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Abstract 

We give simple new lower bounds on the lengths of 
Resolution proofs for the pigeonhole principle and for 
randomly generated formulas. For random formulas, 
our bounds significantly extend the range of formula 
sizes for which non-trivial lower bounds are known. 
For example, we show that with probability approach- 
ing 1, any Resolution refutation of a randomly chosen 
3-CNF formula with a t  most n6I5-' clauses requires 
exponential size. Previous bounds applied only when 
the number of clauses was a t  most linear in the number 
of variables. For the pigeonhole principle our bound 
is a small improvement over previous bounds. Our 
proofs are more elementary than previous arguments, 
and establish a connection between Resolution proof 
size and maximum clause size. 

1 Introduction 

The importance of the satisfiability problem perme- 
ates all areas of computer science. In the last three 
decades, there has been a tremendous amount of re- 
search in trying to understand the mathematical struc- 
ture of the satisfiability problem, and in developing al- 
gorithms for satisfiability testing, and the complemen- 
tary problem of propositional theorem proving. The 
most well-studied and oldest class of algorithms for 
satisfiability testing is Resohition-based. (The Davis- 
Putnam procedure is a typical example.) By this, we 
mean that a particular deterministic implementation 
of Resolution is used for satisfiability testing in the 
following way: search for a proof of unsatisfiability; 
either the search procedure will get stuck and in this 
case we will get! a satisfying assignment as a witness 
of satisfiability, or the search procedure will succeed, 
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and in this case we will get a Resolution proof as a 
witness of unsatisfiabilitv. 

I t  is an empirical observation that rather straight- 
forward implementations of Resolution work well as 
satisfiability testers for many 3-SAT problems. This 
is well-explained by some import,ant theoretical re- 
sults. Namely, it is shown in [FS] that if we gener- 
ate a 3-CNF formula a t  random with a t  most 3 . 0 0 3 ~ ~  
clauses, then with high probability f is satisfiable. 
(See [CRe, CF, BFU] for previous satisfiability re- 
sults.) Moreover, to prove their results, [FS], as well 
as earlier papers, actually exhibit probabilistic, linear- 
time Resolution-based algorithms that will find a sat- 
isfying assignment almost certainly. 

Many researchers also use rather straightforward 
implementations of Resolution as theorem provers, al- 
though in this case the theoretical justification is not 
so evident. One important test case is to consider ran- 
domly generated k-CNF formulas with larger numbers 
of clauses. It is not hard to show [CS] that if there are 
more than 2kn In 2 clauses then a random k-CNF for- 
mula is almost certainly unsatisfiable (and for 3-CNF 
formulas this has been improved in [FP, KMPS] with 
the latter showing that this holds for as little as 4.758~1 
clauses.) In a beautiful paper, Chvatal and SzemerCdi 
[CS] showed that Resolution-based theorem-provers 
must perform badly on such random formulas pro- 
vided the number of clauses is not too large. In partic- 
ular, they show that almost certainly any 3-CNF for- 
mula with O(n)  clauses requires an  exponential length 
Resolution refutation (even ignoring the complexity of 
searching for it.) Fu [Fu] recently extended this lower 
bound to apply when the number of clauses is larger 
but for 3-CNF formulas it is no improvement on [CS]. 

In this paper, we give new lower bounds for Resolu- 
tion refutations that are notably simpler than previous 
proofs. We show, among other things, that  random k- 
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CNF formulas are hard for Resolution well outside the 
range of clause/variable ratios implied by the results 
of [CS]. In particular, we show that for any t > 0, 
when m 5 n6I5-€,  with high probability a random 3- 
CNF formula with m clauses and n variables requires 
an exponential size Resolution refutation. 

The inspiration for our lower bounds are recent de- 
terministic simulations of Resolution, due to Clegg, 
Edmonds and Impagliazzo [CEI]. These simulations 
are, in a sense, universal search procedures for Resolu- 
tion proofs in that they work reasonably well whenever 
any  Resolution-based procedure would succeed. They 
are obtained in two steps: First it is shown how to sim- 
ulate Resolution by small-degree Grobner proofs; sec- 
ondly it is shown how to deterministically find a small 
degree Grobiier proof. In this paper we give direct 
deterministic simulations for Resolution and tree-like 
Resolution that can be obtained by studying their sim- 
ulations. This inspires our lower bounds since prov- 
ing a lower bound for Resolution becomes a matter of 
showing that this particular simulation cannot termi- 
nate very quickly. 

The original lower bounds for general Resolution 
use the “bottleneck counting” argument of Haken [HI. 
This was introduced in [HI to show exponential lower 
bounds for Resolution refutations of the pigeonhole 
principle and further developed in [U] and [CS] to give 
more general bounds on Resolution refutations. (Most 
recently it was used to prove monotone circuit lower 
bounds [H2].) The bottleneck counting idea is fun- 
damentally very simple. Each clause in the proof is 
viewed as allowing certain truth assignments to flow 
through it,  namely those that it falsifies. One shows 
that every truth assignment must flow through some 
“complex” or “large” clause that only permits a small 
number of truth assignments to pass. Therefore the 
number of clauses in the refutation must be big. 

However, in previous arguments this clean idea does 
not suffice and a more complicated form of counting 
is used. In our method we first apply a random re- 
striction to kill all of the large clauses in the proof. 
Using simple counting, one can show that almost ev- 
ery small restriction will kill off all large clauses if the 
proof is short. Then we complete the proof with a 
direct argument that the remaining restricted prooi 
cannot exist because there are no large clauses in it. 
Thus our argument simplifies the bottleneck method. 
To emphasize its simplicity we present an elementary 
proof of Haken’s original lower bound for the propo- 
sitional pigeonhole principle. As a bonus, the bound 
we derive is slightly better. We then apply our tech- 

nique to give simpler and more widely applicable lower 
bounds for random k-CNF formulas. 

2 Deterministic simulation of Resolu- 
tion 

If A V 1 and B V 7 1 are clauses, then the clause A V B 
may be inferred by the resolution rule, resolving on 
the literal 1. A Resolution refutation of a CNF for- 
mula C = C1 A C2 A ... A C, is a derivation of the 
empty clause from the clauses of C using the resolu- 
tion rule. Refutations can be represented as directed 
acyclic graphs of in-degree two whose sources are la- 
belled by input clauses and whose sole sink is labelled 
by the empty clause. Often these proofs do not re- 
use derived clauses and such proofs are called tree-like 
Resolution proofs, since the graph representation for 
such a proof is a tree. The size of a Resolution refu- 
tation is the number of clauses in the derivation. 

Recently Clegg, Edmonds, and Impagliazzo [CEI] 
showed how to search deterministically for a Resolu- 
tion proof of size S in time 2 O ( m l o g n ) .  They 
proved this result by showing first that any Resolu- 
tion proof can be simulated by a degree O ( d w )  
Grobner proof, and then by showing how to determin- 
istically find a degree d Grobner proof in time no(d) .  
(They also give an O(1ogS) degree proof in the tree- 
like case.) It is possible to use this intuition to come 
up with a more direct deterministic simulation of Res- 
olution. 

In the tree-like case, the deterministic simulation 
is as follows. We first search for a literal such that 
there is a Refutation refutation of the clauses with that 
literal added in size S/2 (half the original size). Once 
one is found, we set that variable on the other side, 
and this gives the recurrence equation: 2nF(S/2 ,  n )  + 
F ( S , n  - l),  where F ( S , n )  is the time that it takes 
to search for a size S Resolution refutation with n 
underlying variables. Since the base case is 1, we get 
time roughly n l o g S .  

Fu [Fu] has shown that any 3-CNF formula with 
more than 2n2/3 clauses has a linear size Resolution 
refutation. Because his refutation is tree-like, the 
above simulation shows that there is a quasipolyno- 
mial time algorithm that almost certainly finds refuta- 
tions of 3-CNF formulas with more than 2n2/3 clauses. 

In the general case we remove large clauses rather 
than high degree terms as was in done in [CEI]. We 
want to search for a literal z such that there is a Reso- 
lution refutation of z with a t  most ( l - k / 2 n ) S  lines of 
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size larger than k ,  where k is approximately d m q .  
By an averaging argument, it is clear that such a refu- 
tation exists assuming that there is a size S proof. 
Once we find this literal, set it and continue. The re- 
currence is bounded by: 2nF((1-  k /2n)S ,  n - 1, k )  + 
F ( S ,  n - 1, k ) ,  where now F ( S ,  n ,  k )  is the time that 
it takes to search for a Resolution refutation with at  
most S lines larger than k, and n underlying vari- 
ables. This is roughly n m F ( 0 ,  n ,  d m ) .  The 
base case is not 1, but instead no(-), since we 
simply write down all clauses of size a t  most, d m  
to see if there is a proof. Thus, we end up with time 
2 0 ( m l o g n )  to see if a size s proof exists. 

The above algorithms are very simple, and they sug- 
gest a rnethod for proving lower bounds on the size of 
Resolution refutations. Namely, once we have a rela- 
tively efficient, deterministic simulation for Resolution 
(a "universal algorithm"), in order to prove Resolution 
lower bounds for a particular family of formulas, we 
only need to show that our universal algorithm does 
not produce a proof very quickly. Of course, because 
the deterministic simulation is not tight, the lower 
bound achieved by this method may not be optimal. 

The remainder of this paper shows that by applying 
this method it is possible to simplify and extend sev- 
eral previous lower bounds on the lengths of Resolu- 
tion refutations. In order to get better lower bounds, 
we will not argue directly about the universal algo- 
rithm, but nonetheless, understanding why the uni- 
versal algorithm cannot produce a proof very quickly 
is the intuition behind the new lower bounds. The 
overall strategy is to first apply a small restriction to 
eliminate all large clauses in the proof and yet with- 
out severely reducing the difficulty of refuting the re- 
stricted formula, and secondly to argue that any refu- 
tation of the restricted formula must have a large 
clause. 

3 Lower bounds for the pigeonhole 
principle 

We now give new lower bounds for the pigeonhole prin- 
ciple, TPHP:-~. which was the first example proven 
hard for Resolution. In general, TPHP?. with m 
pigeons and n holes ( m  > n)  is expressed proposition- 
ally with underlying variables are Pz ,3 ,  i < m, j < n. 
Its clauses are: (1) l',,~ V P,,2 V ... V P,,,, for each 
z 5 m; (2) v lPj,k, for each z , ~  5 m, k 5 n,  
i # j. Note that the number of clauses in TPHP," is 
m + ( 7 ) n  5 m3. 

As in the lower bound proof of Haken [HI, a truth 
assignment to the underlying variables P;,j is critical if 
it defines a one-to-one, onto map from n - 1 pigeons to 
n - 1 holes, with the remaining pigeon not mapped to 
any hole. A critical assignment where i is the pigeon 
left out is called i-critical. In what follows we will only 
be interested in critical truth assignments. We will say 
that two clauses c1 and c2 are equivalent with respect t o  
critical assignments if for every critical assignment a ,  
cl(cv) = c ~ ( Q ) .  Similarly, we will say that an inference, 
c1 and e2 imply c3, is sound with respect to critical 
assignments iffor every critical assignment Q such that 
c ~ ( Q )  = ~ ( a )  = 1, it is also the case that cg(a )  = 1. 

As a first step, we will replace each clause C in the 
Resolution refutation by a totally monotone clause by 
replacing each occurrence of a negative literal Pi,k by 
the set of literals {Pt,k 1 1  # i } .  It is easy to check that 
the set of monotone clauses is equivalent to the origi- 
nal clauses with respect to critical truth assignments 
and therefore, inferences using these clauses are still 
sound with respect to critical truth assignments. Thus 
in what follows, we will show that the totally mono- 
tone proof cannot be a sound refutation for all of the 
critical truth assignments. In our monotone proof of 
-IPHP:-,, define a large clause to be any clause with 
at  least n2/10 (positive) literals, i.e. one that includes 
a t  least l/lO-th of all the variables. The transforma- 
tion to a monotone proof (due to Sam Buss) is not 
essential, but will make our argument slightly cleaner. 

Assume that we have a size S (monotone) refutation 
of +HP,"-,, S < 2"/". Then the maximal number 
of large clauses is S. Thus, on average, setting a single 
Pi,j to 1 will set at  least S/10 many large clauses to 
1. Choose a particular Pi,j that achieves at  least the 
average, and set it to 1. In addition to setting Pi,j to 
1, set Pi,[, P[,,j to zero, for all I # j ,  I' # i. Applying 
this restriction to the entire Resolution proof, leaves us 
with a new Resolution refutation of TPHP,":~, where 
the number of large clauses is at  most 9S/10. Continue 
in this fashion until we have set all large clauses to 
1. Applying this argument iteratively 1 0 g , ~ / ~  S many 
times, we are guaranteed to have knocked out all large 
clauses. Thus, we are left with a Resolution refutation 
of T P H P Z , L ~ ,  where 

n' 2 n - log,,,, S = (1 - (loglo,,2)/2O)n > 0.671n, 

and where no clause in the refutation is large. But 
this contradicts the following lemma (originally due to 
Haken [HI) which states that such a refutation must 
have a clause of size Z(n')'/9 > 2(0.45n2)/9 = n2/10. 

Lemma 1: Any Resolution refutation of -PHP;-, 
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must have a clause with 2n2/9 literals. 

Proof: Let P be a refutation of lPHP,”_,. If S 
is a set of clauses, we will say that S implies C on all 
critical assignments if: every critical assignment satis- 
fying every clause in S also satisfies C. For each clause 
C,  let the complexity of C be the minimum number 
of clauses in ’PHP,”_, that implies C on all criti- 
cal truth assignments. Since we are considering only 
critical truth assignments, only the “pigeon” clauses 
saying that sorne pigeon i must be mapped to a hole 
will be included in a minimal set. Note that the com- 
plexity of the initial “pigeon” clauses is 1, and the 
complexity of the final false clause is n. By sound- 
ness, the complexity of a resolvent is a t  most the sum 
of the complexities of the two clauses frorn which it 
was derived, and therefore there rnust exist a clause C 
in the proof vvith n/3 < compZezity(C) 5 2n/3. We 
will show that C contains a large number of variables. 

Let S be a minimal set of pigeon clauses in 
lPHP,”_, that implies C,  and let IS1 = m. We will 
now show that C has at least (n - m)m 2 2n2/9 dis- 
tinct literals mentioned. Fix some i E S, and let a be 
an i-critical truth assignment falsifying C. For each 
j 6 S, consider the j-critical assignment, a’, obtained 
from a by replacing i by j. This assignment satisfies 
C,  and differs from a only in one place: if a mapped 
j to 1, then a‘ maps i to 1. Since C is monotone, it 
must contain the variable P~J. Running over all n - m 
j’s not in S (using the same a) ,  it follows that C must 
contain at least n - m distinct variables PQ, 1 5 n. 
Repeating the argument for all i E S shows that C 
contains a t  least (n - m)m positive literals. U 

Theorem 2: For sufficiently large n, any Resolution 
proof of ’PHP,”_, requires size 2n/20. 

We note that this improves somewhat upon Haken’s 
bound of 2n/577 although our major interest is in its 
simpler proof rather than in the better size bound. 
Buss and Tur6n [BT] extend Haken’s argument to 
show that 1 P J Y  P,” requires superpolynomial size Res- 
olution lower bounds as long as m < n2/ log n. The 
argument presented here can be modified to re-prove 
their result. 

[U] to prove that random k-CNF formulas with a t  
most cn clauses, for any constant c, require exponen- 
tial size Resolution proofs. Their proof technique first 
proves that almost certainly a hypergraph defined by 
a random k-CNF formula satisfies a certain sparseness 
property with two different choices of parameters. Us- 
ing the property with these parameters they then de- 
fine a mapping between certain “special pairs”, each 
consisting of a set of variables and a restriction de- 
fined over a large portion of that set, and “complex 
clauses” in the proof. By computing a lower bound on 
the number of special pairs and an upper bound on the 
number of pairs associated with each complex clause 
they determine a lower bound on the number of com- 
plex clauses in the proof and therefore on the total size 
of the proof. Xudong Fu [Fu] used the same technique 
and extended the range of number of clauses for which 
exponential lower bounds apply to m 5 n(k-1)/4. (For 
k 5 5 this is no improvement.) 

We now give a simpler proof of the lower bound 
for random k-CNF formulas. Our overall strategy is 
the same as in the previous section. That is, we will 
first choose a restriction to remove all large clauses, 
and then argue that the restricted formula is still ran- 
dom enough that any proof of it must still contain a 
large clause, hence a contradiction. The latter prop- 
erty is proven by modifying the sparseness property of 
Chvital and SzemerCdi . A nice side-effect of our sim- 
plification is that we obtain exponential lower bounds 
for a much greater range of values of m. 

DEFINITION 4.1: A CNF formula F is n’-sparse if ev- 
ery set of s 5 n’ variables contains at most s clauses 
of F .  

Proposition 3: If CNF formula F is n’-sparse then 
every subset of up to n’ clauses from F is simultane- 
ously satisfiable. 

Proof: Let T be a set of clauses of F with 12’1 = n’. 
By the definition of n‘-sparsity, every set of clauses 
S E T contains at least IS1 different variables. By 
Hall’s Theorem we can choose a system of distinct 
representative variables, one for each clause of T .  We 
satisfy the clauses of T by setting the representative 
variable of each clause to satisfy the clause. (Note that 
the n’-sparsity of F implies that there is no clause of 

4 Lower Bounds for Random k-CNF sizeO.) 0 

formulas 
DEFINITION 4.2: Let n’ < n”. A CNF formula F in n 
variables is (n’, n”, y)-sparse if every set of s variables, 
n’ < s 5 n”, contains a t  most ys clauses. 

Chvital and SzernerCdi applied the bottleneck count- 
ing technique of Haken [HI as formalized by Urquhart 
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The boundary, b (S) ,  of a set S of clauses is the set 
of variables that appear in only one clause of S. The 
following proposition is essentially from Chv6tal and 
Szemer6di . 

Proposition 4: Let F be a CNF formula with clause 
size a t  most k and suppose that F is (n’(k + 
~ ) / 2 ,  n”(k + €)/a, 2 / ( k  + €))-sparse. Then every set 
S of P clauses of F ,  with n’ < t 5 n”, has a boundary 
of size a t  least ct.  

Proof: Let S be a set of t clauses from F ,  
n’ < t 5 n”. Suppose that S has a boundary of 
size less than tt. There are a t  most k t  occurrences 
of variables among the clauses of F .  Then the max- 
imum number of different variables appearing in S is 
less than ~t + ( k t  - 4 / 2  5 k t / 2  + d / 2  5 ( k  + ~ ) t / 2  
since each boundary variable occurs once and every 
one of the remaining variables occurs at least twice. 
However this contradicts the assumption that F is 
(n’(lc + ~ ) / 2 ,  n”(k + c ) / 2 , 2 / ( l c  + €))-sparse. 0 

Lemma 5: [Complex Clause Lemma] Let n’ 5 n and 
F be an unsatisfiable CNF formula in n variables with 
clauses of size a t  most k that  is both n’-sparse and 
(n’(k  + t ) / 4 ,  n’(k + €)/a, 2 / ( k  + €))-sparse. Then any 
Resolution proof P of the unsatisfiability of F must 
include a clause of length a t  least m ’ / 2 .  

Proof: Let F be a CNF formula satisfying the 
conditions of the lemma and let P be a Resolution 
refutation of F .  If S is a set of clauses, we say that S 
implies clause C if every truth assignment satisfying 
the conjunction of clauses in S also satisfies C. For 
each clause C in P ,  let the complexity of C be the 
minimum number of clauses of F that  implies C. 

Since F is n’-sparse, by Proposition 3 any subset 
of at most n’ clauses of F is satisfiable. Therefore 
the complexity of the empty clause is > n’. Since 
the complexity of a resolvent is a t  most the sum of 
the complexities of the two clauses from which it is 
derived, there must exist a clause C in the proof with 
n‘/2 < c o m p l e x i t y ( C )  5 n’. We will show that C 
contains a large number of variables. 

Let S, n’/2 < IS1 5 n‘, be a set of clauses of F wit- 
nessing the complexity of C. By Proposition 4 and the 
fact that  F is ( n ’ ( k + ~ ) / 4 ,  n’(k+t)/2,2/(k+~))-sparse, 
S has a boundary b(S) of size a t  least €15’1 > ~ n ’ / 2 .  
It suffices to  prove that C contains all the variables in 

Let z be an element of b(S)  and let C’ be the unique 
clause of S containing 2 .  By definition of S, the 

b(S).  

clauses in S - { C’} does not imply C but S does imply 
C. Therefore there is some assignment to the variables 
of S and C such that all clauses in S - {C’} are true 
but C’ and C are false. If we modify this assignment 
by toggling the truth value of IC in order to satisfy C’ 
then we have an assignment that satisfies all clauses 
of S and therefore satisfies C by definition. We have 
only modified the truth value of z and have changed 
the truth value of C. Therefore C contains z. 0 

Lemma 6: Let P be a Resolution refutation o f f  of 
size S. The large clauses of P are those clauses men- 
tioning more than an distinct variables. With proba- 
bility greater than 1 - 21-at/41SI, a random restriction 
of size t sets all large clauses in S to 1. 

Proof: Let C be a large clause of P.  The ex- 
pected number of variables of C assigned values by 
a randomly chosen restriction of size t is tan/n = at. 
Let D be the random variable representing the domain 
of p. By Chernoff-Hoeffding bounds on the tail of the 
hypergeometric distribution we have 

Also, given that IC fl DI = s ,  the probability that Cy, 
is not set to 1 is 2 - ‘ .  Therefore the probability that 
C Y ,  is not 1 is a t  most 2 - a t l a  + 2rUtI4  < 21-at/4. 
Thus, the probability that some large clause of P is 
not set to  1 is less than 2 1 - a t / 4  S. 0 

Lemma 7: Let z > 0, 1 2 y > l / ( k  - I), 
and z 2 4. Fix any restriction p on t 5 
min{zn/2, zl-l/Y(k-l)nl-l/(k-l)/z} variables. If F is 
chosen as a random k-CNF formula in n variables with 
m 5 &~‘lY-(~-’)n clauses then, with prob- 
ability a t  least 1 - 2-t - (ak + l)/zk-’, Fy,, is both 
( zn /2 ,  x n ,  y)-sparse and zn-sparse. 

Proof: The argument is similar to  the proof 
of (x,y)-sparsity of F in [CS] with two exceptions. 
Firstly, we do not have to worry about small sets for 
( x n / 2 ,  z n ,  y)-sparsity and secondly, we have to take 
into account effects of the restriction p. 

Let S be a fixed subset of the n variables of size 
s 5 zn. Let p’ be the probability that a randomly 
chosen k-clause C is such that Cy,# 1 and all variables 
in Cl, are contained in S. In order for this to happen 
all of the variables of C must lie either in S or in 
the domain D of p. Therefore, in particular, p’ 5 
(‘tt)/(;) 5 ( s  + t ) ’ / n k .  Let p = ( s  + t ) k / n k .  The m 
clauses of F are chosen independently. Therefore the 
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distribution of the number of clauses of F r P  lying in S 
is the binomial distribution B(m, p ' ) .  The probability 
that more than ys clauses of FT,, lie in S is then 

By Chernoff bounds on the tail of the binomial distri- 
bution this probability is bounded above by 

e ( s  + t ) k m  
)YS. 

epm ys < (-1 - ( ysnk 
YS 

There are (:) 5 (ne/s)s different sets S of size s so 
the probability that some set S of size s contains more 
than y s  clauses is a t  most 

Now for t < s, s + t 5 2s; therefore, (1) is a t  most 

e l + l / y  2 k S k - l - l l y  m 
)YS. ( ynk-'/Y 

Since s 5 zn  this is a t  most 

e l t l l ~  2kzk-l-llym 
YS < 2 - s  (- yn 1 -  

for m 5 -zl/y-(k-l)n. 

Thus the total probability that some set S of size 
s, t < s 5 xn,  has more than ys  clauses is < 

. Therefore we have that F is 
( t ,  zn ,  y)-sparse with probability 2 1 - 2- t .  Since t 5 
zn/2,  with a t  least this probability, F is (zn/2,  zn,  y)- 
sparse. 

Now we need to show that F is zn-sparse. Clearly 
the fact that 1." is ( t ,  xn ,  y)-sparse and y 5 1 implies 
that no set of size s with t < s 5 x n  can contain more 
than s clauses. It remains to handle sets of size s with 
s 5 t .  We consider two cases separately depending 
on whether or not F contains a clause entirely in the 
domain D of a. 

We first assume that no clause of F is entirely con- 
tained in D. In this case, the empty clause cannot be 
generated so the only sets S to worry about are of size 
s, 0 < s 5 t .  Therefore, the only clauses of F that  can 
become clauses of Frp lying in S must have at least 
one point in S. There are at most sets of size 
le with all points in SU D and at  least one point in S. 
Thus the probability that a clause of FTP lies in S in 
this case is a t  most 

ml 2 - s  < 2-t 
Cs=t+l 

Using this estimate in place of (s+t)'/nk in (1) and 
1 in place of y, the probability that some set S of size 
s has more than s clauses of F r P  is a t  most 

e 2 k ( s  + t ) k - lm  
( S n k - l  I S *  

For 1 5 s 5 t ,  this is a t  most 

,2 k2k-  ltk- 1 m ,2k2k-ltk-l m 
( s n k - l  Is 5 ( .k-l Is* 

Now 
e2k2k-ltk- 1 m &k- l z l / Y -  ( k -  1) 

n k - l  L n k - 2  

Ik-l  
2t 

5 ( z ( k - l - l / y ) / ( k - l ) n l - l / ( k - l )  

The bound on t implies that the total failure prob- 
ability for all sets of size s ,  1 5 s 5 t ,  is a t  most 
~ " , ~ [ 2 / z ] ( " - ' ) ~  < 2(2/2)"' since z 2 4. 

The probability of the second case, i.e. that some 
clause of F is entirely contained in D, is a t  most 
m(: ) / ( i )  5 mtk/nk < mt"'/n"' 5 l/z"' by the 
above calculation. 

Therefore the total probability that F r,, fails to 
be both (zn/2,  zn,  y)-sparse and zn-sparse is a t  most 

We can now put this all together. Namely, we ar- 
gue that there is some restriction p with the following 
properties: 

2-t + ( 2 k  + 1)/2-1. c7 

(A) Most unsatisfiable formulas with short Resolution 
refutations have no long clauses in these refuta- 
tions after p is applied to  them. 

(B) With very high probability, a random formula 
is satisfiable or requires a refutation with long 
clauses after p is applied. 

We then conclude that almost no random formulas can 
be unsatisfiable and have short Resolution refutations. 

Theorem 8:  Let le 2 3, 1 > E > 0, y = 2 / ( k + ~ ) ,  and 
z, t ,  z be functions of n such that t and z are w ( l ) ,  
and t satisfies the conditions of Lemma 7 for all suf- 
ficiently large n. Then with probability approaching 
1 as n approaches infinity, a randomly chosen k-CNF 
formula in n variables with m 5 &z-(k-2-E)/2n 
clauses. does not have a Resolution refutation of size 

Proof: Let S = 2&"'/8. If a le-CNF formula F 
is satisfiable then no Resolution refutation for F exists. 
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Let U be the set of unsatisfiable k-CNF formulas with 
m clauses in n variables. For each formula F E U fix 
some shortest Resolution refutation PF of F .  Consider 
the set B c U of those formulas F that have PF of 
size a t  most S. We will argue that the formulas in B 
form a negligible fraction of all k-CNF formulas with 
m clauses on n variables. 

By Lemma 6, for any fixed k-CNF formula F in 
B,  the fraction of restrictions p which set t variables 
such that I+[,, contains a clause of length a t  least 
~ x n / ( k  + E )  is a t  most (Y = 21-*ztS 5 1/4. 

For F in U ,  call a ( p ,  F )  pair bad if P F [ ~  contains 
a large clause, i.e. one of size 2 ~ z n / ( k  + E). The 
total fraction of bad (p ,  F )  pairs in B is at most 1/4. 
Therefore the fraction of p such that (p, F )  is bad for 
a t  least 1/2 of the F in B is a t  most 1/2 by Markov's 
inequality. Fix some p for which less than 1/2 of the 
F in B have a clause of length 2 ~ r n / ( k  + E) in PF r p .  

Now since z (n )  is w ( l ) ,  for sufficiently large n it is 
2 4. Also observe that k - 1 - l / y  = (le - 2 - ~ ) / 2  
and that 2-7k/2 < y/(e1f1/y2k+1/y). Therefore for 
m 5 &x-(k-2-')/2n all the conditions of Lemma 7 
are satisfied for y, z ,  t ,  and m. Therefore by Lemma 7 
and the fact that both t and z are w ( l ) ,  the probability 
that for a random Ic-CNF formula F with m clauses in 
n variables FrP fails to be both ( rn /2 ,xn ,2 (k+  E))- 

sparse and xn-sparse goes to  0 as n goes to infinity. 
Therefore almost all formulas F are either satisfiable 
(and not in U )  or have these sparseness properties. 

Since xn-sparsity implies 2xn/(k + €)-sparsity we 
can apply Lemma 5 with n' = 2xn/(k + E) to  derive 
that almost all F are either satisfiable (and thus not 
in U )  or have a clause of length a t  least ~ x n / ( k + ~ )  in 
P F [ ~ .  Since B c U and a t  least 1/2 of the formulas F 
in B do not have such a large clause in P F [ ~  the total 
measure of B is negligibly small. That is, almost all 
k-CNF formulas in n variables with m clauses do not 
have Resolution refutations of size at most S. 0 

Theorem 9: Let k 2 3 and 0 < E < 1. 

(a) If ~ ( n )  E ~ ( n ( ~ - ~ + ' ) / ( ~ ~ ' ) )  then a negligible frac- 
tion of all k-CNF formulas in n variables with at 
most 

(k t 2- ~ ) / 4  
24k (.) (k -2- c ) / 4  

clauses have Resolution refutations of size at most 
2*44 /8* 

(b) If v(n) E C2(n(k-4+E)/(kt+t)) then a negligible frac- 

tion of all k-CNF formulas in n variables with 
k z - k  

.( n Jk--4 - 4 (.) Y ) 
clauses have Resolution refutations of size a t  most 
2*"(n)/8. 

Proof: 

fine x ( n )  = 
,/-. Then 

Let y = 2/(k + E ) .  

Suppose t h z  w(n) E ~ ( n ( ~ - ~ + ' ) / ( ~ + ' ) )  and de- 
2v(n)/n, and t (n )  = x(n) . n/2 = 

E ( (k +e)  / 4 /. (k - 4 t '1 / 4) 

c 4.) 
by the condition on U(.). Thus 

(.) 1 - 1 /Y (k - 1) 1 - 1 / (k - 1) E w(.(.)-n) 

c w( t (n ) )  

and so t (n )  satisfies the conditions of Lemma 7 for 
some function z ( n )  that is w ( 1 ) .  Therefore Theorem 8 
implies that for m at  most 

2-7k/2 - ( k - 2 - ~ ) / 2  > 2-4kn(k+2-€)/4/,(,)(k-2-')/4 

a random k-CNF formula with m clauses almost cer- 
tainly does not have a Resolution refutation of size a t  
most 2 m X t / 8  = 2*"(")/8 as required for part 

Now suppose that w(n) E 0(n(k-4+')/(k++')). and 

Observe that,  since 

(a) * 

k 2 - k  L 

let m be o(n3*--4-?/v(n)?). 

is o(q)  where 

k 2 - k - ( k - l ) t  2 k z - k  5 and (k-1 k - 2 - t  k - 1  
3k-4 -E  3k-4  32!4-' L 3' m 

q ( n )  = n k 2 - k -  3 k - i - e  k - - l ) c  /+)( 32L4-e 1. k - I  k - 2 - - c  

Define z ( n )  to be (2-7k/2q(n)/m)3/(k-1) which is w ( 1 )  
because m is o(q) .  
Now let 

.) = n - 2 ( k  -2)/(3k-4-t)[o( .) ( n)]2(k-  1)/(3k-4-€) 

and define 
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Also note that the condition on v(n) implies that 

2 ( n ) - 1 / Y  E o([n3!2/v(n)A%%]%5) 
5 o(n(  /$ 3 2 4 - c  

= o(n L4L /. ( 3 k - L e  

k--2 k + c l  k - 1  k - 4 + ~ 1 )  

k 2 +  r - 2  k - 2 c )  k2+ e - 5  k+4--r) ) 

= o(n).  

Thus 

qn) = .(.). n .  2(n)-l/Y(k-l)n-l/(k-l) / 4 n )  
E o(.(n) - n )  

and t ( n )  satisfies the conditions of Lemma 7. Observe 
also that 

2-?k/2 2 - ( k - 2 - ~ ) / 2 ~  
&-2 k - 2 - e )  k--1 k--2--c) 

- - (.I+ 3 , ’ L  )/(27+[v(n)2(n)1’ 3 L  ) 

= q(n)/(27k/24n)‘ k - l  3 L e  k - z - ‘ r )  

> (.) / ( 27k 1 (.) (k - ) I3)  
= q ( n ) / ( 2 7 k / 2 ( 2 - 7 k / 2 4 ( n ) / m ) )  = m. 

Thus by Theorem 8, a random k-CNF formula with 
m clauses almost certainly does not have a Resolution 
refutation of size a t  most 2;?i.’T;rxt/8 = 2*”(n)/8 
as required for part (b). 0 

Corollary 10: Let -E > 0. 

(a) For k 2 4, almost all k-CNF formulas in n vari- 
ables with at most n(k+2)/4-c clauses do not have 
Resolution refutations of less than exponential 
size. 

(b) Almost all 3-CNF formulas in n variables with 
clauses do not have Resolution a t  most 

refutations of less than exponential size. 

Proof: These both follow by choosing w(n) = 
nE/(k+l) and applying the corresponding case of The- 
orem 9. 0 

5 Further Research 

An open problem is to prove exponential lower bounds 
for the weak pigeonhole principle, T P H P T ,  where 
the number of pigeons, m, is large (say n3) .  Buss 
and Pitassi [BPI showed that there exists a Resolu- 
tion refutation of TPHP,” when m 2 2filogn of size 
2filogn. However, when m is polynomial in n,  we 
conjecture that any Resolution refutation of TPHPP 
requires superpolynomial size. 

It also remains to close the gap between the range of 
the number of clauses where we have nontrivial lower 
bounds for random k-CNF formulas and those where 
we have good upper bounds. The best upper bounds 
for random k-CNF formulas currently known are due 
to Fu [Fu] who shows that there is a constant ck such 
that random k-CNF formulas with at least Cknk-l 
clauses have short Resolution proofs almost certainly. 
It would be interesting to know whether or not this 
property has a strong threshold behavior. 

Lastly, it would be interesting to show that our 
lower bound method is universal in the sense that any 
formula requiring an exponential size Resolution proof 
can be proven intractable using our method. This 
would follow if one could show the following proposi- 
tion: for any 3CNF formula f ,  if f has a polynomial- 
size Resolution refutation, then f also has a Resolu- 
tion refutation with maximum clause size 6. Such a 
result would also justify the simple and natural deter- 
ministic simulation of Resolution whereby we exhaus- 
tively search for proofs of maximum clause length i, 
for increasing i. 
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