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Abstract 

We consider the problem of providing a resolution 
proof of the statement that a given graph with n ver- 
tices and A n  edges does not contain an independent 
set of size k. For randomly chosen graphs with con- 
stant A, we show that such proofs almost surely re- 
quire size exponential in n. Further; f o r  A = o(n1f5) 
and any k 5 n/5, we show that these proofs almost 
surely require size 2”‘ for  some global constant S > 0, 
even though the largest independent set in graphs with 
A E n1I5 is much smaller than n/5.  Our result shows 
that almost all instances of the independent set problem 
are hard for  resolution. It also provides a lower bound 
on the running time of a certain class of search algo- 
rithms for  finding a largest independent set in a given 
graph. 

1. Introduction 

The problem of determining if a given graph contains 
an independent set of a certain size is NP-complete and 
thus the dual problem of determining non-existence of 
independent sets of that size in a given graph is CO-NP- 
complete. For a graph chosen at random, its indepen- 
dent sets have nice combinatorial properties; the size 
of the largest such independent set can be described in 
terms of simple graph parameters [6, 151. This gives us 
a good range of sizes such that graphs chosen at random 
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almost surely do not have an independent set of size in 
this range. We study the problem of proving this fact 
under a fixed proof system. 

Influenced by algorithms of Tarjan and Tro- 
janowski [ 19, 201 for finding maximum independent 
sets, Chvatal [8] devised a specialized proof system for 
the independent set problem and proved almost certain 
exponential lower bounds for proofs of non-existence 
of large independent sets in random graphs with a lin- 
ear number of edges in this system. Chvatal’s system 
also captures the more recent improved algorithms of 
Jian [ 161 and Robson [ 181, the latter of which has the 
current record for such algorithms. 

Given a graph G and an integer k ,  we consider en- 
coding the existence of an independent set of size k in 
G as a CNF formula and examine the proof complexity 
of such formulas under resolution proofs. Resolution on 
one of the encodings we present captures the behavior 
of a fairly broad class of search algorithms on the corre- 
sponding graphs. In particular, the bounds we prove for 
resolution complexity also imply similar lower bounds 
in Chvatal’s system. We show that given a randomly 
chosen graph with not too many edges, almost surely a 
resolution proof of the statement that this graph does not 
have an independent set of a certain size must be expo- 
nential. This gives us an exponential lower bound on the 
running time of a natural class of algorithms for search- 
ing for a largest independent set in a given graph. This is 
also interesting because it shows lower bounds for ran- 
dom formulas with significant structure as opposed to 
the unstructured random k-CNF formulas for which res- 
olution bounds have previously been shown [9, 31. In 
this sense, i t  adds to the random graph k-coloring exam- 
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ple for which exponential resolution lower bounds are 
already known [ 2 ] .  

Instead of looking at the general problem of dis- 
proving the existence of any large independent set in a 
graph, we focus only on a restricted class of indepen- 
dent sets that we call block-respecting independent sets. 
We prove that even ruling out this smaller class of inde- 
pendent sets requires exponential size resolution proofs. 
These restricted independent sets are simply the ones 
obtained by dividing the n vertices of the given graph 
into IC blocks of equal size (assuming 7z is a multiple of 
I C )  and choosing one vertex from each block. Since it  
is easier to rule out a smaller class of independent sets, 
the lower bounds we obtain for the restricted version are 
stronger in the sense that they imply lower bounds for 
the general problem. Further, the independent set prob- 
lem encoded in terms of block-respecting independent 
sets also captures ChvBtal’s proof system and hence our 
lower bounds also apply to proofs in his system, as well 
as to a number of algorithms that his system captures 
[16, 18, 19, 201. Towards the end, we give a simple up- 
per bound for the general problem based on expected 
sizes of independent sets in random graphs. 

Most known resolution complexity lower bounds can 
be proved using a general technique that is shown by 
Ben-Sasson and Wigderson [5] and is derived from ear- 
lier papers by Haken [ 131 and Clegg, Edmonds and Im- 
pagliazzo [lo]. It is based on a relationship between 
the size of resolution proofs and the width, the length 
of the longest clause, in such proofs. It uses the prop- 
erty that any resolution proof for a given problem must 
contain clauses that are minimally implied by a middle- 
size fraction of the relevant input clauses and that any 
such derived clauses must have large width. Therefore 
we begin by analyzing the width of any resolution proof 
saying that a graph does not have an independent set of 
a certain size and then apply the width-size relationship 
of [5] to get good lower bounds on tree-like and general 
resolution proof sizes. 

The proof of the width bound can be broadly divided 
into two parts, both of which use the fact that random 
graphs are almost surely locally sparse. We first show 
that the minimum number s of input clauses that are 
needed for any refutation of the problem is large for 
most graphs. We then use combinatorial properties of 
independent sets in random graphs to say that any clause 
minimally implied by a middle-size subset of these s 
clauses has to be large. These together allow us to say 
that the width of any such proof has to be large. 

2. Resolution and DLL Proofs 

A propositional formula F is said to be in conjunc- 
tive normal form (CNF) if it is a conjunction of clauses, 
where each clause is a disjunction of literals and each 
literal is either a variable or its negation. Resolution is 
a very simple proof system for CNF formulas. It forms 
the basis of most popular systems for practical theorem 
proving. Lower bounds on resolution proof sizes thus 
have a bearing on the running time of these algorithms. 
The construction of Tseitin [21] can be used to effi- 
ciently convert any given propositional formula to one 
in CNF form. Hence we don’t lose much by restricting 
ourselves to CNF formulas. 

2.1. General Resolution 

To prove that a given input CNF formula F is unsat- 
isfiable, we start with the original input clauses of F and 
repeatedly pick pairs of clauses to apply the resolution 
rule: given (AVx) and ( B V - T E ) ,  one can derive (AVB) .  
It is clear that a derived clause will be satisfied by any 
assignment that satisfies both the parent clauses. Since 
we are interested in proving that F is unsatisfiable, the 
goal is to start with F and derive the empty (and trivially 
unsatisfiable) clause A. 

Let 4 be a set of clauses. A resolution derivation 
from 4 is a sequence of clauses 7r = C1, CZ, . . . , C, 
where each clause Ci is either an element of 4 or is de- 
rived by applying the resolution rule to two clauses Cj 
and C k ,  j ,  IC < i, occurring earlier in T .  A resolution 
derivation of the empty clause A from 4 is called a refu- 
tation or proof of 4. Given any resolution refutation, we 
can associate with it in a natural way a directed acyclic 
graph where edges go from parent clauses to the clause 
obtained by resolving them on a certain literal. The spe- 
cial case where this graph is a tree is referred to as tree- 
like resolution and is discussed in section 2.2. 

Let F be a set of clauses encoding a given problem 
as a CNF formula and P a resolution proof. The size of 
the proof P ,  s ( P ) ,  is the number of clauses appearing 
in P.  Define the resolution complexizy of F ,  Res (F) ,  
to be the minimum of s ( P )  over all proofs P of F; if 
no such proofs exist we define R e s ( F )  = CO. As shown 
in [ 5 ]  and we will see in section 2.3, resolution complex- 
ity is intimately related to another measure of proofs, 
their width. Let the width of a clause be the number of 
literals occurring in it. Given F and proof P we define 
w(F) and w(P) to be the maximum of the widths of all 
clauses in F and P,  respectively. Now define width(F) 
to be the minimum of w ( P )  over all proofs P of F .  To 
prove a lower bound on R e s ( F ) ,  it is sufficient to prove 
a lower bound on width(F) - w ( F ) .  
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2.2. Davis-Putnam (DLL) Procedure and Tree-like 
Resolution 

The Davis-Putnam or DLL procedure [ 121 is both a 
proof system and a collection of algorithms for finding 
proofs. A simple Davis-Putnam algorithm to refute a 
CNF formula F is to repeatedly pick a variable z of 
F and recursively refute both Flsto and Flstl. Vari- 
ants of this algorithm form the most widely used family 
of complete algorithms for formula satisfiability. As a 
proof system, the DLL procedure forms a special case 
of resolution where the proof graph is a tree, that is, 
any clause that is used more than once in the proof must 
be re-derived. The tree-resolution complexity of a given 
formula F is defined to be the minimum of s (P) ,  the 
size of P,  over all tree-like resolution proofs P of F .  

We can think of DLL refutations as trees where we 
branch at each node based on the value of a variable. 
DLL refutations can be easily converted into tree-like 
resolution proofs of essentially the same size, and vice 
versa (see, for example, [3]). Given this correspondence, 
we will use these two terms interchangeably and de- 
note the tree-resolution complexity of a formula F by 
D L L ( F ) .  This correspondence also shows that a lower 
bound on the size of tree-like resolution proofs also gets 
us a lower bound on DLL refutation sizes and hence on 
the running time of DLL type algorithms. The transcript 
of any algorithm for finding a largest independent set in 
a given graph is also a proof that no independent set of a 
larger size exists. Our results show that the running time 
of any such DLL type algorithms working on randomly 
chosen input graphs with not too many edges will almost 
certainly be exponential. 

Even though we described DLL algorithms here as 
working on propositional formulas, they capture a much 
more general class of algorithms that are based on 
branching and backtracking. For instance, basic algo- 
rithms for finding a largest independent set such as that 
of Tarjan [ 191 branch on each vertex by either including 
it in the current independent set and deleting itself and 
all its neighbors from further consideration, or exclud- 
ing it from the current independent set and recursively 
finding a largest independent set in  the remaining graph. 
More complicated algorithms such as that of Tarjan and 
Trojanowski [20] branch in a similar manner on small 
subsets of vertices, reusing subproblems already solved. 
Such algorithms also fall under the category of resolu- 
tion type (not necessarily tree-like) algorithms and our 
lower bounds apply to them as well. 

2.3. The Width-Size Relationship 

Our proof uses the relationship between the size and 
the width of a resolution proof given by Ben-Sasson and 

Wigderson [51. Let F be any unsatisfiable CNF formula 
over n variables with initial width w(F). Ben-Sasson 
and Wigderson showed that any short proof of unsatisfi- 
ability of F can be converted to one of small width, thus 
showing that a lower bound on the width of any resolu- 
tion proof gets us a lower bound on the size of such a 
proof. 

Proposition 1 ( [5 ] ) .  D L L ( F )  2 2width(F)-w(F). 

Proposition 2 ([5]). For c = 1/(9 In 2), 
R~~ ( F )  2 24widt h( F )  - 4 F )  )' / n ,  

3. Independent Sets 

def For any undirected graph G = (V, E ) ,  let n = (VI 
and m d!f [El. A k-independent set in G is a set of 
k vertices no two of which are adjacent. We will de- 
scribe reasonable ways of encoding in clausal form the 
statement that G has a k-independent set. Their refu- 
tations will then be proofs that G does nor contain any 
k-independent set. We will be interested in size bounds 
for such proofs. Our results will be in terms of n, k and 
the graph edge density A defined as A = m/n. def 

3.1. Random Graph Models 

Combinatorial properties of random graphs have 
been studied well, for instance in [6, 151. We say a prop- 

with probability 1 - o( 1) in the number of vertices when 
the graph is selected at random according to some dis- 
tribution. A property of a graphs is called monotone if 
adding more edges to a graph that has the property can- 
not prevent i t  from having that property anymore. It is 
called anti-monotone if deleting edges from the graph 
that has this property cannot prevent it  from having the 
property anymore. Thus containing an independent set 
of a certain size is an anti-monotone property. 

There are various models saying how to pick a graph 
with n vertices at random. One could choose a graph 
from the distribution G&, where each of the ( y )  edges 
is chosen independently with probability p .  The result- 
ing graph has m edges on average if p = m/( ; ) .  One 
could also use the distribution Gkn where each of the 
((i)) graphs with m edges have equal probability of be- 
ing chosen. This will guarantee that the resulting graph 
has exactly m edges. A third distribution, which we de- 
note by G,,,, is to pick m edges uniformly at random 
with replacement and ignore duplicates. The resulting 
graph has m - o ( m )  edges with probability 1 - o( 1) in 
n. 

erty holds alnzosr certainly in a random graph if i t  holds 
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As shown, for example, in [ 11, if p = m/ (;), then the 
almost certain monotone and anti-monotone properties 
of graphs are the same under all three models up to a 
change from m to mfo(m) .  The third distribution G,,, 
is the easiest to use in our case. We will therefore use 
this throughout, but our results also apply to Gn,p and 
G,”. We will use the notation G - G,,, to denote a 
graph G picked randomly from this distribution. 

3.2. Independent Set Sizes 

For a graph G with n vertices and A n  edges, the aver- 
age degree over all vertices is 2A. At least half of these 
vertices, the ones with low degree, must have degree at 
most twice the average, otherwise the high-degree half 
fraction of vertices by themselves will contribute more 
than 2A to the average. Consider the subgraph G’ in- 
duced by these 1 /2  low-degree vertices. This subgraph 
G’ must have maximum degree at most 4A. Let us re- 
peatedly apply the following procedure to G’ until no 
vertices are left: pick a vertex v of G’ arbitrarily, put it 
in a set I and remove v and all its neighbors from G’. It 
is easy to see that the set I is an independent set of G’ 
of size at least $& - each step removes a vertex and 
at most 4A neighbors of it. Moreover, since G’ is an in- 
duced subgraph of G, I is also an independent set of G. 
This gives us the following simple bound: 

Observation 1. Any graph with n vertices and A n  
edges has an independent set of size *. 

Sizes of largest independent sets in random graphs 
are in fact known to high accuracy [6, 151. For E > 0, 
let kke  be defined as follows: 

2n A 
A I n 4  

kkc = [-((In - + 1 - I n 2  f E ) ]  

Then we know the following: 

Proposition 3 ([ 151). For any E > 0, there exists a con- 
stant C, such that for  C, < A < n/ log2 n, asymptot- 
ically almost all graphs chosen at random from & a n  
have the largest independent set size between k- ,  and 
k+,. 

4. Encoding Independent Sets as Formulas 

In order to use a propositional proof system to prove 
that a graph does not have an independent set of a par- 
ticular size, we first need to formulate the problem as a 
propositional formula. This is complicated by the dif- 
ficulty of counting set sizes using CNF formulas. One 
natural way to encode the independent set problem is to 

have variables that say which vertices are in the inde- 
pendent set and auxiliary variables that count the num- 
ber of vertices in this independent set. We will discuss 
this encoding in section 4.1. The existence of two differ- 
ent types of variables makes this encoding more difficult 
to reason about directly. A second encoding, derived 
from this counting-based encoding, is described in sec- 
tion 4.2. It uses a mapping from the vertices of the graph 
to k additional nodes as an alternate to straightforward 
counting and uses variables of only one type. This is es- 
sentially the same encoding as the one used by Bonet, 
Pitassi and Raz [7] for the clique problem, except that 
in our case we need to add an extra set of clauses called 
ordering clauses to make the lower bounds non-trivial. 
Section 4.3 finally describes a much simpler encoding 
which we analyze directly for our lower bounds. This 
encoding discusses only a restricted class of independent 
sets that we call block-respecting independent sets, for 
which the problem of counting the set size is trivial so it  
has only one type of variables that say which vertices are 
in the independent set. Refutation of this third encoding 
rules out the existence only of this smaller class of inde- 
pendent sets. Intuitively, this should be easier to do than 
ruling out all possible independent sets. In fact, we show 
that its resolution and DLL refutations are bounded in 
size by those of the mapping encoding and at worst a 
small amount larger than those of the counting encod- 
ing, so we can translate our lower bounds for this third 
encoding to each of the other encodings. Further, we 
give upper bounds for the two general encodings which 
also apply to the simpler block-respecting independent 
set encoding. 

We will identify the vertex set of the input graph with 
{ 1 , 2 , .  . . , n}. Each encoding will be defined over vari- 
ables from one or more of the following three categories: 

1. 

2. 

3. 

4.1. 

z,, 1 5 T I  5 n, which will be TRUE iff vertex v 
is chosen by the truth assignment to be in the inde- 
pendent set, 

yu,i ,O <_ i 5 U < n, 0 < i < IC, which will be 
TRUE iff precisely i of the first v vertices are chosen 
in the independent set, and 

z,,i, 1 5 v 5 n, 1 <_ i 5 k ,  which will be TRUE iff 
vertex v is chosen as the ith node of the indepen- 
dent set. 

Encoding Based on Counting 

We construct the counting encoding a,,,,t(G, I C )  of 
the independent set problem over variables 2, and Y , , ~  
using the following three kinds of clauses: 
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Edge Clauses For each edge ( U ,  U), acount(G, k) has 
one clause saying that not both U and w are selected; 
v(uiu) E E : (72% V l z v )  E acount(G, k) 

Size-k Clause There is a clause saying that the indepen- 
dent set chosen is of size k ;  yn,k E acount(G, k )  

Counting Clauses There are clauses saying that vari- 
ables yv,i correctly count the number of vertices 
chosen. For simplicity, we first write this con- 
dition not as a set of clauses but as more gen- 
eral propositional formulas. For the base case, 
acount(G,k) contains  yo,^ and the clausal form 
of (%,o f--) ( Y ~ - I , o  A ~z,)) for w E (1,. . .n}.  
Further, V i , v ,  1 5 i 5 w 5 n, 1 5 i 5 I C ,  
acounl(G, k) contains the clausal form of (yv,i  +-+ 

((yv-l,i A -av) V ( ~ ~ - 1 , i - l  A x v ) )  unless i = w, in 
which case acount(G, k )  contains the clausal form 
of the simplified (yi,i ++ (yi-1,i-l A xi)). 
Translated into clauses, these conditions take 
the following form. Formulas defining yv,0 for 
'U 2 1 translate into { ( l y , , ~  V y u - l , o ) , ( ~ y v , o  V 
7zv), (yv,0 V iyv-1,o V z,)}. Further, formulas 
defining yv,i for w > i 2 1 translate into ((yv,i  V 

lYv-1,2 v zv) ,  (Yv,i v TYW-1,i-1 v %J), (lYv,i  v 
Yv-1,i v Yv-l,i-l), (lYu,i v Yv-1,i v zv), (lYv,i v 

X i ) ,  (-i v -Y-1,i-1 v Vij)}. 

~ ~ - 1 , i - l  V T Z ~ ) }  whereas in the case i = w 
they translate into { ( ~ y i , i  V yi-l,i-l), ( ~ g i , i  V 

4.2. Encoding Based on Mapping 

This encoding, denoted amop(G, k ) ,  uses a mapping 
from n vertices of G to k nodes of the independent set 
as an indirect way of counting the number of vertices 
chosen by a truth assignment to be in the independent 
set. It can be viewed as a set of constraints restricting 
the mapping (see Figure 1). It is defined over variables 
zv,i  and has the following four kinds of clauses: 

Edgeclauses For each edge ( u , v )  E E ,  there is 
one clause saying that not both U and v are cho- 
sen in any independent set; V ( U , V )  E E,z , j  E 

Surjective Clauses For each i, 1 5 i 5 k, there is 
a clause saying that some vertex is chosen as the 
i th  node of the independent set; V i  E (1,. . . , IC} : 

(1,. . . i I C } ,  i # J' : ( l z u , z  V ~ z v , j )  E amap(G,  k )  

(Z1,i V 22,; V . . . V ~ n , i )  E ~ m a p ( G ,  I C )  

1-1 Clauses For each node in the independent set, there 
are clauses saying no two vertices map to this node; 
vi E (1 ,.", k } , U , W  E (1 ," . ,  n},u # 2, : 

( l z u , i  V 7 z v , i )  E amap(G,  k) 

Ordering Clauses For every pair of consecutive ver- 
tices, there is a clause saying that these are not 
mapped in the reverse order. This, by associativity, 
implies that there is a unique mapping to k nodes 
once we have chosen k vertices to be in the inde- 
pendent set. Vu,v E (1 ,..., n},i E (1 ,..., k - 
I}, U < 21 : ( ~ z u , i + i  V l ~ , i )  E a m a p ( G ,  IC). 

This encoding differs in spirit from the clique en- 
coding of Bonet, Pitassi and Raz [7] only in that it has 
additional ordering clauses. By omitting such clauses, 
the encoding in [7] merely stated that there is a bijec- 
tion from the independent set to a set of size k. Since 
they worked in the more powerful Cutting Planes proof 
system this method of counting was easy to reason 
about. However, in resolution, the well-known exponen- 
tial lower bounds for the pigeonhole principle [ 13,4, 171 
imply that refuting such an encoding even for finding 
large independent sets in a trivial graph would be ex- 
ponentially hard for resolution. Adding the ordering 
clauses makes counting easy and ensures that any lower 
bound we prove says something about the hardness of 
the independent set problem as a graph problem rather 
than merely as a problem of counting. 

n vertices 
of the graph 

10 k nodes of the 10 
independent set 

4 0  

\ f 3  ------43 

a k-independent set 
an ordered 

k-independent set 

Function Clauses For each vertex, there are clauses 
saying that this vertex is not mapped to two nodes, 
i.e. i t  is not counted twice in the independent 
set;Vv E (1 , . . . ,  n} , i , j  E (1 , . . . ,  k } , i  # j : 

Figure 1. Viewing independent sets as a 
mapping from n vertices to k nodes 

( l z v , i  V l z v , j )  E ~ m a p ( G ,  k )  

56 



4.3. Encoding Using Block-respecting Indepen- 
dent Sets 

We define a restricted class of independent sets which 
we call block-respecting independent sets. We will fix 
b = n / k  for the rest of the paper and assume for sim- 
plicity that k divides n. Partition the vertices of G into 
k subsets of size b each. We will refer to these subsets 
as blocks. A block-respecting independent set of size 
k is an independent set in which precisely one vertex 
comes from each of these k blocks (see Figure 2) .  The 
definition implicitly assumes a partitioning of the ver- 
tices of G into k equal size blocks. We note that the 
restriction that k divides n is only to make the presenta- 
tion simple. We can extend this argument to all k < n 
by letting each block have either b or b + 1 vertices for 
b = Ln/kJ.  The calculations are nearly identical to what 
we present here. Clearly, if a graph does not contain any 
Ic-independent set, then it  certainly does not contain any 
block-respecting independent set of size k either. 

We now define a CNF formula ablock(G,k) over 
variables z, which says that G contains a block- 
respecting independent set. We will fix an arbitrary 
ordering of vertices such that the first b vertices form 
the first block, the second b vertices form the second 
block, and so on. Henceforth, in all references to G, 
we will implicitly assume this fixed ordering of vertices 
and division into k blocks. Since this ordering is cho- 
sen arbitrarily, the bounds we derive hold for any order- 
ing. a b l o c k ( G ,  k )  contains the following three kinds of 
clauses: 

Edge Clauses For each edge ( U ,  v), there is one clause 
saying that not both U and v are selected; V(u ,  v)  E 
E : ( - ' X u  V ~ z v )  E a b l o c k ( G 7  k )  

Block Clauses For each block, there is one clause say- 
ing that at least one of the vertices in the block is 
selected; t/ 2 E {(),I,. . . , k - I}, ( x b i + l  v z b 2 + 2  v 
. . . v x b z + b )  E a b l o c k ( G ,  k )  

1-1 Clauses For each block, there are clauses saying 
that at most one of the vertices in the block is se- 
lected; t/ i E (0 , .  . . , IC - l},j, I E (1,. . . , b } , j  # 
1 : ( - 'Zbt+j  v l x b z + l )  E a b l o c k ( G ,  k )  

Clearly a b l o c k ( G ,  k )  is satisfiable iff G has a block- 
respecting independent set of size k .  

4.4 Relationships Among Encodings 

Lemma 1. For m y  graph G on n vertices and uny inte- 
ger k dividing n, 

R e S ( a b i o c k ( G ,  IC)) 5 b2 Res(a,,,,t(G, k)), and 

D L L ( Q b i o , k ( G ,  IC)) I (2 DLL(%,,,t(G, k)))'"'' 2b. 

Prooj Resolution proofs of acozlnt(G, k) can be con- 
verted into proofs of a b l o c k ( G ,  k )  by applying a restric- 
tion to the variables. We do this by starting with a fixed 
resolution proof of aco,,t(G, k )  and setting some of the 
variables so that its initial clauses either transform into 
initial clauses of a b l o c k  (G, I c )  or are satisfied trivially. 
For each i E {0,1, . . . , I C } ,  we simplify the proof by set- 

also set all y,,i = FALSE if vertex v does not belong to 
either block i + 1 or block i (no vertex belongs to block 
0). Finally, for 1 5 j 5 b, we replace all occurrences of 

. . .Vzbi+j) and all occurrences of - y b i + j , i + l  and y b i + j , i  

with ( z b i + j + l  Vxbi+j+2 V .  . . Vq,i+b). Note that setting 
Ybi , i  = TRUE for each i logically implies the rest of the 
restrictions we stated. 

The edge clauses are the same in both encodings. 
The size-k clause y n , k  and the counting clause  yo,^ of 
acount(G, k )  are trivially satisfied. The following can 
also be easily verified by plugging in the substitutions 
for the y variables. The counting clauses that define 
yU,o  for 'U 2 1 are either satisfied or translate into the 
first block clause (ZI V . . . V 2 6 ) .  Further, the count- 
ing clauses that define yv, i  for 'U > 1, i  > 1 are ei- 
ther satisfied or transform into the i t h  or the ( i  + 1)" 
block clause, i.e. into ( ~ b ( i - l ) + ~  V . . . V zb(i-l)+b) or 
(xbi+l v . . . v z b i + b ) .  Hence, all initial clauses of 
a,ou,t(G, k )  are either trivially satisfied or transform 
into initial clauses of Q b l o c k ( G ,  k ) .  

Note that the substitutions for Ybi+.j , i+l  and y b i + j , i  

replace these variables by a disjunction of at most b pos- 
itive literals. Any resolution step performed on these 
y ' s  in the original proof must now be converted into a 
set of equivalent resolution steps, which will blow up 
the size of the transformed refutation. More specifi- 
cally, a step resolving clauses (y V .4) and ( l y  V B )  
on the literal y (where y is either Ybi+j,i+l or ybi+j,i) 
will now be replaced by a set of resolution steps de- 
riving (A' v B')  from clauses (xul v . . . v zUp v A') 
and (xu, V . . . V zvq V B')  and any initial clauses of 
ablock(G,k), where all z ' s  mentioned belong to the 
same block of G, p + q = b and A' and B' correspond 
to the translated versions of A and B respectively. 

The obvious way of doing this is to resolve the clause 
( zu l  V . .  . V x U p  VA') withall 1-1  clauses (-au; V-'zvl) 
obtaining (TG,, V A'). Repeating this for all z,, 's gives 
us clauses ( 1 x u j  V A').  Note that this reuses (xul V . . . V 
xup V A') (I times and is therefore not tree-like. Resolv- 
ing all (7xv ,  V A') in turn with ( x , ~  v . . . V xvq v B')  
gives us (A' V B') .  This takes pq + q < b2 steps. Hence 
the blow up in size for general resolution is at most a 
factor of b 2 .  Note that this procedure is symmetric in A' 

ting Y b i , i  = TRUE and y b i , j  = FALSE for j # 2 .  we 

Y b i + j , i + l  and l y b i + j , i  ill the proof with (zbi+l vxbi+2 v 
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and B'; we could also have picked the clause (7y V B )  
to start with, in which case we would need qp  + p < b2 
steps. 

The tree-like case is somewhat trickier because we 
need to replicate clauses that are reused by the above 
procedure. We handle this using an idea similar to the 
one used in [ 101 for deriving the size-width relationship 
for tree-like resolution proofs. Let newSize(s) denote 
the maximum over the sizes of all transformed tree-like 
proofs obtained from original tree-like proofs of size s 
by applying the above procedure and creating enough 
duplicates to take care of reuse. We use induction to 
prove that newSize(s)  5 (2s)l0g2 2b.  For the base case, 
newsize( 1) = 1 5 26. For the inductive case, consider 
the subtree of the original proof that derives (A V B )  by 
resolving (y V A) and (ly V B )  on the literal y as above. 
Let this subtree be of size s 2 2 and assume w.l.0.g. that 
the subtree deriving (y V A) is of size S A  5 s /2 .  By in- 
duction, the transformed version of this subtree deriving 
(xul V. .  .VxUp VA') is of size at most newSize(sA) and 
that of the other subtree deriving (xul V . . . V xuq V B') 
is of size at most newSize(s - S A  - 1). Choose 
(xu, V . . . ;cup V A') as the clause to start the new deriva- 
tion of (A' V B')  as described in the previous paragraph. 
The size of this refutation is at most 6 .  newSize(sA) + 
newSize(s - S A  - 1) + b2. Since we can do this for any 
original proof of size s, we must have newSize(s) 5 
b . newSize(sA) + newSize(s - S A  - 1) + b2 for 
s 2 2 and S A  5 s/2.  It can be easily verified that 
newSize(s)  = 2bs b l o g z s  = ( 2 ~ ) " ' g z ' ~  is a solution 
to this. We thus have the bound for the DLL case as 
well. 0 

Lemma 2. For any graph G on n vertices and any inte- 
ger k dividing n, 

Proo$ In the general encoding amap(G,k ) ,  a vertex 
v can potentially be chosen as the i th node of the k-  
independent set for any i E { 1 , 2 , .  . . , I C } .  In the re- 
stricted encoding, however, vertex v belonging to block 
j can be thought of as either being selected as the j t h  
node of the independent set or not being selected at all. 
Hence, if we start with a resolution (or DLL) refutation 
of amap(G,  k )  and set zu3i = FALSE f o r i  # j ,  we get a 
simplified refutation where the only variables are of the 
form zv,j where vertex v belongs to block j .  Renaming 
these z,,j's as xu's, we get a refutation in the variables 
of ablock(G, k )  that is no larger in size than the original 
refutation of amap(G,  I C ) .  

All we now need to do is verify that this trans- 
formation either converts any given initial clause of 

am,,(G, k )  to an initial clause of ablock(G, k )  or sat- 
isfies it trivially. The transformed refutation will then 
be a refutation of ablock(G, k )  itself. This reasoning is 
straightforward: 

0 Edge clauses (7zu , i  V 7 z u , j )  of ama,(G,k) that 
represented edge ( U ,  v) E E with U in block i and 
v in block j transform into the corresponding edge 
clause (-a, v 7 z u )  of ablock(G, k ) .  If vertex U (or 
v) is not in block i (or j ,  resp.), then the transfor- 
mation sets zu,i (or zu , j ,  resp.) to FALSE and the 
clause is trivially satisfied. 

0 Surjective clauses of amap(G,  k )  clearly transform 
to the corresponding block clauses of ablock(G, k) 
- for the ith such clause, variables corresponding 
to vertices that do not belong to block i are set to 
FALSE and simply vanish, and we are left with the 
ith block clause of ablock(G, k). 

0 It is easy to see that all function clauses and order- 
ing clauses are trivially satisfied by the transforma- 
tion. 

0 1-1  clauses ( T Z , , ~  v 7 z u , i )  of amap(G,  k )  that in- 
volved vertices U and v both from block i transform 
into the corresponding 1 - 1 clause (12, V 7 x u )  of 
ablock(G, k ) .  If vertex U (or v) is not in block 2, 

then the transformation sets z,,i (or zu,i,  resp.) to 
FALSE and the clause is trivially satisfied. 

Thus, this transformed proof is a refutation of 
@,lock ( G ,  k )  and the desired bounds follow. 

5. Simulating ChvLtal's Proof System 

We show that resolution on a'block (G ,  k )  can simulate 
Chvital's proofs [8] of non-existence of k-independent 
sets in G. This indirectly provides bounds on the run- 
ning time of various algorithms for finding a largest in- 
dependent set in a given graph. We first briefly describe 
his proof system. Let (S, t )  be the statement that the sub- 
graph of G induced by a vertex subset S does not have 
an independent set of size t .  (qh,1) is given as an axiom 
and the goal is to prove the statement (V, k ) ,  where V 
is the vertex set of G and k is given as input. Proofs 
in his system are based on the following property. Pick 
any vertex U .  U is either present in some largest indepen- 
dent set of G ,  or not. Therefore, (s, t )  is TRUE iff both 
( S  - N(v) - {v},t - 1) and ( s  - {v},t) are TRUE, 
where N ( v )  is the set of neighbors of v .  To prove ( S ,  t ) ,  
one then recursively proves the two subproblems. We 
will denote by Chv(G, k )  the size of the smallest proof 
in Chvital's system of the statement ( V ( G ) ,  k). 
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A key idea for getting short proofs in Chvatal’s sys- 
tem is to reuse proofs for subproblems. We say (S, t )  
dominares (S’, t’) iff S 2 S‘ and t 5 t’. It is clear 
that once we have proved (SI t ) ,  there is no need to pro- 
vide a separate proof of (S’, t’). Chvital’s system al- 
lows one to derive such an (S’, t‘) from (SI t )  in a single 
step using the monotone rule. Also, one can easily sim- 
plify the proof of (SI t )  to get a proof of (S’,  t’). This 
notion of reusing proofs for subproblems that are domi- 
nated by previously solved subproblems makes proofs 
in ChvBtal’s system look like directed acyclic graphs. 
As we will soon see, one can convert these proofs to 
corresponding resolution proofs by traversing the proof 
graph bottom-up and locally replacing each inference in 
Chvhtal’s system by a small number of resolution infer- 
ences. 

We call a proof system for independent sets monotone 
if adding more edges to the original graph does not make 
it any harder to prove that there is no independent set of 
a certain size. 

Observation 2. Chvcital’s proof system is monotone. 

Proof: Let G‘ be a graph obtained by adding edges to a 
graph G. Let V denote both the vertex set of G and that 
of GI. In order to prove (V, k )  for the denser graph G’, 
we have to recursively prove (V - N’(v)  - {w)] k - 1) 
and (V - { v } , k )  in G’, for some vertex w. Here N’ 
denotes the set of neighbors of w in G‘. Since G‘ has 
all the edges of G and some more, V - N ( v )  - {U} 2 
V - ”(w) - {U]. Hence (V - N ( v )  - { v ] , k  - 1) in 
G dominates (V - N‘(v) - {w}, k - 1) in G. We can 
therefore rewrite the proof of (V - X ( v )  - {w], k - 1) 
in G to get a proof of (V - N’(v)  - {w}, k - 1) in G. 
This is still not a proof of (V - N‘(v) - {U), k - 1) in 
G‘ because the induced subgraph in G’ has a different 
set of edges than the induced graph in G. However, we 
can now inductively use the monotonicity of the smaller 
problem to convert the proof of (V - N‘(w) - { w} k - 1) 
in G to one in G’. Using monotonicity inductively once 
again, we can also convert the proof of (V - {U}, k )  in  
G to one in G’. Hence, by induction, we have a no larger 

0 

Lemma 3. For any graph G on n vertices and any inte- 
ger k dividing n, 

proof of (V, k )  in  G’ than we had in G. 

ReS(abl,,k(G, k ) )  5 2n Chw(G, k ) .  

Proof: Let V denote the vertex set of G. Divide V into 
k blocks of equal size and let Gblock be the graph ob- 
tained by taking G and adding all edges ( U ,  U) such that 
vertices U and belong to the same block of G. In other 
words, GblocX: is G with modified to contain a clique on 
each block. By the monotonicity of Chvital’s system, 

we can convert the given proof of (V, k )  in G to a proof 
of (V, k )  in Gblock that is no larger than that in G. 

We will start with a fixed proof of (V, k )  in Gblock 
in ChvBtal’s system and use it to guide the construction 
of a resolution refutation for ablock(G, k ) .  Observe that 
without loss of generality, for any statement (S, t )  in the 
proof, t is at least the number of blocks of G containing 
vertices in S. This is so because it  is true for the final 
statement (VI k) and if it is true for (S, t ) ,  then it is also 
true for both (S - {U}$) and ( S  - N ( v )  - {w],t - 
1) from which (SI t )  is derived. We will call (S, t )  a 
trivial statement if t is strictly bigger than the number 
of blocks of G containing vertices in S. Notice that the 
initial statement (4] 1) of the proof is trivial, whereas the 
final statement (V, k )  is not. Also, all statements derived 
by applying the monotone rule are non-trivial. 

The resolution proof we will construct will have a 
clause associated with each non-trivial statement (S, t )  
occurring in the proof. This clause will be a subclause 
of the clause CS = (VuENs 2,) where N s  is the set 
of all vertices in V - S that are in blocks of G contain- 
ing at least one vertex of S.  We will construct our res- 
olution proof inductively, going bottom-up through the 
non-trivial statements of the given proof. Note that the 
clause associated in this manner with (V, k )  will be the 
empty clause and hence we have a refutation. 

Suppose (SI t )  is non-trivial and is derived in the 
original proof by applying the branching rule to vertex 
w E S. Then we write our target clause CS as (Ci. V C5) 
where Cg is the disjunction of all variables correspond- 
ing to vertices of Ns  that are in the same block as w and 
CF is the disjunction of all variables corresponding to 
vertices of Ns  that are in the remaining blocks. w E S, 
Before deriving the subclause of Cs, we will derive two 
clauses Cl1 and Clz as follows depending on the prop- 
erties of the inference that produced (S, t ) :  

Case 1: Both (S- {U}, t )  and ( S - N ( v )  - {U], t -  1) 
are trivial. It is easy to see that since (S, t )  is non-trivial, 
if ( S  - {U}, t )  is trivial then w is the only vertex of S in 
its block. We let C11 be the initial block clause for the 
block containing w which is precisely ( 2 ,  V C i ) .  The 
fact that (S - N ( v )  - {‘U}, t - 1) is also trivial implies 
that the neighbors of w include not only every vertex of S 
appearing in the block containing w but also all vertices 
in S fl B where B is some other block that does not 
contain U. Resolving the block clause for block B with 
all edge clauses (lz, V 1 z u )  for U E S n B gives us a 
subclause Clz of (lz, V Ci). 

Case 2: ( S -  {w}, t )  is trivial but (S-N(w)  - {U}, t -  
1) is non-trivial. We set C11 exactly as in  case 1. Given 
that ( S  - N ( v )  - {v},t - 1) is non-trivial, we have 
by inductive assumption a subclause of C~--N(,)--(,). 
Since the given proof applies to Gblock, N(v) U w con- 

def 

59 



tains every vertex in the block containing v as well as all 
neighbors of U in G that are not in 71’s block. Therefore 
the subclause of CS--N(,)-{,) we have by induction, is 
a subclause of (Ci  V xu, V . . . V x U p ) ,  where each ui is 
a neighbor of ’U in S in blocks other than v’s block. We 
derive a new clause C12 by resolving this clause with 
all edge clauses (-q, V l x u i ) .  Observe that Cl2 is a 
subclause of (72, V CL). 

Case 3: ( S  - { U } ,  t )  is non-trivial but ( S  - N ( v )  - 
{ v} t - 1) is trivial. We set Cl2 as in case 1. Since ( S  - 
{ U } ]  t )  is non-trivial, we have by induction a subclause 
Cl2 of CS-(,), i.e. a subclause of (q, V CS) .  

Case 4: Both ( S -  {U}, t )  and ( S  - N ( u )  - {U}, t -  1) 
are non-trivial. In this case, we derive C11 as in case 3 
and Cl2 as in case 2. 

It is easy to verify that C11 is a subclause of ( 2 ,  VCs) 
and C12 is a subclause of (-a, V C;). If either C11 or 
Cl2 does not mention x, at all, then we already have the 
desired subclause of CS. Otherwise we resolve CZ1 with 
CZ2 to get a subclause of Cs. This completes the con- 
struction. Given any statement in the original proof, it 
takes at most 2n steps to derive the subclause associated 
with it in the resolution proof, given that we have al- 
ready derived the corresponding subclauses for the two 
branches of that statement. This gives the bound on the 
size of the constructed resolution refutation. 0 

It follows that our bounds apply to Chvital’s system 
and hence also to many algorithms for finding a largest 
independent set in a given graph that are captured by his 
proof system [ 16, 18, 19, 201. 

6. Key Concepts for Lower Bounds 

This section defines key concepts that will be used in 
the lower bound argument given in the next section. We 
will fix a graph G and a partition of its n vertices into IC 
subsets of size b each. For any edge ( U ,  w )  in G, we will 
call i t  an inter-block edge if U and v belong to different 
blocks of G and an intra-block edge otherwise. 

6.1. Critical Truth Assignment 

We call a truth assignment to variables of 
a b l o c k ( G , I C )  critical if i t  sets exactly one variable 
in each block to TRUE. Critical truth assignments 
clearly satisfy all block, 1 - 1  and intra-block edge 
clauses but may leave some inter-block edge clauses 
unsatisfied. It is easy to see that if ablock(G,k) does 
have a satisfying assignment, i t  also has a satisfying 
critical assignment - we can simply reset all but one 
TRUE variable in each block to FALSE. 

Fix a critical truth assignment y. Then for each 
i E { O , l  ]...]k - 1) and each j E {1,2 , . . .  ] b } ,  

Zbi+j+l V . . . V Zbi+b) = TRUE. We can use this equiva- 
lence to convert any clause C in the variables appearing 
in (Yblock(Gl k) into a clause Cf in which every variable 
occurs positively by replacing each negated variable by 
the disjunction of the other variables in the block. Ob- 
serve that C and C+ are equivalent under all critical 
truth assignments. 

y(’xbi+j) = TRUE iff ‘y(Tbi+l V . . .  V xbi+j-l V 

6.2. Block Graph 

It will be useful to look at the block multi-graph of G, 
denoted B(G) ,  obtained by identifying all vertices that 
belong to the same block in G and removing any self- 
loops that are thus generated. B ( G )  contains exactly 
IC nodes and possibly multiple edges between pairs of 
nodes. The degree of a node in B ( G )  is the number 
of inter-block edges touching the corresponding block 
of G. Given the natural correspondence between G and 
B(G) ,  we will write nodes of B(G)  and blocks o f G  
interchangeably. 

6.3. Block Induced Subgraphs and Boundary 

Let H be a subgraph of G and S a subset of blocks of 
G. We say that H is block induced by S if it is the sub- 
graph of G induced by all vertices present in the blocks 
S .  Clearly, if H is block induced by S ,  then B ( H )  is 
induced by S in B(G) .  H will be called a block induced 
subgraph of G if there exists a subset S of blocks such 
that H is block induced by S .  Further, if H is a block 
induced subgraph, then we can find a unique minimal 
block set S such that H is block induced by S. This S 
simply contains all blocks which have non-zero degree 
in B ( H ) .  With each block induced subgraph, we will 
associate such a minimal S and say that the subgraph is 
induced by IS1 blocks. 

We define the boundary of a block induced subgraph 
H ,  denoted P ( H ) ,  to be the set of nodes of B ( H )  
(blocks of H )  which have degree (number of inter-block 
edges, respectively) between 1 and b - 1. The following 
property will be useful in obtaining a lower bound on the 
width of clauses implied by subgraphs. 

Observation 3. Given any boundary block, we canfind 
two vertices U and v in it such that U has no inter-block 
edges and U has at least one. 

6.4. Minimal Implication and Block Width 

For a block induced subgraph H of G, let E ( H )  de- 
note the conjunction of the edge clauses of ablock(G, IC) 

60 



corresponding to the edges of H .  We say that H 
critically implies a clause C iff E ( H )  + C is true 
for all critical truth assignments to the variables of 
ablock(G, k ) .  Let subgraph H be induced by the block 
set S .  We say that H minimally implies C if H critically 
implies C and no subgraph of G which is induced by a 
proper subset of S critically implies C. 

The block width of a clause C with respect to G, de- 
noted w & , ~ ( C ) ,  is the number of different blocks of G 
the variables appearing in C come from. 

Observation4. For any clause C and any block in- 
duced subgraph H of G, 

I .  H minimally implies C iff H minimally implies 
C’. 

6.5. Clause Complexity 

Let C be a clause over variables of f f b l o c k ( G ,  k ) .  The 
complexity of C,  denoted p ~ ( c ) ,  is the minimum over 
the sizes of subsets S of blocks such that subgraph H 
induced by S critically implies C. In other words, i t  is 
the minimum number of blocks we need to look at so as 
to make the block induced subgraph critically imply C.  
In the following, we state some simple properties of the 
complexity measure p ~ .  

Observation5. Let G be a graph and A denote the 
empq clause. Then 

1. For an initial clause c, i.e. for c E f f b l o c k ( G ,  k ) ,  
p G ( c )  <_ 2. 

2. pc; (A)  is the number of blocks in the smallest 
block induced subgraph of G that has no block- 
respecting independent set of size k .  

3. Subadditive property: If clause C is a resolvant 
of clauses c1 and cz, then p ~ ( c )  5 pG(c1)  -t 
I L G ( c 2 ) .  

Proo$ Each initial clause is either an edge clause, a 
block clause or a 1 - 1  clause. Any critical truth assign- 
ment, by definition, satisfies all block, 1-1 and intra- 
block edge clauses. Further, an edge clause correspond- 
ing to an inter-block edge ( u , v )  is implied by the sub- 
graph induced by the two blocks to which U and v be- 
long. Hence, complexity of an initial clause is at most 2, 
proving part 1. 

Part 2 is trivially true by definition of p ~ .  Part 3 fol- 
lows from the simple observation that if GI critically 
implies C1, GL critically implies C, and both GI and 
Gz are block induced subgraphs, then Gluz, defined as 

the block graph induced by the union of the blocks G1 
and Ga are induced by, critically implies both C1 and 

0 Cz, and hence critically implies C. 

7. Proof of Lower Bounds 

We use combinatorial properties of block graphs and 
independent sets to obtain a lower bound on the size of 
resolution refutations for a given graph in terms of its ex- 
pansion properties. Next, we argue that random graphs 
almost surely have good expansion properties. Section 
8 combines these two to obtain an almost certain lower 
bound for random graphs. 

7.1. Relating Proof Size to Graph Expansion 

Lemma4. Let C be a clause in the variables of 
abloct(G, k ) .  I f  H is a block induced subgraph of G 
that minimally implies C, then wEock ( C )  2 ID( H )  1. 
Proo$ By Observation 4, it suffices to assume that every 
literal of C is positive. 

We will use the toggling property of block-respecting 
independent sets (Figure 2) to show that each boundary 
block of H contributes to C every positive literal that 
corresponds to a vertex in it  with no inter-block edges. 
In particular, at least one literal from every boundary 
block appears in C. 

Fix a boundary block B. From Observation 3, B 
must contain two vertices U and v such that U has no 
inter-block edge and v has an inter-block edge (v, w). 
If we let H B  be the block induced subgraph that has all 
edges of H except those that have an endpoint in block 
B ,  then H g  is a strict subgraph of H and by minimality, 
cannot critically imply C. Therefore, there must exist a 
critical truth assignment y such that ~ ( E ( H B ) )  is TRUE 
but y(C) is FALSE. We can think of y as picking exactly 
one vertex from each block. Note that y cannot pick 
vertex U from block B because then the lack of edges 
with endpoints in B won’t matter. y will not violate any 
edge clauses of H itself. In other words, y ( E ( H ) )  will 
be TRUE which would imply that y ( c )  is TRUE - a  con- 
tradiction. Therefore for suitable choices of v and w, 
y picks v from block B and its neighbor w from some 
other block. 

Now create another critical truth assignment y’ which 
differs from y only in that it picks vertex U from block 
B whereas y didn’t. Since y’ is identical to y in  blocks 
other than B and ~ ( E ( H B ) )  is TRUE, ~ ’ ( E ( H B ) )  must 
also be TRUE. Moreover, since y’ picked vertex U from 
block B and U does not have any inter-block edges, y’ 
cannot violate any edge with an endpoint in B.  There- 
fore, even - / ‘ (E(H) )  is TRUE,  implying that y’(C) is 
TRUE. 
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Block B with v selected 

Jq \ 4 
Block B with u selected 

Figure 2. Toggling property of block- 
respecting independent sets (selected ver- 
tices are shown in bold) 

We now have two critical truth assignments y and y‘ 
that differ only in that the latter sets 2, to TRUE whereas 
the former doesn’t, and that the latter satisfies C while 
the former doesn’t. This is what we earlier referred to 
as the toggling property. Since C contains only positive 

0 literals, this can happen only if 2, E C. 

If we start with G and keep throwing edges away, 
the resulting subgraph will surely contain a block- 
respecting independent set after enough edges are gone. 
Let s + 1 be the minimum number of blocks such that 
some subgraph of G induced by s + 1 blocks does not 
have a k-independent set. Now define the sub-critical 
expansion, e(G), of G to be the maximum over all 
t ,  2 5 t 5 s, of the minimum boundary size of any sub- 
graph H of G induced by t’ blocks, where t /2 < t’ < t. 
Lemma 5. Any resolution refutation of (Yblock (G,  k) 
niiist contain a clause of width at least e(G). 

Pro05 Let t be chosen as in the definition of e(G) and 
let 7r be a resolution refutation of ablock(G, I C ) .  By Ob- 
servation 5.2, ~ G ( A )  = s + 1. Further, Observation 

5.1 says that any initial clause has complexity at most 
2. Therefore for 2 < t 5 s there exists a clause C in 
rr such that ,LLG(C) > t 2 2 and no ancestor of C has 
complexity greater than t .  

Since ~ G ( C )  > 2,  C cannot be an initial clause. It 
must then be a resolvant of two parent clauses C1 and 
Ca. By Observation 5 .3  and the fact that no ancestor of 
C has complexity greater than t ,  one of these clauses, 
say C1, must have p G ( c 1 )  between ( t  + 1 ) / 2  and t .  If 
H is a block induced subgraph that witnesses the value 
of PG(Cl), then by Lemma 4, wgidth(C1) 2 IP(H)i. 
From Observation 4, this implies w(C1) _> IP(H)I. By 
definition of e(G),  IP(H)I 2 e(G). Thus w(Cl) 2 
e( G)  as required. 0 

Lemma 6. IfG is a graph with vertices divided into k 
blocks of size b = n / k  each and Qblock (G,  k) is the CNF 
formula saying that G has U block-respecting indepen- 
dent set of size k, then for  the constant c > 0 in Propo- 
sition 2, 

Res(ablock(G, k))  2 2 c ( e ( G ) - b ) 2 / n ,  and 
DLL(ablock(G, I C ) )  2 2e(G)-b.  

Proot This follows immediately from Lemma 5 and 
Propositions 2 and 1 by observing that the initial width 

0 of ablock (G, k )  is b. 

7.2. Lower Bounding Sub-critical Expansion 

Throughout this section, the probabilities we mention 
will be with respect to the random choice of the graph G 
from distribution G,,, for some parameters n and m. 
Let B ( G )  be a block graph corresponding to G with 
block size b. We call B ( G )  ( ~ , q ) - d e n s e  if some sub- 
graph of G induced by T blocks (i.e. some subgraph of 
B ( G )  with T nodes) contains at least q edges. The fol- 
lowing Lemma shows that for almost all random graphs 
G,  B(G)  is locally sparse. 

Lemma 7. Let G - G,,, and B(G) be a correspond- 
ing block graph with block size b. Let A ‘Zf m l n .  Then 
f o r r , q  2 1, 

Pr[B(G)  is (T ,  q)-dense] < 

Proof Let R be a subset of T nodes of B(G) .  R 
then corresponds to br vertices of G. A given edge 
of G transforms into an edge of B(G) with its end- 
points in two different blocks in R with probability 
p = ( b T ) ( b T - - T ) / ( n ( n - l ) )  < ( b T / n ) 2 .  F o r G  - G,,,, 
the number of edges contained in R has the binomial dis- 
tribution B(m,p).  Hence, the probability that at least q 
edges of B(G)  are contained in R is 
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Summing this over all the (n:b) 5 (ne/br) '  r-subsets, 
R, of nodes of B ( G ) ,  we obtain 

Pr[B(G) is (T ,  q)-dense] < 

0 

We use this local sparseness property of almost all 
random graphs to prqve that the smallest block induced 
subgraph one needs to consider for proving that G does 
not have a block-respecting independent set of size IC is 
almost surely large. This shows that any resolution proof 
that G does not have a block-respecting independent set 
of size IC will have to consider at least a constant fraction 
of blocks when G has does not have too many edges. 
More precisely, 

Lemma 8. Let m, n,  b be integers with A ef m/n and 
b 2 3 and k = n/b. There exists a constant C such 
that ifs < C n / ( b A b / ( b - 2 ) ) ,  then the probability that 
G N G,,, contains a subgraph induced by at most s 
blocks that has no block-respecting independent set of 
size IC is o( 1 )  in s. 

Pro05 The probability that G contains a subgraph in- 
duced by at most s blocks that has no block-respecting 
independent set of size IC is the same as the probability 
that there is some minimal subgraph H of G which is in- 
duced by T < s blocks and has no block-respecting inde- 
pendent set of size I C .  Since clauses corresponding to H 
are unsatisfiable, H critically implies the empty clause 
A which is of width 0. It follows from Lemma 4 that H 
has no boundary blocks. Further, since H is minimal, 
i t  does not have any blocks with no inter-block edges. 
It follows that each of the T blocks that induce H must 
have at least b inter-block edges. Hence, the subgraph 
of B(G)  with the T nodes corresponding to the T blocks 
that induce H must have at least b r / 2  edges. 

Thus, the probability that G contains such a block 
induced subgraph H is at most 

S 

xPr [B(G)  is (T ,  br/2)-dense]. 
T = l  

By Lemma 7, we have Pr [B(G)  is ( r ,  br/2)-dense] < 
D ( r )  where 

= ( Q ( b ,  n,  A) T ( ~ - ' ) / ~ ) '  

for Q ( b ,  n,  A) = ( n e / b ) ( 2 e b A / n ) b / 2 .  Now 

D(T + 1 )  - - (Q(b ,  n,  A) (T + l ) (b-2) /2)T+1 
(Q(b ,  n, A) T ( ~ - ~ ) / ~ ) ~  

Q ( b ,  n,  A) ( r  + l ) (b-2) /2  (T+l) T ( b - 2 ) / 2  

Q(b ,  n, A) ( T  + l)(b-2)/2 e ( b - 2 ) / 2  
( n e / b ) ( 2 e b A / ~ ~ ) ~ / ~  (e( .  + l ) ) (b-2) /2  
( l / b ) ( 2 e 2 b A ) b / 2  ( ( T  + l ) /n ) (b-2) /2  

This quantity is at most 1 / 2  when 

1 2 / ( b - 2 )  

= (&) 2e2b A b / ( b - - 2 )  

For b _> 3 ,  ( 1 / 4 e 2 ) 2 / ( b - 2 )  2 1 / (  16e4) .  Hence it  suf- 
fices to have ( r  + l ) / n  5 1 / ( 1 6 e 4  2e2bAb/ (b -2 ) )  = 
1 / ( 3 2 e 5  b A b / ( b - 2 ) ) .  Therefore, D(T + l ) / D ( r )  5 1 / 2  
for 1 5 T < Cn/(bAb/ (b-2) ) ,  where C gf 1/(32e5) is 
a constant. Let s+ 1 = C T L / ( ~ A ' / ( ~ - ~ ) ) .  Then the prob- 
ability that G contains such a block induced subgraph is 
bounded above by a geometric series in T with common 
ratio 1 / 2 .  It is therefore at most twice the largest term 
of the series which is less than D ( 1 ) .  Rewriting D ( 1 )  in 
terms of s using the fact that A = ( & ) ( b - 2 ) / b  gives 

which for b 2 3 is o( 1) in s as required. 0 

We again use the local sparseness property to prove 
that any subgraph induced by not too many as well as 
not too few blocks has large boundary for almost all 
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random graphs G. The intuition is that for sparse sub- 
graphs, most blocks have degree < b whereas for dense 
subgraphs, most blocks have degree > 0. Hence, if we 
look at middle size subgraphs, it is very likely that some 
large fraction of blocks will have degree between 1 and 
b - 1, and will therefore belong to the boundary. 

Lemma 9. Let m, n ,  b be integers with A = m/n and 
b 2 5. For 0 < E 5 1 / 2 ,  let b‘ dgf b - ( b  - 1 ) ~ .  

There exists a constant c such that ift 5 cn/(bAb’--2), 
then the probability that G - S,,, has a subgraph H 
induced by T blocks, t / 2  < T 5 t ,  with P ( H )  5 ET is 
o( 1) in t. 

Proot Fix b, and T satisfying all conditions of the 
Lemma. Since H is induced by r blocks, by defini- 
tion, all T blocks inducing H must have non-zero de- 
gree in B ( H ) .  Moreover, if H has at most ET boundary 
blocks, the other (1 - E ) T  blocks of non-zero degree in- 
ducing it must have degree at least b. Hence, the T nodes 
of B ( G )  that induce H form a subgraph with at least 
( E T  + (1 - ~ ) ~ b ) / 2  = b’r/2 edges. Therefore, H has 
at most ET boundary blocks only if B ( G )  is ( T ,  b’r /2)-  
dense. Thus by Lemma 7, the probability that such an 
H exists is at most 

def 

b’ 

P r [ B ( G )  is ( T ,  b’r)-dense] 

Since T > t / 2 ,  it will suffice to obtain an upper bound 
on this probability that is exponentially small in r .  We 
first note that since E 5 1/2, b’ must be at least (b+1) /2 .  
Moreover, since b 2 5, b’ must be at least 3. Rearrang- 
ing terms now gives that P r [ B ( G )  is ( T ,  b’r)-dense] 5 
2-T when 

2/ ( b’ -2) 

n 

b‘ 2 / ( 6 ‘ - 2 )  

= (A) 2eb2 Ab’/(b’-2) 

since b’ 2 ( b  + 1)/2. 
For b’ 2 3, we see that 1 / ( 8 e 2 ) 2 / ( b ’ - 2 )  is at 

least 1/(G4e4). Hence, it suffices to have r / n  2 
1 /(G4e4 4 e b ~ l ~ ’ / ( ~ ’ - ~ ) )  = 1 / ( 25Ge5b Ab’ /(6’-2)).  

Therefore, the probability that B(G)  is (T, b’r)-dense 

is at most 2TT for r 5 cn/(bA6’/(b’-2)), where c def = 

1/(25Ge5) is a constant. It follows that the probabil- 
ity that there exists such an H with t / 2  < r 5 t is 
at most c:=,(t+I)/%, 2-T.  This sum is o(1) in t as re- 
quired. 0 

Combining Lemmas 8 and 9 we obtain the following 
lower bound on sub-critical expansion: 

Lemma 10. Let m, n, b be integers with A sf m/n and 
b 2 5. For 0 < E 5 1/2, let b’ ef b - ( b  - 1 ) ~  and 
W ef n/(bAb‘/(b’-2)). Then there exists a constant c, 
depending only on E such that the probability that G - 
G,,, has e(G)  < c,W is o ( 1 )  in W .  

Pro05 Let C be the constant from Lemma 8, c be the 
one from Lemma 9 and c* be the minimum of these 
two. By Lemma 8, if G - S,,, and s + 1 = 
Cn/(  b A 6 / ( b - 2 ) ) ,  then the probability that a subgraph H 
of G induced by at most s blocks does not have a block- 
respecting independent set of size k is o( 1) in s, which 
is o(1) in W .  Now let t = c*W, which is at most s 
because of our choice of c* and the fact that b’ < b. By 
Lemma 9, the probability that G - G,,, has a subgraph 
H induced by r blocks, t / 2  < T 5 t ,  that has at most CT 

boundary blocks is o( 1) in t ,  and thus o( 1) in W .  
It follows that with probability 1 - o(1) in W ,  every 

subgraph of G induced by r blocks with t / 2  < r 5 t 5 
s has at least er 2 ~ t / 2  = d W / 2  boundary blocks. 
Letting c, = E C * / ~  yields the desired bound on e(G).  

0 

8. Main Results 

8.1. Lower Bounds 

def Theorem 1. Let m, n ,  k be integers with A = m/n,  
IC 5 n/5 and n a niultiple of k .  If G - S,,, and A = 
~ ( n ’ / ~ ) ,  then fo r  each 0 < c 5 1 / 2 ,  there exists a global 
constants C,, C: such that with probability 1 - o(1) in 
n, 

Res(obloCk(G, k ) )  2 2cek2/(nA2+26 ), and 

DLL(abl,,k(G, k ) )  2 2c:k/A’+6 

2k  where 6 = n-(n-k)e+2k’  

Proof Let b = n / k  2 5, b‘ = b - ( b  - 1 ) ~  and 
W = n/(bAb’/(6’-2)). From Lemma 10, there exists 
a constant c, such that with probability 1 - o(1) in W ,  
e(G)  2 c,W. Then by Lemma 6 Res(cYblock(G, k)) 2 
2 C ( C e W - 6 ) 2 / n  with probability 1 - o(1) in W where 
c = 1 / ( 9 l n 2 ) .  
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We now show that our conditions imply that W is 
large enough that this yields our claimed exponential 
lower bounds with probability 1 - o(1) in n. Since b 2 5 
and E 5 1/2,  b'/(b' - 2) 5 3. Hence W/b 2 n/(b2A3). 
Note that for b 2 4A, k is at most nl(4A) and by Ob- 
servation 1, an independent set of size k surely exists. 
In this case, there are simply no resolution refutations of 
a b l o c k ( G ,  k ) .  Therefore, we can safely assume b < 4 4 ,  
in which case W/b > n/(16A5). Since by assumption 
A = o(n1l5), there is some constant C, > 0 such that 
c(c,W - b)z  2 C,W2. Thus 

log2 (ReS(Qblock (G ,  k ) ) )  
2 C,W2/n 

= C,n2/ (nb2A&) 

= (Jekz/(nA2+G@=iiZG 4 ,  

= C,k"(nA2+"-(n--l.)i+zk 4k 1 
= C,k2/(nA2+26 1 

A similar calculation gives the DLL bound. U 

Corollary 1. For G ,  m, n,  k ,  A,  E ,  6 as in Theorem 1 
there are constunts c,, ci, cy, cy', c:" > 0, such that 
with probabili3 1 - o( 1 )  in n, 

Res(a,,,,(~, IC)) > - 2 ~ ~ ~ ~ / ( n ~ ~ + ~ ~ ) ,  

ReS(Qcount(G, IC)) - , 

DLL(a.,,,(G, k ) )  2 2 C : h / A ' + h ,  
> 2 ~ ~ k ~ / ( n A ' + ' ~ )  

DLL(cu,,,,t(G, k ) )  2 2cy'k/(A'+6 l o g A ) ,  and 
ChU(G, k )  2 2Cy"k'2/(nA2+26). 

Proof The bounds for aTTLaP(G, k )  follow directly 
from Theorem 1 and Lemma 2 .  For the bounds on 
acoullf(G, k ) ,  observe that we can assume b < 4A be- 
cause otherwise k = n/b < n/(4A) and from Ob- 
servation 1,  G definitely contains a k-independent set. 
The numbers b2 and log, 2b from Lemma I are there- 
fore bounded above by 16A' and log2(8A) respectively. 
Combining this with Theorem 1, we get the desired 
bounds. 0 

Corollary 2. For alniost all graphs G = (V, E )  with 
a linear number of edges and for any k 5 IV1/5, 
Res(ablock(G, I C ) )  = 2"(n). 

Prooj Follows from Theorem 1 by setting A = con-. 
stant and observing that the largest independent set in a 
graph with a linear number of edges is also linear in size 
almost surely. 13 

Corollary 3. Let m, n, k be integers with A sf m/n, 
k 5 n/5 and n a rnultiple of k .  I fG - Sn,,,L and A = 

~ ( n l / ~ ) ,  then there are global constants c and C' such 
that with probability 1 - o( 1 )  in n, 

ReS(ckblock(G7 I C ) )  2 2 ~ 7 ~ " ~ ~ ~  and 
I 11/25 

DLL(Qbiock(G,k)) 2 2' . 

Proof A trivial calculation shows that for 0 < E 5 1/2 
and k 5 n/5, n - ( n ! k ) r + 2 k  5 4 / 5 ,  and this value is 
achieved for E = 1/2. If k 5 n/(4A),  then from 
Observation 1, G surely has a k-independent set and 
no resolution refutations of crblock(G, k )  exist. There- 
fore, we can safely assume k > nl(4A). It then fol- 
lows from Theorem 1 that 1og2(Res(ablock(G7 k ) ) )  > 
C1/z(n2/(l6A2))/(nA2++4/") = C1/2n/(16A4+4/5). 
Since A = ~ ( n l / ~ ) ,  this quantity is at least cn1/25 for 
c = %. This gives us the resolution bound. A similar 

0 calculation gives the D L L  bound. 

8.2. Upper Bounds 

Theorem 2. Let G be a graph with n vertices and m 
edges, A ef m/n  and k be any integer for which G 
does not have a k-independent set. Then 

DLI;(a,,,(G, k ) )  = 2 ° ( k ' o g ( n / k ) )  

This bound also holds when amap(G, IC) does not in- 
clude 1-1 clauses. 

Proof A straightforward way to disprove the existence 
of a k-independent set is to go through all (L) subsets 
of vertices of size k and use as evidence an edge from 
each subset. We will use this to derive a refutation of 

To begin with, we apply trasitivity to derive all or- 
dering clauses of the form ( lz , . j  V 7zV,i)  for U < U 

and i < j .  If j = i + 1,  this is simply one of the 
original ordering clauses. For j = i + 2, we derive the 
new clause ( l zu , i+% V l z V , i )  as follows. Consider any 
w E {1 ,2 , .  . . , n}. If U < w, we have the ordering 
clause (7zUr,i+1 V -zu,%+2), and if U 2 w, then U > w 
and we have the ordering clause ( l z v , i  V T Z , , ~ + ~ ) .  Re- 
solving these n ordering clauses (one for each w) with 
the surjective clause (zl , i+l V . . . V zn,;+l)  gives us the 
new ordering clause ( lzu, i+2 V l z , , i )  associated with 
U and U .  This clearly requires only n steps and we can 
do this for all U < zi and j = i + 2. We now continue 
to apply this argument for j = i + 2, i + 3, . . . , k and 
derive all new ordering clauses in n steps each. 

We will construct a tree-like refutation starting with 
the initial clauses and the new ordering clauses we de- 
rived above. We claim that for any i E { l ,  2 ,  . . . , k }  and 
for any 1 5 vi < vi+l < . . . < v k  5 n, we can derive a 

~ n m p ( G ,  IC). 
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clause that is a subclause of ( - z V i , i  V lz,i+l,i+l V . . . v 
T Z , , , ~ ) .  Let us first see how we will get a refutation 
given this claim. For i = k ,  the claim says that we can 
derive a subclause of l z u k , k  for all 1 5 vk 5 n. If any 
of these is a strict subclause, we already have the empty 
clause. Otherwise, we have y z u k , k  for every vk. Resolv- 
ing all these with the surjective clause (zl,k V . . . V z,,,.) 
results in the empty clause. 

We now prove the claim by induction on i. For the 
base case, fix i = 1. For any given k vertices < 
v2 < . . . < vk, pick an edge (vp, v,) that witnesses the 
fact that these k vertices do not form an independent set. 
The corresponding edge clause (1zuprP V ~z,, , , )  then 
works as the required subclause. 

For the inductive step, fix vi+l  < vi+2 < . . . < vk. 
We will derive a subclause of (lz,;+, , i + 1  V ~ z , , + ~ , i + 2  V 
. . . T Z , , , ~ ) .  By induction, we can derive a subclause 
of (--z,,,i V -e,;+,,i+l V . . . V z V , , k )  for any choice of 
vi < w i + l .  If for some such vi, -zV;, i  does not ap- 
pear in the corresponding subclause, then the same sub- 
clause works here for the inductive step and we are done. 
Otherwise for every vi < vi+l ,  we have a subclause 
of (TZ,;,~ V lz,;+,,i+l V . . . V -q,,,x:) that contains 
T Z , ; , ~ .  Resolving all these subclauses with the surjec- 
tive clause (z1,i V z2,i V . . . V z,,i), we get the clause 
( ~ , , + ~ , i  V . . . V zVk,i  V l z u l , j l  V . . . V l z u p , j p ) ,  where 
each zuc,jc lies in { ~ ~ , + ~ , i + l , .  . . ,zUk,k}. Observe that 
for each positive literal z,,,i,i + 1 5 q 5 k ,  in this 
clause, (izv,,i V lz,r+l,i+l) is either a 1-1 clause or an 
ordering clause. Resolving with all these clauses finally 
gives us ( l ~ ~ ~ + ~ , i + ~  V l.zul,j1 V .  . . V T Z , ~ , ~ ~ ) ,  which is 
the kind of subclause we wanted to derive. This proves 
the claim. 

We can associate each subclause obtained using the 
iterative procedure with the tuple (vi, vi+l,  . . . , vk) for 

which it was derived, giving a total of E:=, (7) 5 
k(ne/k)' subclauses. Each of these subclauses is used 
at most once in the proof. Further, the derivation of each 
such subclause uses at most n new ordering clauses, 
each of which can be derived in at most n2 steps. 
Thus, with enough copies to make the refutation tree- 
like, the size of the proof is O(n3k(ne/k)k) ,  which is 
2 0 ( k  l o g ( n / k ) ) ,  0 

def Corollary 4. Let G - G,,, be a random graph, A = 
m/n  and Ic be any integer fo r  which G does not have a 
k-independent set. With probability 1 - o( 1) in n, 

This bound also holds when 1-1 clauses are removed 
from W o c k ( G ,  I C ) .  

Proof Let k' be the smallest integer such that G does 
not have a k'-independent set. Clearly, k' 5 k .  We first 

prove the bound for the mapping based encoding. Start- 
ing with amap(G,  k ) ,  we will ignore clauses that involve 
variables zV,i for i > k' and construct a refutation us- 
ing only the remaining clauses. The clauses that remain, 
however, are simply the clauses of ama,(G, k ' ) .  From 
Theorem 2, we can construct a tree-like resolution refu- 
tation of these which is of size 2°(k' " F Z ( ~ / ~ ' ) )  Also, this 
refutation does not use the 1-1 clauses of amap(G,  k ) .  
Applying Proposition 3, we can almost certainly bound 

This gives us an upper bound on DLL(a,,,(G,k)) 
without using 1-1 clauses. Finally, we apply Lemma 2 
to get the desired bound on DLL(abl,,.(G, I C ) )  without 
1 ~I clauses. 0 

the size by 2o(k+c ' n ( n / k - e ) ) ,  which is 20 ( (n /A)1nz  A ) .  

Theorem 3. Let G be a graph with n vertices and m 
edges, A '2' m / n  and k be any integer for which G 
does not have a k-independent set. Then 

Proot As in the proof of Theorem 2 ,  we construct a 
refutation by looking at each size k subset of vertices 
and using as evidence an edge from that subset. 

For every i , v  such that 0 5 i 5 IJ < n, we 
first derive a new counting clause ( ~ y ~ + l , i + ~  V yv,i V 
yu-l,i V .  . . Vyi,i) by resolving original counting clauses 
('yu+l,i+lVy,,i+lVy,,i)for21 = v , v - 1 , . . . ,  i + l t o -  
gether, and resolving the result with the counting clause 
( l y i + l , i + ~  V yi,i). Next, for any edge ( i , j ) .  i > j, we 
resolve the edge clause ( y x i  V -xj) with the counting 
clauses ( i y i , i  V xi) and (-yj,j V zj) to get the clause 
( ~ y i , ~  V l y j , j ) .  We call this clause Ei,j. We will now 
construct a tree-like refutation using the initial clauses, 
these new counting clauses and the new Ei23 clauses. 

We claim that for any i E {1,2,  . . . , I C }  and for any 
1 5 vi < vi+l < . . . < vg 5 n with vj 2 j f o r i  5 
j 5 k ,  we can derive a subclause of ( lyV,, i  V yui-l , i  V 

that if y,j-l , j  occurs in the subclause for some j ,  then so 
does ~y,,,~. Note that for vj = j ,  the variable yt,,-l,j 
does not even exist and will certainly not appear in  the 
subclause. Given this claim, we can derive for i = IC 
a subclause Bj of (-yj,k V y j -1 ,~)  for each j E ( k  + 
1,. . . , n}  and a subclause B k  of i y k , k .  If any of these 
Bj's is the empty clause, we are done. Otherwise every 
Bj contains - y j , k .  Let j '  be the largest index such that 
Bjl does not contain yj,-l,k. Since B k  has to be the 
clause yyk,k, such a j '  must exist. Resolving all Bj's 
for j E { j ' ,  . . . , k }  with each other gives us the clause 
yn,k. Resolving this with the size-k clause yn ,k  gives the 
empty clause. 

We now prove the claim by induction on i. For the 
base case i = 1, fix 1 5 v1 < v2 < . . . < v' 5 n. Pick 

l ~ u ; + l , i + l  Vyv;+l-l,i+l V . .  . V l y u k , k  Vyuk-1,li) such 
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an edge ( 'up ,  w,) that witnesses the fact that these vi's 
do not form an independent set. We then have the edge 
clause (-ccW, V lq,,). Resolving this with the counting 
clauses ( ~ Y u , , p  v Y u , - 1 , p  v .p) and ( T Y u q , q  V Y u , - l , q  v 
x,), we get ( - ~ ~ , , ~ v  y u p - l , p v ~ y u q , q  V y u q - 1 , , ) ,  which 
is a subclause of the desired form. 

For the inductive step, fix vi+l < wi+2 < . . . < U L .  

By induction, we can derive a subclause Cj of ( l y j , i  V 

for any j in { i ,  i + 1,. . . , wi+l - l}. If for some such j ,  
neither ~ y j , i  nor y j - 1 , i  appears in Cj, then this sub- 
clause also works here for the inductive step and we 
are done. Otherwise for every j ,  Cj definitely contains 
~ y j , i ,  possibly y j - 1 , i  and other positive or negative oc- 
currences of variables of the form yUl,i) where i' > i .  
We now use these Cj's to derive clauses Ci's such that 
Ci contains l y j , i  but not ~ j - ~ , i .  The other variables 
appearing in Ci will all be of the form yut,it for i' > i .  

If { w i + l ,  . . . , wk} is not an independent set, then there 
is an edge ( vP ,  U,)  witnessing this. In this case, we sim- 
ply use EP,, as the desired subclause and the inductive 
step is over. Otherwise there must be an edge ( i ,  w,) 
from vertex i touching this set. We let Ci be the clause 

For j going from i + 1 to k ,  we do the following 
iteratively. If y j - 1 , i  does not appear in  Cj,  then we set 
Ci = Cj. Otherwise we set Ci to be the clause obtained 
by resolving Cj with CiPl .  If CiPl does not contain 
~ y j , j ,  then it  can be used as the desired subclause for this 
inductive step and we stop the iteration here, otherwise 
we continue onto the next value of j .  If we do not derive 
a desired subclause somewhere along this iterative pro- 
cess, then we end up with all Ci's containing l y j , i  but 
not y j - 1 , i .  Resolving all these with the new counting 

finally gives us a subclause of the desired form. This 
proves the claim. 

We can associate each subclause obtained using the 
iterative procedure with the tuple (v i ,  vi+l,. . . , v k )  for 
which it was derived, giving a total of E,"=, ( y )  5 
k ( n e / k ) L  subclauses. Each of these subclauses is used 
at most once in the proof. Further, the derivation of each 
such subclause uses one new counting clause and one 
new clause E i 3 j ,  each of which can be derived in at most 
n steps. Thus, with enough copies to make the refutation 
tree-like, the size of the proof is O(nk(ne /k ) ' ) ) ,  which 

y j - 1  ,i V T y u i + l  ,i+l V y u ; + I  -1 ,i+1 V .  . . V l y u k  ,L Vyw, - 1 ,L ) 

clause ( T Y u ; + l , i + l  V Y u i + l - l , i  V ~ u ; + , - 2 , i  V . . . v y i , i )  

is 2 0 ( k  l o g ( n l k ) ) .  0 

9. Directions for Further Work 

A natural open problem at this point is to see if one 
can get similar lower bounds on the complexity of inde- 
pendent sets in random graphs for more powerful proof 
systems such as Cutting Planes [14, 71 and Frege sys- 

tems [ 111. This is interesting in its own right and also 
because some of the very simple algorithms for finding 
large independent sets do not seem to be captured by 
resolution. For instance, the algorithm of Robson [ 181 
uses the following idea: if a vertex w is not included in a 
maximum independent set then w.1.o.g. we might as well 
assume that at least two of its neighbors are included. In 
other words, if only one neighbor of w is chosen, we 
don't lose anything by choosing w instead. It is, how- 
ever, not clear how one could translate this simple "with- 
out loss of generality" argument into a resolution proof. 
In Robson's paper, this is only applied in a limited way 
when the neighborhood set is of constant size and only 
one such set of neighbors is remembered at a time. This 
makes it  possible to translate the reasoning into a small 
resolution proof. However, in a more general search, this 
w.1.o.g. idea does not seem to be captured by resolution 
arguments. 

On another front, we now have exponential resolu- 
tion lower bounds for random k-CNF formulas [9, 31, 
k-coloring of random graphs [ 2 ]  and independent sets 
in random graphs. It would be interesting to understand 
more fully which coNP-complete problems require large 
resolution proofs for random instances. 
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