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Abstract— We prove an n*(! /4* lower bound on the random-
ized k-party communication complexity of depth 4 AC® functions
in the number-on-forehead (NOF) model for up to ©(logn)
players. These are the first non-trivial lower bounds for general
NOF multiparty communication complexity for any AC® function
for w(loglogn) players. For non-constant k the bounds are larger
than all previous lower bounds for any AC® function even for
simultaneous communication complexity.

Our lower bounds imply the first superpolynomial lower bounds
for the simulation of AC° by MAJ o SYMM o AND circuits,
showing that the well-known quasipolynomial simulations of AC°
by such circuits are qualitatively optimal, even for formulas of
small constant depth.

We also exhibit a depth 5 formula in NP — BPPS for &

up to ©(logn) and derive an Q(2V1°g"/‘/g) lower bound on
the randomized k-party NOF communication complexity of set
disjointness for up to ©(log!/3n) players which is significantly
larger than the O(loglogn) players allowed in the best previous
lower bounds for multiparty set disjointness. We prove other strong
results for depth 3 and 4 AC® functions.

Keywords-communication complexity, constant-depth circuits,
lower bounds

1. INTRODUCTION

The multiparty communication complexity of AC® in
the number-on-forehead (NOF) model has been an open
question since Hastad and Goldmann [11] showed that
any AC® or ACCC function has polylogarithmic random-
ized multiparty NOF communication complexity when its
input bits are divided arbitrarily among a polylogarithmic
number of players. This result is based on the simulations,
due to Allender and Yao, of ACC circuits [1] and ACCP
circuits [27] by quasipolynomial-size depth-3 circuits that
consist of two layers of MAJORITY gates whose inputs are
polylogarithmic-size AND gates of literals. These protocols
may even be simultaneous NOF protocols in which the
players in parallel send their information to a referee who
computes the answer [2].

It is natural to ask whether these upper bounds can be im-
proved. In the case of ACC?, Razborov and Wigderson [18]
showed that quasipolynomial size is required to simulate
ACCO based on the result of Babai, Nisan, and Szegedy [4]
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that the Generalized Inner Product function in ACC° requires
k-party NOF communication complexity £(n/4%) which is
polynomial in n for k up to O(logn).

However, for AC? functions much less has been known.
For the communication complexity of the set disjointness
function with k players (which is in AC®) there are lower
bounds of the form Q(n'/(*=1) /(k—1)) in the simultaneous
NOF [24], [5] and n®(1/%)/kO(*) in the one-way NOF
model [26]. These are sub-polynomial lower bounds for all
non-constant values of k and, at best, polylogarithmic when
k is Q(logn/loglogn).

Until recently, there were no lower bounds for general
multiparty NOF communication complexity of any AC®
function. That changed with recent lower bounds for set
disjointness by Lee and Shraibman [14] and Chattopadhyay
and Ada [8] but no lower bounds apply for w(loglogn)
players. As for circuit simulations of AC®, Sherstov [20] re-
cently showed that AC® cannot be simulated by polynomial-
size MAJ o MAJ circuits. However, there have been no
non-trivial size lower bounds for the simulation of AC° by
MAJ o MAJ o AND or even SYMM o AND circuits with
w(loglogn) bottom fan-in. As shown by Viola [25], suffi-
ciently strong lower bounds for AC? in the multiparty NOF
communication model, even for sub-logarithmic numbers of
players, can yield quasipolynomial circuit size lower bounds.

We indeed produce such strong lower bounds. We show
that there is an explicit linear-size fixed-depth AC® function
that requires randomized k-party NOF communication com-
plexity of n®*(1) /4% even for error exponentially close to
1/2. For w(1) players this bound is larger than all previous
multiparty NOF communication complexity lower bounds
for AC® functions, even those in the weaker simultaneous
model. The bound is non-trivial for up to ©(logn) players
and is sufficient to apply Viola’s arguments to produce fixed-
depth AC® functions that require MAJoSYMMoAND circuits
of nf2loglogn) gjze showing that quasipolynomial size is
necessary for the simulation of ACP.

The function for which we derive our strongest commu-
nication complexity lower bound is computable in depth 6
ACO. In the case of protocols with error 1/3, we exhibit
a hard function computable by simple depth 4 formulas.
We further show that the same lower bound applies to a
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function having depth 5 formulas that also has O(log® n)
nondeterministic communication complexity which shows
that AC® contains functions in NP{¢ — BPP¢ for k up
to ©(logn). As a consequence of the lower bound for

this depth 5 function, we obtain Q(ZVIOg"/ */E_k) lower
bounds on the k-party NOF communication complexity of
set disjointness which is non-trivial for up to ©(log'/® n)
players. The best previous lower bounds for set disjointness
only apply for k < loglogn — o(loglogn) players (though
these bounds are stronger than ours for o(log log n) players).

In the full paper, we also show somewhat weaker lower
bounds of n*") /kO*) which is polynomial in 7 for up
to k = ©O(log/loglogn) players, for another function
in depth 4 ACO that has O(log®n) nondeterministic com-
munication complexity and yet another in depth 3 AC®
that has nf2(1/%) / 20(k) randomized k-party communication
complexity for k = (y/logn) players.

Methods and Related Work: Recently, Sherstov intro-
duced the pattern matrix method, a general method to use
analytic properties of Boolean functions to derive communi-
cation lower bounds for related Boolean functions [20], [22].
In [20], this analytic property was large threshold degree,
and the resulting communication lower bounds yielded lower
bounds for simulations of AC® by MAJ o MAJ circuits.
Sherstov [22] extended this to large approximate degree,
yielding a strong new method for lower bounds for two-
party randomized and quantum communication complexity.

Chattopadhyay [7] generalized [20] to pattern tensors for
k > 2 players to yield the first lower bounds for the
general NOF multiparty communication complexity of any
ACP function for k > 3, implying exponential lower bounds
for computation of AC® functions by MAJ o SYMM o ANY
circuits with o(loglogn) input fan-in — our results extend
this to fan-in Q(logn). Lee and Schraibman [14] and
Chattopadhyay and Ada [8] applied the full method in [22]
to pattern tensors to yield the first lower bounds for the
general NOF multiparty communication complexity of set
disjointness for k£ > 2 players, improving on a long line of
research on the problem [3], [24], [5], [26], [12], [6] and
obtaining a lower bound of Q(n71)/22”"  This yields
a separation between randomized and nondeterministic k-
party models for & = o(log logn), which David, Pitassi, and
Viola [10] improved to (logn) players for other functions
based on pseudorandom generators. They asked whether
there was a separation for £2(log n) players for AC® functions
since their functions are only in AC® for k = O(loglogn),
a problem which our results resolve.

The high-level idea of the k-party version of the pattern
matrix method as described in [8], [21] is as follows. To
prove k-party lower bounds for a function F, we first
show that F' has f o ¢)™ as a subfunction where % is
a bit-selection function and f has large approximate de-
gree. For such an f there exists another function g and
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a distribution p on inputs such that, with respect to u,
g is both highly correlated with f and orthogonal to all
low-degree polynomials. It follows that f o 9™ is highly
correlated with g o 1™ and, by the discrepancy method for
communication complexity, it suffices to prove a discrepancy
lower bound for g o)™ . Thanks to the orthogonality of g to
all low degree polynomials this is possible using the bound
in [4], [9], [17] derived from the iterated application of the
Cauchy-Schwartz inequality. For example, the bound for set
disjointness DISJy, ,,(z) = VI, /\;?:1 xj; corresponds to a
particular selector ¢ and f = OR which has approximate
degree Q(y/n).

In the two party case, Sherstov [23] and Razborov and
Sherstov [19] extended the pattern matrix method to yield
sign-rank lower bounds for some simple functions. A key
idea for their arguments is the existence of orthogonalizing
distributions y for their functions that are “min-smooth” in
that they assign at least some fixed positive probability to
any z such that f(z) = 1.

By contrast we show that any function f for which
approximating f within € on only a subset S of inputs
requires large degree, there is an orthogonalizing distribution
p for f that is “max-smooth” — the probability of subsets
defined by partial assignments is never much larger than
under the uniform distribution. The smoothness quality and
the properties of the constrained subset S are determined
by a function o so we call the degree bound the (e, )-
approximate degree. We show that for any function this
degree bound is large if there is a diverse collection of partial
assignments p such that each subfunction f|, of f requires
large approximate degree. This property is somewhat deli-
cate but we are able to exhibit simple AC® functions with
large (e, «)-approximate degree.

2. PRELIMINARIES AND THE GENERALIZED
DISCREPANCY/CORRELATION METHOD

Circuit complexity: Let AND denote the class of all
unbounded fan-in A functions (of literals), SYMM denote
the class of all symmetric functions and MAJ C SYMM
denote the class of all majority functions. AC? is the class of
functions f : {0,1}* — {0, 1} computed by polynomial size
circuits (or formulas) of constant depth having — gates and
unbounded fan-in A and V gates. Given classes of functions
Cy,Cy,...Cq, we let CioCyro---0Cqy be the class of all
circuits of depth d whose inputs are given by variables and
their negations and whose gates at the ¢-th level from the
top are chosen from G;.

We will assume that Boolean functions on m bits are maps
f:{0,1}™ — {-1,1}.

Correlation: Let 1 be a distribution on {0,1}™. The
correlation between two real-valued functions f and g under
p is defined as Cor,(f,g) = Ezp[f(x)g(x)]. If G is a
class of functions, the correlation between f and G under p
is defined as Cor,(f, G) := maxgeg Cor,(f, g).



Communication complexity: Let D*(f), R¥(f), and
NF(f) denote the k-party deterministic, randomized with
two-sided error €, and nondeterministic, respectively, com-
munication complexity of f. Let II§ be the class of output
functions of all deterministic k-party communication proto-
cols of cost at most c.

Fact 2.1 (cf. [13]). If there exists a distribution p such that
Cor,, (f,1If,) < € then le/2fe/2(f) >ec

Because of the following property of multiparty com-
munication complexity, henceforth we find it convenient to
designate the input to player 0 as  and the inputs to players
1 through £ — 1 as y1,...,Yk—1-

Lemma 2.2 ([4], [9], [17]). Let f:{0,1}™** — R and U
be the uniform distribution over X XY where Y = Y7 X
-+ X Yi_1. Then,

Cory (f,115)%

< 26'2k71 : Eyo,yIEY HEIEX[ H f(xayu)] H
u€e{0,1} k-1

Yty for we {0,131

Approximate and threshold degree: Given 0 < € < 1,
the e-approximate degree of f, deg.(f), is the smallest d for
which ||f — pl|lec = max, |f(z) — p(x)| < e for some real-
valued polynomial p of degree d. Following [16] we have
the following property of the approximate degree of OR.

Proposition 2.3. Let OR,, : {0,1}" — {1,—1}. For 0 <
e <1, degc(ORy,) > /(1 —e)m/2.

The threshold degree of f, thr(f), is the smallest d for
which there exists a multivariate real-valued polynomial p of
degree d such that f(z) = sign(p(z)). Because the domain
of f is finite, we can assume without loss of generality that
p(z) # 0 for all z since we can shift p by adding the constant
% - MaXy, f(z)<o | f(z)| to p. Thus the condition on p can
be replaced by f(x)p(xz) > 0 on every input z. Hence it
follows that thr(f) = min.«; dege(f). For this reason, we
write thr(f) = deg<1(f).

Define an inner product (,) on the set of functions f :
{0,1}' = R by (f,g) = E[f - g]. For S C [m)], let xs :
{0,1}™ — {—1,1} be the function xs = [],cg(—1)". The
Xg for S C [m] form an orthonormal basis of this space.

The following Orthogonality-Approximation Lemma is
the key to lower bounds using the pattern matrix (and pattern
tensor) method. It is easily proved by duality of ¢; and /.,
norms or by LP duality.

Lemma 2.4 ([22]). If f : {0,1}™ — {—1,1} has deg.(f) >
d then there exists a function g : {0,1}"™ — {—1,1} and a
distribution p on {0,1}™ such that:
1) Coru(g, f) > € and
2) for every S C [m] with |S| < d and every function
h:{0,1}51 = R, E,nplg(z) - h(z]S)] = 0.

where y* = (yi*, ...
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The second major component of the pattern matrix/tensor
method is the use of particular selector functions to provide
inputs to functions f with large e-approximate degree.

Definition Any function ¢ : {0,1}¥* — {0,1} with the
following property is a selector function:

o There exist sets Dy 1,..., Dy x—1) € {0,1}° such
that for any Y (Y1,...,Ys_1) € Dy
Dy X -+ X Dy (5—1), Prxeqoiys[(X,Y) = 0] =
Prxego1)s (X, Y) =1] =1/2.

Let Dfpm) = D'y x -+ x D ;. For any function
f :{0,1}™ — {1,—1} and any selector function ¢ we
define a new function f o™ on {0, 1}*™* bits by, on any
z€{0,1}™ and y = (y1.....ye—1) € DI,

fowm(%y) = fo,(/)m/(xayla"wykfl)
= f(z/}(xhy*l)v"'7¢(xm7y*m))a

where y.i = (Y14, .-, Yk—1)i) for i € [m]. We will write
z; = ¥(x;,ys) and z = (21,...,2y) for the input to f.
In the k-party NOF communication problem for f o™ on
input x,y1,...,yx—1 € {0,1}™*, player 0 holds « and can
see all the y; and each other player ¢ holds y; (but can
only see = and all y; for j # 7) and they need to compute
f © wm(x7yla s ayk—l)'

One example of a selector function 1) is the pattern tensor
function vy, ¢ used in [8], [14] which generalizes the pattern
matrix function. In this example, s = £5=1 and the s bits are
arranged in a (k — 1)-dimensional array indexed by [/]*~1.
Dy, ,.;j consists of the £ vectors Y; € {0,1}* that are 1 in all
entries in one of the ¢ slices along the j-th dimension of this
array and are 0 in every other entry. For X € {0,1}° and
sucha = (Y1,...,Ys_1) € {0, 1}~ the array AF7Y;
contains precisely one 1 which selects the bit of X to pass
to f. This function is expressible by a small 2-level V of As.
As described in [10] the generalized discrepancy/correlation
arguments work for any selector function that uses the inputs
for players 1 to & — 1 to select which bits from player
0’s input to pass on to f, but we need our more general
formulation for some examples we consider in the full paper.

We give a brief overview of the remainder of the argument
in [8], [10], which extends ideas of [20], [22] from 2-party
to k-party communication complexity.

« Start with a Boolean function f on m bits having large
(1 — 9)-approximate degree d.

o Apply the Orthogonality/Approximation Lemma to f
to obtain a ¢ that is (1 — d)-correlated with f and a
distribution p under which g is not correlated with any
low degree polynomial.

o Observe that from p one can define a natural A under
which goty™ and fo1)™ have the same high correlation
as g and f so to prove that f o™ is uncorrelated with
low communication protocols, by the triangle inequality
it suffices to prove this for g o ¢™.



e The BNS-Chung bound/Gowers’ norm used in
Lemma 2.2 is based on the expectation of a function’s
correlation with itself on randomly chosen hypercubes
of points. Use the orthogonality of g under u to all
polynomials of degree < d to show that all low degree
self-correlations of g o ¢™ under A\ disappear. The
remaining high-degree self-correlations are bounded by
analyzing overlaps in the choices of bits in different
inputs among the hypercube of inputs. The argument
repeatedly bounds the probability mass that y assigns
to small sub-cubes of the input by 1.

o The final lower bound is limited both by the upper
bound on correlation in the high degree case and by the
number of input bits required for each selector function.

Our argument follows this basic outline but improves it
in two different ways. First, by considering a new measure
that strengthens (1 — d)-approximate degree we are able
to obtain a much sharper upper bound on the high-degree
self-correlations and second, we use a selector function that
requires many fewer bits. We also show that some simple
functions require large values for our strengthened measure
(which turns out to be fairly non-trivial to prove).

3. BEYOND APPROXIMATE DEGREE: A NEW SUFFICIENT
CRITERION FOR STRONG COMMUNICATION COMPLEXITY
BOUNDS

We introduce our notion of (e, «)-approximate degree and
show how it implies our main technical theorem on the
general correlation method.

A restriction is a p € {0,1,*}™, and we let |p| = |{i :
pi # *}|. Two restrictions 7 and p are compatible, 7 || p,
iff they agree on all non-star positions. Let C, = {z €

{0, 13 = || p}.

Definition Let « : {0,...,m} — R. Given a probability
distribution A on the set of restrictions {0, 1,*}™, we say
that = € {0, 1} is a-light for A iff 3, , 2117 (Pl ) (p) <
1. Note that when «(r) = r, every point is a-light for every
distribution .

Definition Let « {0,...,m} — R. The (¢ a)-
approximate degree' of f, denoted as deg. o (f), is defined
to be the minimum integer d > 0 such that there is
some polynomial ¢ of degree < d and some probability
distribution \ on restrictions such that for every = € {0,1}™
if x is a-light for A then |f(z) — ¢(x)] < e. Note that
this reduces to deg.(f) if a(r) > r for all r. Also define
degcea(f) = infoccdege o(f). As we write thr(f)
deg<1(f), we will usually say “a-threshold degree” for
(< 1, «)-approximate degree.

'We use the same notation for a somewhat different and more general
definition than that in earlier versions of this paper. First, a previously was
a constant analogous to log,. () though this was not defined for all r.
Second, the old definition was closer to that of a related quantity that we
now call degy , and define later.
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This definition is an obvious weakening of the usual
{~ approximation of f since the non-light points can be
ignored in the approximation. We will use this definition to
prove our main technical theorem on the application of the
general correlation method. To prove the theorem, we need
the following lemma which generalizes Lemma 2.4 and is
the first key to our substantially improved lower bounds. Its
proof, which is based on LP duality, is given in Section 7.

Lemma 3.1 (Max-Smooth Orthogonality-Approximation
Lemma). Let 0 < ¢ < 1 and o : {0,...,m} — R If
[ {0,1}"™ — {—=1,1} has deg<co(f) > d, then there
exists a function g : {0,1}™ — {—=1,1} and a distribution
woon {0,1}™ such that:

1) Cor,(g, f) > €

2) for every S C [m] with |S| < d and every function

h:{0,1}51 = R, B,y lg(z) - h(z]S)] = 0; and
3) for any restriction p, u(C,) < 20UrD=lel /e,

Although the upper bound on £(C),) can be much larger
than the 2~ !¢ probability under the uniform distribution,
we can use it to obtain an exponential improvement in the
dependence of communication complexity lower bounds on
k if «(r) is bounded below r*° for r > d and cg < 1. As we
note in Section 7, for any function f computed by an AC°
circuit this assumption and the upper bound are essentially
the best possible for d polynomial in m.

Definition Let 1) be a selector function with Dy, = Dy, 1 X

- X Dy —1y. For fixed 3°, 4" € Dq(/Jm), i € [m] and
uniformly random x;, we call i good for (y°,y') if the
set of 2°~1 random variables 2! P(x;,yt) for u €
{0,1}*~! are mutually independent, where y* is defined
as in Lemma 2.2; otherwise we call i bad for (y°,y'). Let
Ry(y°,y') be the set of i € [m] that are bad for (y°,y')
and let ry(y°, 1) = Ry (v°, y1)|.

We can now state the main technical consequence of the
Max-Smooth Orthogonality-Approximation Lemma. A sim-
ilar version with a(r) = r follows from earlier work but the
ability to have a(r) < r®° for large r yields exponentially
better lower bounds than in previous work.

Theorem 3.2. Let o : {0,...,m} - R. If f: {0,1}" —
{1, -1} has deg<1—c,o(f) > d and v is a selector function
on {0,1}*¢ with Dy = Dy 1 X -+ X Dy, (1) then

RYjp_o(fou™) > logy(e(1 —€))

m

2k1—1 log, (Z

r=d

2@ Py [y (0, y") = 1)),
yU,ylebem)

Proof: The pattern of the argument follows the outline
from Section 2. We first apply Lemma 3.1 to f to produce
function g and distribution x. By construction Cor,,(f, g) >
1—e. Then we define a distribution A on {0, 1}™** based on

(21, .0y 2y
pand 1 by ANz, y) = % V(i Yui)
2n= Dy |

where z;



for y € Df;”) and O otherwise. To prove a lower bound c
on R’f/%e(f o 1)™) we show that Cory(f o™, I1%) < 2e.

Since v is a selector function, each z; = ¥(x;,ys;) is a
uniformly random bit for each fixed y.; € D, and random
x;. We therefore have Cory(foy™, goyp™) = Cor,(f,g) >
1 — ¢, hence Cory(f o ¢™,1IIf) < €+ Corx(g o ™, IIf)
by the triangle inequality. It therefore suffices to show that
Cory(goyp™,IIf) <.

By Lemma 2.2, if we let U be the uniform distribution
on the set of (z,y) € {0,1}™* x bem) and z; = Y(x;, Ysi)
we have

Zk—l

Cory (g © ¢m’ HZ)

_ 2m2k 2k—1

—1
Cory(p(z1, -y 2m)g(21, - oy Zm), 1I7)
. ok—1
< 9(ct+m)-2 . Eyo_’yleDl(;")H(yO, yl)’

where H(y°,y') is the self-correlation in the hypercube
defined by 3° and y':

I1

ue{0,1}k-1

H(y"y') = ‘E:c[

where z* = ¢ (z;,yY;). We now compute bounds on the
self-correlation H(y",y') that depend on the value of r =
74 (y°, y'). The first bound is from [8] and is the key to the
original method.

Proposition 3.3. [fr = ry(y°,y*) < d, then H(y°,y') = 0.

Proof: Let Z = Z0--0Z0--1... Z1--1 be the joint dis-
tribution induced on {2"},c,135-1 by taking x uniformly
at random. By construction, z* is uniformly distributed in
{0,1}™ for any u € {0,1}*~1 so each Z* is a uniform
distribution. For each choice of 299 we will also consider
the conditional distribution Z70-+01200 on {z%}, .0 o
which is derived from Z by conditioning on Z%--0 = 20--0,
Then,

H(y" y")

Eioyyemupei~zl  T] a9
ue{0,1}k-1

‘Ezo.__o [u(zo'”o)g(zo'“o)

.E{Zu}u?ﬁo_”oNZ#o...o|ZU.,.0 H ,u(z“)g(z”)] ‘
47£0...0

We now consider the conditional distribution in the inner
expectation above. For any i that is good for (y°,y') the set
of 25~1 random variables {2}, 0,1}~ are independent.
Therefore conditioning of 2790 on 290 is equivalent to

o 0...0 : 0...0
conditioning on (z;"")icr,, (y0,41)- the portions of 2" on
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those i € [m)] that are bad for (y°,y!). Therefore

Bo)o omzio oo [ #()9(")
u##0...0

:E{Z“}u;éo.,.u’“z#o'“o\(Zg'”o)iegw(yo,yl) H ‘u(zu)g(zu)-
u#£0...0

This quantity is some function @ of z%-? that depends

on only the r ry(y°, yt) variables (200);cr, (40.41)-

Therefore

H(,y") = [Bao-o[u(z)g(:"0)Q(=-")] | = 0

by the orthogonality property of x4 and g since r < d. M

The following bound for 7 = ry(y", y') > d is the key to
the sharper bound that yields our exponentially better results.
A weaker version in [8] applies only when a(r) = r.

92" —1)a(r)

Lemma 34. H(y°,y')

Proof: Note that by definition of Ry (y°,y'), condi-
tioned on each ﬁxed value of Tp (0 ,1) = (.aci)ieR.w(.yqyl)
the random variable 2% = z%(x,y° y') is statistically
independent of all z" for v # wu. For convenience of notation
we assume without loss of generality that Ry (y°,y') =
{1,...,r}

Since g is +1-valued,

Hy'y') = ‘Em[ 11 u(zu)g(Z“)H
u€{0,1} k-1
< B [ w9
wef0,1}k-1
u€{0,1} k-1
< Eg[p(z2"0)]
><mma>§C Eg;ﬂw[ H M(Zu)]
P u0...0
X max H Emr+1...xm[#(zu)} 2)
ajl,...,mru;éo'“o

where z! = ¢(x;,yY) for all i € [m)].

We first consider line (1). For z chosen uniformly from
{0,1}™*, by assumption on 1, for any u € {0,1}*~! the
random variable z" is uniform in {0,1}™. In particular,
E.[1(z°")] = E.c{o,13m[u(2)]. Further, since p is a
distribution, E_co,1)m [p(2)] = 27™.

We now bound the remaining terms. First we have

max H EI7-+1~~$m I:'u(zu)]

Ty @

u##0...0
< 10

max Eg oz, [M(Zu)] :
u#0...0 "

L1y,



Fixing z1,...,z, fixes the values of z{',..., 2" and by our
assumption on v, for random x,41,...,x,, the values of
Z¢4 1+ -+ 2y, are uniformly random. Therefore the value in
line (2) is upper bounded by

ut0..0 1
2k7171
= ( max Ezr+1~ Zm [N(Z)]) :
Z1yeesZr

By the property of i implied by Lemma 3.1,

< ga(r)—r

Joax Y0 () 200077 e
Zr41y--92m

and therefore line (2) is upper bounded by

(2(1(7")77‘/(6277177’))2’“_171 —_ (204(7‘)7777,/6)2’6_171. (This is
the one place where we use the max-smoothness property
of the distribution p.) The lemma follows immediately by
combining the bounds for lines (1) and (2). [ |
Plugging in the bounds of Proposition 3.3 and Lemma 3.4
we obtain that
Corx(g o v™,1If)

2k71

ctm).-2k—1 Ui 2(2k_171)a(r)
< 2(etm)? .222’“*1771(1 ok—1_1
r=d o E)
x Pr ry(y’yt) =]
yo,yleDgn)
2¢ ok—1 m k—1
< . 92" —a(r)
(1 - 6) Z;i 0,1
T ox Pro ry(yty) =7l
y“,yleijn)

Taking 2"~ !-st roots and using Fact 2.1 we obtain that
Ry (foy™) > cif

2¢ Ui k-1
> . 92" =1a(r)
€= 1 — € (Zd 1/2k~71
x Pr [rw(y07y1) = r]) .
y0.yten™

Rewriting and taking logarithms yields the claimed bound
of Theorem 3.2. u

4. AC® FUNCTIONS WITH LARGE (€, a)-APPROXIMATE
DEGREE

Given € < 1 and «, it is not obvious that any function,
let alone a function in ACP, has large (e, a)-approximate
degree. This section shows that AC® does contain functions
with large (5/6, «)-approximate degree and functions with
large a-threshold degree where a(z) < z® for oy < 1 and
all large z.

We first reduce this new notion of approximate degree to
a more tractable notion, which is only large if many widely
distributed restrictions of f also require large approximate
degree. Given a function f on {0,1}™ and a restriction p,
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we define f|, on {0,1}™~ 17l in the natural way. We also
define R}, := {p € {0,1,%}™ : |p| =m —r}.

Definition Given o : {0,...,m} — R, we say that a
probability distribution v on {0,1,*}™ is a-spread iff for
every restriction p € {0, 1, *}™, Pry,[7 || p] < 2¢UPD=lIrl,
Let deg;,(f) be the minimum d such that for any a-
spread distribution v on {0, 1,*}™, there is some 7 with
v(m) > 0 and deg(f|r) < d. Note that for a(r) = r,
dege(f) = deg? . (f) since every distribution on restrictions
is a-spread. We define degZ, ,(f) = mine<c deg}, ,(f)-

Given the following lemma, to show that deg. o(f) is
large, it suffices to show that deg? ,(f) is large.

Lemma 4.1. Let f {0,1} — {-1,1} and «
{0,...,m} = R For 0 < e <1, dege o(f) > deg? ,(f)

Proof: Suppose, by contradiction, that for some d, (i)
deg? ., (f) > d, and (ii) dege o(f) = d. Then by definition,
(i’) there exists an a-spread distribution v on {0, 1, x}™ such
that deg.(f|~) > d for every w with v(7) > 0, and (ii’)
there exists a polynomial ¢ of degree < d and a distribution
A on {0,1,*}™ such that R(z) = ZpHxZ"’"O‘qp'))\p > 1
whenever © € B, where B’ = {z : | f(z) — q(z)| > €}.

Choosing 7 ~ v, we define the random variable

I, = Z 2|P|—04(\P\)/\p.

pllm
Then, E,,(I;) = Zﬂpwru[p | 7] - 2lel=edleD y
p

< Zga(lpl)*lpl .2\p\*a(|ﬂ|))\p <1.
P

Therefore there exists a restriction 7 for which I, < 1. If
there exists € B’ such that € C}, then since

R(z) = Zglpl—a(lp\))\p > 1,

pllz

we would have I, > 1. Thus C; N B’ = (). So for any
x € Cr, we have |f(z) —q(z)| < e. But since the degree of
gq is < d this contradicts the fact that deg.(f|r) > d. The
lemma follows. u

For the rest of this section we always take «(z) < z° for
some o < 1 for large enough z and a(z) = z otherwise. By
definition, to show that deg; ,(f) is large, we need to exhibit
an a-spread distribution v such that for any restriction p with
v(p) > 0, dege(f|,) is large. An obvious choice for such v
is the uniform distribution on R}, where r ~ m®°. Indeed,
it is not hard to show with this distribution that the parity
function has large (e, «)-approximate degree. However this
simple v cannot be used for AC circuits since these circuits
shrink rapidly under such restrictions. Thus in Lemma 4.2
we define a more involved a-spread family of restrictions.
With this family, we give a generic construction that takes



a circuit G on ¢ bits and produces another circuit H on
m = pq bits such that for any restriction 7 in the family,
H|, contains the projection of G on some set .S of r bits — a
new function obtained from G by keeping only those nodes
on paths from the inputs in S to the output gate — as a
subfunction. If each such projection of GG has e-approximate
degree () and if p is O(loggq) and r is polynomial in ¢
and hence in m = pq, then we derive that H has (e, «)-
approximate degree m (1),

Lemma 4.2. Let q, r, p, and w be integers with ¢ > r >
p>2andletl > ag >,8>0besuchthatqﬁ > rp,
207t —1 > ¢t g0 > 52Pr, and w* P > 3p/In2.
Fix any partition of a set of m = pq bits into q blocks of p
bits each. Define distribution v on RY as follows: choose
a subset of q — r blocks uniformly at random; then assign
values to the variables in each of these blocks uniformly at
random from {0, 1} — {07, 17}. Then for any p € {0,1, *}™
with |p| > w, we have ﬂPry[p | 7] < 2lel*0=lel,

The proof of Lemma 4.2 is surprisingly involved and
requires quite precise tail bounds. It is in the full paper.

For € = 5/6, a simple candidate for G is G = OR,. With
this G and the family of restrictions given by Lemma 4.2,
the next lemma constructs H = TRIBES, , that has large
(5/6, a) -approximate degree. Recall that TRIBES, ,(z) =
Vii Njoy iy

Lemma 4.3. Given any constants 0 < €,aq,3 < 1 with
B >1—eand ag—f > 0.1. Let ¢ > p > 2 be integers such
that 2[q' 7] < 2P < 1¢* T~ n2. Define a(z) = z*° for
2208 > 3p/In2 and a(z) = z otherwise. Then for large
enough q, we have degs s o (TRIBES, 4) > /q1=¢/12.

Proof: Define the distribution v as in the statement of
Lemma 4.2, where a p-block corresponds to a p-term in
TRIBES, 4, by applying this lemma with r := [¢'~¢] and
w = (3p/In2)/(20=8)_ For q large enough,

¢ /r> ¢ 1 >logq > p, and w* P > 3p/In2.

It is clear that for any m with v(7) > 0, OR, is a

subfunction of TRIBES,,7q|7T so degs/6(TRIBESy ¢|r) >
degs/6(OR,) > +/r/12. Thus, degss.(TRIBES, ) >
degs /.o (TRIBESP q) > /12 [ |
In particular, with € = 0.4, 8 = 0.8, ap = 0.9, we get:
Corollary 4.4. For sufficiently large p and q = 2%,
if « : {0,...,m} — R is defined as a(z) = 29
for v > (3pIn2)!° and a(z) = =z otherwise, then

degs /6,0 (TRIBES,, 4) > ¢%/10 /y/12 = 26P/5 /\/12.

Corollary 4.4 suffices for most of our communication
complexity lower bounds. However our results for threshold
circuit size require a function in AC® having large o-
threshold degree, which is more difficult to produce. The
proof of the next lemma, which involves more complex G
and H, and our generic construction are in the full paper.
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Lemma 4.5. For any p sufficiently large multiple of 15 and
q=2%ifa:{0,...,m} — R is defined as a(z) = 2%
forr > (3pIn2)'° and a(z) = z otherwise, then there is an
explicit depth 4 AC° function on pq bits that has o-threshold
degree at least ¢*/15.

5. MULTIPARTY COMMUNICATION COMPLEXITY LOWER
BOUNDS FOR ACP

Together with the functions from the previous section,
Theorem 3.2 is sufficient to improve the lower bounds
for AC® functions based on pattern tensor selectors from
O(loglogn) players to ©(+/logn) players. These results,
which show the power of our introduction of (e, )-
approximate degree on its own, are described in the full
paper. We need one more ingredient to obtain our strongest
lower bounds, namely, a different selector function v, which
we denote by INDEXga ~ where a > 0 is an integer. This
function has s = 2¢ and DINDEX ;= 10,1} for all j.

—1

For X € {0,1}* and Y € {0, 1}(F~ “Ds define

INDEXEBZ?1 (X,Y) = X(Y1®‘..®Yk—1)[a,]

where the bits in X are indexed by a-bit vectors and Y[,
denotes the vector of the first a bits of Y. This function
clearly satisfies the selector function requirement that the
output be unbiased for each fixed value of Y.

Although the definition of INDEXge —uses parity, the
number of players k& will be O(logn) and hence it is
computable in AC®. We can either write INDEXga  as an
VoAoVoA formula where the fan-ins are 2%, a + 1, 282,
and k — 1, respectively, or as an V o A o V formula where
the fan-ins are 2%, a2¥~2 + 1, and k — 1, respectively.

With ¢ = INDEXgg , the variables z; =
INDEX g _ (xuyw) for u € {0,1}*~! are independent iff
for every u # v, y¥, and y?, select different bits of x;.
Lemma 5.1. If ¢ = INDEXga  then

Pr [ry(y’y') =1]
y0.yteny™

2k—a—3
<m> 2(2k—a—3)r < (em2 r
r T

Proof: In this case Dfﬁm) is simply {0, 1}(*=1ms_For
each fixed i € [m] and each fixed pair of u # v € {0, 1}*71,
the probability that y3; and y?; select the same bit of z; is the
probability that (v} @ Sy )i = (Wi @45 ia)-
Since u # v, this is a homogeneous full rank system of a
equations over [y which is satisfied with probab111ty pre-
cisely 27¢. By a union bound over all of the (*, ) < 22k=3
pairs u,v € {0, 1}*~1, it follows that the probability that 7 is
bad for (y°,y!) is at most 22¥=32-¢ = 22k=4=3 The bound
follows by the independence of the choices of (y°,y') for
different values of ¢ € [m)]. [ |

We are ready to prove the main theorem for functions
composed using this new selector function.

<



Theorem 5.2. Let « {0,....m} — R oand 0 <
ag < 1. For any Boolean function f on m bits such
that degi—c o(f) > d and a(r) < r® for all r > d,
the function f o INDEXZBIL1 defined on nk bits, where
n ms and s = 2% > 622k_1m/d, requires that
le/z_e(f o INDEX%LZ—I) > d/2F + logy(e(1 — €)) for
k< (1-ap)log,d.

Proof: For 1) = INDEXga _, by Lemma 5.1,

m

k—1
2@ e pr [yt =1 Q)
—d y0.yteD(™
m
1 221@71173

< N 9@ =Da(r) (€ )" 4

< ; (— @)
Since k¥ < (1 — ag)log,d, we have (2F71 — 1)a(r) <

d*=a(r) < r for r > d so (4) is
m em22k7a72 -
<> (——)
r=d
m
< Z 277 < 9 (d=1) for 2% > e22k=1m /d.
r=d

Plugging this into Theorem 3.2 we obtain that

1 (d—
RYjy_(foyp™) > logy(e(1—€)) — o1 logy 27471
> d/2% +1ogy(e(1 —¢))

as required. ]

Let TRIBESéW be the dual of the TRIBES, , function on
m = pq bits. Obviously the (e, «)-degree of TRIBESé),q is
the same as that of TRIBES,, , for any € and . By applying
the above theorem for f = TRIBES, , and f = TRIBES%yq,
we obtain the following result. The proofs of the remaining
results in this section are in the full paper.

Theorem 5.3. Let p be a sufficiently large integer and

q = 2%, k < p/10, and s = 2P72k_ Let F = TRIBES, , o

INDEX"™ (1 2x) and F’ TRIBES,, , © INDEX(, (2. Let
SZhay ’ Dr_y

n = pgs = p2°2t2F be the number of input bits given
to each player in computing F or F'. Then R’f/S(F) and
Ry 5(F') are both Q(q"*/2*) which is nS*M) /4% Further-
more, F has polynomial-size depth 5 AC® formulas and F'
has polynomial-size depth 4 AC® formulas.

Lemma 5.4. N*(TRIBES, ;0 INDEX. ) is O(log q+pa).

Corollary 5.5. There is a function G in depth 5 AC° such
that G is in NPE—BPPC for k < o’ log n for some constant
a > 0.

By applying the distributive law to the depth 5 function
f = TRIBES, 4 © INDEXZ;(H%) we derive the following

k—1
exponential improvement in the number of players for which
non-trivial lower bounds can be shown for DISJy, .
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Theorem 5.6. R¥ /3
1/3

% log,

(DiSI, 1) is Q(2V18"/VEY for | <
n.

Although our bound for DiSJ,, i applies to exponentially
more players than do the bounds in [14], [8], the previous
bounds are stronger for k& < loglogn—o(loglogn) players.

Corollary 5.7. There is a depth-2 AC® formula in NP —
BPPC for k up to O(log'/? n).

Although we have shown non-trivial lower bounds for
DisJy, p, for k£ up to O(log'/? n), it is open whether one can
prove stronger lower bounds for k = w(logl/ 3 n) players for
DisJy, ,, or any other depth-2 AC® function. The difficulty of
extending our lower bound methods is our inability to apply
Lemma 3.1 to OR since the constant function 1 approximates
OR on all but one point.

To prove lower bounds for MAJ o SYMM o AND circuits
we need lower bounds on protocols that succeed with prob-
ability barely better than that of random guessing. Using the
function with large a-threshold degree given by Lemma 4.5
in place of TRIBES, , we obtain the following theorem.

Theorem 5.8. There exist explicit constants c,c’ > 0 and
a depth 6 AC° function H : {0,1}* — {0,1} such that
for 1/2 > € > 0, R’f/Q_e(Hn) is Q(n° + loge) for any
k < ' logyn.

6. THRESHOLD CIRCUIT LOWER BOUNDS FOR AC°

Following the approach of Viola [25], which extends the
ideas of Razborov and Wigderson [18], we show quasipoly-
nomial lower bounds on the simulation of AC® functions by
unrestricted MAJ o SYMM o AND circuits.

Theorem 6.1. There is a function G : {0,1}* — {0,1} in

ACO such that G requires MAJoSYMM o AND circuit size
NQ(log log N) .

Proof Sketch: The proof is almost identical to an
argument in [25] with our hard AC® functions replacing the
generalized inner product. It relies on the following con-
nection between multiparty communication complexity and
threshold circuit complexity given by Hastad and Goldmann.

Proposition 6.2. [11] If f is computed by a MAJ o
SYMM o ANDy_1 circuit of size S, then R’f/Q_l/(QS) )
is O(klogS).

We use the function H,, from Theorem 5.8 and replace
each input by an @ of ©(log® n) new input bits to obtain a
function G of N = ©(nlog?n) inputs. This adds 2 to the
depth and keeps the polynomial size. If G is computed by
such a circuit C' of size N°(1°21°8 N) then using random re-
strictions that leave bits unset with probability ©(1/log N)
we can ensure both that all bottom-level AND gates of C' are
reduced to fan-in at most d log, NV and that every & block of
inputs in G contains at least one unset input bit. Applying
Proposition 6.2 yields a contradiction to Theorem 5.8. H



7. PROOF OF LEMMA 3.1

Proof: As in the proof for Lemma 2.4, we write the
requirements as a linear program and study its dual. The
lemma is implied by proving that the following linear
program P has optimal value < 1:

Minimize 7 subject to

Ys : > h@)xs(@) =0 : |S|<d
z€{0,1}™
8 S h@)f() > e
z€{0,1}™
Vg p(x) —h(z) >0 : ze{0,1}™
Wy p(x)+h(z) >0 : ze{0,1}™
Ao = 2PN (@) >0 0 pef0,1,44™
zeC,
y: > ul@) =1
ze{0,1}m

Suppose that we have optimum 7 < 1. In this LP for-
mulation, inequality + ensures that the function g is a
probability distribution, and inequalities v, and w, ensure
that u(z) > |h(x)| so ||h||1 < 1.If ||h]]1 = 1, then we must
have p(x) = |h(z)| and we can write h(z) = pu(x)g(z) as
in the proof of Lemma 2.4 and then the inequalities yg will
ensure that Cor,(g,xs) = 0 for |S| < d and inequality (3
will ensure that Cor,(f,g) > € as required. Finally, each
inequality )\, ensures that ;(C,) < 2~IPIT2() which is
actually a little stronger than our claim.

The only issue is that an optimal solution might have
[|h]l1 < 1. However in this case inequality 3 ensures that
[|h]l1 > e. Therefore, for any solution of the above LP
with function h, we can define another function h'(z) =
h(zx)/||h||1 with ||h'||]1 = 1 and a new probability distri-
bution 4/ by '(z) = (@) < p(@)/|Ikll < plw)/e.
This new h' and p’ still satisfy all the inequalities as before
except possibly inequality A, but in this case if we increase
n by a 1/||h||1 factor it will also be satisfied. Therefore,
w(C,) < 2= Ipltallpl) /¢,

Here is the dual LP:

Maximize 3 - € + -y subject to

n: > =1
pEe{0,1,5}m
w@): vyt wg+y— 22“"_0‘(""))\,) =0:z€{0,1}"
pllz

)

h(z):Bf(z)+ Z ysxs(x) +wy — vy, =0:x € {0,1}"™
|S|<d
(6)

B, vz, Wy, Ap >0 € {0,1}™

Since yg are arbitrary we can replace ZI s|<d ysxs(x)
by pa(z) where py is an arbitrary polynomial of degree < d
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and rewrite (6) as:
h(z): Bf(x)+palx) +wy —v, =0:2€{0,1}™ (7)

Equations (5) and (7) for z € {0,1}™ together are equiva-
lent to:

2w, + Bf(z) + palz) + v — Z olel=a(leD )\ = 0 and

pllz

20, — Bf(x) — palx) +7v — Z glel=allel )\ = 0.
pllz
Since these are the only constraints on v, and w, respec-
tively other than non-negativity these can be satisfied by any
solution to

Bf(x) + pa(z) +y <Y 2ll=eUP), and

pllz

—Bf (@) — palw) +7 < 3 20Dy

pllz

which together are equivalent to

|Bf(x) + pa(x)| +v < Z 2\9\*a(|p|))\p.

pllx

Since py(z) is an arbitrary polynomial function of degree
less than d, we can write p; = —(qq where qq is another
arbitrary polynomial function of degree less than d and we
can replace the terms |3f(x) + pa(x)| by B|f(z) — qa(z)].

Therefore the dual program D is equivalent to maximizing
0 - € + v subject to

B f(x) = qa(x)| +v < 2lel=elley,

pllz

for all z € {0,1}™, where \ is a probability distribution
on the set of restrictions and g4 is a real-valued function of
degree < d.

Now, let B be the set of points z € {0,1}™ at which
|f(x)—qq(x)| > €. For any x € B, the value of the objective
function of D, which is 3 - € + +, is not more than

B (@) — qa(w)| + v < 3 2ll-atleby
pllz
Let R(x) denote the right-hand side of inequality (8). It
suffices to prove that R(x) < 1 for some « € B. This is, in
turn, equivalent to proving that

min R(z) <1,
zeB

®)

for any distribution A. Since deg<e o (f) is larger than the
degree of g4, there must exist € {0,1}" that is both a-
light for A and |f(z) — qq(z)| > €. Since | f(z) — ga(x)] > €
we have ¢ € B and since z is a-light for A we have R(x) <
1 which is what we need to prove. [ ]

We note that the bounds in Lemma 3.1 will require a(r) >
79 for some & > 0 when applied to AC® functions: By results
of Linial, Mansour, and Nisan [15], for any ACO function f



and constant 0 < n < 1, there is a function pg of degree
d < m", such that ||f — p4l|3 < 2m=m" for some constant
d > 0. Let By, be the set of = such that | f(x) —pq(z)| > e.
Then |B|e? < 3 e, (@) —pa(@)]® < |If —pa(@)[5 <
gm-m® o |B| < 2’”*’"5/62. If we tried to replace the
upper bound on p(C,) by some c(|p|) where 1/c(m) is
w(| By |) then in the dual program D, we could choose A\, =
1/|By,| for € B,, and A\, = 0 for all other p and for these
values (3 would be unbounded.
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