that the pair (aj, bj) with j ¥ J is good for y if
aj, bj ¥Xd(p). Let Gp be the set of j ¥ J such that (aj, bj) is good for p. Let us write
an assignment to Y 2X as (p, r, n) where p is the assignment to Y, r is the
assignment to all of X except the positions indexed by Gp and n is the assignment to
X for the indices Gp. We select a random assignment to Y 2X by first choosing p

uniformly at random and then choosing r and n uniformly at random. We want to
upper bound the probability that (p, r, n) ¥ R−1(1).

First consider fixed settings of p and r. Let C be the set of satisfying assignments
of R consistent with the given fixed p and r. Because R is a portion of gk, every
assignment in C satisfies Hd(x, y) — 0 (mod 3). Having fixed p and r, the polyno-
mial Hd(X, Y) reduces to (; j ¥ Gp ujajbj)+c, where uj ¥ {−1, 1} for all j and
c ¥ GF(3) are constants. Applying Lemma 27 to the |Gp |× |Gp | matrix of full rank
whose diagonal entries are the uj’s, we obtain that |Cr | [ 2 |Gp |, while there are 22 |Gp |

possible assignments to n. From this we conclude that conditioned on fixed values
of p and r the probability that (p, r, n) ¥ R is at most 2−|Gp |.

For each fixed pair j ¥ J, the probability that j ¥ Gp is 1/(k+1)2, so the expected
size of Gp is m/(k+1)2. Therefore, by Chernoff’s bound, Prob[|Gp|[m/(3(k+1)2)][
e−2m/(9(k+1)

2).
So now we can then upper bound the probability that (p, r, n) ¥ R−1(1) by

Prob[|Gp | [ m/3(k+1)2]+2−m/3(k+1)
2
[ e−2m/(9(k+1)

2)+2−m/3(k+1)
2) [ 2−m/(4(k+1)

2). L

Using the claims, we apply Proposition 38 to gk, with t=2 |X 2 Y|−m/(4(k+1)2),
to get a lower bound of 2 (m/4(k+1)

2)−3(r+1)(k+1))/(72k22k) on the size of any branching
program that is syntactic read-k on X, provided that m=n/(6(k+1) 2k+1). Taking
n sufficiently large, this lower bound is bounded below by 2n/b(k) for some function
b(k). This completes the proof of Theorem 35.
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