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Abstract the variable. The sink nodes are each labeled by an output

value. Executing the program on a given input corresponds
We obtain the first non-trivial time-space tradeoff lower to following a path from the start node using the values of
bound for functionsf : {0,1}" — {0,1} on general the input variables to determine the arcs to follow. The max-
branching programs by exhibiting a Boolean functjpthat imum length of a path corresponds to time and the loga-
requires exponential size to be computed by any branchingrithm of the number of nodes corresponds to space. An al-
program of length(1 + ¢)n, for some constant > 0. We gorithm running simultaneously in linear time and logarith-
also give the first separation result between the syntactic mic space corresponds to a linear-length, polynomial-size
and semantic read-models [10] fork > 1 by showingthat  branching program. Thus the gquestion of finding explicit
polynomial-size semantic read-twice branching programs functions inP for which no such branching program exists
can compute functions that require exponential size on anyhas been of significant research interest. (In fact, finding
syntactic readk branching program. We also show a time- any explicit function for which this is known is still open;
space tradeoff result on the more genekalvay branching  since branching programs are a non-uniform model of com-
program model [10]: for anyk, we give a function that re-  putation, Fortnow's lower bound does not apply to them.)
quires exponential size to be computed by lerigthy-way We give results on two distinct problems for branching
branching programs, for somg= ¢(k). programs, which we summarize in the next two subsections.

1.1 Lower bounds for single-output functions
1 Introduction
There has been much success in proving time-space
One of the long-standing open questions of complexity tradeoff lower bounds fanulti-outputfunctions inFP such
theory is whether polynomial-time is the same as log-space.as sorting, pattern matching, matrix-vector product, and
One approach to this problem has been to look at tradeoffshashing [8, 6, 1, 2, 14]. However, for single-output func-

between time and space for natural problemB.ifror ex- tions (those whose output is one bit) the state of our knowl-
ample, does the addition of a restriction on the space al-edge is pathetic: prior to this paper, there were no lower
lowed prevent one from solving problemsRnwithin spe- bounds known that are better thas o(n ) for any explicitn

cific polynomial time bounds? Despite significant progress variable function. The existing techniques for multi-variate
given by Fortnow's recent time-space tradeoff lower boundsfunctions involve some sort of “progress measure” which
for SAT [13], this question remains unsolved. guantifies how much of the output has been produced.
One natural model for studying this question is that These techniques do not seem to give any non-trivial bounds
of Boolean branching programs, which simultaneously for functions with a single output bit. For example, it is not
capture time and space in a clean combinatorial man-known how to relate the apparently very similar problems of
ner. In this model, a program for computing a function sorting and element distinctness, although time-space trade-
flzy,za,...,x,) is represented as a DAG with a unique offs for element distinctness on the structusesnparison
start node. Each non-sink node is labeled by a variable, andbranching progranhave been shown [9, 20].
the arcs out of a node correspond to the possible values of The branching program model allows the domain of the
~ Research supported by NSF grant CCR-9303017. variables to be any finite set. For variables taking values in
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greatest interest is the case that variables are 2-valued, thetriction is to require that each input bit be read at most
general-valued case is an interesting challenge, which can some fixed humber of times. This led to the definition of
potentially provide insights into the 2-valued case. Our first read4 branching programs [19] in which each input can be
result is to exhibit an explicit family of functiong,, where read at most times. Many lower bounds have been shown
for eachy, the functions inF, are single output functionson  for several functions on read-once branching programs (for
g-valued variables, such that the following property holds: example, see [16, 17]).
for any k, there is a; such that the functions in familg, Another branching program restriction that has also been
can not be computed in lengkn and polynomial size. considered is that obliviousbranching programs which
This result is unsatisfying because of the dependence ortest the same variable at each time-step along any path. For
q. For eachk, the g required for the bound can be quite oblivious branching programs, linear length and ré&ds
large. Forg-valued variables, the number of input bits is some constant are essentially the same and several size-
nlog, ¢ and what we really want is a lower bound that is length tradeoff lower bounds for oblivious branching pro-
superlinear in the number of input bits. Nevertheless, we grams have been shown using this connection [3, 5]. Obliv-
believe this result is of some interest, both in its own right, ious read-once branching programs, known as OBDD's,
and because the proof illustrates some basic ideas which wénave been very useful as representations of functions used
think may prove useful in this area. in verification [11, 12] and so have generated significant in-
Our second lower bound pertains to the “real” model, dependentinterest.
single output functions on 2-valued variables, i.e., Boolean  Borodin, Razborov, and Smolensky [10] observed that
functions. For this model, we obtain the first non-trivial read branching programs come in two flavosyntactic
length lower bound for polynomial size branching programs read in which all paths in the branching program must
for functions whose output is a single bit: we exhibit an satisfy the reads restriction and the more geneisgman-
explicit family of functions inP and show that any sub- tic read% in which only the paths consistent with some in-
exponential size program for it must have length at least put must satisfy the restriction. They also proved strong
1.0178n. While this is only just barely non-trivial, it is the  size lower bounds for the syntactic readrodel. However,
first such result in which the length divided by the number obtaining super-polynomial size lower bounds even for se-
of variables is bounded away from one. Our lower bounds mantic read-twice branching programs is an open question.
also apply to the more general model of non-deterministic (It is easy to observe that there is no distinction between
branching programs. syntactic read-once and semantic read-once branching pro-
The proofs introduce some new proof techniques, somegrams.)
of which extend past techniques of [10, 18]. First, we show  Here, we show the first separation between the syntac-
that if a functionf has a small size and length branching tic and semantic reak-models fork > 1 by showing that
program, then it is possible to find a small set of decision polynomial-size semantic read-twice branching programs
trees, each of height that is a small fractiomgfuch that ~ can compute functions that require exponential size for any
the AND of the functions computed by the trees accepts nosyntactic reads branching programs. The functions we
0's of f and accepts a substantial fraction of the 1'§.d50 construct are based on a class of functions that were by in-
proving a size-length lower bound on branching program troduced by Thathachar [18] to separate the power of read-
reduces to showing that no such set of decision trees existsk and read++1) in the syntactic model. These functions
Similar decision trees arise in analyzing the restricted are exponentially hard for syntactic re&dand seem to be
branching programs considered in [10, 18] but these treeshard for semantic reall- We modify these functions so as
are “oblivious” and thus depend on only a small fraction of to make them semantic read-twice while still retaining hard-
variables. The main new step uses an interesting entropy arness for syntactic reak-
gument. Very roughly, we show that for two decision trees
of height(1/2+¢)n, either itis the case that for the vastma- 2  Notation
jority of inputs, the two trees together fail to look at a posi-
tive fraction of the variables, or the trees are “approximately
oblivious” in the sense that the set of variables examined byW
each tree does not depend very much on the input.

ThroughoutX denotes a set of (usually) variables
hich take on values from some finite 98t usuallyD =
{0,1}. We sayX is a D-valued variable set, and addition-

] ) ) ally d-valued ifd = |D|. An inputo is, as usual, a pointin
1.2 Semantic versus syntactic read-branching DX, the set of mappings frot¥ to D. A Boolean function
programs over X is a function mappind-* to {0, 1}.
A (nondeterministic) Boolean branching prograhover
As a step towards proving super-polynomial size lower DX is a directed acyclic graph having a unique source
bounds for linear length branching programs, a natural re- (start) vertex, with sink vertices labeled by 0 or 1, non-sink



vertices labeled by elements &f, and edges labeled by a leaf 1 if and only if the corresponding pathiti starting
elements ofD. An edge labeled by € D thatis an out-  atwv; would reachv;,,. Therefore

edge of a vertex labeled by € X is consistentith input

o € DX iff o(z;) = a; a pathinP is consistent with if all r

its edges areP accepts input if there is some path i® f= \/ /\ Toiviga-

consistent withr leading from the start node to a sink node Vb= 120

labeled 1. We call the number of vertices/mits sizeand Each conjunction in this expansion is &n «)-decision

the length of the longest path iR its length (As in [10] program, therefore it can accept at mostputs of £~ (1).
one can also permit unlabeled “free’ edges but this does nogy construction, there are at most-! many choices for
change the size measure by more than a quadratic amount,) ., = 4., sos™ !t > |£=1(1)|, from which the

P is deterministicif every non-sink node has precisely pound ons follows.
one out-edge labeledfor eacha € D. P is adecision tree
if its graph is a rooted tree.

A branching program of lengtti is leveledif its nodes
can be partitioned intd setsVy, V1, ... , V; whereVj is the
sourceVy is the set of sink nodes (one per output value) and
every arc out of; goes toV;;1, for0 < i < d. Itis well
known[15] that every branching program of size s and
lengthd, can be converted into a leveled branching program . ;
P’ of lengthd that has at most nodes in each of its levels GF(q)" — {0,1} to be true on input (viewed as a vector

o : :
and computes the same functionfagand is deterministic ~ °f lengthn) if o Mo = 0(mod ¢). We define the function
if P is). BQF), to be the restriction of) Fy; to the domair{0,1}".

To prove size-length tradeoffs f@Q Fy; or QFyy, we
will require that the matrix\ satisfy certain properties,

4 Functions based on quadratic forms

The functions for which we prove lower bounds are
based on quadratic forms. (Similar functions based on bi-
linear forms were considered in [10].) L&f = M, be
ann x n matrix overGF(q). Define the functiorQFy, :

3 Decision Programs which are stated in the next section. Explicit examples of
matrices satisfying these properties are Slyévester matri-
For a given Boolean functiofi, and a given lengtd > ces For any odd prime powerand anyn = 2%, then x n

n, we want to lower bound the size of the smallest branching Sylvester matrixV is defined ove:£'(¢) and has rows and
program of lengthi that computes it. This section gives a columns indexed by binary vectors of lengthThe (i, j)-
simple lemma, which shows that such lower bounds can beth entry of N is (—1){"J), where(i, j) denotes the inner
obtained by analyzing a different model based on decisionproduct ofi and;. We also consider theodified Sylvester
trees. matrix, N/, obtained by setting the diagonal entries of a
An (r, o)-decision progranit is anr-tuple of decision ~ Sylvester matrixV to 0.

trees(11,T>,...,T,), each of heightan. The function
computed byR, denoted agg, is /\ie[m] fi» wheref; is
the function computed by;, fori € [1,7]. We say that?
is compatiblewith the functionf if it accepts only 1's off.

Theorem 2. There is ane > 0 such that any branching
program of length(1 + €)n computingBQ Fiy, whereN is
then x n Sylvester matrix ove® F'(3), requires siz@*("),

_ Theorem 3. For every integek there exists a prime power
Theorem 1. Let f be a Boolean function. Suppose thatany ; and a constant > 0 such that for all sufficiently large

(r, @)-decision programiz that is compatible withf, ac-  the following holds: LetV®l be ann x n modified Sylvester
cepts at most inputs. Then, any nondeterministic (or de- matrix overGF(¢). Then any lengtin non-deterministic
terministic) branching program of lengtwn computingf branching program foQ Fiy o) requires size at leagt’”

has size at leagt| f~!(1)| /¢)*/("=1). _

The conclusion of Theorem 3 holds, more generally,
Proof. Let P be any branching program of sizecomput- whenevetV is a Generalized Fourier Transform (GFT) ma-
ing f in lengthd = arn and letP’ be an equivalent lev-  trix (see [10]). For any finite Abelian grou@, let G* be
eled program of lengtld with at mosts nodes per level. the set of multiplicative characters 6f mapping elements
An input is accepted by if and only if there exist nodes of G to GF(q)*, that is, x(g192) = x(g1)x(g2) for any

v1,02,. .. ,vy—1 at levelsan,2an,...,(r — l)an in P’ g1,92 € G andy € G*. Provided thay is relatively prime
such that there is a path consistent with that input of lengthto |G|, it is known that there argr| distinct characters and
an fromwv; tov;y fori =0,... ,7—1wherey isthe start  that they are linearly independent when viewed as a vector

node and, is the unique accepting node at leveln. Let space oveGF(q). Let N = Ng ¢~ be the matrix in which
Ty, »:4, be adecision tree of height: creating by expand-  the(g, x)*" element equalg(g), forallg € G andy € G*.
ing thean levels of P’ rooted aty; into a tree and labeling ~ Sylvester matrices of dimensionx n, wheren = 2F for



somek, can be shown to be special cases of GFT matriceswhere = 1/2++1,

corresponding to the additive group@f'(2)*.

5 A lower bound criterion

The proof of this theorem is given in section 6. The the-
orem yields exponential size lower bounds for linear depth
branching programs in the case ttatis “large enough”.

In particular, we obtain Theorem 3: Takinfjto be the

Our lower bounds for the functions described in the pre- function Q Fiyio) for someg andn, then, by Lemma 4, the
vious sections are obtained in two steps. First, we iden'hypothesesNof Theorem 5 are satisfied vtk 2/n and

tify two parameterized combinatorial properties of func- &

tions and show that, for any functiofi satisfying these
two properties, the branching programs foobey certain

length-size tradeoffs (depending on the parameters). Sec-
ond, we show that the functions of the previous section sat-

(6) = 8%. Choosingg so thatloglogq > Ck for some
sufficiently large constar®@, the conclusion of Theorem 5
implies the conclusion of Theorem 3.

Theorem 5 is of no use for the cage| = 2. For this
case we have the following theorem:

isfy these properties with values for the parameters that are

good enough to give non-trivial tradeoffs.

Let f denote any Boolean function ona-valued set
of n variables,X. The first of the two properties?(9),
is parameterized by a real numlgere (0,1), the second,
Q(®), is parameterized by a non-decreasing function
[0,1] — [0,1].

P(6): Forany partial assignmepto at mos{1—6)n vari-
ables ofX, f], is a non-constant function. In particu-

lar, f has at Ieas|tD|(1’9)” satisfying inputs inDX.

Q(®): Forany pair of functiong;, g» suchthay = g; Ag»
is compatible withf, if there are two disjoint subsets
A1, Ay C X, each of size at leash, such thay; does
not depend on the variables i;, theng accepts at

most|D|"* )" inputs of F~1(1).

Theorem 6. Lete, 0 > O withe +6 < 1/4, let® :
[0,1] — [0,1] and letn be a sufficiently large integer.
If f:{0,1}" — {0, 1} satisfiesP(¢) and Q(®) then, any
length(1 + ¢)n non-deterministic branching program fgr
requires size at lea@(®/3-?)n—1 wherea equals

o (#) e~ 6—(14+H (2(16:f)> _2H(6)

andH(p) = —plog, p — (1 — p) log,(1 — p) is the binary
entropy function.

The proof of this theorem appears in Section 7. Using
the theorem we can deduce Theorem 2 as follows. Fix
n large enough and leV be then x n Sylvester matrix
over GF(3). From Lemma 4,BQFy satisfiesP(¢) for
f(n) — 0 andQ(®) for ®(§) = &2. Applying Theorem 6,

For our functions, these properties can be realized for the,;» <onclude that for any > 0 and for sufficiently large,
specific® andf as stated in the lemma below. We postpone if a < (1—€)?/d—e—(1+€)H (2¢/(1+¢)) then any branc,h-

the proof of this lemma to Section 8.

Lemma 4. Let M be a GFT matrix oveG F'(¢), whereg is
a prime power.

1. For any subseD of GF(q) of size at least 2, the re-
strictions of the functiong)Fy; and Q Fy0 to D™
both satisfyQ(®) for ®(§) = §2.

2. QF, 0 satisfiesP(2/n).

3. If M is the Sylvester matrix ovéfF'(3), thenBQ Fy
satisfiesP (24 logn/v/n).

Our main general lower bounds on branching program
size are expressed in terms of these two properties. The

first such result is:

Theorem 5. Let f be a boolean function o™, wheren >
(k + 1)2**+4. Suppose satisfiesP(#) and Q(®) for some
# and®. Then, any lengtikn non-deterministic branching
program for f requires size at least

1 |D|<I>(B)—9 n/(k(k+1)28+)
2 3

ing program forBQ F; of length at most1 + €)n has size
atleas*™/3, |t can be checked that fer< 0.0178, the ex-
pression upper bounding is strictly positive. Hence, any
branching program of length at mds0178n that computes
BQF,; must have exponential size.

The next three sections give the proofs of Theorems 5
and 6 and Lemma 4.

6 Lower bounds for functions over large do-
mains

In this section, we prove Theorem 5. Lgbe as hypoth-
esized. Becausg satisfiesP(6), |f~1(1)| > DU,
Letp = (k + 1)2*** and supposer > p. Fix any
(kp,1/p)-decision programk = (11,71>,...,T},) that
is compatible withf. We will prove that| R='(1)| <
|D|(1’q>(’8))" 3n2kP. The conclusion of the Theorem then
follows immediately from Theorem 1.

A generalization of a combinatorial lemma from [18]
says that forn > p, given a collection okp subsets ofl, n]
each of size at least{1—1/p), there exists a pair of disjoint



setsA and B of size at leasBn, whereg = 1/2+1, such
that each set of the collection contaitor B.

For eachinput, let S;(o) be the set of variables that are
not read byl; on inputo. Note that each sét; (o) has size
atleast:(1—1/p). Consider all quadruplest,, A, I, I5)
where|A4:| = |A»| = fn are disjoint sets of variables and
I, I, are complementary subsets ff, 2, ... ,kp}. Call
such a quadrupleligible. We say thatA,, A, I, I,) cov-
ers inputo if for eachi € I, A; C S;(o) and for eachi €
I,, A, C S;(0). By the combinatorial lemma, every input
is covered by some eligible quadruplé; , A-, I, I>). We

a common set of more tham variables must be followed
by at least one falsifying input of. SinceR is compatible
with f, no input following this pair of paths can be accepted
since at least one of the two leaf labels of these paths must
be 0. ThereforeAccept(Sy, S2) is empty.

Thus we may restrict attention to the terms in the sum
corresponding t@S;, Sz) with |S; N S2| < On. For such
pairs, we can choose disjoint sets C S; andA; C S,
such thajA4;| = én, where§ = (1 — ¢ — 6)/2. Becausef
satisfies propert@(®), applying this property with respect
to A; andAs, we have thafAccept(S;, So)| < 2(1-20)n,

now upper bound the number of accepted inputs covered bywe could now naively bound the sum by multiplying by

a given eligible quadruple.
Given a pair(A, I) where A is a variable subset and
I C {1,2...,kp}, definegy ; to be the function that
acceptso if and only if, for everyi € I, A C Si(o)
and T; acceptso. It is easy to see thajs ; does not
depend on the variables id. Also for any eligible
quadruple(A;, A2, I, 1), the functionga, a,.1,.1,
ga,., N 9a,,1, accepts exactly the set of 1's ¢f that
are covered by the quadruple.

(@), |93 ap10,1,(D] < [DI**E". Since the num-

ber of distinct quadruplegA;, A, I;, I,) can be crudely
upper bounded by"2?, we conclude thafR=*(1)| <

_ 1-9 nok
‘U(Al,Ag,Il,Ig)gAll,AQ,Il,IQ(]')‘ < D[P gngke, 1o

complete the proof.

7 Lower bounds for Boolean branching pro-
grams

In this section, we prove Theorem 6. LAtn, ¢, # and
® be as hypothesized. We will apply Theorem 1 withk- 2
andr = (1 +¢€)/2. Fix a(2, (1 + €)/2)-decision program
R = (1T,T,) that is compatible witty. We will prove that
|R1(1)| < 2(-2/3)n+1 wherea is defined as in the con-
clusion of the theorem. Since propefB(f) implies that
|£71(1)] > 219", Theorem 1 yields the required conclu-
sion.

As in the previous proof, we defing; (o), for inputo
andi = 1, 2, to be set of variables that are not readibyn
inputo. We say thatS;(o) is the set of variablesiissedoy
o in T;. Note that S;(o)| is always(1 — €)/2. For a pair of
sets(S1, S2) each of siz€1 — €) /2, defineMiss(S1, S2) to
be the set of inputs such thatS; (¢) = S; andS2(c) = S
and Accept(S1, S2) to be the subset afliss(S;, S2) ac-
cepted byR. Then|R™(1)| = Y., g, [Accept(S, S2)l,
and we upper bounfiR=*(1)| by classifying the terms in
the sum, and bounding them accordingly.

We first dispense with the cases that follow easily
from the properties satisfied bf. Consider those terms
Accept(S1, S2) where|S; N S,| > On. Becausef satis-
fies propertyP(6), any pair of consistent paths that miss

the number of possible paif$;, S2) with |.S; N S3| < 6n,

but the resulting bound is too large to be of any use. In-
stead we will divide the terms of the sum into two parts
depending on the size dfiss(S;,S52). Let0 < v <1

be a constant to be fixed later. Call a pg#, S2) com-
monif Miss(S1,S>) > 2(1=7)" andrare otherwise, and
denote the sets of common and rare pairs BYmmon
and P,ae. Let Beommon (f€Sp. Brare) be the (disjoint)

Therefore, by property union of Accept(S1,S2) for all (S1,52) € Peommon (resp.

(51,52) € Prare)- ThUS|R71(]—)| = |Bc0mm0n| + |Brare|;
we will upper bound Bcommon| and|Byare| SEparately.

The number of common pai(s$;, S, ) is clearly at most
27", and thug Beommon| < 2001 =207,

To bound|B;,re| We will show that the overall num-
ber of inputs (accepting or rejecting) that correspond to
rare pairs can not be too large. Létdenote the union of
Miss(S1, S2) over all rare pairs. TheB,,.. C A. We
prove:

Lemma 7. Lete, 8 > Owithe +6 < 1/4, lety € (0,1),
and letA be defined as above. Them, |A| — n is at most

1028) o) 3

Using this lemma, we complete the proof of Theorem 6.
We have|R*(1)| < |Beommon| + |A], and we choose
so that the above upper bounds f@.o,mon| @and|A| are
equal. For this choice of, |A|,|Beommon| < 2(17/3)7,
whereq is as defined in the statement of Theorem 6. As
noted earlier, Theorem 1 now yields the desired bound.

So it remains to prove Lemma 7, which is the crux of
the entire argument. The proof uses elementary informa-
tion theory. We review the basic definitions and results.
Let X be an arbitrary probability space. For any event
A, we write Prob[A] for the probability of A and u[A]
for log, Prob[A]. If Cis a random variable taking values
from a finite setS, the binary entropy (C) is defined to
be—>,cg Prob[C = 5] u[C = s].

<6+0+(1+6)H<

Proposition 8. If C is a random variable taking on values
from some se$ thenH (C) < log, |S|.



If Aisan arbitrary event (measurable subset) of the prob- We will need a well known technical fact concerning

ability space then the conditional entropy @fgiven A is sums of binomial coefficients (whose proof we give since
H(C|A) = = ,csProb[C = s|4] log, Prob[C = we don't know a reference).
s|A4].

Proposition 13. If k < n/2, 3, () < onH(k/n)
Proposition 9. Let C be some random variable taking val-

ues on a finite sef and letA be an event. Proof. By the binomial theorem, for any < 1/2, we have

1> 3 (L=p)"(7) 2 PP —p)" " iy (7)-

1. H(C|A) < H(C). Settingp = k/n and rearranging yields the desired inequal-
ity. O
2. Let Sc(A) denote the set ok € S such that Y
Prob[C = s|A] > 0. ThenH(C|A) > pu[4] - Proof of Lemma 7 Consider the probability space on
maxyesq(a) #[C = s]. {0,1}* with the uniform distribution. We define the fol-

lowing random variables. Far= 1,2, let P; be the path
taken inT; andS; be the set of variables missedihby a
random input. Observe th&t is a function ofP;.

The basic intuition for the proof is this. We are trying
to upper bound the size of by something like2(1 =)
whereX > 0 and for this it suffices to upper boundA]
by —An. Note thatA is defined to be the event that

If B; andB, are random variables on the same prob-
ability space taking values ir$; and S, respectively,
H(B,, B,) is the entropy of the random variable consisting
of the pair(B1, B>). The conditional entropy dB; given
B> is defined byH(B1|B2) = H(Bl,Bg) — H(B2) =
ZSESZ H(B;|B2 = s): Prob[B, = s]. The mutual
information of B; and B, is defined to be/(B;,B,) = (S1,S5) € Prre, and so by Proposition 9(2u[4] <
H(By) + H(B,) ~ H(B1, Bz). H(S1,S2]4) + max(s, s,)em,,, 1l(S1,82) = (51, 5],
Proposition 10. Let B, B, be random variables taking The second term is at mostyn by the definition of
values on finite setS; and S,. Then Prare.  Thus we want to upper bound (S, S,[A) =

H(Sl|SQ, A) + H(Sz|sl,A) + I(Sl, Sz|A) by'y’n, where
1. H(By, Bz) = H(B1|By) + H(B:[B1) + I(B1, By). ~' is a constant less than Now observe that givent,

2. H(B,,B,) < H(B,) + H(B,). [S1 N'S2| is small, and therefor8;, andS, are “approxi-
- mately” complementary subsets of variables, and so one of
3. H(B|B) < maxses, H(B1|B; = s). them approximately determines the other. This allows us

to conclude that the first two terms in the sum are small.
We use Proposition 11 to upper bound the third term by
I(P;,P5|A). Intuitively, this represents the amount of in-
Proposition 11. 1. If B and C are random variables  formationP; reveals abouP- (and vice versa) given that
such thatB determinesC then (a) H(C) < H(B) A holds. NowA implies thatP, andP, read very few vari-
and (b)H(C|B) = 0. ables in common, and this can be used to show that the mu-
tual information is small. Although the intuition is based on
B; determinesC; and B, determinesC, then mgtuaiiznfordm;tion, in tr;_e_f?rmal argument v;/_e ?se Pr_opo-
I(Cy,Cy) < I(By, By). sition 12 and do not explicitly mention mutual information.
We now proceed with the proof by considering
Proposition 12. Let B, B, and C;, C, be pairs of ran-  H(Py,P2]|A) + H(S:,S:|A). As noted Proposition 9(2)

Given two random variableB, C we say thaB deter-
minesC if C is a function ofB. We have:

2. If B1,B,,Cy,C; are random variables such that

dom variables such thdB; determinesC; for i = 1,2. implies H(S;,S2|4) > plA] + yn. To apply the same
Then proposition toH (P, P»|A) we note that any pair of paths
(P, P,) corresponding to a point i@ € A contains at
H(B1,Bs) + H(C1,Cy) least(1 — #)n variables and s@[(P1,P2) = (P, )] <
< H(B:)+ H(By)+ H(C,|C,) + H(C;|Cy). —(1—0)n. Consequentlyf (P, P2|A) > u[A]+(1—0)n

. » and so
Proof. By Proposition 10(1) and Proposition 11(2):

H(Py,P2|A) + H(S1,S2]A) > 2p[A] + (1 — 6 + 7)n.

H(Cq,C5)
= H(C1|Cs) + H(C»|Cy) + I(Cs,C1) On the other hand, by Propositions 12 and 9(1),
< H(C1[Cs) + H(C2|Cy) + I(B2,By) H(Py,P3|A) + H(S1,S2|A)
= H(C,|C3) + H(C;|Cy) < H(P1|A) + H(P3|A) + H(S1]S2,A) + H(S2|S1, A)
+ H(B,)+ H(B:) — H(B;,B>). < H(Py)+ H(P2) + H(S1|S2, A) + H(S2|S:1, A4)
0 < (1+e)n+ H(S]S2,A) + H(S2[S:,A4)



where the last inequality comes from Proposition 8 and theLemma 15. Let N be ann x n G-matrix of full rank, where

fact that the number of paths in each tre@(is-)»/2,

Since the two remaining terms are symmetric it remains
to upper boundd (S;|S2, A). Define the random variables
I=S;nS;and) = X — (S; US-) and observe that the
triple (S», I, J) determines;. Hence:

H(S:1|Sz,A) < H(S2,1,J[S,, A)
< H(S:[85, 4) + H(I|Sz, A) + H(I|Sz, A)
=0+ H(I|S2,A) + H(J|S2,A)
< H(IJA) + H(J|S,, A)

Since A implies |I] < #n, Proposition 8 and Proposi-
tion 13 imply thatH (I|A) < 3.4, (%) < nH(6). Now,

by Proposition 10(3),H (J|S2, A) < maxg, H(J|S2
S2,A). Given A4, |J] < (6 + €)n and givenSs = Sa,
J is contained inS, which is a set of sizé1 + ¢)n/2.

Again, using Proposition 8 and Proposition 13 we conclude
H(J|Sz,A) < %H (M) (here we use the hypothesis

thate + 6 < 1/4). Thus:
a(

1+e€

1+e€
2

2(e +6)
1+e¢€

H(S1|S2, 4) < [ ) +H(0)] n

and so

2u[A]+ (1 =60+ )n
< H(Py,P3|A) + H(S1,S2|A)

<(1+en+2 {1 ; ‘" (2(;:5)) + H(e)} n.
Solving, we find
pld] < [e +O0+(1+e)H <2(1€:f)> +2H(6) — 7]

O wIs

which is what we wanted to prove.

8 Proof of Lemma 4

We being with the proof of the first part of the lemma.
This will follow immediately from two additional lemmas.

For anyn x n matrix M and any0 < ¢ < 1, define
®,,(6) to bel/n times the minimum rank of anfn x én
minor of M that does not include any diagonal element of
M. Trivially, ®,,(6) = ®n(6) if M andN have the same
off-diagonal elements; in particuldry; (8) = @ 101 (6).

Lemma 14. Let M be a matrix overGF(q) and D C
GF(q). The restriction oiQ) Fy; to D™ satisfiesQ(®) for
b = B,

Let G be a finite group. AG-matrix over GF(q) is a
matrix N whose rows are indexed l, such that for all
91,92 € Gandj € [1,n], Ny, .4, ; = Ny, ; Ny, ; (i.€., €ach
column is a multiplicative character 6f).

G is a group of ordem, and letM be anyn x n matrix that
agrees with\V off the diagonal. The®, () = §2.

Since a GFT matrix associated to a grotpis a G-
matrix of full rank, Part 1 of the Theorem follows imme-
diately from the lemmas. So we now prove them.

Proof of Lemma 14Let g = g1 A g» be compatible with
Q F); such that for some disjoint sets of variablés and
A, of size eachbn, g; does not depend on the variables
in A;. Consider an arbitrary assignmenof the variables
outside of4; U A,. There are}D|25” assignments that ex-
tendp; let " denote the subset of these assignments that are
accepted by;. We will show that|T| < |D|20~ % (@)n.
the desired bound is then obtained by summing over the
|D|*29" choices ofp.

Since g; does not examine any variables iy, T’
{p} x 1 x Xy, where

%, ={o1: (p,01,02) € T for someo}
Yy ={oz: (p,01,09) €T for somes,; }

Substitute the values assigned pynto X7 M/ X. Be-
causeM is symmetric, we obtain a polynomial of the form
ATN A, + Fi(A)) + F»(As), whereN is aén x én ma-
trix equal to twice the minor o/ indexed by4; x A, and
eachF; is some polynomial function of the entries df.
Lemma 16 below, which is a slight generalization of results
in [10, 18], implies the required bound ¢Fj|.

Lemma 16. Let N be at x t matrix overGF(q). For

i=1,2,letF; : GF(q)! — GF(q) be arbitrary functions,
and let F' denote the function fronF'(¢)! x GF(q)! to

GF(q) given byF(o1,02) = 01 Noay + Fi(01) + Fa(02).

For a setD C GF(q), suppose that,¥, C D! sat-

isfy F(o1,02) = 0 for every(o1,02) € X1 x 5. Then
|El % 22| < |D|2t—rank(N).

Proof. Fori = 1,2 fix someo} € X;. Then for any
(01702) € ¥ X Xy, We have(al — U’f)N(Uz — 0';) =
F(oy,00)+F(o%,03)—F(01,03)—F(07,02) = 0. Defin-
ing V; fori = 1,2 to be the linear span aff = {o — o} :
o € X;} we have thaty Nv, = 0 forall v; € V4 andw, €
V5. This impliesdim (V1) +dim(V2) < 2t —rank(N). The
|

lemma now follows sinc%i‘ = ‘il‘ < |p|4mo),

This completes the proof of Lemma 14. |

We now turn to the proof of Lemma 15. This lemma is
an immediate consequence of the following lemma, which
says, roughly, that every large minor of a GFT matrix has
large rank. The lemma both simplifies and improves a
bound in [10] which showed that evewyx ¢ minor of such
a matrix has rank at least/(n(n, u, t) n), wheren(n, u, t)



is a function that is typically logarithmic in. (This new

bound also improves the lower bound on the size of read-

Proof. Fora = 0, setJ = (. So assume € {1,—1}.
Recall that the row and column index set of the Sylvester

branching programs proved in that paper by shaving off a matrix is the set of binary vectors of lengthwhich is iden-

factor ofk in the exponent.)

Lemma 17. Let N be anyG-matrix overGF'(q) whereG
is a group of ordem. If N has full column rank, the rank of
anyu x t minor of N is at leastut /n.

Proof. ForV C G and any set/ of columns, letNVy, ; de-
note the submatrix ofV corresponding to the rows df
and columns off. Fix V' of sizeu andJ of sizet. SinceN
has full column rank, the columns of; ; are independent
implying that it has & x ¢t minor Ny, 5, for somelv C G,
which has full rank.

For any fixedg* € V and a randong € G, Pr[gg* €
W] = Prlg € W(g*)~!] = t/n. By linearity of expec-
tation, wheng is randomly chosen frond7, the expected
number ofg* € V for which gg* € W isut/n. Therefore,
for some fixedy and someid C V where|H| > ut/n, we
havegH C W. We show thatVy ; has rank at leastt/n
from which the lemma follows.

BecauseG is a group,|gH| = |H| > ut/n. Since
Nyu,s is a submatrix consisting of at least/n rows of
Nw,, it follows thatrank(Ngg, ;) > ut/n. By the def-
inition of N, for eachj € J, Nyg; = N, ;Ng;, that
is, each column ofVy y is multiplied by some constant
to get the corresponding column N, . Therefore
rank(Ng, 5) > rank(Ngg,w) > ut/n. O

This completes the proof of part 1 of Lemma 4. We
now consider part 2. LelM be a GFT matrix. It suf-
fices to show that for any partial assignmenthat fixes
all but 2 variablesz,, z, of X, the restriction) Fi, is
not the constant function. Sindg is symmetric, and its

tified naturally with the set of subsets [af k] and we view

I as a collection of log n./+/n such subsets. Far= 1 and
for a = —1, we want a subcollectiod of I such that the
sum of entries inV/; 5 is a. The following easily verifiable
fact gives a criterion for a collection of size 3 to satisfy this.

Proposition 19. Supposely, B;, B; are distinct subsets of
[1, k] such thaf Ay|, | B1|, and|B-| are all even or all odd
and letJ = {Ao, Bl, B2}

1. If |Aon By| and |Ap N By| are both even and
|B1 N Bs| is odd then the sum of entries i ; is
-1

2. If |ApnB;| and |4, N By| are both odd and
|B1 N Bsy| is even then the sum of entries M ; is
+1.

We will also need the so-called “Eventown-Oddtown”
theorems (see [4]), stated as a proposition below:

Proposition 20. Let 7 be a family of sets. We say that
has property?; . (respectively?; ,) if the common intersec-
tion of every collection of distinct sets fron is even (re-
spectively odd). The following table gives an upper bound
on the size of any family of subsetgbfk| satisfying some

of these properties:

PLe PLo
P, 2k/2 k
Py, | k |20/?

Continuing the proof of Lemma 18, we now show that
I contains a collection/ = {4y, By, B>} satisfying the
hypothesis of the first part of Proposition 19 and thus the

off-diagonal elements are non-zero, the restriction satisfiessum of entries inV/; ; is —1. A similar argument handles

QFy01,= 2a(z1+b)(22+¢)+d for some constanis # 0,
b,c,d € GF(q). Sinceq is odd, settingz; to any value in
GF(q) —{-b}, we have2a(z; + b) # 0 and it follows that
2a(z1 +b)(z2 +¢) +d takes on all possible values@F'(g)
by varyingz.. Thus,Q F,[, is non-constant.

Finally, to prove Part 3, lefif be then x n Sylvester
matrix overGF'(3). Notice that the above argument fails
in this case, even fof/%!, because the values of, z»
are restricted to be frof0,1}. To prove propertyP(6) in

the other case.

Since|I| > 4y/nlogn, there is a sub-family of size
at least2/nlogn such that every set iff has even size
or every set inF has odd size. Consider a sub-family
of F which is maximal subject to the condition that for
any distinctA,B € G, |ANB| is odd. For each set
A € G, let £(A) be the subfamily consisting of those sets
C € F —GsuchthatA n C|is even. By the maximality of
G, Uaegé(A) = F — G which implies}_ , ., [E(A)] >

this case we first need a lemma showing that in every suf-|7 — G|. Choosed, € G for which [£(A,)| is maxi-

ficiently large principal minor ofdZ, there exist principal
minors whose entries sum to arbitrary values.

Lemma 18. Let M be then x n Sylvester matrix over
GF(3) wheren = 2k, Let] C [1,n] be an arbitrary subset
of size at leasttlogn/+\/n. For everya € GF(3), there
existsJ C I, with |J| < 3 such that the sum of the entries
in MJJ is a.

mum and write€ = £(Ap). Then|&||G| > |F — G|, or
(€] +1)|G] > |F]. To finish the proof it suffices to show
that there ard3,, B> € £ whose intersection has odd size.
Using Proposition 20, if every pair of distinct setsdrhas
an intersection of even size, then

GI(1€] + 1) < max{2¥/2(k + 1), k(2"/? + 1)}
< 2k2"? = 2v/nlogn < |F|



which contradictg|€| + 1) |G| > |F|. Therefore, the claim
holds. O

We now have the tools to prove Part 3 of Lemma 4. Let
p be a partial assignment {@ — 6)n variables ofX, where
6 = 24logn/y/n andZ C X be the variables unset by
p. ThenBQFum[,= ZT'BZ + A - Z + C, whereB de-
notes the sub-matrix a#/ corresponding to the rows and
columns corresponding td, and A andC' are fixed con-
stants determined by and M. It suffices to show that
q(Z) = ZTBZ + A - Z takes on all possible values in
G F(3) for the various choices of 0-1 assignmentgto

Setting all variables to 0 makes the function 0. Fix
a € {—1,1}. Our goal is to identify three variables such
that setting them t@ and everything else towill make the
function equal taw. Classify each variable; by the pair
(Mj;,A;) € {-1,1} x {—1,0,1}. There are 6 possible
values of this pair, and so there is a set of at ldg&t logn
variablesZ' C Z that belong to the same class. If we
set any three variables i#’ to 1, and everything else to
0, ¢(Z) evaluates to the sum of the off-diagonal entries in
the3 x 3 principal minor corresponding to these variables.
By Lemma 18 such a minor exists whose sum evaluates to

(mod 3), and Part 3 of the lemma follows.

9 Semantic versus syntactic branching pro-
grams

A path P in a branching program issemantic pathf it
is consistent with some input. A path is not semantic if and
only if there is some pair of nodesandw on the path that
have the same variable labelsuch that the arcs following
them have different labels. A path is read+ for some
integerk, if no variable appears if* more thank times.
If Z is a subset of the variables of a branching progiam
we say thatB is syntactic (semantic) reakl-on Z if every
path (respectively every semantic path)Bnis readk. (If
Z contains all the variables, we omit the qualifying phrase
in which case our definition is the standard one.)

In this section we exhibit, for every, a simple func-

andy’ € Y; both correspond to the same variabletin The
k™ extension of onY’, denoted by *) (X, Y7, ... ,Y}),is
defined to be one if and only if @X,Y;) = 1 and (i) all
of the blocks7, Y5, ... , Y} have the same setting.

The relationship between computipgX, Y) and itsk'®
extension orY” is given by the following lemma:

Lemma 22. Letg(X,Y) be a Boolean function.

1. If g(X,Y) can be computed by branching pro-
gram P that is syntactic reads on Y, then
g™ (X,Y1,...,Y;) can be computed by a branching
program( that is syntactic read-twice olp), Y; and
satisfiessize(Q) = size(P) + O(3_, |Yi]). Further-
more, any syntactic or semantic propertiesfofwith
respect taX also hold in@).

. Ifg®(X,Y7,...,Y}) can be computed by a syntactic
read+ branching program, thep(X,Y") can be com-
puted by a branching program that is syntactic refad-
on X and has the same size.

Suppose thay(X,Y") can be computed efficiently by a
branching program that is syntactic reladn Y and se-
mantic read-once o, but requires exponential size to be
computed by any branching program that is syntactic fead-
on X. Lemma 22 implies that th¢/®) (X, Y3, ... ,Y}) can
be computed efficiently by a semantic read-twice branch-
ing program but requires an exponential size syntactic read-
k branching program. Thug®) (X,Y1,...,Y}) witnesses
the desired separation. For the rest of this section, we focus
on producing such a(X,Y).

DEFINITION 23. For a k-dimensional hypercubjg, n]* of
siden, then hyperplanes perpendicular to k" axis,d €
[0,k — 1] are referred to asi-planes In other words, the
ith d-plane, fori € [1,n], is the sef{v € [1,n]* : vg = i}.
We define the predicagg (X, V') as follows. Without loss of
generality, lett+1 = 2", for some-. LetX andY be sets of
variables corresponding to@-+1)-dimensional hypercube
of siden. The variables of\ are Boolean but we use the
Fourier representation where-1 and1 are identified with

tion f;, that can be computed in linear size by a semantic yrye andfalse respectively and also treated as elements of
read-twice branching program but requires an exponent|aIGF(3) For eachv € [1,n]**!, Y containsr variables
. ) y

size syntactic read-branching program. The key to defin-

ing our separating functions is the construction of functions

g:(X,Y") that can be computed by linear size branching
programs that are semantic read-twiceXtut require ex-

ponential size on any branching program that is syntactic

read% on X. Before we give the construction gf(X,Y),
we describe the relationship betweg X, Y') and the sep-
arating functions.

DEFINITION 21. For a variable setY’, let Y1,Y5,...,Y;
be disjoint copies of. Writey = 4’ if for somei, j, y € Y;

0,1

v JU
r—1

,---,y"~1 which together determine an integgr =

r ylyd € [0,k]. Foranyd € [0,k], v € [L,n]FTL,
definez? to bez, if y, = d and1 otherwise. Define the
following polynomial oveGF'(3):

HyXx,v)= > ] =t

i€[1,n] ye[1,n]kt?,
’Ud:i

Y

We define the predicatg (X, Y) to be true ifH;(X,Y) =0
(mod 3) forall d € [0, k].



Informally, we can describe,(X,Y") as follows. The
variables ofX andY can each be viewed as defining two

(k + 1)-dimensional arrays, denotedandy respectively,
where the entries of are in{—1, 1} and those iry are in

[0, k]. We construct: + 1 additional arrays:? whose entry
in positionwv is z, if y, = d and is 1 otherwise. We say
thatz, is active inz? if y; = 1, and letX¢ C X be the set

of such variables. Note that the sef¢ partition X. The
functionsH, are computed by considering eag¢iplane of

z® and summing the product of the entries and summing

(7]

(8]

9]

the products. This can be done by a branching program[10]

of size O(|X?| + |Y|) that reads each variable &f U X4
exactly once and no other entry &f. Thusg(X,Y") can
be computed by a branching program of i2@X | + (k +
1)|Y]) that is read"k + 1) onY" and read-once oA’. On
the other hand, we have the following hardness result.

Theorem 24. Any non-deterministic branching program
that is syntactic reads on X requires exponential size to
computey, (X, Y).

As noted above, Lemma 22 then implies:

Corollary 25. Let f

g,(ck“) be the (k+1)-st exten-

sion of g, on Y. There is a simple semantic read-twice
branching program of linear size computiigbut any non-
deterministic syntactic reaé-branching program forf;, re-
quires exponential size.

The proof of Theorem 24 relies heavily on machinery de-
velopedin [10, 18], particularly the notion of planar pseudo-
rectangles and the ideas for proving lower bounds for the
closely related functions in [18]. We refer the reader to the
fuller version of our paper [7] for details.

References

(1]

(2]

(3]

(4]

(5]

(6]

K. R. Abrahamson. A time-space tradeoff for Boolean ma-
trix multiplication. InProceedings 31st Annual Symposium
on Foundations of Computer Sciengeges 412-419, St.
Louis, MO, Oct. 1990. IEEE.

K. R. Abrahamson. Time—space tradeoffs for algebraic
problems on general sequential modellournal of Com-
puter and System Sciencd8§(2):269-289, Oct. 1991.

N. Alon and W. Maass. Meanders and their applications in
lower bounds argumentslournal of Computer and System
Sciences37:118-129, 1988.

L. Babai and P. FranklLinear Algebra Methods in Combi-
natorics with Applications to Geometry and Computer Sci-
ence (Preliminary Version 2)University of Chicago, 1992.

L. Babai, N. Nisan, and M. Szegedy. Multiparty pro-
tocols, pseudorandom generators for logspace, and time-
space trade-offslournal of Computer and System Sciences
45(2):204-232, Oct. 1992.

P. W. Beame. A general time-space tradeoff for finding
unique elementsSIAM Journal on Computing?0(2):270—
277, 1991.

10

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

P. W. Beame, M. Saks, and J. S. Thathachar. Time-space
tradeoffs for branching programs. Technical Report TR98-
053, Electronic Colloquium in Computation Complexity,
http://www.eccc.uni-trier.de/eccc/ ,1998.

A. Borodin and S. A. Cook. A time-space tradeoff for sort-
ing on a general sequential model of computatidG®lAM
Journal on Computingl1(2):287-297, May 1982.

A. Borodin, F. E. Fich, F. Meyer auf der Heide, E. Upfal,
and A. Wigderson. A time-space tradeoff for element dis-
tinctness. SIAM Journal on Computingl6(1):97-99, Feb.
1987.

A. Borodin, A. A. Razborov, and R. Smolensky. On lower
bounds for read+ times branching programs.Computa-
tional Complexity3:1-18, Oct. 1993.

R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Transactions on Computer€-
35(8):677-691, August 1986.

J. Burch, E. Clarke, D. Long, K. MacMillan, and D. Dill.
Symbolic model checking for sequential circuit verification.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systemd3(4):401-424, April 1994.

L. Fortnow. Nondeterministic polynomial time versus non-
deterministic logarithmic space: Time-space tradeoffs for
satisfiability. InProceedings, Twelfth Annual IEEE Con-
ference on Computational Complexityages 52—-60, Uim,
Germany, 24-27 June 1997. IEEE Computer Society Press.
Y. Mansour, N. Nisan, and P. Tiwari. The computational
complexity of universal hashin@.heoretical Computer Sci-
ence 107:121-133, 1993.

N. J. Pippenger. On simultaneous resource bound20tim
Annual Symposium on Foundations of Computer Science
pages 307-311, San Juan, Puerto Rico, Oct. 1979. IEEE.
A. A. Razborov. Lower bounds for deterministic and nonde-
terministic branching programs. In L. Budach, editeun-
damentals of Computation Theory: 8th International Con-
ference, FCT '91volume 529 ofLecture Notes in Com-
puter Sciencepages 47-60, Gosen, Germany, Sept. 1991.
Springer-Verlag.

J. Simon and M. Szegedy. A new lower bound theorem for
read only once branching programs and its applications. In
Advances in Computational Complexity (J. Cai, editonl-
ume 13 ofDIMACS Series in Discrete Mathematiggmges
183-193. AMS, 1993.

J. S. Thathachar. On separating the read-k-times branching
program hierarchy. IfProceedings of the Thirtieth Annual
ACM Symposium on Theory of Computibgllas, TX, May
1998. To appear.

I. Wegener. The Complexity of Boolean Function®8.G.
Teubner, Stuttgart, 1 edition, 1987.

A. C. Yao. Near-optimal time-space tradeoff for element
distinctness. 1M29th Annual Symposium on Foundations
of Computer Scien¢gages 91-97, White Plains, NY, Oct.
1988. IEEE.



