
File: DISTIL 264901 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 4198 Signs: 2187 . Length: 58 pic 2 pts, 245 mm

Information and Computation � IC2649

information and computation 138, 89�99 (1997)

Separating the Power of EREW and CREW
PRAMs with Small Communication Width*

Paul Beame

Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195

Faith E. Fich

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4

and

Rakesh K. Sinha

Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195

We prove that evaluating a Boolean decision tree of height h requires
0(h�(m+log*h)) time on any EREW PRAM with communication width m
and any number of processors. Since this function can be easily computed
in time O(- h) on a CREW PRAM with communication width 1 using
2O(h) processors, this gives a separation between the two models when-
ever the EREW PRAM has communication width m # o(- h).] 1997

Academic Press

1. INTRODUCTION

Parallel random access machines (PRAMs) have been the model of choice for
describing parallel algorithms and analyzing the parallel complexity of problems.
Depending on whether we allow more than one processor to concurrently read
from or write to a memory cell, we obtain different models of PRAMs and com-
plexity classes associated with them. The three most popular models are the CRCW
(concurrent read and write), CREW (concurrent read, but exclusive write), and
EREW (exclusive read and write) PRAMs (see [Ja� J92, Fic93]).

A basic issue in parallel complexity theory is to understand the relative power of
different variants of PRAMs. Cook et al. [CDR86], by an elegant argument,
showed a separation between the powers of CRCW and CREW PRAMs. They
proved that the OR of n bits, which can be easily computed in constant time on a
CRCW PRAM, requires 0(log n) time on any CREW PRAM. This result was

article no. IC972649

89 0890-5401�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* Beame and Sinha's research supported by NSF�DARPA under Grant CCR-8907960 and NSF under
Grant CCR-8858799. Fich's research supported by the Natural Science and Engineering Research Council
of Canada and the Information Technology Research Centre of Ontario.

File: DISTIL 264902 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 3740 Signs: 3385 . Length: 52 pic 10 pts, 222 mm

improved by Kuty*owski [Kut91] and Dietzfelbinger et al. [DKR90] who deter-
mined the exact complexity of OR.

Snir [Sni85] proved that the problem of searching a sorted list is more difficult
on the EREW PRAM than on the CREW PRAM. Gafni et al. [GNR89] extended
this result to a problem defined on a full domain. Because they use Ramsey theory,
both the lower bounds rely crucially on the problems having an extremely large
domain relative to the number of inputs (at least doubly exponential in the number
of inputs). Essentially, they show that there is a large subset of the domain for
which the state of the computation at each point depends only on the relative
ordering of the input values.

Unfortunately, a lower bound proof that relies crucially on a problem's extremely
large domain is not very satisfying. It may say more about the difficulty of handling
very large numbers than about the inherent difficulty of solving the problem on
domains of reasonable size. An open question that remains is whether or not there
is a function f : [0, 1]n � [0, 1] that can be computed more quickly by a CREW
PRAM than by an EREW PRAM.

Fich and Wigderson [FW90] have made some progress by resolving this ques-
tion for a special case in which a restriction is imposed on where in shared memory
processors can write. The EROW PRAM is an EREW PRAM in which each pro-
cessor is said to ``own'' one shared memory cell and that is the only shared memory
cell to which it is allowed to write. In this model, the choice of processor that may
write into a given cell at a given point in time is independent of the input. Pro-
cessors are still allowed to read from any shared memory cell. (The machine is semi-
oblivious in the terminology of [CDR86].) The CROW PRAM [DR86] is the
CREW PRAM restricted in the same manner. (Allowing processors to own more
than one shared memory cell does not change the power of the CROW PRAM
model.) Fich and Wigderson proved that the EROW PRAM requires 0(- log n)
time to compute a Boolean function that requires only O(log log n) time on the
CROW PRAM. The CROW PRAM never requires more than a constant factor
more time than the CREW PRAM to compute any function defined on a complete
domain (although the simulation may require a substantial increase in the number
of processors) [Nis91]. However, the restriction to the owner write model with a
single memory cell per processor seems much more drastic for exclusive read
machines. A fast simulation of EREW PRAMs by EROW PRAMs seems unlikely.
In fact, we do not see any obvious way to extend the lower bound proof of Fich
and Wigderson to allow each processor to own an arbitrary number of memory
cells.

This leaves open the following question: Is there a separation between CREW
and EREW PRAMs for any function f : [0, 1]n � [0, 1] without the owner-write
restriction? We cannot answer this question in general but we can when the amount
of shared memory through which processors can communicate is small. The com-
munication width of a PRAM [VW85] is defined as the number of shared memory
cells that are available for both reading and writing. (A separate read-only memory
is used to store the input.) We denote by EREW(m), CREW(m), and CRCW(m)
the respective PRAM models with communication width m. We show that a special
case of the problem considered by Fich and Wigderson can be solved in time

90 BEAME, FICH, AND SINHA

File: DISTIL 264903 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 3541 Signs: 3080 . Length: 52 pic 10 pts, 222 mm

O(- log n) by a CREW(1) PRAM, but requires 0(log n�log*n) time on any
EREW(1) PRAM. It is easy to see that the sequential time complexity of this
problem is log2n, which is almost matched by our lower bound for the EREW(1)
PRAM. For greater communication width we can prove a lower bound of
0(log n�(m+log*n)) on any EREW(m) PRAM.

We would like to extend our separation between CREW and EREW PRAMs to
greater communication width. Our hope is that some of the techniques developed
for small communication widths will turn out to be useful even for the general case.
For example, the technique in the lower bound result for the OR function on
CREW(1) PRAMs [VW85, Bea86] is very similar to the technique that
Kuty*owski [Kut91] eventually used in his optimal bound for the OR on general
CREW PRAMs.

Our lower bound proof consists of three parts. First we show that any EREW(1)
PRAM running for a short time can only have a small number of processors doing
useful work. We then determine the time complexity of our problem on CREW(1)
and CRCW(1) PRAMs with limited numbers of processors. This also implies an
0(log2�3n) time bound for the EREW(1) PRAM. Finally, we show that there are
subproblems (obtained via restrictions) on which the number of processors doing
useful work is drastrically reduced. Applying this result recursively, we obtain a
nearly optimal EREW(m) PRAM lower bound for small m.

2. A BOUND ON THE NUMBER OF PROCESSORS DOING USEFUL WORK

For a function defined on n variables, we assume that a PRAM starts with its
input stored in n read-only memory cells. We assume that is has m other shared
read�write memory cells we call common cells. The output will be the contents of
a designated common cell at the end of the computation. Computations proceed in
steps. At every step, each processor may read a memory cell, perform some local
computation, and then write into a common cell. We do not place any restrictions
on the number of processors, word size, or the computational power of individual
processors.

For any EREW or CREW PRAM computing a function f, we say that a pro-
cessor p writes by time t if, on some input to f, p writes into some memory cell
during the first t steps. Since the shared memory is the only means of communica-
tion, we can assume that for any PRAM running for t steps only the processors
that write by time t are involved in the computation.

The bounds in [Bea86] (see also [VW85]) show that for any CREW(1) PRAM
at time t for any given input vector e at least a 2&O(t2) fraction of all input vectors
are indistinguishable from e from the point of view of any individual processor.
Thus the number of processors that write by time t can easily be seen to be 2O(t2)

since the machine only allows exclusive writes. (This bound is tight; see, for
example, the algorithm given in the proof of Theorem 4.) For EREW(m) PRAMs,
we now show considerably smaller bounds.

Lemma 1. Consider any EREW(m) PRAM computing a function with domain
[0, 1]n. For all t�0, at most m(2t+1+2t&3)�m2t+2 processors write by time t.

91SEPARATING EREW AND CREW PRAMS

File: DISTIL 264904 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 3683 Signs: 3034 . Length: 52 pic 10 pts, 222 mm

Proof. For any processor P, time t, and input x, let Pt(x) be the set of input
variables that P reads during the first t steps on input x. Since a processor reads
at most one cell per step, |Pt(x)|�t.

For 1�j�t, let R(j) be the set of processors that do not read any common cell
on any input for the first j&1 steps, but do read one of them on some input at
step j.

Consider any processor P # R(j) and suppose that, on input x # [0, 1]n, P reads
some common cell at step j. At step j, processor P must decide whether to read that
common cell based on the values of the variables in P j&1(x). The fraction of all
inputs that agree with x on these variables is at least 2&(j&1), since |P j&1(x)|�
j&1. On all these inputs, P reads the same common cell in step j. At most one pro-
cessor can read that cell in step j on any particular input, so there are at most 2 j&1

processors in R(j) that do so. Since there are m such cells, |R(j)|�m2 j&1.
Similarly, if W(j) is the set of processors that do not read any common cell on

any input during the first j steps, but do write into one of them on some input at
step j, then |W(j)|�m2 j. Thus the number of processors that write by time t is
bounded above by

:
t

j=1

|R(j)|+ :
t

j=1

|W(j)|� :
t

j=1

m2 j&1+ :
t

j=1

m2 j�m(2t&1+2t+1&2). K

We will now construct an EREW(m) PRAM computing a function with domain
[0, 1]m2t

such that there are at least m2t&2 processors that write by time t. Thus
the bound in Lemma 1 is optimal to within a small constant factor. We begin by
considering the case m=1.

Lemma 2. There is an EREW(1) PRAM computing a function of [0, 1]2t for
which there are at least 2t&2 processors that write during step t.

Proof. Before beginning the construction, we examine the write operation of an
EREW(1) PRAM. The selection of a processor to write during step t can be viewed
as a competition between processors that is arbitrated by the input vector. A pro-
cessor is a ``potential winner'' if there is some setting of the input bits that would
cause it to write during step t. Let b1=1, bj=� j&1

i=1 [bi+1]<2 j, k1=1, and kj=
� j&1

i=1 ki=2 j&2, for j�2. For any j, we construct an EREW(1) PRAM algorithm
for selecting a winning processor from among kj potential winning processors. This
algorithm runs for j steps, does not access the common cell, and is arbitrated by
only bj bits of input. Notice that this is enough to prove the lemma as we can
modify the algorithm to make the winning processor write at step j.

The claim is proved by induction on j. The case j=1 is trivial. For larger values
of j, consider an input of length bj , which is partitioned into disjoint groups
X1 , X2 , ..., Xj&1 of length b1 , b2 , ..., bj&1 , respectively, as well as one extra group of
j&1 bits: y1 , y2 , ..., yj&1. Let G1 , ..., Gj&1 be disjoint sets containing k1 , ..., kj&1

processors, respectively, for a total of kj . By our induction hypothesis, for each i<j,
we can select a winner from among Gi during the first i steps based on the input
in Xi . The winner from Gi reads y1 , y2 , ..., yj&i in steps i+1, i+2, ..., j, respectively.

92 BEAME, FICH, AND SINHA

File: DISTIL 264905 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 3532 Signs: 2937 . Length: 52 pic 10 pts, 222 mm

This processor is a winner in step j if and only if y1=y2= } } } =yj&i&1=0 and
yj&i=1. It is easy to verify that read conflicts never occur. K

Corollary 3. There is an EREW(m) PRAM computing a function of [0, 1]m2t

for which there are at least m2t&2 processors that write during step t.

Proof. Run m separate copies of the algorithm in Lemma 1, one per common
cell, on separate portions of the input. K

3. A CREW(1) UPPER BOUND FOR EVALUATING DECISION TREES

We now define a Boolean function and show that it can be computed in
O(- log n) time on a CREW(1) PRAM. In the next two sections, we will prove that
this function requires significantly more time to be computed on an EREW(1)
PRAM. Specifically, we interpret the n=2h&1 input variables as the labels of the
internal nodes in a complete Boolean decision tree Dh of height h, taken in some
fixed (e.g., breadth-first) order. The leaves of Dh that are left children are labelled
0; those that are right children are labelled 1. Given an input, proceed down from
the root, going left when a node labelled by a variable with value 0 is encountered
and going right when a node labelled by a variable with value 1 is encountered. The
value of the function Fh : [0, 1]2h&1 � [0, 1] is the label of the leaf node that is
reached.

There is a trivial sequential algorithm that computes Fh in h steps. It is unknown
whether one can do better than this on an EREW(1) PRAM. However, the fol-
lowing lemma shows that Fh can be computed substantially faster on a CREW(1)
PRAM.

Theorem 4. If (t
2)�h, then there is a CREW(1) PRAM that computes Fh in t

steps.

Proof. For each of the 2h root-leaf paths in the decision tree Dh , we assign a
group of t&1 processors. Exactly one of these root-leaf paths is the correct path.
In the following algorithm, the common cell will contain the values of the labels of
the first (j+1

2) nodes on the correct root-leaf path at the end of step j+1.
The j th processor in each group is active for the first j+1 steps. During the first

j steps, it reads the j variables labelling nodes (j
2)+1 through (j+1

2) on its root-leaf
path. At step j+1, it reads the common cell, which contains the values of the labels
of the first (j

2) nodes on the correct root-leaf path. (When j=1, the common cell
contains no information.) At this point, the j th processor in each group knows
whether or not its root-leaf path agrees with the correct root-leaf path at the first
(j+1

2) nodes. Among the processors whose paths agree, a prespecified one (e.g., the
jth processor in the leftmost of these groups) appends the bits that it has read to
the previous contents of the common cell. Thus, at the end of step j+1, the com-
mon cell contains the values of the labels of the first (j+1

2) nodes along the correct
root-leaf path.

To compute Fh , we modify the algorithm slightly so that at the last step, instead
of appending bits to the common cell, a processor writes down the value of the leaf

93SEPARATING EREW AND CREW PRAMS

File: DISTIL 264906 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 3619 Signs: 3074 . Length: 52 pic 10 pts, 222 mm

determined by the h internal nodes on its path, i.e., the leaf node in Dh that is
reached. K

4. LOWER BOUNDS FOR PROCESSOR-LIMITED PRAMS

In this section, we show that to compute Fh quickly we need to have many pro-
cessors doing useful work even on a CRCW(1) PRAM. Using our bounds from
Section 2 on the number of processors doing useful work, this will give an 0(h2�3)
lower bound for the EREW(1) PRAM. In the next section, we will improve this
bound to a nearly optimal 0(h�log*h) by combining the techniques of this section
with a new restriction technique.

A restriction is a partial function that sets the values of some input variables. For
any restriction r that sets input variables to 0 or 1, let r(Fh) be the function Fh with
restriction r applied to it. Define the depth of r, d(r), to be the minimum depth of
any node v in Dh , the underlying decision tree of Fh , such that the path from the
root to v is consistent with r and the subtree rooted at v does not contain any
variables set by r. Note that Fh&d(r) is a subfunction of r(Fh).

Define the history of the common cells on any input to be the sequence of vectors
of values that they take on that input. Our lower bound proofs proceed by fixing the
history of the common cells. We use the following result of Vishkin and Wigderson
[VW85].

Lemma 5 [VW85]. For any CRCW(m) PRAM running for t steps, there is a
restriction r which sets at most m(t+1

2) variables such that the history of the common
cells for the first t steps is the same for all inputs consistent with r.

Lemma 6. For any integer h�m(t+1
2) and any CRCW(m) PRAM running for t

steps, there is a restriction r$ of depth at most m(t+1
2) such that the history of the

common cells for the first t steps is the same for all inputs to Fh consistent with r$.

Proof. By Lemma 5, there is a restriction r which sets at most m(t+1
2) variables

such that the history of the common cells for the first t steps is the same for all
inputs consistent with r.

We define a restriction r$ that is consistent with r by tracing a path of length at
most m(t+1

2) from the root of Fh one node at a time, as follows. If r sets the variable
at the current node then let r$ set this variable to be consistent with r and take the
branch corresponding to this value. Otherwise, consider the number of variables
that are set by r in each subtree and take the branch which leads to the subtree with
the smaller number of these variables. Each time we extend the path by one node
there is at least one less variable set by r in the subtree reached by the path. So,
by the time the path reaches length m(t+1

2), we will have reached the root of a sub-
tree with none of its variables set. We set all variables outside this subtree in some
manner consistent with r. Clearly, the resulting restriction r$ has depth at most
m(t+1

2) and, for all inputs consistent with r$, the common cells have the same
history for the first t steps. K

In particular, this implies that the CREW(1) PRAM algorithm to compute Fh

given in the proof of Theorem 4 is within one step of optimal.

94 BEAME, FICH, AND SINHA

File: DISTIL 264907 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 3605 Signs: 3014 . Length: 52 pic 10 pts, 222 mm

Theorem 7. If a CRCW(1) PRAM computes Fh in t steps, then (t+1
2)�h.

Proof. Consider any CRCW(1) PRAM that computes Fh in t steps. Suppose, to
the contrary, that (t+1

2)�h&1. Then, by Lemma 6, there is a restriction r$ of depth
at most (t+1

2) such that the history of the common cell for the entire computation
is the same for all inputs to Fh consistent with r$. In particular, the answer produced
by the computation is the same for all these inputs. However, since d(r$)�h&1,
r$(Fh) is a not a constant function. This contradicts the assumption that the
CRCW(1) PRAM computes Fh in t steps. K

The following theorem shows that, with a limited number of processors, a larger
lower bound may be obtained.

Theorem 8. Any CRCW(1) PRAM with p processors that computes Fh requires
at least 2h�(3 W1+- log pX) steps.

Proof. If p=1, an easy adversary argument shows that computing Fh has com-
plexity h+1. Therefore, assume p�2. Let t=W- log pX�1. The proof proceeds by
induction on h.

Suppose there is a CRCW(1) PRAM with p processors that computes Fh in T
steps. Then, from Theorem 7, (T+1

2)�h.
If (t+1

2)�h�3 (which is always true when h=0), then T(t+1)�2�h�3 so T�
2h�3(t+1) as required. Therefore, assume that (t+1

2)<h�3.
By Lemma 6, there is a restriction r$ of depth at most (t+1

2) that fixes the history
of the common cell for the first t steps. Consider the computations of the CRCW(1)
PRAM on all inputs consistent with r$. Since each input variable has at most two
different values and the value of the common cell is fixed at each time step, it
follows that each processor is in one of at most 2i states at the end of step i<t.
Now the state of a processor determines which memory cell it will read next. Thus
at most p �t&1

i=0 2i<2t2+t different input variables are read during the first t steps
by all processors on all these inputs.

Let v be any node of depth d(r$) such that the path from the root to v is consis-
tent with r$ and the subtree rooted at v does not contain any variables set by r$.
Consider the 2t2+t nodes at distance t(t+1) from v. There is at least one node w
such that the subtree rooted at w contains input variables that no processor can
possibly read in the first t steps. Let r" be a restriction that extends r$ by setting the
variables labelling all ancestors of w in such a way as to cause the path from the
root of Dh to w to be followed. Only the variables labelling nodes in the subtree
rooted at w are left unset. All remaining variables are set arbitrarily. The restriction
r" has depth at most (t+1

2)+t(t+1)=3(t+1
2)<h. By construction, the functions

Fh&d(r") and r"(Fh) are identical, up to the remaining of variables. Since no pro-
cessors have read any input variables of this subfunction at time t, it follows from
the induction hypothesis that at least [2h&6(t+1

2)]�3(t+1) additional steps are
required to compute this subfunction. Therefore T�t+[2h&6(t+1

2)]�3(t+1)=
2h�(3(t+1)). K

We note that this lower bound is asymptotically optimal even for a CREW(1)
PRAM.

95SEPARATING EREW AND CREW PRAMS

File: DISTIL 264908 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 3514 Signs: 2803 . Length: 52 pic 10 pts, 222 mm

Corollary 9. For all integers 1�p�2h, the complexity of Fh on a CRCW(1)
or CREW(1) PRAM with p processors is 3(h�- log p).

Proof. The lower bound follows from Theorem 8. For the upper bound, notice
that the algorithm in Theorem 4 shows that, with p processors, a CREW(1) PRAM
can evaluate a decision tree of height 3(log p) in time O(- log p). To compute Fh

with p processors on a CREW(1) PRAM, we simply apply this algorithm sequen-
tially O(h�log p) times to obtain a running time of O(h�- log p). K

Using the bounds of Section 2 we have:

Corollary 10. Any EREW(1) PRAM computing Fh must run for at least 1
3 h2�3

steps.

Proof. Suppose the EREW(1) PRAM runs for T steps. Then, by Lemma 1, we
can assume that it has at most p=2T+2 processors. Now, by applying Theorem 8,
it follows that T�2h�(3 W1+- T+2X). Since W1+- T+2X�3 - T for all integers
T>0, solving we obtain T� 1

3h2�3, as required. K

5. A NEAR OPTIMAL EREW(m) LOWER BOUND FOR SMALL m

We strengthen the arguments of the previous section to prove a nearly optimal
0(h�log*h) lower bound on the time for an EREW(1) PRAM to compute Fh and,
more generally, to obtain an 0(h�(m+log*h)) lower bound for an EREW(m)
PRAM computing Fh . The key to the improvement is a new lemma that replaces
Lemma 1 in the argument, showing that we can select a large subset of inputs on
which very few processors ever do useful work. We use this to obtain a stronger
version of Lemma 6 for the EREW(m) PRAM. This involves recursively applying
the argument of the previous section to obtain a better lower bound.

Lemma 11. For any integers T, h�2T+2+Wlog mX, and any EREW(m)
PRAM computing Fh , there is a restriction r of depth 2T+2+Wlog mX such that at
most 2mT processors write by time T on inputs consistent with r.

Proof. From Lemma 1, we can assume that the EREW(m) PRAM has at most
m2T+2 processors. For each processor P, let s(P) denote the set of input variables
that P reads during the first T steps of computation on any input to Fh , before it
reads the common cell. Define S=�P s(P). As in the proof of Theorem 8, since
each input variable has at most two different values, |s(P)|<2T and thus |S|<
m22T+2.

Consider the m22T+2 nodes at depth 2T+2+Wlog mX from the root of Dh . For
at least one such node v, none of the nodes in the subtree rooted at v is labelled
by variables in S. Set the variables labelling ancestors of v so that the path from the
root to v is followed in Dh . All variables labelling nodes in the subtree rooted at
v are left unset. Set all other variables outside this subtree arbitrarily. Let r be the
resulting restriction.

From now on, consider only those inputs consistent with r. The subtree rooted
at v does not contain any input variables from S, so no processor reads any unset
variable until after if has read one of the common cells. Since the PRAM is

96 BEAME, FICH, AND SINHA

File: DISTIL 264909 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 3744 Signs: 3028 . Length: 52 pic 10 pts, 222 mm

exclusive read, for each step j�T, for each common cell there is at most one pro-
cessor that does not read any common cell on any input for the first j&1 steps but
does read that cell on some input at step j. Hence, at most mT processors read
some common cell in the first T steps. Similarly, at most mT processors from
among those that have not read any common cell may write in the first T steps. So,
altogether, there are at most 2mT processors that can write into some common cell
on inputs consistent with r. K

In order to describe the behavior of our recursive construction it is convenient to
introduce a simple notation for the bounds that we obtain. Let Am(2)=3m and, for
T�3, let

Am(T)=(2T+2+Wlog mX)+� T
Wlog T X| (Am(Wlog T X)+2 Wlog T X+1+Wlog mX).

It can be easily verified by induction that Am(T) # O(Tm+T log*T).

Lemma 12. For any integer T, any h�Am(T), and any EREW(m) PRAM com-
puting Fh , there is a restriction r of depth at most Am(T) such that the history of the
common cells for the first T steps is the same for all inputs to Fh consistent with r.

Proof. The proof is by induction on the value of T.
For T=2, Am(T)=3m=m(T+1

2) and the claim follows from Lemma 6.
For larger values of T, first use Lemma 11 to obtain a restriction r0 of depth

2T+2+Wlog mX such that at most 2mT processors write by time T on inputs con-
sistent with r0 . Let l=Wlog T X. Break the T steps of the computation into [T�l]
subintervals each of length at most l. It is sufficient to prove that, for i�l, there is
an extension ri or r0 of total depth at most 2T+2+Wlog mX+i(Am(l)+2l+1+
Wlog mX) such that none of these 2mT processors read any variables left unset by
ri during the first i subintervals on all inputs to Fh consistent with ri . This is proved
by induction on i.

The case i=0 is trivial, so suppose i�1. Assume that a restriction ri&1 with the
desired properties exists. Without loss of generality, we may also assume that ri&1

sets all variables labelling nodes outside of some tree of height h&d(ri&1). Then
ri&1(Fh) is the same as Fh&d(ri&1) up to the renaming of variables. Since l<T, it
follows from the induction hypothesis that there is a restriction of depth Am(l) such
that the history of the common cells for the first l steps is the same for all inputs
to Fh&d(ri&1) consistent with this restriction. None of the 2mT processors have read
any variables left unset by ri&1 during the first i&1 subintervals on inputs to Fh

consistent with ri&1 . Therefore, there is also a restriction ri$, extending ri&1 , with
depth d(ri&1)+Am(l), such that the history of the common cells for the first i sub-
intervals is the same for all inputs to Fh consistent with ri$.

As in the proof of Theorem 8, each of the 2mT processors can read at most 2l&1
input variables during the i th subinterval. Thus there is an extension ri of ri$ with
depth d(ri$)+Wlog(2mT)X+l�2T+2+i(Am(l)+2l+1+Wlog mX) so that none
of the processors have read any inputs of Fh left unset by ri during the first i sub-
intervals. This is what was required. K

97SEPARATING EREW AND CREW PRAMS

File: DISTIL 264910 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 5107 Signs: 2663 . Length: 52 pic 10 pts, 222 mm

We can use this lemma to derive the near optimal lower bound for the EREW(m)
PRAM for small m.

Theorem 13. Any EREW(m) PRAM computing Fh must run for 0(h�(m+log*h))
steps.

Proof. Suppose there is an EREW(m) PRAM computing Fh that runs for T
steps, where Am(T)�h&1. By Lemma 12, there is a restriction r of depth Am(T)
such that the answer in the common memory cells is the same for all inputs to
r(Fh). However, there are two inputs in r(Fh) that reach the same leaf, but differ in
the value of that leaf. These inputs should have different answers. Thus Am(T)�h.
Since Am(T) # O(Tm+T log*T), it follows that T # 0(h�(m+log*h)). K

Theorems 13 and 4 immediately give our main separation theorem.

Theorem 14. There is a function on n Boolean variables that can be computed in
O(- log n) time on a CREW(1) PRAM but requires 0(log n�log*n) time on every
EREW(1) PRAM.

We also get a separation between CREW(1) and EREW(m) PRAMs when m is
small.

Theorem 15. For all m # o(- log n), there is a function on n Boolean variables
that can be solved asymptotically faster on a CREW(1) PRAM than on any
EREW(m) PRAM.

Received July 13, 1993; final manuscript received May 22, 1997

REFERENCES

[Bea86] Beame, P. (1986), ``Lower Bounds in Parallel Machine Computation,'' Ph.D. thesis, Depart-
ment of Computer Science, University of Toronto. Also appears as Technical Report TR
198�87.

[CDR86] Cook, Steven A., Dwork, Cynthia, and Reischuk, Rudiger (1986), Upper and lower time
bounds for parallel random access machines without simultaneous writes, SIAM J. Comput.
15(1), 87�97.

[DKR90] Dietzfelbinger, M., Kuty*owski, M., and Reischuk, R. (1990), Exact time bounds for com-
puting Boolean functions on PRAMs without simultaneous writes, in ``Proceedings of the
1990 ACM Symposium on Parallel Algorithms and Architectures, Crete,'' pp. 125�135.

[DR86] Dymond, P. W., and Ruzzo, W. L. (1986), Parallel random access machines with owned
global memory and deterministic context-free language recognition, in ``Automata,
Languages, and Programming: 13th International Colloquium'' (Laurent Kott, Ed.), Lecture
Notes in Computer Science, Vol. 226, pp. 95�104, Springer-Verlag, Rennes, France.

[Fic93] Fich, Faith E. (1993), The complexity of computation on the parallel random access
machine, in ``Synthesis of Parallel Algorithms'' (John H. Reif, Ed.), pp. 843�900, Morgan
Kaufman, San Mateo, CA.

[FW90] Fich, Faith E., and Wigderson, Avi (1990), Towards understanding exclusive read, SIAM
J. Comput. 19(4), 717�727.

[GNR89] Gafni, E., Naor, J., and Ragde, P. (1989), On separating the EREW and CREW PRAM
models, Theoret. Comput. Sci. 68(3), 343�346.

98 BEAME, FICH, AND SINHA

File: DISTIL 264911 . By:DS . Date:06:10:97 . Time:08:45 LOP8M. V8.0. Page 01:01
Codes: 1861 Signs: 603 . Length: 52 pic 10 pts, 222 mm

[Ja� J92] Ja� Ja� , Joseph (1992), ``An Introduction to Parallel Algorithms,'' Addison�Wesley, Reading,
MA.

[Kut91] Kuty*owski, M. (1991), The complexity of Boolean functions on CREW PRAMs, SIAM
J. Comput. 20(5), 824�833.

[Nis91] Nisan, Noam (1991), CREW PRAMs and decision trees, SIAM J. Comput. 20(6), 999�1007.

[Sni85] Snir, M. (1985), On parallel searching, SIAM J. Comput. 14(3), 688�708.

[VW85] Vishkin, U., and Wigderson, A. (1985), Trade-offs between depth and width in parallel
computation, SIAM J. Comput. 14(2), 303�314.

Printed in Belgium

99SEPARATING EREW AND CREW PRAMS

