
Time-Space Tradeoffs for Branching Programs

Paul Beame�

Computer Science and Engineering
University of Washington

Seattle, WA 98195-2350
beame@cs.washington.edu

Michael Saksy

Dept. of Mathematics
Rutgers University

New Brunswick, NJ 08903
saks@math.rutgers.edu

Jayram S. Thathachar�

Computer Science and Engineering
University of Washington

Seattle, WA 98195-2350
jayram@cs.washington.edu

Abstract

We obtain the first non-trivial time-space tradeoff lower
bound for functionsf : f0; 1gn ! f0; 1g on general
branching programs by exhibiting a Boolean functionf that
requires exponential size to be computed by any branching
program of length(1 + �)n, for some constant� > 0. We
also give the first separation result between the syntactic
and semantic read-k models [10] fork > 1 by showing that
polynomial-size semantic read-twice branching programs
can compute functions that require exponential size on any
syntactic read-k branching program. We also show a time-
space tradeoff result on the more generalR-way branching
program model [10]: for anyk, we give a function that re-
quires exponential size to be computed by lengthkn q-way
branching programs, for someq = q(k).

1 Introduction

One of the long-standing open questions of complexity
theory is whether polynomial-time is the same as log-space.
One approach to this problem has been to look at tradeoffs
between time and space for natural problems inP. For ex-
ample, does the addition of a restriction on the space al-
lowed prevent one from solving problems inP within spe-
cific polynomial time bounds? Despite significant progress
given by Fortnow's recent time-space tradeoff lower bounds
for SAT [13], this question remains unsolved.

One natural model for studying this question is that
of Boolean branching programs, which simultaneously
capture time and space in a clean combinatorial man-
ner. In this model, a program for computing a function
f(x1; x2; : : : ; xn) is represented as a DAG with a unique
start node. Each non-sink node is labeled by a variable, and
the arcs out of a node correspond to the possible values of

� Research supported by NSF grant CCR-9303017.
y Research supported by NSF grant CCR-9700239. This work was

done while on sabbatical at University of Washington.

the variable. The sink nodes are each labeled by an output
value. Executing the program on a given input corresponds
to following a path from the start node using the values of
the input variables to determine the arcs to follow. The max-
imum length of a path corresponds to time and the loga-
rithm of the number of nodes corresponds to space. An al-
gorithm running simultaneously in linear time and logarith-
mic space corresponds to a linear-length, polynomial-size
branching program. Thus the question of finding explicit
functions inP for which no such branching program exists
has been of significant research interest. (In fact, finding
anyexplicit function for which this is known is still open;
since branching programs are a non-uniform model of com-
putation, Fortnow's lower bound does not apply to them.)

We give results on two distinct problems for branching
programs, which we summarize in the next two subsections.

1.1 Lower bounds for single-output functions

There has been much success in proving time-space
tradeoff lower bounds formulti-outputfunctions inFP such
as sorting, pattern matching, matrix-vector product, and
hashing [8, 6, 1, 2, 14]. However, for single-output func-
tions (those whose output is one bit) the state of our knowl-
edge is pathetic: prior to this paper, there were no lower
bounds known that are better thann+o(n) for any explicitn
variable function. The existing techniques for multi-variate
functions involve some sort of “progress measure” which
quantifies how much of the output has been produced.
These techniques do not seem to give any non-trivial bounds
for functions with a single output bit. For example, it is not
known how to relate the apparently very similar problems of
sorting and element distinctness, although time-space trade-
offs for element distinctness on the structuredcomparison
branching programhave been shown [9, 20].

The branching program model allows the domain of the
variables to be any finite set. For variables taking values in
a q element set, the nodes in the program have outdegree
q, corresponding to the possible values. While the case of

1

greatest interest is the case that variables are 2-valued, the
generalq-valued case is an interesting challenge, which can
potentially provide insights into the 2-valued case. Our first
result is to exhibit an explicit family of functionsFq, where
for eachq, the functions inFq are single output functions on
q-valued variables, such that the following property holds:
for anyk, there is aq such that the functions in familyFq
can not be computed in lengthkn and polynomial size.

This result is unsatisfying because of the dependence on
q. For eachk, the q required for the bound can be quite
large. Forq-valued variables, the number of input bits is
n log2 q and what we really want is a lower bound that is
superlinear in the number of input bits. Nevertheless, we
believe this result is of some interest, both in its own right,
and because the proof illustrates some basic ideas which we
think may prove useful in this area.

Our second lower bound pertains to the “real” model,
single output functions on 2-valued variables, i.e., Boolean
functions. For this model, we obtain the first non-trivial
length lower bound for polynomial size branching programs
for functions whose output is a single bit: we exhibit an
explicit family of functions inP and show that any sub-
exponential size program for it must have length at least
1:0178n. While this is only just barely non-trivial, it is the
first such result in which the length divided by the number
of variables is bounded away from one. Our lower bounds
also apply to the more general model of non-deterministic
branching programs.

The proofs introduce some new proof techniques, some
of which extend past techniques of [10, 18]. First, we show
that if a functionf has a small size and length branching
program, then it is possible to find a small set of decision
trees, each of height that is a small fraction ofn, such that
the AND of the functions computed by the trees accepts no
0's off and accepts a substantial fraction of the 1's off . So
proving a size-length lower bound on branching program
reduces to showing that no such set of decision trees exists.

Similar decision trees arise in analyzing the restricted
branching programs considered in [10, 18] but these trees
are “oblivious” and thus depend on only a small fraction of
variables. The main new step uses an interesting entropy ar-
gument. Very roughly, we show that for two decision trees
of height(1=2+�)n, either it is the case that for the vast ma-
jority of inputs, the two trees together fail to look at a posi-
tive fraction of the variables, or the trees are “approximately
oblivious” in the sense that the set of variables examined by
each tree does not depend very much on the input.

1.2 Semantic versus syntactic read-k branching
programs

As a step towards proving super-polynomial size lower
bounds for linear length branching programs, a natural re-

striction is to require that each input bit be read at most
some fixed number of times. This led to the definition of
read-k branching programs [19] in which each input can be
read at mostk times. Many lower bounds have been shown
for several functions on read-once branching programs (for
example, see [16, 17]).

Another branching program restriction that has also been
considered is that ofobliviousbranching programs which
test the same variable at each time-step along any path. For
oblivious branching programs, linear length and read-k for
some constantk are essentially the same and several size-
length tradeoff lower bounds for oblivious branching pro-
grams have been shown using this connection [3, 5]. Obliv-
ious read-once branching programs, known as OBDD's,
have been very useful as representations of functions used
in verification [11, 12] and so have generated significant in-
dependent interest.

Borodin, Razborov, and Smolensky [10] observed that
read-k branching programs come in two flavors,syntactic
read-k in which all paths in the branching program must
satisfy the read-k restriction and the more generalseman-
tic read-k in which only the paths consistent with some in-
put must satisfy the restriction. They also proved strong
size lower bounds for the syntactic read-k model. However,
obtaining super-polynomial size lower bounds even for se-
mantic read-twice branching programs is an open question.
(It is easy to observe that there is no distinction between
syntactic read-once and semantic read-once branching pro-
grams.)

Here, we show the first separation between the syntac-
tic and semantic read-k models fork > 1 by showing that
polynomial-size semantic read-twice branching programs
can compute functions that require exponential size for any
syntactic read-k branching programs. The functions we
construct are based on a class of functions that were by in-
troduced by Thathachar [18] to separate the power of read-
k and read-(k+1) in the syntactic model. These functions
are exponentially hard for syntactic read-k, and seem to be
hard for semantic read-k. We modify these functions so as
to make them semantic read-twice while still retaining hard-
ness for syntactic read-k.

2 Notation

ThroughoutX denotes a set of (usuallyn) variables
which take on values from some finite setD; usuallyD =
f0; 1g. We sayX is aD-valued variable set, and addition-
ally d-valued ifd = jDj. An input� is, as usual, a point in
DX , the set of mappings fromX toD. A Boolean function
overX is a function mappingDX to f0; 1g.

A (nondeterministic) Boolean branching programP over
DX is a directed acyclic graph having a unique source
(start) vertex, with sink vertices labeled by 0 or 1, non-sink

2

vertices labeled by elements ofX , and edges labeled by
elements ofD. An edge labeled bya 2 D that is an out-
edge of a vertex labeled byxi 2 X is consistentwith input
� 2 DX iff �(xi) = a; a path inP is consistent with� if all
its edges are.P accepts input� if there is some path inP
consistent with� leading from the start node to a sink node
labeled 1. We call the number of vertices inP its sizeand
the length of the longest path inP its length. (As in [10]
one can also permit unlabeled `free' edges but this does not
change the size measure by more than a quadratic amount.)

P is deterministicif every non-sink node has precisely
one out-edge labeleda for eacha 2 D. P is adecision tree
if its graph is a rooted tree.

A branching program of lengthd is leveledif its nodes
can be partitioned intod setsV0; V1; : : : ; Vd whereV0 is the
source,Vd is the set of sink nodes (one per output value) and
every arc out ofVi goes toVi+1, for 0 � i < d. It is well
known[15] that every branching programP of sizes and
lengthd, can be converted into a leveled branching program
P 0 of lengthd that has at mosts nodes in each of its levels
and computes the same function asP (and is deterministic
if P is).

3 Decision Programs

For a given Boolean functionf , and a given lengthd �
n, we want to lower bound the size of the smallest branching
program of lengthd that computes it. This section gives a
simple lemma, which shows that such lower bounds can be
obtained by analyzing a different model based on decision
trees.

An (r; �)-decision programR is anr-tuple of decision
trees(T1; T2; : : : ; Tr), each of height�n. The function
computed byR, denoted asfR, is

V
i2[1;r] fi, wherefi is

the function computed byTi, for i 2 [1; r]. We say thatR
is compatiblewith the functionf if it accepts only 1's off .

Theorem 1. Letf be a Boolean function. Suppose that any
(r; �)-decision programR that is compatible withf , ac-
cepts at mostt inputs. Then, any nondeterministic (or de-
terministic) branching program of length�rn computingf
has size at least(

��f�1(1)
�� =t)1=(r�1).

Proof. Let P be any branching program of sizes comput-
ing f in lengthd = �rn and letP 0 be an equivalent lev-
eled program of lengthd with at mosts nodes per level.
An input is accepted byP if and only if there exist nodes
v1; v2; : : : ; vr�1 at levels�n; 2�n; : : : ; (r � 1)�n in P 0

such that there is a path consistent with that input of length
�n from vi to vi+1 for i = 0; : : : ; r�1 wherev0 is the start
node andvr is the unique accepting node at levelr�n. Let
Tvi;vi+1 be a decision tree of height�n creating by expand-
ing the�n levels ofP 0 rooted atvi into a tree and labeling

a leaf 1 if and only if the corresponding path inP 0 starting
atvi would reachvi+1. Therefore

f =
_

v1;:::vr�1

r�1̂

i=0

Tvi;vi+1 :

Each conjunction in this expansion is an(r; �)-decision
program, therefore it can accept at mostt inputs off�1(1).
By construction, there are at mostsr�1 many choices for
v1; v2; : : : ; vr�1, so sr�1t � ��f�1(1)

��, from which the
bound ons follows.

4 Functions based on quadratic forms

The functions for which we prove lower bounds are
based on quadratic forms. (Similar functions based on bi-
linear forms were considered in [10].) LetM = Mn be
ann � n matrix overGF (q). Define the functionQFM :
GF (q)n ! f0; 1g to be true on input� (viewed as a vector
of lengthn) if �TM� = 0(mod q). We define the function
BQFM to be the restriction ofQFM to the domainf0; 1gn.

To prove size-length tradeoffs forBQFM or QFM , we
will require that the matrixM satisfy certain properties,
which are stated in the next section. Explicit examples of
matrices satisfying these properties are theSylvester matri-
ces. For any odd prime powerq and anyn = 2k, then� n
Sylvester matrixN is defined overGF (q) and has rows and
columns indexed by binary vectors of lengthk. The(i; j)-
th entry ofN is (�1)hi;ji, wherehi; ji denotes the inner
product ofi andj. We also consider themodified Sylvester
matrix, N [0], obtained by setting the diagonal entries of a
Sylvester matrixN to 0.

Theorem 2. There is an� > 0 such that any branching
program of length(1 + �)n computingBQFN , whereN is
then�n Sylvester matrix overGF (3), requires size2
(n).

Theorem 3. For every integerk there exists a prime power
q and a constant
 > 0 such that for all sufficiently largen
the following holds: LetN [0] be ann�nmodified Sylvester
matrix overGF (q). Then any lengthkn non-deterministic
branching program forQFN [0] requires size at leastq
n

The conclusion of Theorem 3 holds, more generally,
wheneverN is a Generalized Fourier Transform (GFT) ma-
trix (see [10]). For any finite Abelian groupG, let G� be
the set of multiplicative characters ofG mapping elements
of G to GF (q)�, that is,�(g1g2) = �(g1)�(g2) for any
g1; g2 2 G and� 2 G�. Provided thatq is relatively prime
to jGj, it is known that there arejGj distinct characters and
that they are linearly independent when viewed as a vector
space overGF (q). LetN = NG;G� be the matrix in which
the(g; �)th element equals�(g), for all g 2 G and� 2 G�.
Sylvester matrices of dimensionn � n, wheren = 2k for

3

somek, can be shown to be special cases of GFT matrices
corresponding to the additive group ofGF (2)k.

5 A lower bound criterion

Our lower bounds for the functions described in the pre-
vious sections are obtained in two steps. First, we iden-
tify two parameterized combinatorial properties of func-
tions and show that, for any functionf satisfying these
two properties, the branching programs forf obey certain
length-size tradeoffs (depending on the parameters). Sec-
ond, we show that the functions of the previous section sat-
isfy these properties with values for the parameters that are
good enough to give non-trivial tradeoffs.

Let f denote any Boolean function on aD-valued set
of n variables,X . The first of the two properties,P(�),
is parameterized by a real number� 2 (0; 1), the second,
Q(�), is parameterized by a non-decreasing function� :
[0; 1] �! [0; 1].

P(�): For any partial assignment� to at most(1��)n vari-
ables ofX , fd� is a non-constant function. In particu-

lar,f has at leastjDj(1��)n satisfying inputs inDX .

Q(�): For any pair of functionsg1; g2 such thatg = g1^g2
is compatible withf , if there are two disjoint subsets
A1; A2 � X , each of size at least�n, such thatgi does
not depend on the variables inAi, theng accepts at
mostjDj(1��(�))n inputs off�1(1).

For our functions, these properties can be realized for the
specific� and� as stated in the lemma below. We postpone
the proof of this lemma to Section 8.

Lemma 4. LetM be a GFT matrix overGF (q), whereq is
a prime power.

1. For any subsetD of GF (q) of size at least 2, the re-
strictions of the functionsQFM and QFM [0] to Dn

both satisfyQ(�) for �(�) = �2.

2. QFM [0] satisfiesP(2=n).
3. IfM is the Sylvester matrix overGF (3), thenBQFM

satisfiesP(24 logn=pn).
Our main general lower bounds on branching program

size are expressed in terms of these two properties. The
first such result is:

Theorem 5. Letf be a boolean function onDn, wheren �
(k + 1)2k+4. Supposef satisfiesP(�) andQ(�) for some
� and�. Then, any lengthkn non-deterministic branching
program forf requires size at least

1

2

jDj�(�)��

3

!n=(k(k+1)2k+4)

where� = 1=2k+1.

The proof of this theorem is given in section 6. The the-
orem yields exponential size lower bounds for linear depth
branching programs in the case thatD is “large enough”.
In particular, we obtain Theorem 3: Takingf to be the
functionQFN [0] for someq andn, then, by Lemma 4, the
hypotheses of Theorem 5 are satisfied with� = 2=n and
�(�) = �2. Choosingq so thatlog log q � Ck for some
sufficiently large constantC, the conclusion of Theorem 5
implies the conclusion of Theorem 3.

Theorem 5 is of no use for the casejDj = 2. For this
case we have the following theorem:

Theorem 6. Let �; � > 0 with � + � � 1=4, let � :
[0; 1] �! [0; 1] and letn be a sufficiently large integer.
If f : f0; 1gn �! f0; 1g satisfiesP(�) andQ(�) then, any
length(1 + �)n non-deterministic branching program forf
requires size at least2(�=3��)n�1, where� equals

�

�
1� �� �

2

�
� �� � � (1 + �)H

�
2(�+ �)

1 + �

�
� 2H(�)

andH(p) = �p log2 p� (1� p) log2(1 � p) is the binary
entropy function.

The proof of this theorem appears in Section 7. Using
the theorem we can deduce Theorem 2 as follows. Fix
n large enough and letN be then � n Sylvester matrix
overGF (3). From Lemma 4,BQFN satisfiesP(�) for
�(n) ! 0 andQ(�) for �(�) = �2. Applying Theorem 6,
we conclude that for any� > 0 and for sufficiently largen,
if � < (1��)2=4���(1+�)H(2�=(1+�)) then any branch-
ing program forBQFM of length at most(1+ �)n has size
at least2�n=3. It can be checked that for� � 0:0178, the ex-
pression upper bounding� is strictly positive. Hence, any
branching program of length at most1:0178n that computes
BQFM must have exponential size.

The next three sections give the proofs of Theorems 5
and 6 and Lemma 4.

6 Lower bounds for functions over large do-
mains

In this section, we prove Theorem 5. Letf be as hypoth-
esized. Becausef satisfiesP(�), ��f�1(1)

�� � D(1��)n.
Let p = (k + 1)2k+4 and supposen � p. Fix any
(kp; 1=p)-decision programR = (T1; T2; : : : ; Tkp) that
is compatible withf . We will prove that

��R�1(1)
�� �

jDj(1��(�))n
3n2kp. The conclusion of the Theorem then

follows immediately from Theorem 1.
A generalization of a combinatorial lemma from [18]

says that forn � p, given a collection ofkp subsets of[1; n]
each of size at leastn(1�1=p), there exists a pair of disjoint

4

setsA andB of size at least�n, where� = 1=2k+1, such
that each set of the collection containsA orB.

For each input�, letSi(�) be the set of variables that are
not read byTi on input�. Note that each setSi(�) has size
at leastn(1�1=p). Consider all quadruples(A1; A2; I1; I2)
wherejA1j = jA2j = �n are disjoint sets of variables and
I1; I2 are complementary subsets off1; 2; : : : ; kpg. Call
such a quadrupleeligible. We say that(A1; A2; I1; I2) cov-
ers input� if for eachi 2 I1, A1 � Si(�) and for eachi 2
I2,A2 � Si(�). By the combinatorial lemma, every input�
is covered by some eligible quadruple(A1; A2; I1; I2). We
now upper bound the number of accepted inputs covered by
a given eligible quadruple.

Given a pair(A; I) whereA is a variable subset and
I � f1; 2 : : : ; kpg, definegA;I to be the function that
accepts� if and only if, for everyi 2 I , A � Si(�)
and Ti accepts�. It is easy to see thatgA;I does not
depend on the variables inA. Also for any eligible
quadruple(A1; A2; I1; I2), the function gA1;A2;I1;I2 =
gA1;I1 ^ gA2;I2 accepts exactly the set of 1's off that
are covered by the quadruple. Therefore, by property

Q(�),
���g�1
A1;A2;I1;I2

(1)
��� � jDj(1��(�))n. Since the num-

ber of distinct quadruples(A1; A2; I1; I2) can be crudely
upper bounded by3n2kp, we conclude that

��R�1(1)
�� ����S(A1;A2;I1;I2)

g�1
A1;A2;I1;I2

(1)
��� � jDj(1��(�))n 3n2kp, to

complete the proof.

7 Lower bounds for Boolean branching pro-
grams

In this section, we prove Theorem 6. Letf , n, �, � and
� be as hypothesized. We will apply Theorem 1 withk = 2
andr = (1 + �)=2. Fix a (2; (1 + �)=2)-decision program
R = (T1; T2) that is compatible withf . We will prove that��R�1(1)

�� � 2(1��=3)n+1, where� is defined as in the con-
clusion of the theorem. Since propertyP(�) implies that��f�1(1)

�� � 2(1��)n, Theorem 1 yields the required conclu-
sion.

As in the previous proof, we defineSi(�), for input �
andi = 1; 2, to be set of variables that are not read byTi on
input�. We say thatSi(�) is the set of variablesmissedby
� in Ti. Note thatjSi(�)j is always(1� �)=2. For a pair of
sets(S1; S2) each of size(1� �)=2, defineMiss(S1; S2) to
be the set of inputs� such thatS1(�) = S1 andS2(�) = S2
andAccept(S1; S2) to be the subset ofMiss(S1; S2) ac-
cepted byR. Then

��R�1(1)
�� = P

S1;S2
jAccept(S1; S2)j,

and we upper bound
��R�1(1)

�� by classifying the terms in
the sum, and bounding them accordingly.

We first dispense with the cases that follow easily
from the properties satisfied byf . Consider those terms
Accept(S1; S2) wherejS1 \ S2j > �n. Becausef satis-
fies propertyP(�), any pair of consistent paths that miss

a common set of more than�n variables must be followed
by at least one falsifying input off . SinceR is compatible
with f , no input following this pair of paths can be accepted
since at least one of the two leaf labels of these paths must
be 0. Therefore,Accept(S1; S2) is empty.

Thus we may restrict attention to the terms in the sum
corresponding to(S1; S2) with jS1 \ S2j � �n. For such
pairs, we can choose disjoint setsA1 � S1 andA2 � S2
such thatjAij = �n, where� = (1 � � � �)=2. Becausef
satisfies propertyQ(�), applying this property with respect
toA1 andA2, we have thatjAccept(S1; S2)j � 2(1��(�))n.
We could now naively bound the sum by multiplying by
the number of possible pairs(S1; S2) with jS1 \ S2j � �n,
but the resulting bound is too large to be of any use. In-
stead we will divide the terms of the sum into two parts
depending on the size ofMiss(S1; S2). Let 0 �
 � 1
be a constant to be fixed later. Call a pair(S1; S2) com-
mon if Miss(S1; S2) � 2(1�
)n, and rare otherwise, and
denote the sets of common and rare pairs byPcommon

and Prare. Let Bcommon (resp. Brare) be the (disjoint)
union ofAccept(S1; S2) for all (S1; S2) 2 Pcommon (resp.
(S1; S2) 2 Prare). ThusjR�1(1)j = jBcommonj + jBrarej;
we will upper boundjBcommonj andjBrarej separately.

The number of common pairs(S1; S2) is clearly at most
2
n, and thusjBcommonj � 2(
+1��(�))n.

To boundjBrarej we will show that the overall num-
ber of inputs (accepting or rejecting) that correspond to
rare pairs can not be too large. LetA denote the union of
Miss(S1; S2) over all rare pairs. ThenBrare � A. We
prove:

Lemma 7. Let �; � > 0 with � + � � 1=4, let
 2 (0; 1),
and letA be defined as above. Thenlog2 jAj � n is at most�

�+ � + (1 + �)H

�
2(�+ �)

1 + �

�
+ 2H(�)�

�
n

2

Using this lemma, we complete the proof of Theorem 6.
We have

��R�1(1)
�� � jBcommonj + jAj, and we choose

so that the above upper bounds forjBcommonj and jAj are
equal. For this choice of
, jAj ; jBcommonj � 2(1��=3)n,
where� is as defined in the statement of Theorem 6. As
noted earlier, Theorem 1 now yields the desired bound.

So it remains to prove Lemma 7, which is the crux of
the entire argument. The proof uses elementary informa-
tion theory. We review the basic definitions and results.
Let X be an arbitrary probability space. For any event
A, we writeProb[A] for the probability ofA and�[A]
for log2Prob[A]. If C is a random variable taking values
from a finite setS, the binary entropyH(C) is defined to
be�Ps2S Prob[C = s]�[C = s].

Proposition 8. If C is a random variable taking on values
from some setS thenH(C) � log2 jSj.

5

If A is an arbitrary event (measurable subset) of the prob-
ability space then the conditional entropy ofC givenA is
H(CjA) = �Ps2S Prob[C = sjA] log2Prob[C =
sjA].
Proposition 9. LetC be some random variable taking val-
ues on a finite setS and letA be an event.

1. H(CjA) � H(C).

2. Let SC(A) denote the set ofs 2 S such that
Prob[C = sjA] > 0. ThenH(CjA) � �[A] �
maxs2SC(A) �[C = s].

If B1 andB2 are random variables on the same prob-
ability space taking values inS1 and S2, respectively,
H(B1;B2) is the entropy of the random variable consisting
of the pair(B1;B2). The conditional entropy ofB1 given
B2 is defined byH(B1jB2) = H(B1;B2) � H(B2) =P

s2S2
H(B1jB2 = s) � Prob[B2 = s]. The mutual

information ofB1 andB2 is defined to beI(B1;B2) =
H(B1) +H(B2)�H(B1;B2).

Proposition 10. Let B1;B2 be random variables taking
values on finite setsS1 andS2. Then

1. H(B1;B2) = H(B1jB2)+H(B2jB1)+ I(B1;B2).

2. H(B1;B2) � H(B1) +H(B2).

3. H(B1jB2) � maxs2S2 H(B1jB2 = s).

Given two random variablesB;C we say thatB deter-
minesC if C is a function ofB. We have:

Proposition 11. 1. If B and C are random variables
such thatB determinesC then (a)H(C) � H(B)
and (b)H(CjB) = 0.

2. If B1;B2;C1;C2 are random variables such that
B1 determinesC1 and B2 determinesC2 then
I(C1;C2) � I(B1;B2).

Proposition 12. Let B1;B2 andC1;C2 be pairs of ran-
dom variables such thatBi determinesCi for i = 1; 2.
Then

H(B1;B2) +H(C1;C2)

� H(B1) +H(B2) +H(C1jC2) +H(C2jC1):

Proof. By Proposition 10(1) and Proposition 11(2):

H(C1; C2)

= H(C1jC2) +H(C2jC1) + I(C2;C1)

� H(C1jC2) +H(C2jC1) + I(B2;B1)

= H(C1jC2) +H(C2jC1)

+H(B1) +H(B2)�H(B1;B2):

We will need a well known technical fact concerning
sums of binomial coefficients (whose proof we give since
we don' t know a reference).

Proposition 13. If k � n=2,
P

i�k

�
n
i

� � 2nH(k=n).

Proof. By the binomial theorem, for anyp � 1=2, we have
1 � P

i�k p
i(1 � p)n�i

�
n
i

� � pk(1 � p)n�k
P

i�k

�
n
i

�
.

Settingp = k=n and rearranging yields the desired inequal-
ity.

Proof of Lemma 7.Consider the probability space on
f0; 1gX with the uniform distribution. We define the fol-
lowing random variables. Fori = 1; 2, let Pi be the path
taken inTi andSi be the set of variables missed inTi by a
random input. Observe thatSi is a function ofPi.

The basic intuition for the proof is this. We are trying
to upper bound the size ofA by something like2(1��)n

where� > 0 and for this it suffices to upper bound�[A]
by ��n. Note thatA is defined to be the event that
(S1;S2) 2 Prare, and so by Proposition 9(2),�[A] �
H(S1;S2jA) + max(S1;S2)2Prare �[(S1;S2) = (S1; S2)].
The second term is at most�
n by the definition of
Prare. Thus we want to upper boundH(S1;S2jA) =
H(S1jS2; A)+H(S2jS1; A)+ I(S1;S2jA) by
0n, where

0 is a constant less than
. Now observe that givenA,
jS1 \ S2j is small, and thereforeS1 andS2 are “approxi-
mately” complementary subsets of variables, and so one of
them approximately determines the other. This allows us
to conclude that the first two terms in the sum are small.
We use Proposition 11 to upper bound the third term by
I(P1;P2jA). Intuitively, this represents the amount of in-
formationP1 reveals aboutP2 (and vice versa) given that
A holds. NowA implies thatP1 andP2 read very few vari-
ables in common, and this can be used to show that the mu-
tual information is small. Although the intuition is based on
mutual information, in the formal argument we use Propo-
sition 12 and do not explicitly mention mutual information.

We now proceed with the proof by considering
H(P1;P2jA) + H(S1;S2jA). As noted Proposition 9(2)
impliesH(S1;S2jA) � �[A] +
n. To apply the same
proposition toH(P1;P2jA) we note that any pair of paths
(P1; P2) corresponding to a point in� 2 A contains at
least(1 � �)n variables and so�[(P1;P2) = (P1; P2)] �
�(1��)n. ConsequentlyH(P1;P2jA) � �[A]+(1��)n
and so

H(P1;P2jA) +H(S1;S2jA) � 2�[A] + (1� � +
)n:

On the other hand, by Propositions 12 and 9(1),

H(P1;P2jA) +H(S1;S2jA)
� H(P1jA) +H(P2jA) +H(S1jS2; A) +H(S2jS1; A)
� H(P1) +H(P2) +H(S1jS2; A) +H(S2jS1; A)
� (1 + �)n+H(S1jS2; A) +H(S2jS1; A)

6

where the last inequality comes from Proposition 8 and the
fact that the number of paths in each tree is2(1+�)n=2.

Since the two remaining terms are symmetric it remains
to upper boundH(S1jS2; A). Define the random variables
I = S1 \ S2 andJ = X � (S1 [S2) and observe that the
triple (S2; I;J) determinesS1. Hence:

H(S1jS2; A) � H(S2; I;JjS2; A)
� H(S2jS2; A) +H(IjS2; A) +H(JjS2; A)
= 0 +H(IjS2; A) +H(JjS2; A)
� H(IjA) +H(JjS2; A)

SinceA implies jIj � �n, Proposition 8 and Proposi-
tion 13 imply thatH(IjA) � Pi��n

�
n
i

� � nH(�). Now,
by Proposition 10(3),H(JjS2; A) � maxS2 H(JjS2 =
S2; A). GivenA, jJj � (� + �)n and givenS2 = S2,
J is contained inS2 which is a set of size(1 + �)n=2.
Again, using Proposition 8 and Proposition 13 we conclude

H(JjS2; A) � 1+�
2 H

�
2(�+�)
1+�

�
(here we use the hypothesis

that�+ � � 1=4). Thus:

H(S1jS2; A) �
�
1 + �

2
H
�2(�+ �)

1 + �

�
+H(�)

�
n

and so

2�[A] + (1� � +
)n

� H(P1;P2jA) +H(S1;S2jA)

� (1 + �)n+ 2

�
1 + �

2
H

�
2(�+ �)

1 + �

�
+H(�)

�
n:

Solving, we find

�[A] �
�
�+ � + (1 + �)H

�
2(�+ �)

1 + �

�
+ 2H(�)�

�
n

2

which is what we wanted to prove.

8 Proof of Lemma 4

We being with the proof of the first part of the lemma.
This will follow immediately from two additional lemmas.

For anyn � n matrix M and any0 � � � 1, define
�M (�) to be1=n times the minimum rank of any�n � �n
minor ofM that does not include any diagonal element of
M . Trivially, �M (�) = �N (�) if M andN have the same
off-diagonal elements; in particular�M (�) = �M [0](�).

Lemma 14. Let M be a matrix overGF (q) and D �
GF (q). The restriction ofQFM to Dn satisfiesQ(�) for
� = �M .

Let G be a finite group. AG-matrix overGF (q) is a
matrix N whose rows are indexed byG, such that for all
g1; g2 2 G andj 2 [1; n],Ng1�g2;j = Ng1;jNg2;j (i.e., each
column is a multiplicative character ofG).

Lemma 15. LetN be ann�nG-matrix of full rank, where
G is a group of ordern, and letM be anyn�n matrix that
agrees withN off the diagonal. Then�M (�) = �2.

Since a GFT matrix associated to a groupG is a G-
matrix of full rank, Part 1 of the Theorem follows imme-
diately from the lemmas. So we now prove them.

Proof of Lemma 14.Let g = g1 ^ g2 be compatible with
QFM such that for some disjoint sets of variablesA1 and
A2 of size each�n, gi does not depend on the variables
in Ai. Consider an arbitrary assignment� of the variables
outside ofA1 [A2. There arejDj2�n assignments that ex-
tend�; let � denote the subset of these assignments that are
accepted byg. We will show thatj�j � jDj(2���M (�))n;
the desired bound is then obtained by summing over the
jDj(1�2�)n choices of�.

Sincegi does not examine any variables inAi, � =
f�g � �1 ��2, where

�1 = f�1 : (�; �1; �2) 2 � for some�2g
�2 = f�2 : (�; �1; �2) 2 � for some�1g

Substitute the values assigned by� into XTMX . Be-
causeM is symmetric, we obtain a polynomial of the form
AT
1NA2 + F1(A1) + F2(A2), whereN is a�n � �n ma-

trix equal to twice the minor ofM indexed byA1�A2 and
eachFi is some polynomial function of the entries ofAi.
Lemma 16 below, which is a slight generalization of results
in [10, 18], implies the required bound onj�j.
Lemma 16. Let N be a t � t matrix overGF (q). For
i = 1; 2, letFi : GF (q)t ! GF (q) be arbitrary functions,
and letF denote the function fromGF (q)t � GF (q)t to
GF (q) given byF (�1; �2) = �1N�2 + F1(�1) + F2(�2).
For a setD � GF (q), suppose that�1;�2 � Dt sat-
isfy F (�1; �2) = 0 for every(�1; �2) 2 �1 � �2. Then
j�1 ��2j � jDj2t�rank(N).

Proof. For i = 1; 2 fix some��i 2 �i. Then for any
(�1; �2) 2 �1 � �2, we have(�1 � ��1)N(�2 � ��2) =
F (�1; �2)+F (�

�
1 ; �

�
2)�F (�1; ��2)�F (��1 ; �2) = 0. Defin-

ing Vi for i = 1; 2 to be the linear span of��
i = f� � ��i :

� 2 �ig we have thatv1Nv2 = 0 for all v1 2 V1 andv2 2
V2. This impliesdim(V1)+dim(V2) � 2t� rank(N). The

lemma now follows since
���~���� = ���~�i

��� � jDjdim(Vi).

This completes the proof of Lemma 14.

We now turn to the proof of Lemma 15. This lemma is
an immediate consequence of the following lemma, which
says, roughly, that every large minor of a GFT matrix has
large rank. The lemma both simplifies and improves a
bound in [10] which showed that everyu� t minor of such
a matrix has rank at leastut=(�(n; u; t)n), where�(n; u; t)

7

is a function that is typically logarithmic inn. (This new
bound also improves the lower bound on the size of read-k
branching programs proved in that paper by shaving off a
factor ofk in the exponent.)

Lemma 17. LetN be anyG-matrix overGF (q) whereG
is a group of ordern. If N has full column rank, the rank of
anyu� t minor ofN is at leastut=n.

Proof. ForV � G and any setJ of columns, letNV;J de-
note the submatrix ofN corresponding to the rows ofV
and columns ofJ . Fix V of sizeu andJ of sizet. SinceN
has full column rank, the columns ofNG;J are independent
implying that it has at� t minorNW;J , for someW � G,
which has full rank.

For any fixedg� 2 V and a randomg 2 G, Pr[gg� 2
W] = Pr[g 2 W (g�)�1] = t=n. By linearity of expec-
tation, wheng is randomly chosen fromG, the expected
number ofg� 2 V for whichgg� 2 W is ut=n. Therefore,
for some fixedg and someH � V wherejH j � ut=n, we
havegH � W . We show thatNH;J has rank at leastut=n
from which the lemma follows.

BecauseG is a group,jgH j = jH j � ut=n. Since
NgH;J is a submatrix consisting of at leastut=n rows of
NW;J , it follows that rank(NgH;J) � ut=n. By the def-
inition of N , for eachj 2 J , NgH;j = Ng;jNH;j , that
is, each column ofNH;W is multiplied by some constant
to get the corresponding column inNgH;W . Therefore
rank(NH;J) � rank(NgH;W) � ut=n.

This completes the proof of part 1 of Lemma 4. We
now consider part 2. LetM be a GFT matrix. It suf-
fices to show that for any partial assignment� that fixes
all but 2 variables,z1; z2 of X , the restrictionQFM [0]d� is
not the constant function. SinceM is symmetric, and its
off-diagonal elements are non-zero, the restriction satisfies
QFM [0]d�= 2a(z1+b)(z2+c)+d for some constantsa 6= 0,
b; c; d 2 GF (q). Sinceq is odd, settingz1 to any value in
GF (q)�f�bg, we have2a(z1+ b) 6= 0 and it follows that
2a(z1+b)(z2+c)+d takes on all possible values inGF (q)
by varyingz2. Thus,QFM [0]d� is non-constant.

Finally, to prove Part 3, letM be then � n Sylvester
matrix overGF (3). Notice that the above argument fails
in this case, even forM [0], because the values ofz1; z2
are restricted to be fromf0; 1g. To prove propertyP(�) in
this case we first need a lemma showing that in every suf-
ficiently large principal minor ofM , there exist principal
minors whose entries sum to arbitrary values.

Lemma 18. Let M be then � n Sylvester matrix over
GF (3) wheren = 2k. LetI � [1; n] be an arbitrary subset
of size at least4 logn=

p
n. For everya 2 GF (3), there

existsJ � I , with jJ j � 3 such that the sum of the entries
in MJ;J is a.

Proof. For a = 0, setJ = ;. So assumea 2 f1;�1g.
Recall that the row and column index set of the Sylvester
matrix is the set of binary vectors of lengthk, which is iden-
tified naturally with the set of subsets of[1; k] and we view
I as a collection of4 logn=

p
n such subsets. Fora = 1 and

for a = �1, we want a subcollectionJ of I such that the
sum of entries inMJ;J is a. The following easily verifiable
fact gives a criterion for a collection of size 3 to satisfy this.

Proposition 19. SupposeA0; B1; B2 are distinct subsets of
[1; k] such thatjA0j, jB1j, andjB2j are all even or all odd
and letJ = fA0; B1; B2g.

1. If jA0 \ B1j and jA0 \B2j are both even and
jB1 \B2j is odd then the sum of entries inMJ;J is
-1

2. If jA0 \ B1j and jA0 \ B2j are both odd and
jB1 \B2j is even then the sum of entries inMJ;J is
+1.

We will also need the so-called “Eventown-Oddtown”
theorems (see [4]), stated as a proposition below:

Proposition 20. LetF be a family of sets. We say thatF
has propertyPi;e (respectivelyPi;o) if the common intersec-
tion of every collection ofi distinct sets fromF is even (re-
spectively odd). The following table gives an upper bound
on the size of any family of subsets of[1; k] satisfying some
of these properties:

P1;e P1;o
P2;e 2k=2 k
P2;o k 2k=2

Continuing the proof of Lemma 18, we now show that
I contains a collectionJ = fA0; B1; B2g satisfying the
hypothesis of the first part of Proposition 19 and thus the
sum of entries inMJ;J is�1. A similar argument handles
the other case.

SincejI j � 4
p
n logn, there is a sub-familyF of size

at least2
p
n logn such that every set inF has even size

or every set inF has odd size. Consider a sub-familyG
of F which is maximal subject to the condition that for
any distinctA;B 2 G, jA \ Bj is odd. For each set
A 2 G, let E(A) be the subfamily consisting of those sets
C 2 F �G such thatjA \ Cj is even. By the maximality of
G, [A2GE(A) = F � G which implies

P
A2G jE(A)j �

jF � Gj. ChooseA0 2 G for which jE(A0)j is maxi-
mum and writeE = E(A0). ThenjEj jGj � jF � Gj, or
(jEj + 1) jGj � jFj. To finish the proof it suffices to show
that there areB1; B2 2 E whose intersection has odd size.
Using Proposition 20, if every pair of distinct sets inE has
an intersection of even size, then

jGj (jEj+ 1) � maxf2k=2(k + 1); k(2k=2 + 1)g
< 2k2k=2 = 2

p
n logn � jFj

8

which contradicts(jEj+1) jGj � jFj. Therefore, the claim
holds.

We now have the tools to prove Part 3 of Lemma 4. Let
� be a partial assignment to(1� �)n variables ofX , where
� = 24 logn=

p
n andZ � X be the variables unset by

�. ThenBQFMd�= ZTBZ + A � Z + C, whereB de-
notes the sub-matrix ofM corresponding to the rows and
columns corresponding toZ, andA andC are fixed con-
stants determined by� andM . It suffices to show that
q(Z) = ZTBZ + A � Z takes on all possible values in
GF (3) for the various choices of 0-1 assignments toZ.

Setting all variables to 0 makes the function 0. Fix
a 2 f�1; 1g. Our goal is to identify three variables such
that setting them to1 and everything else to0 will make the
function equal toa. Classify each variablexj by the pair
(Mj;j ; Aj) 2 f�1; 1g � f�1; 0; 1g. There are 6 possible
values of this pair, and so there is a set of at least4

p
n logn

variablesZ 0 � Z that belong to the same class. If we
set any three variables inZ 0 to 1, and everything else to
0, q(Z) evaluates to the sum of the off-diagonal entries in
the3� 3 principal minor corresponding to these variables.
By Lemma 18 such a minor exists whose sum evaluates toa
(mod 3), and Part 3 of the lemma follows.

9 Semantic versus syntactic branching pro-
grams

A pathP in a branching program is asemantic pathif it
is consistent with some input. A path is not semantic if and
only if there is some pair of nodesv andw on the path that
have the same variable labelx, such that the arcs following
them have different labels. A pathP is read-k for some
integerk, if no variable appears inP more thank times.
If Z is a subset of the variables of a branching programB,
we say thatB is syntactic (semantic) read-k onZ if every
path (respectively every semantic path) inB is read-k. (If
Z contains all the variables, we omit the qualifying phrase
in which case our definition is the standard one.)

In this section we exhibit, for everyk, a simple func-
tion fk that can be computed in linear size by a semantic
read-twice branching program but requires an exponential
size syntactic read-k branching program. The key to defin-
ing our separating functions is the construction of functions
gk(X;Y) that can be computed by linear size branching
programs that are semantic read-twice onX but require ex-
ponential size on any branching program that is syntactic
read-k onX . Before we give the construction ofgk(X;Y),
we describe the relationship betweengk(X;Y) and the sep-
arating functions.

DEFINITION 21. For a variable setY , let Y1; Y2; : : : ; Yk
be disjoint copies ofY . Writey �= y0 if for somei; j, y 2 Yi

andy0 2 Yj both correspond to the same variable inY . The
kth extension ofg onY , denoted byg(k)(X;Y1; : : : ; Yk), is
defined to be one if and only if (i)g(X;Y1) = 1 and (ii) all
of the blocksY1; Y2; : : : ; Yk have the same setting.

The relationship between computingg(X;Y) and itskth

extension onY is given by the following lemma:

Lemma 22. Letg(X;Y) be a Boolean function.

1. If g(X;Y) can be computed by branching pro-
gram P that is syntactic read-k on Y , then
g(k)(X;Y1; : : : ; Yk) can be computed by a branching
programQ that is syntactic read-twice on

S
i Yi and

satisfiessize(Q) = size(P) + O(
P

i jYij). Further-
more, any syntactic or semantic properties ofP with
respect toX also hold inQ.

2. If g(k)(X;Y1; : : : ; Yk) can be computed by a syntactic
read-k branching program, theng(X;Y) can be com-
puted by a branching program that is syntactic read-k
onX and has the same size.

Suppose thatg(X;Y) can be computed efficiently by a
branching program that is syntactic read-k on Y and se-
mantic read-once onX , but requires exponential size to be
computed by any branching program that is syntactic read-k
onX . Lemma 22 implies that theg(k)(X;Y1; : : : ; Yk) can
be computed efficiently by a semantic read-twice branch-
ing program but requires an exponential size syntactic read-
k branching program. Thusg(k)(X;Y1; : : : ; Yk) witnesses
the desired separation. For the rest of this section, we focus
on producing such ag(X;Y).

DEFINITION 23. For a k-dimensional hypercube[1; n]k of
siden, then hyperplanes perpendicular to thedth axis,d 2
[0; k � 1] are referred to asd-planes. In other words, the
ith d-plane, fori 2 [1; n], is the setfv 2 [1; n]k : vd = ig.
We define the predicategk(X;Y) as follows. Without loss of
generality, letk+1 = 2r, for somer. LetX andY be sets of
variables corresponding to a(k+1)-dimensional hypercube
of siden. The variables ofX are Boolean but we use the
Fourier representation where�1 and1 are identified with
true and false respectively and also treated as elements of
GF (3). For eachv 2 [1; n]k+1, Y containsr variables
y0v ; y

1
v ; : : : ; y

r�1
v which together determine an integeryv =

yr�1
v : : : y1vy

0
v 2 [0; k]. For anyd 2 [0; k], v 2 [1; n]k+1,

definexdv to bexv if yv = d and1 otherwise. Define the
following polynomial overGF (3):

Hd(X;Y) =
X

i2[1;n]

Y
v2[1;n]k+1;

vd=i

xdv

We define the predicategk(X;Y) to be true ifHd(X;Y) � 0
(mod 3) for all d 2 [0; k].

9

Informally, we can describegk(X;Y) as follows. The
variables ofX andY can each be viewed as defining two
(k + 1)-dimensional arrays, denotedx andy respectively,
where the entries ofx are inf�1; 1g and those iny are in
[0; k]. We constructk + 1 additional arraysxd whose entry
in positionv is xv if yv = d and is 1 otherwise. We say
thatxv is active inxd if yd = 1, and letXd � X be the set
of such variables. Note that the setsXd partitionX . The
functionsHd are computed by considering eachd-plane of
xd and summing the product of the entries and summing
the products. This can be done by a branching program
of sizeO(jXdj + jY j) that reads each variable ofY [Xd

exactly once and no other entry ofX . Thusgk(X;Y) can
be computed by a branching program of sizeO(jX j+(k+
1)jY j) that is read-(k + 1) on Y and read-once onX . On
the other hand, we have the following hardness result.

Theorem 24. Any non-deterministic branching program
that is syntactic read-k on X requires exponential size to
computegk(X;Y).

As noted above, Lemma 22 then implies:

Corollary 25. Let fk = g
(k+1)
k be the (k+1)-st exten-

sion of gk on Y . There is a simple semantic read-twice
branching program of linear size computingfk but any non-
deterministic syntactic read-k branching program forfk re-
quires exponential size.

The proof of Theorem 24 relies heavily on machinery de-
veloped in [10, 18], particularly the notion of planar pseudo-
rectangles and the ideas for proving lower bounds for the
closely related functions in [18]. We refer the reader to the
fuller version of our paper [7] for details.

References

[1] K. R. Abrahamson. A time-space tradeoff for Boolean ma-
trix multiplication. InProceedings 31st Annual Symposium
on Foundations of Computer Science, pages 412–419, St.
Louis, MO, Oct. 1990. IEEE.

[2] K. R. Abrahamson. Time–space tradeoffs for algebraic
problems on general sequential models.Journal of Com-
puter and System Sciences, 43(2):269–289, Oct. 1991.

[3] N. Alon and W. Maass. Meanders and their applications in
lower bounds arguments.Journal of Computer and System
Sciences, 37:118–129, 1988.

[4] L. Babai and P. Frankl.Linear Algebra Methods in Combi-
natorics with Applications to Geometry and Computer Sci-
ence (Preliminary Version 2). University of Chicago, 1992.

[5] L. Babai, N. Nisan, and M. Szegedy. Multiparty pro-
tocols, pseudorandom generators for logspace, and time-
space trade-offs.Journal of Computer and System Sciences,
45(2):204–232, Oct. 1992.

[6] P. W. Beame. A general time-space tradeoff for finding
unique elements.SIAM Journal on Computing, 20(2):270–
277, 1991.

[7] P. W. Beame, M. Saks, and J. S. Thathachar. Time-space
tradeoffs for branching programs. Technical Report TR98-
053, Electronic Colloquium in Computation Complexity,
http://www.eccc.uni-trier.de/eccc/ , 1998.

[8] A. Borodin and S. A. Cook. A time-space tradeoff for sort-
ing on a general sequential model of computation.SIAM
Journal on Computing, 11(2):287–297, May 1982.

[9] A. Borodin, F. E. Fich, F. Meyer auf der Heide, E. Upfal,
and A. Wigderson. A time-space tradeoff for element dis-
tinctness.SIAM Journal on Computing, 16(1):97–99, Feb.
1987.

[10] A. Borodin, A. A. Razborov, and R. Smolensky. On lower
bounds for read-k times branching programs.Computa-
tional Complexity, 3:1–18, Oct. 1993.

[11] R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computers, C-
35(8):677–691, August 1986.

[12] J. Burch, E. Clarke, D. Long, K. MacMillan, and D. Dill.
Symbolic model checking for sequential circuit verification.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 13(4):401–424, April 1994.

[13] L. Fortnow. Nondeterministic polynomial time versus non-
deterministic logarithmic space: Time-space tradeoffs for
satisfiability. In Proceedings, Twelfth Annual IEEE Con-
ference on Computational Complexity, pages 52–60, Ulm,
Germany, 24–27 June 1997. IEEE Computer Society Press.

[14] Y. Mansour, N. Nisan, and P. Tiwari. The computational
complexity of universal hashing.Theoretical Computer Sci-
ence, 107:121–133, 1993.

[15] N. J. Pippenger. On simultaneous resource bounds. In20th
Annual Symposium on Foundations of Computer Science,
pages 307–311, San Juan, Puerto Rico, Oct. 1979. IEEE.

[16] A. A. Razborov. Lower bounds for deterministic and nonde-
terministic branching programs. In L. Budach, editor,Fun-
damentals of Computation Theory: 8th International Con-
ference, FCT '91, volume 529 ofLecture Notes in Com-
puter Science, pages 47–60, Gosen, Germany, Sept. 1991.
Springer-Verlag.

[17] J. Simon and M. Szegedy. A new lower bound theorem for
read only once branching programs and its applications. In
Advances in Computational Complexity (J. Cai, editor), vol-
ume 13 ofDIMACS Series in Discrete Mathematics, pages
183–193. AMS, 1993.

[18] J. S. Thathachar. On separating the read-k-times branching
program hierarchy. InProceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, Dallas, TX, May
1998. To appear.

[19] I. Wegener. The Complexity of Boolean Functions. B.G.
Teubner, Stuttgart, 1 edition, 1987.

[20] A. C. Yao. Near-optimal time-space tradeoff for element
distinctness. In29th Annual Symposium on Foundations
of Computer Science, pages 91–97, White Plains, NY, Oct.
1988. IEEE.

10

