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Abstract— We prove an nΩ(1)/4k lower bound on the random-
ized k-party communication complexity of depth 4 AC0 functions
in the number-on-forehead (NOF) model for up to Θ(log n)
players. These are the first non-trivial lower bounds for general
NOF multiparty communication complexity for any AC0 function
for ω(log log n) players. For non-constant k the bounds are larger
than all previous lower bounds for any AC0 function even for
simultaneous communication complexity.

Our lower bounds imply the first superpolynomial lower bounds
for the simulation of AC0 by MAJ ◦ SYMM ◦ AND circuits,
showing that the well-known quasipolynomial simulations of AC0

by such circuits are qualitatively optimal, even for formulas of
small constant depth.

We also exhibit a depth 5 formula in NPcc
k − BPPcc

k for k

up to Θ(log n) and derive an Ω(2
√

logn/
√
k) lower bound on

the randomized k-party NOF communication complexity of set
disjointness for up to Θ(log1/3 n) players which is significantly
larger than the O(log log n) players allowed in the best previous
lower bounds for multiparty set disjointness. We prove other strong
results for depth 3 and 4 AC0 functions.

Keywords-communication complexity, constant-depth circuits,
lower bounds

1. INTRODUCTION

The multiparty communication complexity of AC0 in
the number-on-forehead (NOF) model has been an open
question since Håstad and Goldmann [11] showed that
any AC0 or ACC0 function has polylogarithmic random-
ized multiparty NOF communication complexity when its
input bits are divided arbitrarily among a polylogarithmic
number of players. This result is based on the simulations,
due to Allender and Yao, of AC0 circuits [1] and ACC0

circuits [27] by quasipolynomial-size depth-3 circuits that
consist of two layers of MAJORITY gates whose inputs are
polylogarithmic-size AND gates of literals. These protocols
may even be simultaneous NOF protocols in which the
players in parallel send their information to a referee who
computes the answer [2].

It is natural to ask whether these upper bounds can be im-
proved. In the case of ACC0, Razborov and Wigderson [18]
showed that quasipolynomial size is required to simulate
ACC0 based on the result of Babai, Nisan, and Szegedy [4]
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that the Generalized Inner Product function in ACC0 requires
k-party NOF communication complexity Ω(n/4k) which is
polynomial in n for k up to Θ(log n).

However, for AC0 functions much less has been known.
For the communication complexity of the set disjointness
function with k players (which is in AC0) there are lower
bounds of the form Ω(n1/(k−1)/(k−1)) in the simultaneous
NOF [24], [5] and nΩ(1/k)/kO(k) in the one-way NOF
model [26]. These are sub-polynomial lower bounds for all
non-constant values of k and, at best, polylogarithmic when
k is Ω(log n/ log log n).

Until recently, there were no lower bounds for general
multiparty NOF communication complexity of any AC0

function. That changed with recent lower bounds for set
disjointness by Lee and Shraibman [14] and Chattopadhyay
and Ada [8] but no lower bounds apply for ω(log log n)
players. As for circuit simulations of AC0, Sherstov [20] re-
cently showed that AC0 cannot be simulated by polynomial-
size MAJ ◦ MAJ circuits. However, there have been no
non-trivial size lower bounds for the simulation of AC0 by
MAJ ◦ MAJ ◦ AND or even SYMM ◦ AND circuits with
ω(log log n) bottom fan-in. As shown by Viola [25], suffi-
ciently strong lower bounds for AC0 in the multiparty NOF
communication model, even for sub-logarithmic numbers of
players, can yield quasipolynomial circuit size lower bounds.

We indeed produce such strong lower bounds. We show
that there is an explicit linear-size fixed-depth AC0 function
that requires randomized k-party NOF communication com-
plexity of nΩ(1)/4k even for error exponentially close to
1/2. For ω(1) players this bound is larger than all previous
multiparty NOF communication complexity lower bounds
for AC0 functions, even those in the weaker simultaneous
model. The bound is non-trivial for up to Θ(log n) players
and is sufficient to apply Viola’s arguments to produce fixed-
depth AC0 functions that require MAJ◦SYMM◦AND circuits
of nΩ(log logn) size, showing that quasipolynomial size is
necessary for the simulation of AC0.

The function for which we derive our strongest commu-
nication complexity lower bound is computable in depth 6
AC0. In the case of protocols with error 1/3, we exhibit
a hard function computable by simple depth 4 formulas.
We further show that the same lower bound applies to a
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function having depth 5 formulas that also has O(log2 n)
nondeterministic communication complexity which shows
that AC0 contains functions in NPcc

k − BPPcc
k for k up

to Θ(log n). As a consequence of the lower bound for
this depth 5 function, we obtain Ω(2

√
logn/

√
k−k) lower

bounds on the k-party NOF communication complexity of
set disjointness which is non-trivial for up to Θ(log1/3 n)
players. The best previous lower bounds for set disjointness
only apply for k ≤ log log n− o(log log n) players (though
these bounds are stronger than ours for o(log log n) players).

In the full paper, we also show somewhat weaker lower
bounds of nΩ(1)/kO(k), which is polynomial in n for up
to k = Θ(log / log log n) players, for another function
in depth 4 AC0 that has O(log3 n) nondeterministic com-
munication complexity and yet another in depth 3 AC0

that has nΩ(1/k)/2O(k) randomized k-party communication
complexity for k = Ω(

√
log n) players.

Methods and Related Work: Recently, Sherstov intro-
duced the pattern matrix method, a general method to use
analytic properties of Boolean functions to derive communi-
cation lower bounds for related Boolean functions [20], [22].
In [20], this analytic property was large threshold degree,
and the resulting communication lower bounds yielded lower
bounds for simulations of AC0 by MAJ ◦ MAJ circuits.
Sherstov [22] extended this to large approximate degree,
yielding a strong new method for lower bounds for two-
party randomized and quantum communication complexity.

Chattopadhyay [7] generalized [20] to pattern tensors for
k ≥ 2 players to yield the first lower bounds for the
general NOF multiparty communication complexity of any
AC0 function for k ≥ 3, implying exponential lower bounds
for computation of AC0 functions by MAJ ◦ SYMM ◦ ANY
circuits with o(log log n) input fan-in – our results extend
this to fan-in Ω(log n). Lee and Schraibman [14] and
Chattopadhyay and Ada [8] applied the full method in [22]
to pattern tensors to yield the first lower bounds for the
general NOF multiparty communication complexity of set
disjointness for k > 2 players, improving on a long line of
research on the problem [3], [24], [5], [26], [12], [6] and
obtaining a lower bound of Ω(n

1
k+1 )/22O(k)

. This yields
a separation between randomized and nondeterministic k-
party models for k = o(log log n), which David, Pitassi, and
Viola [10] improved to Ω(log n) players for other functions
based on pseudorandom generators. They asked whether
there was a separation for Ω(log n) players for AC0 functions
since their functions are only in AC0 for k = O(log log n),
a problem which our results resolve.

The high-level idea of the k-party version of the pattern
matrix method as described in [8], [21] is as follows. To
prove k-party lower bounds for a function F , we first
show that F has f ◦ ψm as a subfunction where ψ is
a bit-selection function and f has large approximate de-
gree. For such an f there exists another function g and

a distribution µ on inputs such that, with respect to µ,
g is both highly correlated with f and orthogonal to all
low-degree polynomials. It follows that f ◦ ψm is highly
correlated with g ◦ ψm and, by the discrepancy method for
communication complexity, it suffices to prove a discrepancy
lower bound for g ◦ψm. Thanks to the orthogonality of g to
all low degree polynomials this is possible using the bound
in [4], [9], [17] derived from the iterated application of the
Cauchy-Schwartz inequality. For example, the bound for set
disjointness DISJk,n(x) = ∨ni=1 ∧kj=1 xji corresponds to a
particular selector ψ and f = OR which has approximate
degree Ω(

√
n).

In the two party case, Sherstov [23] and Razborov and
Sherstov [19] extended the pattern matrix method to yield
sign-rank lower bounds for some simple functions. A key
idea for their arguments is the existence of orthogonalizing
distributions µ for their functions that are “min-smooth” in
that they assign at least some fixed positive probability to
any x such that f(x) = 1.

By contrast we show that any function f for which
approximating f within ε on only a subset S of inputs
requires large degree, there is an orthogonalizing distribution
µ for f that is “max-smooth” – the probability of subsets
defined by partial assignments is never much larger than
under the uniform distribution. The smoothness quality and
the properties of the constrained subset S are determined
by a function α so we call the degree bound the (ε, α)-
approximate degree. We show that for any function this
degree bound is large if there is a diverse collection of partial
assignments ρ such that each subfunction f |ρ of f requires
large approximate degree. This property is somewhat deli-
cate but we are able to exhibit simple AC0 functions with
large (ε, α)-approximate degree.

2. PRELIMINARIES AND THE GENERALIZED
DISCREPANCY/CORRELATION METHOD

Circuit complexity: Let AND denote the class of all
unbounded fan-in ∧ functions (of literals), SYMM denote
the class of all symmetric functions and MAJ ⊂ SYMM
denote the class of all majority functions. AC0 is the class of
functions f : {0, 1}∗ → {0, 1} computed by polynomial size
circuits (or formulas) of constant depth having ¬ gates and
unbounded fan-in ∧ and ∨ gates. Given classes of functions
C1,C2, . . .Cd, we let C1 ◦ C2 ◦ · · · ◦ Cd be the class of all
circuits of depth d whose inputs are given by variables and
their negations and whose gates at the i-th level from the
top are chosen from Ci.

We will assume that Boolean functions on m bits are maps
f : {0, 1}m → {−1, 1}.

Correlation: Let µ be a distribution on {0, 1}m. The
correlation between two real-valued functions f and g under
µ is defined as Corµ(f, g) := Ex∼µ[f(x)g(x)]. If G is a
class of functions, the correlation between f and G under µ
is defined as Corµ(f,G) := maxg∈G Corµ(f, g).
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Communication complexity: Let Dk(f), Rkε (f), and
Nk(f) denote the k-party deterministic, randomized with
two-sided error ε, and nondeterministic, respectively, com-
munication complexity of f . Let Πc

k be the class of output
functions of all deterministic k-party communication proto-
cols of cost at most c.

Fact 2.1 (cf. [13]). If there exists a distribution µ such that
Corµ(f,Πc

k) ≤ ε then Rk1/2−ε/2(f) ≥ c.

Because of the following property of multiparty com-
munication complexity, henceforth we find it convenient to
designate the input to player 0 as x and the inputs to players
1 through k − 1 as y1, . . . , yk−1.

Lemma 2.2 ([4], [9], [17]). Let f : {0, 1}m×k → R and U
be the uniform distribution over X × Y where Y = Y1 ×
· · · × Yk−1. Then,

CorU (f,Πc
k)2k−1

≤ 2c·2
k−1
·Ey0,y1∈Y

[∣∣∣Ex∈X[ ∏
u∈{0,1}k−1

f(x, yu)
]∣∣∣]

where yu = (yu1
1 , . . . , y

uk−1
k−1 ) for u ∈ {0, 1}k−1.

Approximate and threshold degree: Given 0 ≤ ε < 1,
the ε-approximate degree of f , degε(f), is the smallest d for
which ||f − p||∞ = maxx |f(x)− p(x)| ≤ ε for some real-
valued polynomial p of degree d. Following [16] we have
the following property of the approximate degree of OR.

Proposition 2.3. Let ORm : {0, 1}m → {1,−1}. For 0 ≤
ε < 1, degε(ORm) ≥

√
(1− ε)m/2.

The threshold degree of f , thr(f), is the smallest d for
which there exists a multivariate real-valued polynomial p of
degree d such that f(x) = sign(p(x)). Because the domain
of f is finite, we can assume without loss of generality that
p(x) 6= 0 for all x since we can shift p by adding the constant
1
2 · maxx:f(x)<0 |f(x)| to p. Thus the condition on p can
be replaced by f(x)p(x) > 0 on every input x. Hence it
follows that thr(f) = minε<1 degε(f). For this reason, we
write thr(f) = deg<1(f).

Define an inner product 〈, 〉 on the set of functions f :
{0, 1}m → R by 〈f, g〉 = E[f · g]. For S ⊆ [m], let χS :
{0, 1}m → {−1, 1} be the function χS =

∏
i∈S(−1)xi . The

χS for S ⊆ [m] form an orthonormal basis of this space.
The following Orthogonality-Approximation Lemma is

the key to lower bounds using the pattern matrix (and pattern
tensor) method. It is easily proved by duality of `1 and `∞
norms or by LP duality.

Lemma 2.4 ([22]). If f : {0, 1}m → {−1, 1} has degε(f) ≥
d then there exists a function g : {0, 1}m → {−1, 1} and a
distribution µ on {0, 1}m such that:

1) Corµ(g, f) > ε; and
2) for every S ⊆ [m] with |S| < d and every function

h : {0, 1}|S| → R, Ex∼µ[g(x) · h(x|S)] = 0.

The second major component of the pattern matrix/tensor
method is the use of particular selector functions to provide
inputs to functions f with large ε-approximate degree.

Definition Any function ψ : {0, 1}ks → {0, 1} with the
following property is a selector function:
• There exist sets Dψ,1, . . . , Dψ,(k−1) ⊆ {0, 1}s such

that for any Y = (Y1, . . . , Yk−1) ∈ Dψ :=
Dψ,1 × · · · × Dψ,(k−1), PrX∈{0,1}s [ψ(X,Y ) = 0] =
PrX∈{0,1}s [ψ(X,Y ) = 1] = 1/2.

Let D(m)
ψ := Dm

ψ,1 × · · · × Dm
ψ,(k−1). For any function

f : {0, 1}m → {1,−1} and any selector function ψ we
define a new function f ◦ ψm on {0, 1}kms bits by, on any
x ∈ {0, 1}ms and y = (y1, . . . , yk−1) ∈ D(m)

ψ ,

f ◦ ψm(x, y) = f ◦ ψm(x, y1, . . . , yk−1)
= f(ψ(x1, y∗1), . . . , ψ(xm, y∗m)),

where y∗i = (y1i, . . . , y(k−1)i) for i ∈ [m]. We will write
zi = ψ(xi, y∗i) and z = (z1, . . . , zm) for the input to f .
In the k-party NOF communication problem for f ◦ ψm on
input x, y1, . . . , yk−1 ∈ {0, 1}ms, player 0 holds x and can
see all the yi and each other player i holds yi (but can
only see x and all yj for j 6= i) and they need to compute
f ◦ ψm(x, y1, . . . , yk−1).

One example of a selector function ψ is the pattern tensor
function ψk,` used in [8], [14] which generalizes the pattern
matrix function. In this example, s = `k−1 and the s bits are
arranged in a (k − 1)-dimensional array indexed by [`]k−1.
Dψk,`,j consists of the ` vectors Yj ∈ {0, 1}s that are 1 in all
entries in one of the ` slices along the j-th dimension of this
array and are 0 in every other entry. For X ∈ {0, 1}s and
such a Y = (Y1, . . . , Yk−1) ∈ {0, 1}(k−1)s the array ∧k−1

i=1 Yi
contains precisely one 1 which selects the bit of X to pass
to f . This function is expressible by a small 2-level ∨ of ∧s.
As described in [10] the generalized discrepancy/correlation
arguments work for any selector function that uses the inputs
for players 1 to k − 1 to select which bits from player
0’s input to pass on to f , but we need our more general
formulation for some examples we consider in the full paper.

We give a brief overview of the remainder of the argument
in [8], [10], which extends ideas of [20], [22] from 2-party
to k-party communication complexity.
• Start with a Boolean function f on m bits having large

(1− δ)-approximate degree d.
• Apply the Orthogonality/Approximation Lemma to f

to obtain a g that is (1 − δ)-correlated with f and a
distribution µ under which g is not correlated with any
low degree polynomial.

• Observe that from µ one can define a natural λ under
which g◦ψm and f ◦ψm have the same high correlation
as g and f so to prove that f ◦ψm is uncorrelated with
low communication protocols, by the triangle inequality
it suffices to prove this for g ◦ ψm.
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• The BNS-Chung bound/Gowers’ norm used in
Lemma 2.2 is based on the expectation of a function’s
correlation with itself on randomly chosen hypercubes
of points. Use the orthogonality of g under µ to all
polynomials of degree < d to show that all low degree
self-correlations of g ◦ ψm under λ disappear. The
remaining high-degree self-correlations are bounded by
analyzing overlaps in the choices of bits in different
inputs among the hypercube of inputs. The argument
repeatedly bounds the probability mass that µ assigns
to small sub-cubes of the input by 1.

• The final lower bound is limited both by the upper
bound on correlation in the high degree case and by the
number of input bits required for each selector function.

Our argument follows this basic outline but improves it
in two different ways. First, by considering a new measure
that strengthens (1 − δ)-approximate degree we are able
to obtain a much sharper upper bound on the high-degree
self-correlations and second, we use a selector function that
requires many fewer bits. We also show that some simple
functions require large values for our strengthened measure
(which turns out to be fairly non-trivial to prove).

3. BEYOND APPROXIMATE DEGREE: A NEW SUFFICIENT
CRITERION FOR STRONG COMMUNICATION COMPLEXITY

BOUNDS

We introduce our notion of (ε, α)-approximate degree and
show how it implies our main technical theorem on the
general correlation method.

A restriction is a ρ ∈ {0, 1, ∗}m, and we let |ρ| = |{i :
ρi 6= ∗}|. Two restrictions π and ρ are compatible, π ‖ ρ,
iff they agree on all non-star positions. Let Cρ = {x ∈
{0, 1}m : x ‖ ρ}.

Definition Let α : {0, . . . ,m} → R. Given a probability
distribution λ on the set of restrictions {0, 1, ∗}m, we say
that x ∈ {0, 1}m is α-light for λ iff

∑
ρ‖x 2|ρ|−α(|ρ|)λ(ρ) ≤

1. Note that when α(r) = r, every point is α-light for every
distribution λ.

Definition Let α : {0, . . . ,m} → R. The (ε, α)-
approximate degree1 of f , denoted as degε,α(f), is defined
to be the minimum integer d ≥ 0 such that there is
some polynomial q of degree ≤ d and some probability
distribution λ on restrictions such that for every x ∈ {0, 1}m
if x is α-light for λ then |f(x) − q(x)| ≤ ε. Note that
this reduces to degε(f) if α(r) ≥ r for all r. Also define
deg<ε,α(f) = infε′<ε degε′,α(f). As we write thr(f) =
deg<1(f), we will usually say “α-threshold degree” for
(< 1, α)-approximate degree.

1We use the same notation for a somewhat different and more general
definition than that in earlier versions of this paper. First, α previously was
a constant analogous to logr α(r) though this was not defined for all r.
Second, the old definition was closer to that of a related quantity that we
now call deg∗ε,α and define later.

This definition is an obvious weakening of the usual
`∞ approximation of f since the non-light points can be
ignored in the approximation. We will use this definition to
prove our main technical theorem on the application of the
general correlation method. To prove the theorem, we need
the following lemma which generalizes Lemma 2.4 and is
the first key to our substantially improved lower bounds. Its
proof, which is based on LP duality, is given in Section 7.

Lemma 3.1 (Max-Smooth Orthogonality-Approximation
Lemma). Let 0 < ε ≤ 1 and α : {0, . . . ,m} → R. If
f : {0, 1}m → {−1, 1} has deg<ε,α(f) ≥ d, then there
exists a function g : {0, 1}m → {−1, 1} and a distribution
µ on {0, 1}m such that:

1) Corµ(g, f) ≥ ε;
2) for every S ⊆ [m] with |S| < d and every function

h : {0, 1}|S| → R, Ex∼µ[g(x) · h(x|S)] = 0; and
3) for any restriction ρ, µ(Cρ) ≤ 2α(|ρ|)−|ρ|/ε.

Although the upper bound on µ(Cρ) can be much larger
than the 2−|ρ| probability under the uniform distribution,
we can use it to obtain an exponential improvement in the
dependence of communication complexity lower bounds on
k if α(r) is bounded below rα0 for r ≥ d and α0 < 1. As we
note in Section 7, for any function f computed by an AC0

circuit this assumption and the upper bound are essentially
the best possible for d polynomial in m.

Definition Let ψ be a selector function with Dψ = Dψ,1×
· · · × Dψ,(k−1). For fixed y0, y1 ∈ D

(m)
ψ , i ∈ [m] and

uniformly random xi, we call i good for (y0, y1) if the
set of 2k−1 random variables zui = ψ(xi, yu∗i) for u ∈
{0, 1}k−1 are mutually independent, where yu is defined
as in Lemma 2.2; otherwise we call i bad for (y0, y1). Let
Rψ(y0, y1) be the set of i ∈ [m] that are bad for (y0, y1)
and let rψ(y0, y1) = |Rψ(y0, y1)|.

We can now state the main technical consequence of the
Max-Smooth Orthogonality-Approximation Lemma. A sim-
ilar version with α(r) = r follows from earlier work but the
ability to have α(r) < rα0 for large r yields exponentially
better lower bounds than in previous work.

Theorem 3.2. Let α : {0, . . . ,m} → R. If f : {0, 1}m →
{1,−1} has deg<1−ε,α(f) ≥ d and ψ is a selector function
on {0, 1}ks with Dψ = Dψ,1 × · · · ×Dψ,(k−1) then

Rk1/2−ε(f ◦ ψ
m) ≥ log2(ε(1− ε))

− 1
2k−1

log2

( m∑
r=d

2(2k−1−1)α(r) ·Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r]
)
.

Proof: The pattern of the argument follows the outline
from Section 2. We first apply Lemma 3.1 to f to produce
function g and distribution µ. By construction Corµ(f, g) ≥
1−ε. Then we define a distribution λ on {0, 1}mks based on

µ and ψ by λ(x, y) =
µ(z1, . . . , zm)
2n−m|Dψ|m

where zi = ψ(xi, y∗i)
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for y ∈ D(m)
ψ and 0 otherwise. To prove a lower bound c

on Rk1/2−ε(f ◦ ψ
m) we show that Corλ(f ◦ ψm,Πc

k) ≤ 2ε.
Since ψ is a selector function, each zi = ψ(xi, y∗i) is a

uniformly random bit for each fixed y∗i ∈ Dψ and random
xi. We therefore have Corλ(f ◦ψm, g◦ψm) = Corµ(f, g) ≥
1 − ε, hence Corλ(f ◦ ψm,Πc

k) ≤ ε + Corλ(g ◦ ψm,Πc
k)

by the triangle inequality. It therefore suffices to show that
Corλ(g ◦ ψm,Πc

k) ≤ ε.
By Lemma 2.2, if we let U be the uniform distribution

on the set of (x, y) ∈ {0, 1}ms ×D(m)
ψ and zi = ψ(xi, y∗i)

we have

Corλ(g ◦ ψm,Πc
k)2k−1

= 2m2k−1
CorU (µ(z1, . . . , zm)g(z1, . . . , zm),Πc

k)2k−1

≤ 2(c+m)·2k−1
·E

y0,y1∈D(m)
ψ

H(y0, y1),

where H(y0, y1) is the self-correlation in the hypercube
defined by y0 and y1:

H(y0, y1) :=
∣∣∣Ex[ ∏

u∈{0,1}k−1

µ(zu1 , . . . , z
u
m)g(zu1 , . . . , z

u
m)
]∣∣∣,

where zui = ψ(xi, yu∗i). We now compute bounds on the
self-correlation H(y0, y1) that depend on the value of r =
rψ(y0, y1). The first bound is from [8] and is the key to the
original method.

Proposition 3.3. If r = rψ(y0, y1) < d, then H(y0, y1) = 0.

Proof: Let Z = Z0...0Z0...1 · · · Z1...1 be the joint dis-
tribution induced on {zu}u∈{0,1}k−1 by taking x uniformly
at random. By construction, zu is uniformly distributed in
{0, 1}m for any u ∈ {0, 1}k−1 so each Zu is a uniform
distribution. For each choice of z0...0 we will also consider
the conditional distribution Z 6=0...0|z0...0 on {zu}u6=0...0

which is derived from Z by conditioning on Z0...0 = z0...0.
Then,

H(y0,y1)

=
∣∣∣E{zu}

u∈{0,1}k−1∼Z
[ ∏
u∈{0,1}k−1

µ(zu)g(zu)
]∣∣∣

=
∣∣∣Ez0...0[µ(z0...0)g(z0...0)

·E{zu}u 6=0...0∼Z 6=0...0|z0...0
∏

u 6=0...0

µ(zu)g(zu)
]∣∣∣.

We now consider the conditional distribution in the inner
expectation above. For any i that is good for (y0, y1) the set
of 2k−1 random variables {zui }u∈{0,1}k−1 are independent.
Therefore conditioning of Z 6=0...0 on z0...0 is equivalent to
conditioning on (z0...0

i )i∈Rψ(y0,y1), the portions of z0...0 on

those i ∈ [m] that are bad for (y0, y1). Therefore

E{zu}u 6=0...0∼Z 6=0...0|z0...0
∏

u6=0...0

µ(zu)g(zu)

= E{zu}u 6=0...0∼Z 6=0...0|(z0...0
i

)i∈Rψ(y0,y1)

∏
u 6=0...0

µ(zu)g(zu).

This quantity is some function Q of z0...0 that depends
on only the r = rψ(y0, y1) variables (z0...0

i )i∈Rψ(y0,y1).
Therefore

H(y0, y1) =
∣∣∣Ez0...0[µ(z0...0)g(z0...0)Q(z0...0)

]∣∣∣ = 0

by the orthogonality property of µ and g since r < d.
The following bound for r = rψ(y0, y1) ≥ d is the key to

the sharper bound that yields our exponentially better results.
A weaker version in [8] applies only when α(r) = r.

Lemma 3.4. H(y0, y1) ≤ 2(2k−1−1)α(r)

22k−1mε2k−1−1
.

Proof: Note that by definition of Rψ(y0, y1), condi-
tioned on each fixed value of xRψ(y0,y1) = (xi)i∈Rψ(y0,y1)

the random variable zu = zu(x, y0, y1) is statistically
independent of all zv for v 6= u. For convenience of notation
we assume without loss of generality that Rψ(y0, y1) =
{1, . . . , r}.

Since g is ±1-valued,

H(y0, y1) =
∣∣∣Ex[ ∏

u∈{0,1}k−1

µ(zu)g(zu)
]∣∣∣

≤ Ex
∣∣∣ ∏
u∈{0,1}k−1

µ(zu)g(zu)
∣∣∣

= Ex
[ ∏
u∈{0,1}k−1

µ(zu)
]

≤ Ex[µ(z0...0)]

× max
x1,...,xr

Exr+1,...,xm

[ ∏
u 6=0...0

µ(zu)
]

= Ex[µ(z0...0)] (1)

× max
x1,...,xr

∏
u6=0...0

Exr+1...xm

[
µ(zu)

]
(2)

where zui = ψ(xi, yu∗i) for all i ∈ [m].
We first consider line (1). For x chosen uniformly from

{0, 1}ms, by assumption on ψ, for any u ∈ {0, 1}k−1 the
random variable zu is uniform in {0, 1}m. In particular,
Ex[µ(z0...0)] = Ez∈{0,1}m [µ(z)]. Further, since µ is a
distribution, Ez∈{0,1}m [µ(z)] = 2−m.

We now bound the remaining terms. First we have

max
x1,...,xr

∏
u6=0...0

Exr+1...xm

[
µ(zu)

]
≤

∏
u6=0...0

max
x1,...,xr

Exr+1...xm

[
µ(zu)

]
.
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Fixing x1, . . . , xr fixes the values of zu1 , . . . , z
u
r and by our

assumption on ψ, for random xr+1, . . . , xm the values of
zur+1, . . . , z

u
m are uniformly random. Therefore the value in

line (2) is upper bounded by∏
u 6=0...0

max
zu1 ,...,z

u
r

Ezu
r+1...z

u
m

[
µ(zu)

]
=
(

max
z1,...,zr

Ezr+1...zm

[
µ(z)

])2k−1−1
.

By the property of µ implied by Lemma 3.1,

max
z1,...,zr

∑
zr+1,...,zm

µ(z) ≤ 2α(r)−r/ε

and therefore line (2) is upper bounded by
(2α(r)−r/(ε2m−r))2k−1−1 = (2α(r)−m/ε)2k−1−1. (This is
the one place where we use the max-smoothness property
of the distribution µ.) The lemma follows immediately by
combining the bounds for lines (1) and (2).

Plugging in the bounds of Proposition 3.3 and Lemma 3.4
we obtain that

Corλ(g ◦ ψm,Πc
k)2k−1

≤ 2(c+m)·2k−1
·
m∑
r=d

2(2k−1−1)α(r)

22k−1m(1− ε)2k−1−1

× Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r]

<
( 2c

1− ε
)2k−1

·
m∑
r=d

2(2k−1−1)α(r)

× Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r]

Taking 2k−1-st roots and using Fact 2.1 we obtain that
Rk1/2−ε(f ◦ ψ

m) ≥ c if

ε ≥ 2c

1− ε
·
( m∑
r=d

2(2k−1−1)α(r)

× Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r]
)1/2k−1

.

Rewriting and taking logarithms yields the claimed bound
of Theorem 3.2.

4. AC0 FUNCTIONS WITH LARGE (ε, α)-APPROXIMATE
DEGREE

Given ε < 1 and α, it is not obvious that any function,
let alone a function in AC0, has large (ε, α)-approximate
degree. This section shows that AC0 does contain functions
with large (5/6, α)-approximate degree and functions with
large α-threshold degree where α(z) ≤ zα0 for α0 < 1 and
all large z.

We first reduce this new notion of approximate degree to
a more tractable notion, which is only large if many widely
distributed restrictions of f also require large approximate
degree. Given a function f on {0, 1}m and a restriction ρ,

we define f |ρ on {0, 1}m−|ρ| in the natural way. We also
define Rrm := {ρ ∈ {0, 1, ∗}m : |ρ| = m− r}.

Definition Given α : {0, . . . ,m} → R, we say that a
probability distribution ν on {0, 1, ∗}m is α-spread iff for
every restriction ρ ∈ {0, 1, ∗}m, Prπ∼ν [π ‖ ρ] ≤ 2α(|ρ|)−|ρ|.
Let deg∗ε,α(f) be the minimum d such that for any α-
spread distribution ν on {0, 1, ∗}m, there is some π with
ν(π) > 0 and degε(f |π) ≤ d. Note that for α(r) = r,
degε(f) = deg∗ε,α(f) since every distribution on restrictions
is α-spread. We define deg∗<ε,α(f) = minε′<ε deg∗ε′,α(f).

Given the following lemma, to show that degε,α(f) is
large, it suffices to show that deg∗ε,α(f) is large.

Lemma 4.1. Let f : {0, 1}m → {−1, 1} and α :
{0, . . . ,m} → R. For 0 < ε ≤ 1, degε,α(f) ≥ deg∗ε,α(f).

Proof: Suppose, by contradiction, that for some d, (i)
deg∗ε,α(f) > d, and (ii) degε,α(f) = d. Then by definition,
(i’) there exists an α-spread distribution ν on {0, 1, ∗}m such
that degε(f |π) > d for every π with ν(π) > 0, and (ii’)
there exists a polynomial q of degree ≤ d and a distribution
λ on {0, 1, ∗}m such that R(x) =

∑
ρ‖x 2|ρ|−α(|ρ|)λρ > 1

whenever x ∈ B′, where B′ = {x : |f(x)− q(x)| > ε}.
Choosing π ∼ ν, we define the random variable

Iπ :=
∑
ρ‖π

2|ρ|−α(|ρ|)λρ.

Then, Eπ∼ν(Iπ) =
∑
ρ

Pr
π∼ν

[ρ ‖ π] · 2|ρ|−α(|ρ|)λρ

≤
∑
ρ

2α(|ρ|)−|ρ| · 2|ρ|−α(|ρ|)λρ ≤ 1.

Therefore there exists a restriction π for which Iπ ≤ 1. If
there exists x ∈ B′ such that x ∈ Cπ , then since

R(x) =
∑
ρ‖x

2|ρ|−α(|ρ|)λρ > 1,

we would have Iπ > 1. Thus Cπ ∩ B′ = ∅. So for any
x ∈ Cπ , we have |f(x)− q(x)| ≤ ε. But since the degree of
qd is ≤ d this contradicts the fact that degε(f |π) > d. The
lemma follows.

For the rest of this section we always take α(z) ≤ zα0 for
some α0 < 1 for large enough z and α(z) = z otherwise. By
definition, to show that deg∗ε,α(f) is large, we need to exhibit
an α-spread distribution ν such that for any restriction ρ with
ν(ρ) > 0, degε(f |ρ) is large. An obvious choice for such ν
is the uniform distribution on Rrm where r ≈ mα0 . Indeed,
it is not hard to show with this distribution that the parity
function has large (ε, α)-approximate degree. However this
simple ν cannot be used for AC0 circuits since these circuits
shrink rapidly under such restrictions. Thus in Lemma 4.2
we define a more involved α-spread family of restrictions.
With this family, we give a generic construction that takes
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a circuit G on q bits and produces another circuit H on
m = pq bits such that for any restriction π in the family,
H|π contains the projection of G on some set S of r bits – a
new function obtained from G by keeping only those nodes
on paths from the inputs in S to the output gate – as a
subfunction. If each such projection of G has ε-approximate
degree rΩ(1) and if p is O(log q) and r is polynomial in q
and hence in m = pq, then we derive that H has (ε, α)-
approximate degree mΩ(1).

Lemma 4.2. Let q, r, p, and w be integers with q > r >
p ≥ 2 and let 1 > α0 > β > 0 be such that qβ ≥ rp,
2p−1 − 1 ≥ q1−β , qα0 ≥ 6

ln 22pr, and wα0−β ≥ 3p/ ln 2.
Fix any partition of a set of m = pq bits into q blocks of p
bits each. Define distribution ν on Rprpq as follows: choose
a subset of q − r blocks uniformly at random; then assign
values to the variables in each of these blocks uniformly at
random from {0, 1}p−{0p, 1p}. Then for any ρ ∈ {0, 1, ∗}m
with |ρ| ≥ w, we have Pr

π∼ν
[ρ ‖ π] ≤ 2|ρ|

α0−|ρ|.

The proof of Lemma 4.2 is surprisingly involved and
requires quite precise tail bounds. It is in the full paper.

For ε = 5/6, a simple candidate for G is G = ORq . With
this G and the family of restrictions given by Lemma 4.2,
the next lemma constructs H = TRIBESp,q that has large
(5/6, α)-approximate degree. Recall that TRIBESp,q(x) =
∨qi=1 ∧

p
j=1 xi,j .

Lemma 4.3. Given any constants 0 < ε, α0, β < 1 with
β > 1−ε and α0−β ≥ 0.1. Let q > p ≥ 2 be integers such
that 2dq1−βe < 2p ≤ 1

6q
α0+ε−1 ln 2. Define α(z) = zα0 for

zα0−β ≥ 3p/ ln 2 and α(z) = z otherwise. Then for large
enough q, we have deg5/6,α(TRIBESp,q) ≥

√
q1−ε/12.

Proof: Define the distribution ν as in the statement of
Lemma 4.2, where a p-block corresponds to a p-term in
TRIBESp,q , by applying this lemma with r := dq1−εe and
w = (3p/ ln 2)1/(α0−β). For q large enough,

qβ/r ≥ qβ+ε−1 > log q > p, and wα0−β ≥ 3p/ ln 2.

It is clear that for any π with ν(π) > 0, ORr is a
subfunction of TRIBESp,q|π so deg5/6(TRIBESp,q|π) ≥
deg5/6(ORr) ≥

√
r/12. Thus, deg5/6,α(TRIBESp,q) ≥

deg∗5/6,α(TRIBESp,q) ≥
√
r/12.

In particular, with ε = 0.4, β = 0.8, α0 = 0.9, we get:

Corollary 4.4. For sufficiently large p and q = 24p,
if α : {0, . . . ,m} → R is defined as α(z) = z0.9

for r ≥ (3p ln 2)10 and α(z) = z otherwise, then
deg5/6,α(TRIBESp,q) ≥ q3/10/

√
12 = 26p/5/

√
12.

Corollary 4.4 suffices for most of our communication
complexity lower bounds. However our results for threshold
circuit size require a function in AC0 having large α-
threshold degree, which is more difficult to produce. The
proof of the next lemma, which involves more complex G
and H , and our generic construction are in the full paper.

Lemma 4.5. For any p sufficiently large multiple of 15 and
q = 24p, if α : {0, . . . ,m} → R is defined as α(z) = z0.9

for r ≥ (3p ln 2)10 and α(z) = z otherwise, then there is an
explicit depth 4 AC0 function on pq bits that has α-threshold
degree at least q1/15.

5. MULTIPARTY COMMUNICATION COMPLEXITY LOWER
BOUNDS FOR AC0

Together with the functions from the previous section,
Theorem 3.2 is sufficient to improve the lower bounds
for AC0 functions based on pattern tensor selectors from
O(log log n) players to Ω(

√
log n) players. These results,

which show the power of our introduction of (ε, α)-
approximate degree on its own, are described in the full
paper. We need one more ingredient to obtain our strongest
lower bounds, namely, a different selector function ψ, which
we denote by INDEX⊕a

k−1
where a > 0 is an integer. This

function has s = 2a and DINDEX⊕a
k−1

,j = {0, 1}s for all j.

For X ∈ {0, 1}s and Y ∈ {0, 1}(k−1)s define

INDEX⊕a
k−1

(X,Y ) = X(Y1⊕...⊕Yk−1)[a]

where the bits in X are indexed by a-bit vectors and Y[a]

denotes the vector of the first a bits of Y . This function
clearly satisfies the selector function requirement that the
output be unbiased for each fixed value of Y .

Although the definition of INDEX⊕a
k−1

uses parity, the
number of players k will be O(log n) and hence it is
computable in AC0. We can either write INDEX⊕a

k−1
as an

∨◦∧◦∨◦∧ formula where the fan-ins are 2a, a+ 1, 2k−2,
and k − 1, respectively, or as an ∨ ◦ ∧ ◦ ∨ formula where
the fan-ins are 2a, a2k−2 + 1, and k − 1, respectively.

With ψ = INDEX⊕a
k−1

, the variables zui =
INDEX⊕a

k−1
(xi, yu∗i) for u ∈ {0, 1}k−1 are independent iff

for every u 6= v, yu∗i and yv∗i select different bits of xi.

Lemma 5.1. If ψ = INDEX⊕a
k−1

then

Pr
y0,y1∈D(m)

ψ

[rψ(y0,y1) = r]

≤
(
m

r

)
2(2k−a−3)r ≤

(em22k−a−3

r

)r
.

Proof: In this case D(m)
ψ is simply {0, 1}(k−1)ms. For

each fixed i ∈ [m] and each fixed pair of u 6= v ∈ {0, 1}k−1,
the probability that yu∗i and yv∗i select the same bit of xi is the
probability that (yu1

∗i ⊕· · ·⊕y
uk−1
∗i )[a] = (yv1∗i ⊕· · · y

vk−1
∗i )[a].

Since u 6= v, this is a homogeneous full rank system of a
equations over F2 which is satisfied with probability pre-
cisely 2−a. By a union bound over all of the

(
2k−1

2

)
< 22k−3

pairs u, v ∈ {0, 1}k−1, it follows that the probability that i is
bad for (y0, y1) is at most 22k−32−a = 22k−a−3. The bound
follows by the independence of the choices of (y0, y1) for
different values of i ∈ [m].

We are ready to prove the main theorem for functions
composed using this new selector function.
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Theorem 5.2. Let α : {0, . . . ,m} → R and 0 <
α0 < 1. For any Boolean function f on m bits such
that deg1−ε,α(f) ≥ d and α(r) ≤ rα0 for all r ≥ d,
the function f ◦ INDEXm⊕a

k−1
defined on nk bits, where

n = ms and s = 2a ≥ e22k−1m/d, requires that
Rk1/2−ε(f ◦ INDEXm⊕a

k−1
) ≥ d/2k + log2(ε(1 − ε)) for

k ≤ (1− α0) log2 d.

Proof: For ψ = INDEX⊕a
k−1

, by Lemma 5.1,
m∑
r=d

2(2k−1−1)α(r) · Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r] (3)

≤
m∑
r=d

2(2k−1−1)α(r) ·
(em22k−a−3

r

)r
(4)

Since k ≤ (1 − α0) log2 d, we have (2k−1 − 1)α(r) <
d1−α0α(r) ≤ r for r ≥ d so (4) is

≤
m∑
r=d

(em22k−a−2

r

)r
≤

m∑
r=d

2−r < 2−(d−1) for 2a ≥ e22k−1m/d.

Plugging this into Theorem 3.2 we obtain that

Rk1/2−ε(f ◦ ψ
m) ≥ log2(ε(1− ε))− 1

2k−1
log2 2−(d−1)

> d/2k + log2(ε(1− ε))

as required.
Let TRIBES′p,q be the dual of the TRIBESp,q function on

m = pq bits. Obviously the (ε, α)-degree of TRIBES′p,q is
the same as that of TRIBESp,q for any ε and α. By applying
the above theorem for f = TRIBESp,q and f = TRIBES′p,q ,
we obtain the following result. The proofs of the remaining
results in this section are in the full paper.

Theorem 5.3. Let p be a sufficiently large integer and
q = 24p, k ≤ p/10, and s = 2p+2k. Let F = TRIBESp,q ◦
INDEXm

⊕(p+2k)
k−1

and F ′ = TRIBES′p,q ◦ INDEXm
⊕(p+2k)
k−1

. Let

n = pqs = p25p+2k be the number of input bits given
to each player in computing F or F ′. Then Rk1/3(F ) and
Rk1/3(F ′) are both Ω(q0.3/2k) which is nΩ(1)/4k. Further-
more, F has polynomial-size depth 5 AC0 formulas and F ′

has polynomial-size depth 4 AC0 formulas.

Lemma 5.4. Nk(TRIBESp,q ◦ INDEXm⊕a
k−1

) is O(log q+pa).

Corollary 5.5. There is a function G in depth 5 AC0 such
that G is in NPcc

k −BPPcc
k for k ≤ a′ log n for some constant

a′ > 0.

By applying the distributive law to the depth 5 function
f = TRIBESp,q ◦ INDEXm

⊕(p+2k)
k−1

we derive the following

exponential improvement in the number of players for which
non-trivial lower bounds can be shown for DISJk,n.

Theorem 5.6. Rk1/3(DISJn,k) is Ω(2
√

log2 n/
√
k) for k ≤

1
5 log1/3

2 n.

Although our bound for DISJn,k applies to exponentially
more players than do the bounds in [14], [8], the previous
bounds are stronger for k ≤ log log n−o(log log n) players.

Corollary 5.7. There is a depth-2 AC0 formula in NPcc
k −

BPPcc
k for k up to Θ(log1/3 n).

Although we have shown non-trivial lower bounds for
DISJk,n for k up to Θ(log1/3 n), it is open whether one can
prove stronger lower bounds for k = ω(log1/3 n) players for
DISJk,n or any other depth-2 AC0 function. The difficulty of
extending our lower bound methods is our inability to apply
Lemma 3.1 to OR since the constant function 1 approximates
OR on all but one point.

To prove lower bounds for MAJ ◦ SYMM ◦AND circuits
we need lower bounds on protocols that succeed with prob-
ability barely better than that of random guessing. Using the
function with large α-threshold degree given by Lemma 4.5
in place of TRIBESp,q we obtain the following theorem.

Theorem 5.8. There exist explicit constants c, c′ > 0 and
a depth 6 AC0 function H : {0, 1}∗ → {0, 1} such that
for 1/2 > ε > 0, Rk1/2−ε(Hn) is Ω(nc + log ε) for any
k ≤ c′ log2 n.

6. THRESHOLD CIRCUIT LOWER BOUNDS FOR AC0

Following the approach of Viola [25], which extends the
ideas of Razborov and Wigderson [18], we show quasipoly-
nomial lower bounds on the simulation of AC0 functions by
unrestricted MAJ ◦ SYMM ◦ AND circuits.

Theorem 6.1. There is a function G : {0, 1}∗ → {0, 1} in
AC0 such that GN requires MAJ◦SYMM◦AND circuit size
NΩ(log logN).

Proof Sketch: The proof is almost identical to an
argument in [25] with our hard AC0 functions replacing the
generalized inner product. It relies on the following con-
nection between multiparty communication complexity and
threshold circuit complexity given by Håstad and Goldmann.

Proposition 6.2. [11] If f is computed by a MAJ ◦
SYMM ◦ ANDk−1 circuit of size S, then Rk1/2−1/(2S)(f)
is O(k logS).

We use the function Hn from Theorem 5.8 and replace
each input by an ⊕ of Θ(log2 n) new input bits to obtain a
function G of N = Θ(n log2 n) inputs. This adds 2 to the
depth and keeps the polynomial size. If G is computed by
such a circuit C of size No(log logN) then using random re-
strictions that leave bits unset with probability Θ(1/ logN)
we can ensure both that all bottom-level AND gates of C are
reduced to fan-in at most δ log2N and that every ⊕ block of
inputs in G contains at least one unset input bit. Applying
Proposition 6.2 yields a contradiction to Theorem 5.8.
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7. PROOF OF LEMMA 3.1
Proof: As in the proof for Lemma 2.4, we write the

requirements as a linear program and study its dual. The
lemma is implied by proving that the following linear
program P has optimal value ≤ 1:

Minimize η subject to

yS :
∑

x∈{0,1}m
h(x)χS(x) = 0 : |S| < d

β :
∑

x∈{0,1}m
h(x)f(x) ≥ ε

vx : µ(x)− h(x) ≥ 0 : x ∈ {0, 1}m

wx : µ(x) + h(x) ≥ 0 : x ∈ {0, 1}m

λρ : η − 2|ρ|−α(|ρ|)
∑
x∈Cρ

µ(x) ≥ 0 : ρ ∈ {0, 1, ∗}m

γ :
∑

x∈{0,1}m
µ(x) = 1

Suppose that we have optimum η ≤ 1. In this LP for-
mulation, inequality γ ensures that the function µ is a
probability distribution, and inequalities vx and wx ensure
that µ(x) ≥ |h(x)| so ||h||1 ≤ 1. If ||h||1 = 1, then we must
have µ(x) = |h(x)| and we can write h(x) = µ(x)g(x) as
in the proof of Lemma 2.4 and then the inequalities yS will
ensure that Corµ(g, χS) = 0 for |S| < d and inequality β
will ensure that Corµ(f, g) ≥ ε as required. Finally, each
inequality λρ ensures that µ(Cρ) ≤ 2−|ρ|+α(ρ|) which is
actually a little stronger than our claim.

The only issue is that an optimal solution might have
||h||1 < 1. However in this case inequality β ensures that
||h||1 ≥ ε. Therefore, for any solution of the above LP
with function h, we can define another function h′(x) =
h(x)/||h||1 with ||h′||1 = 1 and a new probability distri-
bution µ′ by µ′(x) = |h′(x)| ≤ µ(x)/||h||1 ≤ µ(x)/ε.
This new h′ and µ′ still satisfy all the inequalities as before
except possibly inequality λρ but in this case if we increase
η by a 1/||h||1 factor it will also be satisfied. Therefore,
µ′(Cρ) ≤ 2−|ρ|+α(|ρ|)/ε.

Here is the dual LP:

Maximize β · ε+ γ subject to

η :
∑

ρ∈{0,1,∗}m
λρ = 1

µ(x) : vx + wx + γ −
∑
ρ‖x

2|ρ|−α(|ρ|)λρ = 0 : x ∈ {0, 1}m

(5)

h(x) : βf(x) +
∑
|S|<d

ySχS(x) + wx − vx = 0 : x ∈ {0, 1}m

(6)
β, vx, wx, λρ ≥ 0 : x ∈ {0, 1}m

Since yS are arbitrary we can replace
∑
|S|<d ySχS(x)

by pd(x) where pd is an arbitrary polynomial of degree < d

and rewrite (6) as:

h(x) : βf(x) + pd(x) + wx − vx = 0 : x ∈ {0, 1}m (7)

Equations (5) and (7) for x ∈ {0, 1}m together are equiva-
lent to:

2wx + βf(x) + pd(x) + γ −
∑
ρ‖x

2|ρ|−α(|ρ|)λρ = 0 and

2vx − βf(x)− pd(x) + γ −
∑
ρ‖x

2|ρ|−α(|ρ|)λρ = 0.

Since these are the only constraints on vx and wx respec-
tively other than non-negativity these can be satisfied by any
solution to

βf(x) + pd(x) + γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ and

−βf(x)− pd(x) + γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ,

which together are equivalent to

|βf(x) + pd(x)|+ γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ.

Since pd(x) is an arbitrary polynomial function of degree
less than d, we can write pd = −βqd where qd is another
arbitrary polynomial function of degree less than d and we
can replace the terms |βf(x) + pd(x)| by β|f(x)− qd(x)|.

Therefore the dual program D is equivalent to maximizing
β · ε+ γ subject to

β|f(x)− qd(x)|+ γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ

for all x ∈ {0, 1}m, where λ is a probability distribution
on the set of restrictions and qd is a real-valued function of
degree < d.

Now, let B be the set of points x ∈ {0, 1}m at which
|f(x)−qd(x)| ≥ ε. For any x ∈ B, the value of the objective
function of D, which is β · ε+ γ, is not more than

β|f(x)− qd(x)|+ γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ. (8)

Let R(x) denote the right-hand side of inequality (8). It
suffices to prove that R(x) ≤ 1 for some x ∈ B. This is, in
turn, equivalent to proving that

min
x∈B

R(x) ≤ 1,

for any distribution λ. Since deg<ε,α(f) is larger than the
degree of qd, there must exist x ∈ {0, 1}m that is both α-
light for λ and |f(x)−qd(x)| ≥ ε. Since |f(x)−qd(x)| ≥ ε
we have x ∈ B and since x is α-light for λ we have R(x) ≤
1 which is what we need to prove.

We note that the bounds in Lemma 3.1 will require α(r) ≥
rδ for some δ > 0 when applied to AC0 functions: By results
of Linial, Mansour, and Nisan [15], for any AC0 function f
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and constant 0 < η < 1, there is a function pd of degree
d < mη , such that ||f − pd||22 ≤ 2m−m

δ

for some constant
δ > 0. Let Bm be the set of x such that |f(x)−pd(x)| ≥ ε.
Then |Bm|ε2 ≤

∑
x∈Bm |f(x)−pd(x)|2 ≤ ||f −pd(x)||22 ≤

2m−m
δ

so |Bm| ≤ 2m−m
δ

/ε2. If we tried to replace the
upper bound on µ(Cρ) by some c(|ρ|) where 1/c(m) is
ω(|Bm|) then in the dual program D, we could choose λx =
1/|Bm| for x ∈ Bm and λρ = 0 for all other ρ and for these
values β would be unbounded.
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