
Combining Constraint Solving and SymbolicModel Checking for a Class of Systems withNon-linear ConstraintsWilliam Chan?, Richard Anderson, Paul Beame, David NotkinComputer Science and Engineering, University of Washington, Box 352350Seattle, WA 98195-2350, U.S.A.fwchan,anderson,beame,notking@cs.washington.eduAbstract. We extend the conventional BDD-based model checking al-gorithms to verify systems with non-linear arithmetic constraints. Werepresent each constraint as a BDD variable, using the information froma constraint solver to prune the BDDs by removing paths that corre-spond to infeasible constraints. We illustrate our technique with a simpleexample, which has been analyzed with our prototype implementation.1 IntroductionAlthough symbolic model checking [BCM+90] based on Binary Decision Dia-grams [Bry86], or BDDs, has been remarkably successful for verifying �nite statesystems, it fails when complex arithmetic constraints are present. For example,if the bits of the integers x, y and z are represented as BDD variables, the BDDfor the non-linear constraint xy = z has exponential size [LS81]. In this paper,we tightly couple a constraint solver with a BDD-based model checker to verifysystems with possibly non-linear arithmetic constraints.A large class of embedded, reactive systems consist of a �nite-state controlcomponent together with numeric data inputs that measure quantities such asvelocity, temperature, etc. In these systems, state transitions depend on predi-cates, or constraints , on these numerical values.We have been studying the practicality of model checking for speci�cationsof large and complex reactive software systems of this type. Our major e�orthas been directed at the preliminary requirements of one such system, TCAS II,an airborne collision avoidance system used on many commercial aircraft. In[ABB+96] we applied BDD-based model checking to about one third of theTCAS II speci�cation, discovering a number of violations of desirable properties.The full speci�cation|expressed in RSML [LHHR94], a dialect of Statecharts[Har87]|comprises about 400 pages.Our approach for handling constraints exploited �niteness of the data inputdomains, representing each bit of data input as a BDD variable and constraintsby BDDs in these variables. This worked well when dealing with purely linear? Supported by a Microsoft Graduate Fellowship

constraints but did not extend e�ciently to non-linear constraints, such as thosefound in the remaining portions of TCAS II.In this paper, we propose to represent each (linear or non-linear) constraint,instead of each bit, as a BDD variable. For soundness and completeness, in-feasible combinations of constraints have to be detected, which we do using anauxiliary constraint solver.The class of systems we consider is de�ned by a restriction on the updatesto data values: a transition must either set all new data values based only onabsolute properties of their current values, or else leave them unchanged. A keyproperty of such systems is that the decision to take a transition depends on thecurrent data only via Boolean combinations of the constraints originally presentin the speci�cation. This restriction was also partly motivated by the semanticsof RSML and, although it cannot handle all of TCAS II, it does allow modelingof a signi�cant portion of it. We de�ne our system model and show the keyproperty of the restrictions on the transitions in Sect. 2.Given the key property, a simple approach to combining the model checkerand constraint solver is to test all combinations of constraints for feasibilitybefore applying model checking. We develop a potentially more e�cient approachwhereby we prune the infeasible paths from the BDDs on the
y. We present ourmodel checking algorithms in Sect. 3. and give a simple example that has beenanalyzed with our prototype implementation in Sect. 4.Related Work. We have opted to augment BDD-based model checking to dealwith non-linear constraints. The main reason is that we are interested in systemswith large and complex control logic, for which only BDD-based model check-ing has proven to work well. The high dependence between control and datapaths also prevents us from separating them for veri�cation, a technique that issometimes used in microprocessor veri�cation.Most work on handling non-linearity in veri�cation has been focused onarithmetic circuits. One approach is to use BMDs or *BMDs [BC95] and theirvariants, such as HDDs [CFZ95]. Although they can represent the product xyconcisely, representing the constraint xy = z still requires exponential size. Infact, Thathachar [Tha96] shows that small variations of these representationsare not likely to solve the problem. Our approach can deal with not only inte-gral multiplicative constraints but also arbitrarily complex (e.g. trigonometric)constraints over �nite or in�nite domains, provided an appropriate constraintsolver is available.Abstracting a constraint as a single Boolean variable is not a new idea (e.g.,[CDV96]). However, since infeasible combinations of constraints are not auto-matically detected, either the approach is incomplete for safety properties, orit requires substantial manual abstraction. Wang et al. [WME93] also representcertain timing constraints in distributed real-time systems as BDD variables.However, to ensure soundness and completeness, their method requires buildinga BDD in exponential time before running the �xed-point algorithm. We try toavoid a similar preprocessing by restricting the class of systems that we dealwith and by �ltering the BDDs on the
y.2

Note that the work on nonlinear hybrid systems [HH95] di�ers from ourssince it is concerned with constraints that are non-linear di�erential equations.2 ModelsWe �rst give the de�nitions of basic transition systems, bisimulation equivalence,and quotient systems. Then we present our system model, whose semantics canbe de�ned in terms of a basic transition system, and then show that certainrestrictions on the transitions give rise to a natural bisimulation.2.1 Basic Transition SystemsA reactive system can be modeled as a basic transition system hQ;Q0;!; �; Li,where Q is a set of states, Q0 � Q is a set of initial states, ! � Q � Q is thetransition relation, � is a set of atomic propositions, and L:Q 7! 2� labels eachstate with the set of atomic propositions in � that are true in that state. If wehave q ! q0, then the state q0 is called a successor of q.Intuitively, an observer sees the label of the current state, but not the stateitself. Two states are indistinguishable if their labels are the same and theirsuccessors are again indistinguishable. Formally, we say that an equivalence re-lation � of Q is a bisimulation (cf. [Mil80, pp. 42]) if for all states q1 and q2, wehave that q1 � q2 implies (1) L(q1) equals L(q2) and (2) for all q01 in Q withq1 ! q01, there exists a q02 in Q with q2 ! q02 and q01 � q02.The quotient system of hQ;Q0;!; �; Li with respect to a bisimulation � isa basic transition system hQ�; Q�0 ;!�; �; L�i. The quotient state space Q� isthe set of equivalence classes induced by �. For all S and S0 in Q�, we haveS !� S0 if and only if there exist an s in S and an s0 in S0 with s ! s0. Wede�ne L�(S) = L(s) for any s in S, and Q�0 = fS 2 Q� j S \Q0 6= ;g. We saythat � is �nite if Q� is �nite.Many properties of hQ;Q0;!; �; Li can be expressed in the temporal logicCTL* [EH86] as formulas whose atomic propositions are taken from �. CTL* isstrictly more expressive than CTL and LTL, commonly used in model checking.For our methods we need the following theorem (see, for example, [BCG88] fora proof of a similar theorem):Theorem1. Any CTL* formula f is true in a basic transition system M if andonly if f is true in the quotient system of M with respect to any bisimulation.2.2 System ModelWe are interested in reactive systems with a �nite control component and a �niteor in�nite numeric data component. The control component is represented bya �nite set N of control nodes . The data component is represented by a �nitevector x of data variables , and the domain of each variable is a �nite or in�nitesubset of IR, the set of reals. Let D be the Cartesian product of the domains of3

the data variables. An assignment to x denotes a point in D, and a constrainton x denotes a subset of D. More explicitly, a constraint c(x) is a predicate ofthe form g(x) ./ 0 with g:D 7! IR and ./ is one of f<;�;=; 6=;�; >g. If we haveg(x) � a � x+ b for some vector a and constant b, then the constraint is linear .We are interested in both linear and non-linear constraints. We also call any�nite Boolean combination of constraints a constraint. We denote by [[c(x)]] theset of points in D that satisfy c(x). The constraint c(x) is feasible if and only if[[c(x)]] is not empty. We write c for c(x) when there is no ambiguity.Our system model is a tuple hN;N0;x; D;�;Ci, where N , x, and D arede�ned as above, N0 � N is a set of initial control nodes, � is a mapping fromN2 to 2D�D, and C is a �nite set of constraints on x. The system model de�nes abasic transition system hQ;Q0;!; �; Li as follows. The state space Q is N �D.The set of initial states Q0 is N0�D. We de�ne L(v; a) = fvg[fc 2 C j a 2 [[c]]gand � = N [C. Intuitively, this choice of labeling implies that the controlnodes are fully observable, while data points are only distinguishable throughthe constraints in C.The transition relation ! is de�ned so that for all (v; a) and (v0; a0) inN � D, (v; a) ! (v0; a0) if and only if (a; a0) is in �(v; v0). If we de�ne x0 =(x01; x02; : : : ; x0m), the \next-state" version of x = (x1; x2; : : : ; xm), then we canthink of � as specifying as a mapping from pairs of nodes to joint constraintson x and x0. That is, for any v and v0 in N , we have �(v; v0) = [[�(x;x0)]] forsome constraint �(x;x0). For example, if �(v; v0) is [[x1 > 0 ^ x01 = x1 + 1]]and the domain of x1 is IR, then (1; 2) 2 �(v; v0) so (v; 1)! (v0; 2) is a possibletransition.2.3 Restrictions on TransitionsThe system model de�ned above is very general and contains classes of systemsthat are undecidable or intractable for model checking. We restrict our attentionto system models with the following property on �.Property 2. For all (v; v0) in N2, �(v; v0) is either1. [[�1(x) ^ �2(x0)]], or2. [[�1(x) ^ �2(x0) ^ x0 = x]]where �1(x) and �2(x) are some Boolean combinations of constraints from C.In the above de�nition, �2(x0) is the renaming of �2(x) with the occurrencesof x replaced by x0. We call the �rst kind of transition above data-memoryless .The idea is that the value of x0 is independent of x. For example, �(v; v0) =[[x1 < 3 ^ x01 > 5]] satis�es the property (if the constraints x1 < 3 and x1 > 5are in C). The second kind of transition is called data-invariant since the valuesof all the data variables remain unchanged after the transition.Property 2 may seem quite restrictive. Even the simple constraint x01 = x1+1mentioned earlier is ruled out. However, it does allow complex \guarding condi-tions", like x1x2 < x3 or x1 > sinx2, etc. As we will see in Sect. 4, this property4

is naturally exhibited by certain Statecharts machines whose internal steps, whileresponding to particular changes in their environment, may be modeled as data-invariant transitions and whose environment may be modeled conservatively viadata-memoryless transitions.The key observation is that for any system model with the above property,the equivalence relation induced by the labeling is a bisimulation. Furthermore,the bisimulation is �nite even if D is in�nite.Theorem3. Given a system model with state space N�D and labeling functionL, let � be the equivalence relation of N�D such that for all (v1; a1) and (v2; a2)in N � D, we have (v1; a1) � (v2; a2) if and only if L(v1; a1) equals L(v2; a2).The relation � is a �nite bisimulation for system models that satisfy Property 2.3 Model CheckingAs a result of Theorems 1 and 3, given a system model with Property 2 and aCTL* formula, it is su�cient to verify the quotient system with respect to �.In this section, we �rst describe a Boolean encoding of the quotient system, andgive a straightforward model checking algorithm which requires an exponential-time preprocessing stage to build a special BDD. Then we explain how thatmay be avoided by an operation we call �ltering. Although the worst-case timecomplexity of �ltering BDDs is also exponential, the hope is that the actual timerequired is less than the worst case.We assume that we have a constraint solver that given a set of constraints candetermine whether their conjunction is feasible. This problem has been studiedby the constraint logic programming (CLP) community to extend CLP languagesfor non-linear constraints, and also by the operations research community tosolve constrained optimization problems by �rst �nding a feasible point.3.1 A Boolean Encoding for Model CheckingGiven a system model hN;N0;x; D;�;Ci, the quotient state space with respectto �, i.e. the set of equivalence classes of N �D induced by �, is of the formN �D� where D� is a collection of disjoint subsets of D, which we call regions,de�ned by the set of constraints in C that are true on those data points.Our goal is to encode the quotient system symbolically by a set of Booleanvariables so that BDDs can be used. The control part is encoded in a conventionalmanner: we encode the node v 2 N in some convenient way as an assignment N (v) to a vector v of n Boolean variables with n � dlog jN je, e.g. as the binaryencoding of a number between 1 and jN j.The way we handle the data part, D�, distinguishes our approach fromothers. For C = fc1; : : : ; cmg, each region is of the form [[�]] with � � V1�i�m liwhere li is either ci or :ci. This suggests a natural embedding D of D� intof0; 1gm in which an assignment to a vector k of m Boolean variables k1, k2; : : : ,km encodes a region [[�]] if ki is set to 1 exactly when ci occurs positively in5

�. We also de�ne a Boolean function Feas(k) such that Feas(k) = 1 if only ifk 2 Im D , i.e. k encodes a feasible constraint.A state in the quotient system is encoded as an assignment to (v;k), and a setof states can be represented in the standard way as a Boolean function S(v;k),such that a state (v; k) is in the set if and only if S(v; k) = 1. (As is usual, we willthink of S as a function and as a set interchangeably.) In general an arbitrary Smay contain infeasible states | assignments to (v;k) with Feas(k) = 0 | thatwe can remove by computing S ^ Feas .We now de�ne a transition relation R on f0; 1gn+m that encodes the transi-tions of the quotient system on N �D�. That is, we de�ne a Boolean functionR(v;k;v0;k0), where k0 = (k01; k02; : : : ; k0m) and v0 are the next-state versions ofk and v respectively, that represents the transition relation of the quotient sys-tem. A natural condition in doing this would be to restrict R(v; k; v0; k0) to be1 only if (v; k) and (v0; k0) each encode elements of N �D�; however this maylead to a very large BDD for R if the BDD for Feas is large. Instead, we permitR to be 1 for values of k and k0 that encode infeasible constraints and rely onmanipulation of the state representations to eliminate infeasible states.More precisely, let �(v; v0) be [[�v;v0(x;x0)]] for some constraint �v;v0(x;x0)which satis�es Property 2. If we replace each ci(x) and ci(x0) in �v;v0(x;x0) withki and k0i respectively (just as in our encoding of quotient states) and conjoinki = k0i for i = 1; : : : ;m if the transition is data-invariant, we obtain a Booleanfunction �v;v0(k;k0). It can be shown that if (v; k) and (v0; k0) encode states(v; [[�]]); (v; [[�0]]) 2 N � D�, then (v0; k0) is a successor of (v; k) if and only if�v;v0(k; k0) = 1. The relation R(v;k;v0;k0) is thenW(v;v0)2N2 (v = N (v) ^ v0 = N (v0) ^ �v;v0(k;k0)) :The BDD for R is easy to build from the system model description and thusconventional model checking algorithms can now be used to compute in thequotient system, provided that we also conjoin each set of states encounteredwith Feas to remove infeasible states.However, even if the BDD for Feas is small, in general there may be noe�cient way of computing it. The naive method enumerates all 2m assignmentsto k and invokes the constraint solver to check the feasibility of each case. Thismethod may work well if the number of constraints m is small.3.2 FilteringWe can avoid building the BDD for Feas if we have some other way of removinginfeasible states. One solution is �ltering the functions on the
y. We representan arbitrary function S by a BDD in the implementation which, to simplifythe terminology when explaining �ltering, we think of as simply a DNF formularepresenting S, consisting of the disjunction of all the paths from the root to theleaf 1. The idea of �ltering is that, instead of computing S ^ Feas , we removeevery disjunct d of S with d ^ Feas � 0. We denote the resulting function asFilterFeasS. (Note that the value of FilterFeasS depends on the particular DNFrepresentation for S.) 6

Since every disjunct d is a conjunction, we can determine whether d is fea-sible using the constraint solver, without computing Feas(k). Note also thatFilterFeasS and S ^ Feas are not necessarily the same function. For example,let S be the constant function 1, which can also be its DNF representation.Then, we have S ^ Feas � Feas but FilterFeasS � 1. In general, we have(S ^ Feas) � FilterFeasS � S (the inclusion is referring to the sets representedby the Boolean functions). Although FilterFeasS still contains some infeasiblestates, we will show that it is su�cient for model checking.The algorithms for symbolic model checking [BCM+90] involve four types ofoperations on sets of states: Boolean operations, emptiness checking, image (orpre-image) computation, and �nding elements in non-empty sets (for counterex-ample traces). The lemma below is easy to prove and implies that for Booleanoperations we can delay the removal of infeasible states until the end (S and Tare arbitrary Boolean functions).Lemma4. We have the following equalities:(i) (S ^ Feas) ^ (T ^ Feas) � (S ^ T) ^ Feas :(ii) (S ^ Feas) _ (T ^ Feas) � (S _ T) ^ Feas :(iii) (:(S ^ Feas)) ^ Feas � (:S) ^ Feas :The functions on the left hand side are the straightforward way of doing theoperations. On the right hand side, we do the same operations but remove in-feasible states only in the �nal result. The next lemma implies that if we onlycare whether the set is empty, then even the �nal result does not need to beintersected with Feas ; instead, we can check the emptiness of the �ltered result.Lemma5. S ^ Feas � 0 if and only if FilterFeasS � 0.The next lemma gives a way of computing the image (i.e., successors) of a setof states without using Feas (pre-image computation is similar).Lemma6. We have the following equality:9v: 9k: (Feas(k) ^ S(v;k) ^ R(v;k;v0;k0))� 9v: 9k: �FilterFeas(k) (S(v;k) ^ R(v;k;v0;k0))� :As a result of the above three lemmas, the only necessary change to the con-ventional symbolic model checking algorithms is to use the right hand sides ofLemmas 5 and 6 to detect convergence and compute images respectively. Finally,the following lemma implies a way of �nding a feasible state in a set.Lemma7. If we have FilterFeasS 6� 0, then for each disjunct d of FilterFeasS,there exists an assignment to the input variables of S with d^Feas = 1:So to �nd a feasible state in S, we compute FilterFeasS and pick an arbitrarydisjunct d, which corresponds to a partial assignment to the variables. To get acomplete assignment, the unassigned variables not in k can be set arbitrarily.For the unassigned variables in k, we can set them one by one using information7

Filter(B: BDD): BDDLabel(B,true)return Prune(B)Prune(B: BDD): BDDif B = 0 or B = 1 then return Blet yj = B:Varif j > l then return Bif hB;B0i is in cache, return B0if B:Ledge = >then B0 Prune(B:Lchild)else B0 0if B:Redge = >then B1 Prune(B:Rchild)else B1 0B0 ITE-BDD(B:Var ; B0; B1)insert hB;B0i and hB0; B0i in cachereturn B0

Label(B: BDD, �: Constraint): f>,?gif B = 0 then return ?if B = 1 then return FEAS(�)let yj = B:Varcasej < u: : : : : : : : : (case 1: upper layer)if B:Ledge = ? thenr0 Label(B:Lchild ; �)B:Ledge r0else r0 B:Ledgeif B:Redge = ? thenr1 Label(B:Rchild ; �)B:Redge r1else r1 B:Redgeu � j � l: : : : (case 2: middle layer)r0 Label(B:Lchild ; � ^ I(:yj))if r0 = > then B:Ledge >r1 Label(B:Rchild ; � ^ I(yj))if r1 = > then B:Redge >j > l: : : : : : : : : (case 3: lower layer)return FEAS(�)endcaseif r0 = > or r1 = > then return >else return ?Fig. 1. A BDD �ltering algorithmfrom the constraint solver: pick an unassigned variable and arbitrarily set it to 0,and if the extended assignment is not feasible, revert it to 1 (the new extendedassignment is guaranteed to be feasible). Repeat until all the variables are set.3.3 Filtering BDDsFiltering a BDD amounts to removing all paths from the root to the leaf 1 thatcorrespond to infeasible constraints. Figure 1 shows a BDD �ltering algorithmFilter. We assume that the given BDD is a function of v and k, which is being�ltered with respect to Feas(k). (What we will describe can be easily generalizedto handle functions of (v;k;v0;k0) and �ltering with respect to Feas(k0).) Thealgorithm consists of two phases: in the labeling phase, it labels the edges alongall feasible paths with >, and in the pruning phase, it redirects the edges notlabeled with > to the leaf 0.Each non-leaf BDD node has �ve �elds. The Var �eld stores the BDD vari-able. The Lchild �eld points to the 0-child BDD. The Ledge �eld is the labelof the left edge, which is either > (feasible), ? (infeasible), or ? (unknown, theinitial value). The Rchild and Redge �elds are symmetric. Suppose the BDDvariables in order are y1; y2; : : : ; yu; : : : ; yl; : : : ; ym+n, where yu and yl are the8

�rst and last variables in k. We call the part of the BDD with variables y1through yu�1 the upper layer, yu through yl the middle layer, and yl+1 throughym+n the lower layer. Therefore, only the middle layer contains variables in k.The routine Label traverses the paths in a depth-�rst manner, keeping trackof the corresponding constraint � as it walks down a path. Case 2 is importantfor correctness, while cases 1 and 3 are for optimizations|each node in the upperlayer is not visited more than once (case 1), and nodes in the lower layer are notexplored at all (case 3). The constraint solver FEAS takes a constraint �, andreturns > if � is feasible, or ? otherwise. The function I \interprets" the BDDvariables as data constraints. For each vi in v, we have I(:vi) = I(vi) = true,and for each ki in k, we have I(ki) = ci and I(:ki) = :ci. The routine Pruneperforms the pruning phase. The function ITE-BDD takes a BDD variable yand two BDDs B0 and B1, and returns a BDD with top variable y, 0-child B0and 1-child B1.Assuming that FEAS takes constant time, the time complexity of Filter islinear in the number of nodes in the upper layer, and in the number of paths inthe middle layer (which is the major bottleneck of the algorithm).A Re�nement. It makes sense to �lter the BDDs instead of building Feas onlyif the number of paths checked is smaller than 2m. Unfortunately, �ltering S^Ras suggested by Lemma 6 may be very expensive. To see this let R(v;k;v0;k0) beR1(v;k;v0;k0)_ (R2(v;k;v0;k0) ^ k0=k), where R1 and R2 ^ k0=k representthe data-memoryless and data-invariant transitions respectively. The constraintk0=k conjoined with R2 introduces a path for each possible assignment to k, sothere may be 2m paths to check. However, the observation is that we can renameeach k0i in R2 to ki without changing the function R2 ^ k0=k, thus eliminatingk0 from R2. We have the following lemma.Lemma8. The following equality holds:�9v: 9k: �FilterFeas(k) (S(v;k) ^ R(v;k;v0;k0))�� ^ Feas(k0)� (U(v0;k0) _ V (v0;k0)) ^ Feas(k0)with U(v0;k0) = 9v: 9k:FilterFeas(k) (S(v;k) ^ R1(v;k;v0;k0))V (v0;k) = 9v:FilterFeas(k) (S(v;k) ^ R2(v;k;v0)) :So we compute U _ V , handling the constraint k=k0 implicitly.4 Implementation and ExampleWe implemented the above algorithms in SMV [McM93]. The constraint solverused was QUAD-CLP(IR) [PB94], a less incomplete solver than CLP(IR) forquadratic constraints. We had access only to the executable of the solver, so itwas integrated with SMV through interprocess communication.9

High Low

<15

Med

>25o

o

>1525> o

>1525> o

s

s

s

s

Low

<15

Med

>25

High
>1525>

>1525>
f

f

f

f

s

s

s

s

Front_vel High

Front_vel = Low)

(Own_vel = High

=Low ^

|

Sen

=High

(Own_vel = High

Front_vel = Low)

|

^

Sen

Low

Resume ^ Power_off

Own_vel Sensitivity Cruise_Control

Override

Off

too_close | Brake

Cruise

Standby
Power_on

Power_off

Power_off
Deactivate Activate

Power_off

^

Inputsso 2 IR Power On : booleansf 2 IR Power O� : booleand 2 IR; d � 0 Activate : booleanSen : fHigh;Lowg Deactivate : booleanBrake : boolean Resume : boolean Abbreviationtoo close � d�K=dmax(1;s) < 2,where s = so � sf andK = � 1 when Sensitivity = Low10 when Sensitivity = HighFig. 2. A hypothetical automobile cruise control system with collision avoidanceBecause a motivation of this work is to analyze the TCAS II requirements,we illustrate our technique with a simple Statecharts-like system shown in Fig. 2.It is a hypothetical automobile cruise control system with collision avoidance.The idea is that when the automobile is too close to the vehicle in front, thecruise control system will automatically deactivate itself. (In addition to TCAS,the example was in
uenced by the one used by Atlee and Gannon [AG93].)Three inputs to the system are so, the velocity of the vehicle; sf , the velocityof the front vehicle; and d � 0, the distance between the vehicles. (In reality,sf may be estimated from the current and previous values of so and d.) Thecloseness of the two vehicles is based on time rather than distance. Let s beso� sf . The estimated time to collision is d=s. If this quantity is less than somethreshold t, the two vehicles may be considered too close. However, if s is positivebut small, the two vehicles can get very close without triggering the condition.To �x this problem, the following condition can be used instead:d�K=dmax(�; s) < t:The max function is for avoiding division-by-zero. Subtracting K=d from thenumerator makes the inequality true when d is tiny, regardless of the value ofs. The positive value K depends on the \sensitivity level" (large K for highsensitivity). Although this example is naive, the inequality is exactly the oneused in TCAS II for threat detection. We arbitrarily chose � = 1 and t = 2.As shown in Fig. 2, the system is divided into four components. In Statechartsand RSML, di�erent components are synchronized by events (signals). We omit10

this mechanism in the �gure and assume the components execute in the follow-ing order: in the �rst micro-step, Own vel and Front vel execute concurrently(i.e., each takes one enabled transition, or stays unchanged if none is enabled);in the second and third micro-steps, Sensitivity and Cruise Control execute re-spectively. The three micro-steps together form a super-step. Transitions in acomponent are guarded by assertions on the inputs and/or other components. Itshould be clear that we can construct the product system of the components inthe usual manner and represent it with a system model (Sect. 2.2). The valuesof all the inputs are nondeterministic at the beginning of a super-step, but dur-ing a super-step they are assumed to be unchanged by the so-called synchronyhypothesis . Therefore this system satis�es Property 2: micro-step transitions aredata-invariant, while transitions across super-steps are data-memoryless.We veri�ed several safety properties of a model of this system using our proto-type implementation. In the model, there are (at least) six Boolean variables rep-resenting constraints: so � 25; so < 15; sf � 25; sf < 15; ((d� 1=d)=max(1; so �sf)) < 2; ((d � 10=d)=max(1; so � sf)) < 2. Additional Boolean variables areused when the property being veri�ed contains other constraints. We focusedon verifying that Cruise Control is never in the Cruise node under certain con-ditions, for example, when d is less than 2, (That is, in CTL, AG !(d < 2& Cruise Control = Cruise).) This property is false because the two transitionsinto the Cruise node are not guarded by :too close. The model checker correctlyshowed a counterexample. After strengthening the guards on the two transitions,the property was veri�ed true. Two other related properties were also success-fully veri�ed: Cruise Control is never in the Cruise node when either (1) d isless than 4 and Sensitivity is High, or (2) d is less than 20, Sensitivity is High,and Sen is Low. Each of the above speci�cations was evaluated within a secondby our prototype implementation. The numbers of calls made to the constraintsolver were at most about 30% of the number of calls required to construct Feas .5 ConclusionThe technique described in this paper can be generalized in various ways. Theidea can be applied to systems with transitions annotated by assertions in anytheory, if a decision procedure for the theory is available. Allowing transitionsthat are not data-memoryless or data-invariant can make the technique moreuseful, but that would probably require computing a bisimulation before apply-ing model checking, or approximating one on the
y. Doing so may blow up thenumber of BDD variables. There are also many open questions for the shortterm. We need to experiment with larger systems like TCAS II to see whetherthe technique is practical. The choice of variable ordering also needs investigationbecause it a�ects both the BDD size and the number of paths traversed.References[ABB+96] R. J. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno, D. Notkin,and J. D. Reese. Model checking large software speci�cations. In Pro-11

ceedings of the Fourth ACM SIGSOFT Symposium on the Foundations ofSoftware Engineering, pages 156{166, October 1996.[AG93] J. M. Atlee and J. Gannon. State-based model checking of event-drivensystem requirements. IEEE Transactions on Software Engineering, SE-19(1):24{40, January 1993.[BC95] R. E. Bryant and Y.-A. Chen. Veri�cation of arithmetic circuits with Bi-nary Moment Diagrams. In Proceedings of the 32nd ACM/IEEE DesignAutomation Conference, pages 535{541, June 1995.[BCG88] M. C. Browne, E. M. Clarke, and O. Gr�umberg. Characterizing �niteKripke structures in propositional temporal logic. Theoretical ComputerScience, 59:115{131, 1988.[BCM+90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.Symbolic model checking: 1020 states and beyond. In Proceedings of theFifth Annual Symposium on Logic in Computer Science, pages 428{439.IEEE Computer Society Press, June 1990.[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Transactions on Computers, C-35(6):677{691, August 1986.[CDV96] J. Crow and B. L. Di Vito. Formalizing space shuttle software require-ments. In Proceedings of the ACM SIGSOFT Workshop on Formal Methodsin Software Practice, pages 40{48, January 1996.[CFZ95] E. M. Clarke, M. Fujita, and X. Zhao. Hybrid Decision Diagrams overcom-ing the limitations of MTBDDs and BMDs. In 1995 IEEE/ACM Interna-tional Conference on Computer-Aided Design, Digest of Technical Papers,pages 159{163. IEEE Computer Society Press, November 1995.[EH86] E. A. Emerson and J. Y. Halpern. \Sometimes" and \Not Never" revis-ited: On branching versus linear time temporal logic. Journal of the ACM,33(1):151{178, 1986.[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science ofComputer Programming, 8:231{274, 1987.[HH95] T. A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybridsystems. In Proceedings of the 7th International Conference on ComputerAided Veri�cation, pages 225{238. Springer-Verlag, July 1995.[LHHR94] N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese. Require-ments speci�cation for process-control systems. IEEE Transactions on Soft-ware Engineering, SE-20(9), September 1994.[LS81] R. J. Lipton and R. Sedgewick. Lower bounds for VLSI. In ConferenceProceedings of the Thirteenth Annual ACM Symposium on Theory of Com-puting, pages 300{307, May 1981.[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.[Mil80] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.[PB94] G. Pesant and M. Boyer. QUAD-CLP(IR): Adding the power of quadraticconstraints. In Second International Workshop, Principles and Practice ofConstraint Programming, pages 95{108. Springer-Verlag, May 1994.[Tha96] J. S. Thathachar. On the limitations of ordered representations of functions.Technical Report CSE-96-09-03, University of Washington, September 1996.[WME93] F. Wang, A. Mok, and E. A. Emerson. Symbolic model checking for dis-tributed real-time systems. In Proceedings of the First International Sym-posium of Formal Methods Europe, pages 632{651, April 1993.This article was processed using the LaTEX macro package with LLNCS style12

