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Abstract—In this paper, we present our experiences in using symbolic model checking to analyze a specification of a software system
for aircraft collision avoidance. Symbolic model checking has been highly successful when applied to hardware systems. We are
interested in whether model checking can be effectively applied to large software specifications. To investigate this, we translated a
portion of the state-based system requirements specification of Traffic Alert and Collision Avoidance System II (TCAS II) into input to a
symbolic model checker (SMV). We successfully used the symbolic model checker to analyze a number of properties of the system. We
report on our experiences, describing our approach to translating the specification to the SMV language, explaining our methods for
achieving acceptable performance, and giving a summary of the properties analyzed. Based on our experiences, we discuss the
possibility of using model checking to aid specification development by iteratively applying the technique early in the development cycle.
We consider the paper to be a data point for optimism about the potential for more widespread application of model checking to software
systems.

Index Terms—Formal methods, state-based specifications, requirements, statecharts, symbolic model checking, binary decision
diagrams, software verification.
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1 INTRODUCTION

RRORS in software specifications cost money and, in
some cases, threaten lives [8], [43]. How can we in-

crease our confidence in the specifications, particularly
those of safety-critical systems? Formal methods offer op-
portunities for mechanical verification, but most existing
techniques either do not scale to large systems, require ex-
tensive human guidance, or are limited to verifying simple
(though important) properties like deadlock freedom, con-
sistency, and completeness.

Symbolic model checking [15] based on binary decision
diagrams (BDDs) [10] is an efficient automatic verification
technique that is simultaneously capable of scaling and of
verifying a wide range of properties (Section 2). It has been
applied successfully to many industry-scale hardware cir-
cuits, but not aggressively to the analysis of software speci-
fications. In this paper, we describe an experience in ana-
lyzing a large system requirements specification using
symbolic model checking.

In our experiment, we translated (Sections 3 and 4) a
significant portion of a preliminary version of the Traffic
Alert and Collision Avoidance System II (TCAS II) System
Requirements Specification from the Requirements State
Machine Language (RSML) [44] into input to the Symbolic
Model Verifier (SMV) [45]. TCAS II is an aircraft collision

avoidance system required on many commercial aircraft
and has been described as “the most complex system to be
incorporated into the avionics of commercial aircraft” [44,
p. 685]. We were able to control the size of the BDDs repre-
senting the specification (Section 5) so that we could ana-
lyze a number of properties (Section 6). These include gen-
eral robustness properties as well as some safety-critical
properties specific to the domain.

Our objective was to test the effectiveness of model
checking on software systems, so our experiences in ap-
plying the technology are more important than the individ-
ual results. One intent is to convey how we overcame some
key obstacles, with the hope that most or all of these tech-
niques are applicable to other situations. We stress two ap-
proaches that we found crucial in overcoming the com-
plexity and size of the specification, making it more ame-
nable to symbolic model checking: the use of nondeter-
ministic modeling primarily to abstract nonlinear arithme-
tic and to allow checking part of the specification, and the
use of an iterative process to analyze the specification. We
discuss related work (Section 7), as well as point out some
limitations of the current model checking techniques and
tools, and suggest some future research directions (Section 8).

Our analysis was based on preliminary versions of the
specification, mainly on the version 6.00, dated March 1993.
We did not have access to later versions, so we do not know
if the properties identified here are present in later versions.

This article is a full-length report of the conference ver-
sion of the paper [5].

2 MODEL CHECKING

Model checking is a formal verification technique based on
state exploration. Given a state transition system and a
property, model checking algorithms exhaustively explore
the state space to determine whether the system satisfies
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the property. Fig. 1 is a schematic of the process of model-
checking a state-based specification, with the instances that
we used for the components shown in parentheses. A
model of the specification and a property are fed to a model
checker. The result is either a claim that the property is true
or else a counterexample (a sequence of states from some
initial state) falsifying the property. In practice, counterex-
amples often provide valuable debugging information, and
can be used by the software engineer to modify the specifi-
cation, the model, or the property checked. This iterative
process is inherent in our work.

In the rest of Section 2, we give an overview of the basics
of CTL model checking and SMV, the model checker that
we used.

2.1 The CTL Model Checking Problem
In temporal-logic model checking, we are given a state
transition system, which models a software or hardware
system, and a property specified as a formula in a certain
temporal logic, and determine whether the system satisfies
the formula. A common logic for model checking is the
branching-time Computation Tree Logic (CTL) [19], which
extends propositional logic with certain temporal operators.
Typical formulas include the following (meanings of the
temporal operators such as AG will be given later):

AG safe: All reachable states are safe.

AG AF stable: The system is stable infinitely often.

AG (request → AF response): A request is always followed
by a response  sometime in the future.

AG EF restart: It is possible to restart the system in any
reachable state.

Formally, a state transition system  〈Q, R, I〉 consists of a
set of states Q, a state transition relation R ⊆ Q × Q, and a set
of initial states I ⊆ Q. A path is an infinite sequence of states
such that each consecutive pair of states is in R. The set of
states Q is often encoded by a set of state variables, such that
each state corresponds to some valuation for the variables
and no distinct states correspond to the same valuation (that
is, the mapping of Q to the variable valuations is one-to-one).

For simplicity we discuss just a subset of CTL, namely
the subset with only the temporal operators AG, AF, EG,
and EF, which are sufficient to understand our examples.
We can recursively define this restricted class of CTL for-
mulas as follows: We say that a proposition is any boolean

combination of predicates on the state variables. A formula
is either a proposition, a boolean combination of formulas,
or of the form AG f, AF f, EG f, or EF f, where f is a formula.

Each formula is evaluated at some state q. A proposition
holds at q if q satisfies the proposition. The operator A
means “for all paths starting at q,” E means “for some path
starting at q,” G means “for every state along the path,” and
F means “for some state along the path.” So AG safe holds
at q if every state (G) along every path (A) starting at q satis-
fies the proposition safe.

The system satisfies a formula if the formula holds at all
initial states. If not, a model checker typically attempts to
find a counterexample. For example, if the formula AG safe
is false, a counterexample is a finite path starting at some
initial state and ending at a state that is not safe.

Readers familiar with temporal-logic model checking may
notice that, although a CTL formula is usually interpreted
over a Kripke structure in which every state is labeled by a
set of atomic propositions, in our definition, a state is not
explicitly labeled, but can be thought as being labeled im-
plicitly by its corresponding state-variable valuations. This
more restricted formulation is sufficient for our presentation.

2.2 Symbolic Model Checking and BDDs
In explicit model-checking techniques, the truth value of a
CTL formula is determined in a graph-theoretic manner by
traversing the state diagram, with time complexity linear in
the size of the state space and in the length of the formula
[19]. Unfortunately, the size of the state space is often expo-
nential in the size of the system description, resulting in the
state explosion problem.

An important breakthrough in model checking was the
introduction of symbolic techniques: Instead of visiting indi-
vidual states as in conventional state space search, symbolic
model checkers visit a set of states at a time [15], [45]. A
state set can be represented by a predicate on the state vari-
ables such that a state is in the set if and only if the predi-
cate is true at the state. The efficiency of symbolic model
checking relies on succinct representations and efficient
manipulations of these predicates.

When the state space is finite, we can assume without
loss of generality that the state variables are boolean and
there are only finitely many of them. A predicate on these
variables is simply a boolean function, which can be repre-
sented by reduced ordered binary decision diagrams

Fig. 1. Model-checking a specification.
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(BDDs) [10]. Intuitively, a BDD is like a binary decision tree,
except that isomorphic subtrees must be combined result-
ing in a directed acyclic graph. In addition, each path can
contain a variable at most once, and must comply with a
fixed linear order of the variables. BDDs are canonical (that
is, given a boolean function and a variable order, there ex-
ists a unique BDD that represents the function) and boolean
operations such as conjunction, disjunction, and negation
can be computed in polynomial time. BDDs are usually
small, but often their sizes depend critically on the variable
order (as we will see in Section 5.3).

A number of BDD-based symbolic model checkers have
been built, mainly for hardware circuit verification. They
represent state sets, and often the transition relation, as
BDDs. Because of the efficiency of BDDs and their algo-
rithms, hardware systems with over 1020 states have been
analyzed [16], and many industrial designs have been veri-
fied or falsified.

2.3 SMV
SMV [45] is a CTL symbolic model checker using BDDs to
represent state sets and transition relations. Below we
summarize the SMV features pertinent to our discussion. In
SMV, 1 represents true, and 0, false. The logical operators
and, or, and not are &, |, and !, respectively.

An SMV program consists of the description of a finite-
state transition system and a list of CTL formulas. Recall
that a transition system is defined by a state space, a transi-
tion relation, and a set of initial states. The state space is
determined by state variable declarations, preceded by the
keyword VAR. For example, the code

VAR
  b: boolean;
  x: 0..7;
  s: {on, off};

declares a boolean variable b, an integer variable x ranging
between 0 and 7, and a variable s with value drawn from
the set {on, off}. The variable x is internally represented
as three boolean variables.

The transition relation and the initial states can be speci-
fied by a collection of simultaneous assignments: Initial-
state assignments are made simultaneously at the start, and
subsequently next-state assignments are simultaneously
executed once per cycle. Assignments are preceded by the
keyword ASSIGN . For any variable var, init(var) refers to
the value of var in the initial states, so the code

ASSIGN
  init(b) := 0;

sets the initial value of b to 0. To define the transition rela-
tion, the expression next(var) represents the value of var in
the next states. Therefore:

ASSIGN
  next(b) := !b;

specifies the next-state value of b to be the negation of its
current value; that is, its value toggles between 0 and 1 for-
ever. The next operator can also appear on the right-hand
side of an assignment.

A common way to define next-state values is to use a
case expression:

ASSIGN
  next(x) := case
               x < 7: x + 1;
               1: 0;
             esac;

This says that if the value of x is currently less than 7, it will
be incremented by 1 in the next state; otherwise, it will be
reset to 0. In other words, x  is a modulo-8 counter. (The
branches are evaluated sequentially, and since 1 means true,
the second branch represents the default case.)

SMV has a macro-like facility for defining a symbol to
represent an expression, using the keyword DEFINE. Notice
that a state variable is not introduced for such defined
symbols. For example:

DEFINE
  d := x = 7 & b = 0;
ASSIGN
 next(s) := case
              d: on;
              1: off;
            esac;

The code above sets the next-state value of s to on when d
is true, that is, when x is 7 and b is false. The next operator
can also be applied to defined symbols (but can only appear
on the right-hand side of an assignment). That is, next(sym)
gives the value of sym in the next state. This is equivalent to
replacing each variable var with next (var) in the definition
of sym. For example, next(d) is identical to next(x)= 7 &
next(b) = 0.

Two sources of nondeterminism in SMV are relevant to
us. An expression can be a set, and it nondeterministically
evaluates to a value from that set. As an example, the code

ASSIGN
  init(x) := {0, 1};

restricts the initial value of x to either 0 or 1. In addition,
when the initial or the next-state value of a variable is not
specified, it nondeterministically evaluates to a value of
its type.

An alternative way to specify the transition relation is to
use the keyword TRANS, followed by an arbitrary expres-
sion involving the state variables, defined symbols, and/or
their next versions. The expression directly defines the
transition relation as a proposition. For example, the as-
signment to next(s) above is equivalent to the following:

TRANS
  (d & next(s)= on) | (!d & next(s) = off)

Next-state assignments define the transition relation
imperatively, whereas TRANS statements define it declara-
tively. TRANS statements are sometimes more succinct and
are strictly more expressive. However, they are less robust;
for example, an empty transition relation can be specified
with TRANS statements, resulting in strange analysis results.
Such problems can be hard to track down, so TRANS state-
ments must be used with care.

A program can contain both next-state assignments and
TRANS statements. Their conjunction forms the transition
relation.
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3 TRANSLATION BASICS

In Section 3.1, we give an informal overview of RSML, and
provide intuition of the translation from RSML to SMV by
showing an example in Section 3.2. General translation
rules will be described in Section 4.

3.1 RSML Overview
RSML [44] is a state-machine language based on statecharts
[31], extending conventional state diagrams with state hier-
archies and broadcast communications. Focusing on a sub-
set of RSML, we model a system by a state hierarchy,
events, and inputs; in particular, the input and output inter-
faces in RSML are ignored.

3.1.1 State Hierarchy
State hierarchies allow the machine to have deep and or-
thogonal structures. More precisely, each state S may
contain substates, whose superstate is S. The state S is either
an and-state or an or-state. Intuitively, the machine is in S if
and only if: 1) it is an and-state and the machine is in all of
its substates or 2) it is an or-state and the machine is in
exactly one of its substates. Each or-state has exactly one
default substate; intuitively, if the machine enters an or-
state, it also enters its default substate unless it explicitly
enters some other substate. If a state has no substates, it is
an atomic state.

Fig. 2 shows an example of an RSML machine. It only
illustrates some of the features of RSML and statecharts,
and does not represent any real device. It triggers an alarm
when the altitude of an aircraft is too low according to cer-
tain criteria. The hierarchical structure is shown in the dia-
gram by containment. At the highest level, Sys is an and-
state, whose substates are Alt-Layer and Alarm (substates of
an and-state are separated by dashed lines). Alt-Layer is an
or-state with three substates, High, Mid, and Low. Alarm is
also an or-state, with substates Shutdown and Operating; the
latter is an and-state, containing Mode and Volume. Default
states, e.g., Mid, are indicated by arrows without origins.
Fig. 3 shows the hierarchy as a tree.

3.1.2 Inputs and Events
The example contains two input variables from the envi-
ronment, namely alt (an integer) and switch (up, down, or
test). The input alt represents the altitude of the aircraft, and
switch is controlled by the pilot.

States in RSML are synchronized by events, which are
broadcast to the entire system. There are three events in the
example: u, v, and w; the first two are generated by the en-
vironment and are called external events. The environment
is supposed to generate u periodically, and v is generated
when the pilot changes the volume of the alarm. The event
w is generated by the machine for internal synchronization.
For simplicity, we assume in general that an event is either
generated by the environment or by the RSML machine, but
not both.

3.1.3 Transitions
A transition is represented as an arrow originating from a
source state to a destination state. We use the statecharts no-
tation and label a transition with the form

Fig. 2. An example of an RSML machine.

Fig. 3. The state hierarchy drawn as a tree. The shaded nodes repre-
sent and-states, unshaded nodes represent or-states, and the leaves
are atomic states.

id:  trig[cond]/acts

where id uniquely identifies a transition and is only used for
our presentation; trig is a trigger event; the guarding condi-
tion cond is a predicate on states and inputs; and  acts is a set
of action events. The guarding condition and the actions are
optional. The idea is that if the machine is in the source state,
the trigger occurs, and the guarding condition is true (it is
considered true if absent), then the transition is enabled. If no
other conflicting transitions are enabled (intuitively two tran-
sitions conflict if they cannot be taken at the same time), then
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this transition is taken: The machine exits the source state,
enters the target state, and generates the action events. Addi-
tional states may be entered or exited to maintain the integ-
rity of the state hierarchy. For example, if t14 is taken, the state
On is entered, so are Operating, Mode, Volume, and 1.

A machine operates as follows. Initially, the environment
generates some external events, enabling transitions as de-
scribed above. A maximal set of enabled transitions that are
mutually nonconflicting is then taken, possibly generating
new events. This is called a microstep. (Notice that if there are
conflicting transitions enabled, then this maximal set is not
unique, resulting in nondeterminism.) After each microstep,
all the events except those newly generated vanish. These
new events are broadcast to the whole machine and may
trigger other transitions. This process continues until no
more transitions are enabled, at which point the machine
becomes stable. This cascading of microsteps, from the point
when the external events arrive to the point when the ma-
chine becomes stable, is called a step. RSML assumes the syn-
chrony hypothesis [6], which says that during a step, no new
external event may occur and the values of the inputs remain
unchanged. In other words, the machine runs infinitely faster
than the environment. Once the machine is stable, inputs can
change and external events can again occur.

3.1.4 AND/OR Tables
The guarding condition c of transition t10, too complex to fit
in Fig. 2, is shown in Fig. 4 as an AND/OR table, one of the
features that distinguish RSML from statecharts. The left-
most column of the table shows a list of predicates, and the
table represents a proposition over these predicates in dis-
junctive normal form. That is, each column (except the
leftmost one) evaluates to the conjunction of the predicates
marked T in that column (or their negations if any were
marked F), and the entire table evaluates to true if one or
more of its columns is true. Informally, the expression
PREV(expr) refers to the value of expr at the end of the previ-
ous step. The special variable t indicates the current time,
while t(Exited(S)) is the time when state S was last exited.
(Note that the synchrony hypothesis implies that the value
of t does not change during a step.) So the table reads: (row
1) the machine is in state Low, and either (column 1) the
current value of alt is less than 1,000, or (column 2) both the
current and previous values of alt are less than 1,500, or
(column 3) the machine exited Mid at least 5 time units ago.

Fig. 4. Transition from Off to On.

To reduce the sizes of the AND/OR tables, RSML allows
functions and macros. For example in Fig. 4, instead of an
input, alt could have been a function defined elsewhere in
the requirements, and its value might depend on inputs
and states. Similarly, a macro can replace a primitive predi-
cate in the leftmost column, and is defined as an AND/OR
table elsewhere. Functions and macros can optionally take
parameters.

3.2 Translating the Example
In Section 3.2, we translate the RSML example above to
SMV code. The complete SMV program is shown in Ap-
pendix A.

3.2.1 SMV Variables
First, we declare the SMV variables for the state hierarchy,
inputs, and events. The events are easy—they are naturally
translated to boolean variables. For example:

VAR
  u: boolean;

and similarly for other events. The intended meaning is
that the variable is true if and only if the event has just been
generated. The input switch is also straightforward:

switch: {up, down, test};

However, the RSML machine does not specify the upper
and lower bounds for alt. Obviously, any lower bound less
than 1,950 and any upper bound greater than 10,050 will be
sufficient. In fact, alt can be represented by five values, but
let’s keep the translation straightforward and define it to
range between 0 and 20,000 (BDDs should handle this
range without problem):

alt: 0..20000;

The state hierarchy can be encoded as follows. Each or-
state in the hierarchy provides a choice of its substates, so it
seems natural to declare a variable for each or-state, whose
substates form the range of the variable:

Alt-Layer: {High, Mid, Low};
Alarm: {Shutdown, Operating}
Mode: {Off, On};
Volume: {1, 2};

The values of these variables completely determine the cur-
rent states of the machine. Note that when the value of
Alarm is Shutdown, the values of Mode and Volume are
irrelevant. We find it convenient to define a symbol to indi-
cate the exact condition under which the machine is in a
particular state. For example, we define

DEFINE
  in-Sys := 1
  in-Alt-Layer := in-Sys;
  in-Alarm := in-Sys;

because the machine is always in Sys, and thus always in
Alt-Layer and Alarm as well. We also have

in-High := in-Alt-Layer & Alt-Layer = High;
in-Operating := in-Alarm & Alarm = Operating;
in-Mode := in-Operating;
in-Off := in-Mode & Mode = Off;

Conditions for other states can be defined similarly.
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3.2.2 RSML Transitions
Now we can define when a transition, say t7, is enabled:

DEFINE
  t7 := in-Mid & u & alt < 1950;

This simply reflects the definition: A transition is enabled
when the machine is in the source state, the trigger event
occurs, and the guarding condition is true. Now, to specify
the state change, we use the following self-explanatory code:

ASSIGN
  next(Alt-Layer) :=
    case
      t1|t4:    High;
      t2|t5|t6: Mid;
      t3|t7:    Low;
      1:        Alt-Layer;
    esac;

We also need to specify the event generated:
next(w) := t1|t2|t3|t4|t5|t6|t7;

and initialize the states and event:
init(Alt-Layer) := Mid;
init(Alarm) := Shutdown;
init(w) := 0;

Note that the values of Mode and Volume in the initial states
are irrelevant, so we do not need to initialize them, al-
though initializing them to any value does no harm.

3.2.3 Inputs
Unless explicit constraints are given, inputs to the machine
are modeled nondeterministically to allow arbitrary envi-
ronmental behaviors. However, the synchrony hypothesis
precludes the inputs from changing when the machine is
not stable. We define what it means to be stable:

DEFINE
  stable := !(u|v|w);

Then the input alt changes according to the following as-
signment.

ASSIGN
  next(alt) :=
    case
      stable: 0..20000;
      1: alt;
    esac;

The default branch above maintains the synchrony hy-
pothesis by keeping the value of the variable unchanged
during a step. The code for switch is similar. Events u and v
are also unconstrained at the beginning of a step, but dur-
ing a step they are never generated:

next(u) :=
  case
    stable: {0, 1};
    1: 0;

  esac;

Inputs and external events need not be initialized because
they are unconstrained at the start of a step.

3.2.4 Prev and Timing Constraints
We have already translated most of the RSML machine ex-
cept two predicates in the AND/OR table in Fig. 4. Refer-
encing the previous value of Alt requires the introduction of

an extra variable prev-alt to remember its value at the
end of a step:

VAR
  prev-alt: 0..20000;
ASSIGN
  next(prev-alt) :=
    case
      stable: alt;
      1: prev-alt;
    esac;

Timing constraints are a little tricky. First, we assume that
time is discrete. To translate the expression t ≥ t(Exited(Mid))
+ 5, we observe that it is sufficient to know t − t(Exited(Mid)),
represented by the variable time-Mid below:

VAR
  time-Mid: 0..5;
ASSIGN
  next(time-Mid) :=
    case
      t2|t4|t7              : 0;
      stable & time-Mid  < 5: time-Mid + 1;
      1                     : time-Mid;
    esac;

The timer time-Mid indicates the number of time units
passed since Mid was last exited. The timer is reset when
Mid is exited via transitions t2, t4, or t7. At the end of a step,
the value of the timer is incremented unless it is already 5—
since we only care whether the timer is at least 5, specific
values greater than 5 are irrelevant.

Note that taking t2 is viewed as exiting and re-entering
Mid. This is consistent with the semantics of RSML. How-
ever, if t2 were specified as a so-called identity transition,
then taking the transition would not reset the timer. In that
case, we would simply leave out t2 in the first case branch.
For simplicity, we will not further discuss identity transi-
tions in this paper.

4 TRANSLATION RULES

To explain the translation from RSML to SMV more gener-
ally and precisely, we first formally define an RSML ma-
chine as a state transition system given in Section 2.1, based
on the operational semantics of RSML by Leveson et al.
[44]. Some of our definitions are based on Pnueli and
Shalev [49]. For simplicity, we first assume the absence of
timing constraints and PREV functions. Then we show how
we translate deterministic RSML machines and certain
nondeterministic machines to SMV programs. Timing con-
straints and PREV functions are considered later in this sec-
tion, along with some discussions on alternative semantics
and translation rules.

4.1 RSML Machines as State Transition Systems
We define an RSML machine as a state transition system
 〈Q, R, I〉. To distinguish between an RSML state and an
element in Q, we call the latter a global state and call R the
global transition relation.

4.1.1 RSML States
Let States be the finite set of RSML states, and let Children:
States → 3(States) map each state to its substates, or children.
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The function is required to impose a tree structure on the
states with a distinguished element root as the root of the
tree. We sometimes use parent as synonym for superstate.

We define Children+ and Children*, the transitive and re-
flexive-transitive closures of Children, as:

Children Children

Children Children

i
i

i
i

+
≥

≥

=

=

<

<

1

0
* ,

where for each state p in States,

Children p p

Children p Children s ii
s Children p

i

0

1 0

( ) { }

( ) ( ) for .( )

=

= ≥+
∈<

If s ∈ Children*(p), then we say that s is a strict descendant of
p, that p is an ancestor of s, and that s and p are ancestrally
related. If in addition s ≠ p (that is, s ∈ Children+(p)), then s is
a strict descendant of p, and p is a strict ancestor of s.

If Children(s) = /0 , then s is an atomic state. Otherwise, it
is either an and-state or an or-state; in the latter case, it has
exactly one default substate.

Intuitively, a configuration is a maximal set of states that
the machine can be in simultaneously. That is, C ⊆ States is
defined to be a configuration if

1)� root ∈ C;
2)� for every and-state s, either s and all substates of s are

in C, or they are all not in C; and
3)� for every or-state s, either s and exactly one substate

of s are in C, or s and all substates of s are not in C.

For example, in Fig. 2, the states {Sys, Alt-Layer, High, Alarm,
Shutdown} is a configuration.

4.1.2 Global States
Let Config ⊆ 3(States) be the set of all configurations, Events
be the finite set of events, and Inputs be the set of all possi-
ble assignments to the input variables. The set Q of global
states is defined to be Config × 3(Events) × Inputs. In other
words, a global state is a triple consisting of a configuration,
a set of events, and an assignment to the input variables.

4.1.3 Initial Global States
Intuitively, the default completion of a state p, denoted Com-
plete(p), is the unique configuration C containing p such that
for any or-state, its default substate is preferred over other
substates. That is, for each or-state s ∈ C that is not a strict
ancestor of p, the default substate of s is also in C. For ex-
ample, the default completion of On is {Sys, Alt-Layer, Mid,
Alarm, Operating, Mode, On, Volume, 1}.

Let External ⊆ Events be the set of external events. The set
I of initial global states is the set of every triple (C, E, V)
with C = Complete(root), E ⊆ External, and V ∈ Inputs.

4.1.4 RSML Transitions
Let Trans be the set of RSML transitions. Each transition tr ∈
Trans has five attributes: the source state src(tr) ∈ States, the
destination state dest( tr) ∈ States, the trigger event trig( tr)
∈ Events, the guarding condition cond( tr) ⊆ 3( States) × In-
puts, and the action events acts( tr) ⊆ Events – External.

The scope of a transition tr, denoted by scope(tr), is de-
fined as the lowest common strict or-ancestor of the source
and the destination; that is, scope(tr) is an or-state that is a

strict ancestor of both src(tr) and dest(tr), and every such or-
state is an ancestor of scope(tr). The scope of a transition is
visualized in the state diagram as the smallest or-state
strictly containing both the source and the destination, and
intuitively is the minimal context of the transition. We re-
quire that each transition in Trans must have a well-defined
scope, making, for instance, any transition out of root ille-
gal. For example, the scopes of t1 through t7 are Alt-Layer,
and the scope of t14 is Alarm.

4.1.5 Global Transitions
A transition tr is enabled in a global state (C, E, V) with C ∈
Config, E ⊆ Events, and V ∈ Inputs, if src(tr) ∈ C (the ma-
chine is in the source, trig(tr) ∈ E (the trigger occurs), and
(C, V) ∈ cond(tr) (the guarding condition holds).

We say that two distinct transitions conflict if their scopes
are ancestrally related. For example, the transitions in Alt-
Layer (that is, t1 through t7) are pairwise conflicting since
their scopes are identical and thus ancestrally related. Tran-
sitions t9 and t10 also conflict, because the scope of t9 (Alarm)
is an ancestor of the scope of t10 (Mode).

Define maxsrc(tr) to be the unique child of scope(tr) that is
an ancestor of src(tr), and maxdest(tr) to be the unique child
of scope(tr) that is an ancestor of dest(tr). For instance,
maxsrc(t14) and maxdest(t14) are Shutdown and Operating,
respectively. If a transition tr is taken, all descendants of
maxsrc(tr) that the machine is currently in are exited, and
certain states, descendants of maxdest(tr) induced by
dest(tr), are entered.

Formally, for any transition tr, we define Exits(tr) as
Children*(maxsrc(tr)) and Enters(tr) as the intersection of
Complete(dest(tr)) and Children*(maxdest(tr)). Enters(tr) pre-
cisely specifies the states that the machine enters on taking
transition tr. Exits(tr) is a little less precise. Clearly, before
transition tr is taken, the machine is in some states in Ex-
its(tr), in particular src(tr), and after tr is taken the machine
is no longer in any state in Exits(tr). The mere fact that tr is
taken does not in general specify any more information
than this about the states that the machine is in prior to the
transition. As an example, Exits(t14) is {Shutdown}, Enters(t14)
is {Operating, Mode, On, Volume, 1}, Exits(t9) is all the de-
scendants of Operating, and Enters(t9) is {Shutdown}.

The global transition relation

R ⊆ (Config × 3(Events) × Inputs)2

is defined as the set of tuples (C, E, V, C’, E’, V’) such that
there exists a set of transitions T ⊆ Trans satisfying all of the
following:

1)�Every transition in T is enabled in (C, E, V).
2)�No two transitions in T conflict.
3)�T is maximal: Every transition not in T but enabled in

(C, E, V) conflicts with some transition in T.
4)� ′ = − ∈ ∈C C Exits tr Enters trtr T tr T( ( )) ( ).U U<
5)�If T ≠ /0 , then ′ = ∈E acts trtr TU ( ) and V = V’.
6)�If T = /0 , then ′ ⊆E  External and V’ ∈ Inputs.

The transitions in T are said to be taken. If in some reach-
able global state the choice of T is not unique, then the ma-
chine is nondeterministic. Point 5) above generates the ac-
tion events and keeps the input variables unchanged ac-
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cording to the synchrony hypothesis, while 6) generates a
subset of external events and assigns new values to the in-
puts, indicating the end of a step.

4.2 Translate Global States
Recall that a global state consists of a configuration, a set of
events, and an assignment to inputs. We assume that the
numbers of RSML states, events, and inputs, as well as the
range of each input are all finite, so the global state space is
also finite. To symbolically encode the events, we declare a
boolean variable for each of them. Similarly, a naive en-
coding of the configurations, each being a set of states, is to
declare a boolean variable for each state. This encoding can
be improved by the observation that a configuration is
uniquely determined by its intersection with the set of
atomic states. So we only need a boolean variable for each
atomic state. This method, however, still requires a large
number of boolean variables—an or-state with n atomic
substates requires n boolean variables.

The optimal encoding for this or-state is obviously to de-
clare one variable with a range of size n (or equivalently de-
clare log n boolean variables). The encoding described in
Section 3.2 is a natural extension of this idea. Recall that for
each or-state s, we declare a variable with range Children(s).
To obtain a more succinct encoding, we also flatten nested or-
states, i.e., or-states whose superstates or substates are also
or-states. For example, taken from the TCAS II requirements,
Fig. 5 shows an example of nested or-states—Composite-
RA, RA, and Positive are all or-states. (The vertical bar on
the right together with the arrows attached to it is a transi-
tion bus, implying a transition between every pair of states
connected to the bus. That is, No-RA, Climb, Descend, and
Negative are pairwise connected by a transition in either
direction.) Our translated SMV program contains the fol-
lowing code:

VAR
  Composite-RA: {No-RA, Climb, Descend,
                 Negative};
  Climb-VSL: {No-Climb-VSL, VSL0, … };
  Descend-VSL: {No-Descend-VSL, VSL0, … };
DEFINE
  in-RA := in-Positive | in-Negative;
  in-Positive := in-Climb | in-Descend;
  in-Climb := in-Composite-RA
              & Composite-RA = Climb;

More generally, let 2 be the set of or-states whose par-
ents (if any) are and-states, and let $ be the set of and-
states or atomic states that have or-state parents. That is, the
set 2 < $ ⊆ States consists of states at the upper bounda-
ries of the alternations between or-states and and-states in
the state hierarchy. Note that root is not contained in $, but
may or may not be in 2. For each s ∈ $, its leader, denoted
as leader(s), is its lowest ancestor in 2; and for each p ∈ 2,
the set of its followers, denoted as Followers(p), consists of
every s ∈ $ whose leader is p. Note that this leader-
followers relationship is identical to the parent-child rela-
tionship, when there are no nested or-states and nested
and-states, and every atomic state has an or-state as parent,
as is the case in our example in Fig. 2. In Fig. 5, the follow-
ers of Composite-RA are No-RA, Climb, Descend, and
Negative, while those of Climb-VSL are its children.

Fig. 6 shows the general SMV code for declaring and
initializing the global state variables. As shown in Rule 1,
we declare a variable for each leader in 2, and the range is
its followers. For each or-state s, let default(s) be its default
child, and let default*(s) be recursively defined as de-
fault*(default(s)) if default(s) is an or-state, or default(s) oth-
erwise. (Alternatively, we can characterize default*(s) as the
unique state in Complete(s) > Followers(s).) Rules 2-6 tell
when the system is in a particular state. Note that each state
corresponds to exactly one of these five rules, and there are
no loops in the recursive definitions. This encoding scheme
is one-to-one, and every valuation for the variables corre-
sponds to some legal configuration.

Rules 7-9 are for events and inputs. Range(y) denotes the
range of the input y.

4.3 Translate Deterministic Transitions
Deterministic machines are easy to translate because the set
of transitions taken is exactly the set of enabled transitions.
Fig. 7 shows translation rules that are correct only for de-
terministic machines. If these rules are applied to a nonde-
terministic machine, the behavior of the translated SMV
program will be identical to the RSML machine up to the
point when some conflicting transitions are simultaneously
enabled; after that, the two systems will start to exhibit di-
verging behaviors.

Rule 10 defines when a transition is enabled and taken.
(In Section 3 and Appendix A, for simplicity, we define one
symbol tr instead of defining tr-enabled and tr-taken.) In
the rule, cond(tr) refers to the proposition that describes the
guarding condition.

Rule 11 defines the effects of a transition on the state hi-
erarchy. The set Followers(p) > Enters(tr) contains the fol-
lower of p that the machine enters upon taking tr. Note that
this set is either empty or a singleton set.

Rules 12-15 generate the appropriate events and update
the inputs, during and at the end of a step.

We argue informally for the correctness of the transla-
tion. Clearly, the rules ensure that only enabled transitions

Fig. 5. Nested or-states in TCAS II.
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can cause state change or generate action events. We claim
that every enabled transition causes the necessary state
change: In Rule 11, because of the deterministic assump-
tion, at most one nondefault case branch can be true, so
each enabled transition tr always results in updating every
variable that has a follower in Enters(tr). By virtue of our
state encoding, this implies that every state in Enters(tr) is
entered and every state in Exits(tr) previously occupied is
exited. Finally, it is easy to see that enabled transitions al-
ways result in the generation of their action events, and that
inputs are updated correctly.

Note that the symbol stable, which indicates the end of
a step, is defined as ¬ ∨ ∈e Events e , but a direct translation
from the definition of R would be ¬ ∨ ∈tr Trans  tr-enabled.
The two versions are nearly identical, because if no events
are occurring, there will be no enabled transitions, and if
there are no enabled transitions, no events will occur in the
next microstep. Defining stable using events is more con-
cise, as there are usually far fewer events than transitions. A
second advantage is that the BDD representing stable
becomes much smaller. (More efficiency issues will be dis-
cussed in Section 5.)

The example in Section 3 was translated mostly based on
these rules. Careful readers may notice that the machine is

actually nondeterministic, so the translation is not exact. In
Section 6.1, we will discuss how to discover the violating
transitions.

4.4 Translate Nondeterministic Transition
In principle, translating machines with arbitrary nondeter-
ministic transitions is straightforward. One strategy is to
declare a set of auxiliary boolean variables representing the
transitions in trans. We can translate the definition of the
global transition relation R literally as a first-order logic
formula over the finitely many auxiliary and global state
variables, and then optionally quantify out the auxiliary
variables. This conceptually simple method is inefficient,
because the number of transitions, and thus the number of
auxiliary variables, is usually large. There are other poten-
tially more efficient ways of constructing the global transi-
tion relation, but in general the constructions are still ex-
pensive. Interested readers are referred to the work of Hel-
big and Kelb [35] for an example.

We now give modifications to the rules in Fig. 7 to han-
dle a rich class of nondeterministic machines, namely those

Fig. 6. Rules for declaring and initializing SMV variables for RSML ma-
chines.

Fig. 7. Rules for translating deterministic RSML transitions.
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with the property that a transition is taken if and only if it
appears to be taken. Rule 10’ in Fig. 8, replacing Rule 10,
explains more precisely what this assumption means: A
transition is taken if and only if it is enabled and in the next
microstep the machine enters the appropriate states and
generates the appropriate action events. We will see shortly
why this may not be true in general.

Fig. 8. Rules for translating a class of nondeterministic RSML transitions.

Rules 11’ and 16’ replace Rule 11. Rule 11’ ensures that
the machine remains in a state unless some transition exit-
ing that state is taken. The set Conflict(tr) is defined as the
transitions that conflict with tr. Rule 16’ concisely says that
the set of transitions taken must be maximal and noncon-
flicting: Either a transition is not enabled (in which case it
cannot be taken), or it is not taken because one of the con-
flicting transitions is, or it is taken, in which case none of
the conflicting transitions is. These rules are correct, if the
definition of tr-taken is correct to begin with.

Fig. 9 shows why the latter is not always true. If events x
and y can occur simultaneously when the machine is in
state A, then the two conflicting transitions are enabled.
According to the semantics, the machine will take exactly
one of tx and ty, go to state B, and generate event z. How-
ever, if we just look at the state change and the event gener-
ated, the machine will appear to have taken both tx and ty,
making our definition of tr-taken incorrect. In fact, in this
case, our translation prevents the machine from entering
state B, because otherwise, Rule 10’ would make both tx-
taken and ty-taken true, which is precluded by Rule 16’.
(On the other hand, Rule 16’ also prevents the machine
from staying at state A, resulting in deadlock.)

A necessary and sufficient condition for the correctness
of this translation is that, for any conflicting transitions that

may be simultaneously enabled, the current and next con-
figurations, together with the set of actions of the machine,
gives enough information to determine which of these tran-
sitions are taken.

4.4.1 Simpler Nondeterminism
Although the class of machines captured above is quite rich
and the translation does not introduce auxiliary variables,
the resulting SMV program can be large because Rule 16’
produces code with size quadratic in the number of transi-
tions in the worst case. Furthermore, defining the transi-
tions with the TRANS construct in SMV is more error-prone
than using ASSIGN.

However, certain nondeterminism is easy to model. As
an example, suppose we want to specify the state Alt-Layer
in Fig. 2 as an entirely nondeterministic machine: All the
guarding conditions on t1 through t7 are omitted. The
translation to SMV in this case is trivial:

ASSIGN
  next(Alt-Layer) :=
    case
      u: {High, Mid, Low};
      1: Alt-Layer;
    esac;
  next(w) := u;

As another example, we may want to abstract away the
guarding conditions of only t1 and t5. The following code
does the trick:

ASSIGN
  next(Alt-Layer) :=
    case
      t1&t5   : {High,Mid};
      t1|t4   : High;
      t2|t5|t6: Mid;
      t3|t7   : Low;
      1 : Alt-Layer;
    esac;

We used assignments similar to these in our model of the
TCAS II machine and they proved to be sufficient for our
experiments.

4.5 Translate Timing Constraints
RSML allows the guarding conditions to reference the cur-
rent time (t) or the time any state s was last entered (En-
tered(s)) or exited (Exited(s)). However, since time grows
without bound, the underlying state transition system in
general has an infinite number of global states and BDD-
based model checking becomes inapplicable.

Fortunately, many common cases can be handled. If
we restrict the predicates involving time to comparing
t-Entered(s) or t-Exited(s) with a constant, then all we need
to do is to keep track of such time lapses with variables,
which we call timers. Because there can only be finitely
many such time predicates, for each timer there exists a
largest constant against which it is compared. So the range
of the timer can be bounded by a constant, which is how we
translated the example in Section 3.2. More generally, take a
timer θ = t-Entered(s) for example. Let kθ be the upper
bound, and Tθ  be the set of transitions tr with s ∈ Enters(tr).
We have the following code:

Fig. 9. Transitions with same sources and destinations.
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VAR
  θ: 0.. kθ;
ASSIGN
  next(θ) :=
    case
      ∨ ∈tr Tθ

 tr: 0;

      stable & θ < kθ: θ  + 1;
      1: θ ;
    esac;

Notice that we do not initialize the timer. When a state s
has not been entered, for example, the value of Entered(s) is
undefined. We can catch references to undefined values by
including in the range of the timer a special symbol that
indicates that the timer is undefined, and by initializing the
timer to this symbol. A reachability analysis can then tell
whether the machine may reference the timer before it is
defined. Here, since catching such references is not our
major concern, we simply leave the initial value uncon-
strained, and let the model checker search for an initial
value that leads to violation of the property being checked.

Comparing two times, like Entered(s1) > Exited(s2), can
also be handled by introducing extra variables. Although
we have been assuming the discrete-time model (i.e., time
is a natural number), it is possible to extend model check-
ing to handle the dense-time model (i.e., time is a
nonnegative real number), when we restrict to the same
class of time predicates [2]. However, when t, Entered(s), or
Exited(s) are used in arbitrary arithmetic expressions,
whether discrete time or dense time is used, the machine
cannot be precisely modeled as a finite-state system, and in
fact, the model checking problem becomes undecidable [3].

4.6 Translate Prev
When the value of PREV(y) for some input y is needed, we
use the following code:

VAR
prev-y: Range(y);
ASSIGN
  next(prev-y) :=
    case
    stable: y;
    1: prev-y;
    esac;

Again, we do not initialize prev-y for the same reason
that we do not initialize timers. The translation can be eas-
ily modified if y is a state, a macro, or a function.

An alternative translation for PREV(y) is to remember the
truth values of the predicates involving PREV(y) instead of
the value of PREV(y) itself. For example, for the predicate
PREV(alt) < 1,500 in Fig. 4, we could remember the truth
value of alt < 1,500 instead of the numeric value of alt. This
method has the advantage of possibly using fewer BDD
variables, but is less general. For example, it cannot deal
with predicates involving both previous and current values,
like PREV(alt) < alt.

4.7 Miscellaneous

4.7.1 Other RSML Constructs
We have not exhausted all RSML constructs, but the rest are
easy to translate: Macros and functions without arguments
can be translated simply as defined symbols. Those with

arguments can be translated as SMV modules, which are
analogous to templates and can be instantiated at each call
site of the macros or functions. RSML state-machine arrays
give a succinct representation for isomorphic substates of
an and-state. They can be translated to SMV as an array of
module instances. We also have not detailed the translation
of conditional connectives (© in Fig. 5), which, roughly
speaking, factor out common triggers or guarding condi-
tions of a set of transitions. The conceptually simplest
translation is to remove a conditional connective by con-
joining each pair of incoming and outgoing transitions, al-
though more efficient translations are possible.

4.7.2 Granularity of Global Transitions
Note that when we defined the global transition relation in
Section 4.1.5, we implicitly assumed that a global transition
represents a microstep, which seems a natural choice.

Alternatively, a global transition can represent a step.
This may be more natural if we are only interested in the
stable states of the machine, although analyzing properties
within a step becomes impossible. In addition, we need to
perform a number of analyses at translation time, such as
ensuring each step does eventually terminate. The effi-
ciency of model checking is also affected: This representa-
tion may blow up the BDD size, but reduces the number of
search iterations needed in the model checking algorithms.
Therefore, it is not clear a priori whether this method works
better or worse. In our initial TCAS II experiments, it re-
sulted in huge BDDs and poor performance, and we have
not considered this method in this paper.

Yet another possibility is to represent a microstep as a se-
ries of global transitions, which directly corresponds to the
semantics of RSML given by Leveson et al. [44]. There, in-
stead of being defined as a maximal set T of nonconflicting
transitions, a microstep is equivalently defined by a loop: T
is initially empty, and enabled transitions are added to T
one at a time until a maximal set is obtained. One may
therefore choose to represent each iteration in this loop as a
global transition. An obvious drawback is the increased
number of global transitions required to encode a micro-
step. However, a more serious problem is the introduction
of asynchrony into the model: Even if T is unique (that is, the
microstep is deterministic), there are in general many dif-
ferent orders of picking the transitions in T, and the model
checking algorithm will need to explore all these possibili-
ties. Our representation of microsteps can be viewed as a
way of statically eliminating such asynchrony.

4.7.3 Alternative Semantics
Some other variants of statecharts can be translated with
similar rules. For example, the STATEMATE semantics [32]
of statecharts is close to the semantics considered here. A
notable exception is that the former does not insist on the
synchrony hypothesis but provides it as an option. We can
easily forsake the synchrony hypothesis by changing Rule
15 in Fig. 7 to set stable to 1. STATEMATE also provides
internal variables and allows assignments to them as ac-
tions. In addition, certain transitions that are considered
conflicting here are assigned different priorities and thus do
not result in nondeterminism when simultaneously en-
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abled. Trigger events are also optional. Slight modifications
to the rules would suffice for these differences. Other con-
structs like history connectors and synchronization through
activities would require new translation rules.

In contrast, the semantics defined by Pnueli and Shalev
[49] are quite different. It is unclear how to translate from
their semantics in a simple way without introducing many
auxiliary global state variables.

The RSML semantics defined by Heimdahl and Leveson
[34] are slightly different from the semantics considered
here, which are based the earlier work of Leveson et al. [44].
The differences become important when conflicting transi-
tions with different triggers are simultaneously enabled,
which does not happen in the portion of the TCAS II re-
quirements machine that we modeled. In general, however,
different translation rules would be required.

5 OBSTACLES

After we derived the translation rules in the previous sec-
tion, we had to overcome a number of obstacles to make
model-checking the TCAS II specification feasible.

5.1 TCAS II
TCAS II is an airborne collision avoidance system required
by the United States Federal Aviation Administration (FAA)
on most commercial aircraft that enter U.S. airspace. The
TCAS-equipped aircraft is surrounded by a protected vol-
ume of airspace. When another aircraft intrudes into this
volume, TCAS II generates warnings (traffic advisories)
and suggests possible escape maneuvers (resolution advi-
sories, or RAs) in the vertical direction to the pilot. Exam-
ples of RAs include Climb, Descend, Increase-Climb (“in-
crease the current climb rate”), Increase-Descend, Climb-
VSL0 (“do not descend”), and Climb-VSL500 (“do not de-
scend more than 500 ft/min”).

The system requirements specification of TCAS II, a 400-
page document, was written in RSML. The first obstacle to
analysis was its sheer size. As a first attempt we decided to
try to verify a portion of it, namely a state machine called
Own-Aircraft, which occupies about 30 percent of the speci-
fication. Own-Aircraft has close interactions with another
state machine called Other-Aircraft, which tracks the state
of other aircraft in the vicinity and possibly generates RAs.
Up to 30 other aircraft can be tracked. From the RAs given
by all the instances of Other-Aircraft, Own-Aircraft derives
a composite RA and generates visual and audio outputs to
the pilot. The state shown in Fig. 5 represents this chosen
composite RA and is one of the substates of Own-Aircraft.

Since most of Own-Aircraft is supposed to be determi-
nistic, we modeled it mainly based on the translation rules
in Section 4.3, with the abstraction discussed below. We also
created variables for any states of Other-Aircraft that are
referenced within Own-Aircraft, and allowed nondeter-
ministic transitions among the states using the translation
explained in the last part of Section 4.4.1. We focused on
resolution maneuvers with one intruder aircraft and thus
modeled only one instance of Other-Aircraft.

5.2 BDDs
In addition to boolean and enumerated variables, inputs to
the system also include numbers, such as altitude and alti-

tude rates. Different versions of the specification are incon-
sistent as to whether these numeric variables are integers or
reals. Moreover, the ranges of some of them are not speci-
fied. To use BDDs, we had to assume that these inputs are
bounded integers. Take altitudes for example. Some alti-
tude variables are specified to have granularity as fine as “1
to 10 ft,” and are compared to constants ranging from 400 to
30,500 ft. Therefore, at least 13 to 15 bits are needed to rep-
resent them.

Numeric inputs are referenced in guarding conditions,
macros, or functions. Although BDDs under a suitable vari-
able order can efficiently represent equality and inequality
between linear expressions (e.g., 2alt1 + 3alt2 > alt3), there is
provably no efficient BDD representation for multiplication
or division of variables (e.g., alt × time > distance) under any
variable order [11], [54]. So, we needed to avoid them. Two
functions in Own-Aircraft do involve multiplication and
division of values for measured altitudes and altitude rates.
These are measurements of input variables that we already
modeled nondeterministically. So we made the abstraction
to treat the calculated values as nondeterministic them-
selves. (We also eliminated from our model several input
variables that are only referenced by the two functions.)
The abstraction did not cause problems for the properties
that we checked and report in Section 6.

5.3 SMV

5.3.1 BDD Size and Linear Arithmetic
The performance of BDD-based algorithms is directly re-
lated to the BDD size. Some of our early attempts at check-
ing generated enormous BDDs: At one point the BDDs con-
sumed 200 MB of physical memory, and other runs were
terminated before the BDD was constructed. Our attempts
to check formulas with the large BDDs were generally un-
successful or too slow (our initial success in identifying
nondeterminism discussed in Section 6.1 was an overnight
run, which has been reduced to a few minutes).

The BDD size can be reduced by dynamic variable reor-
dering and conjunctive partitioning [15], which are sup-
ported by the version of SMV that we used (Release 2.4.4).
These techniques dramatically improved the performance
of checking some formulas; however, they did not solve all
the problems. The BDD size was very sensitive to the
ranges of the variables representing altitudes and altitude
rates. In fact, SMV cannot even efficiently handle our sim-
ple example program in Appendix A.

Initially we got around the problem by redefining the con-
stants and reducing the variables to small ranges, for exam-
ple, from 0 to 15 for altitudes and –4 to 3 for altitude rates.
(Increasing the variables by one bit sometimes exploded the
checking time from 10 min to more than 10 hr.) Although we
were able to build the BDDs in this way and check some
formulas, this ad hoc solution was unsatisfactory in many
ways. An obvious drawback is that because of the small
ranges, some distinct constants in the specification became
identical after the mapping (for example, both 400 ft and
1,000 ft might become 1). This changed the behaviors of the
model and caused invalid analysis results.

We could not leave the results of addition and compari-
son nondeterministic as we did with multiplication and
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division in Section 5.2, because addition and comparison
are essential to the logic of Own-Aircraft. For example, any
Descend RA is prohibited when the difference between the
current altitude of the own aircraft and the estimated
ground level altitude is less than some threshold. If the
subtraction or the comparison were modeled nondeter-
ministically, this safety requirement would be violated
trivially.

The problem with the ranges was due to SMV’s ineffi-
cient implementation rather than the limitations of BDDs.
As Yang et al. [56] observe, SMV is extremely inefficient in
constructing BDDs for integers: Building the BDD for even
a simple assignment like

next(x) := x;

requires time and space exponential in the number of bits of
x. For expressions involving multiple variables, an addi-
tional problem is the variable ordering. For example, for
two n-bit integers X = xn–1 xn–2 … x0 and Y = yn–1 yn–2 … y0,
the BDD for X = Y has size linear in n if the variable order is
xn–1, yn–1, xn–2, yn–2, …, x0, y0, but requires exponential size if
the order is xn–1, xn–2, …, x0, yn–1, yn–2, …, y0. If X and Y are
declared in SMV with the code

VAR
  X: 0.. N ;
  Y: 0.. N ;

where N = 2n – 1, SMV never interleaves the bits of X and Y
in the BDD variable order and thus produces exponential-
size BDDs for the predicate X = Y.

We considered two ways of attacking this problem,
namely changing the internals of SMV, or doing addition
and comparison at the source code level. Although in prin-
ciple the former may be a better long term solution (Yang et
al. [56] give an efficient algorithm for constructing BDDs for
linear predicates), the latter method seemed a simpler ap-
proach and we were able to use it with great success. We
wrote some simple awk scripts to automatically generate
the code

VAR
 x1:  boolean; y1: boolean;
   M            M

 xn : boolean; yn : boolean;

to declare X and Y, and x1 = y1 & x2 = y2 & … xn = yn
to represent the equality X = Y. Addition, subtraction, and
inequality can be similarly translated. We can now model
the altitudes and altitude rates with the precisions required
by the specification. Changing the variables for altitudes
from 4 to 15 bits and those for altitude rates from 3 to 13
bits blows up the size of the state space roughly from 1040 to
1065. However, this increase in precision increased the run
time and the number of BDD nodes used by less than a
factor of three. We also wrote an awk back-end to SMV to
convert the bits back to integers for easy interpretation of
the counterexamples.

5.3.2 Counterexample Search
Counterexamples also presented performance problems.
Generating a counterexample often took hours even though
the formula was determined false within minutes. Evalu-
ating the formula and finding a counterexample were done

by the model checker as two separate searches in the reach-
ability graph. For example, to verify an invariant AG safe
(that is, every reachable state is safe), the model checker
started from the set of unsafe states, and iteratively
searched backward to find the set of states that could reach
some unsafe state. If this set contained any initial state, the
model checker would determine the formula false and start
a second, forward search from such an initial state to find a
counterexample. We have modified the model checker by
storing certain state information during the first search,
eliminating most of the work in the second search. As a
result, once such a formula is evaluated false, a counterex-
ample can now be found almost instantly. The changes we
made to the model checker are detailed elsewhere [18].

6 RESULTS OF ANALYSIS

Once we overcame these obstacles, we were ready to do
some analysis of the specification using the model checker.
The properties that we analyzed include general properties
that should hold in most RSML specifications (Sections 6.1,
6.2, and 6.3) and domain-specific properties (Sections 6.4
and 6.5). The violation of some of the properties was un-
known to us before the analysis (Sections 6.2 and 6.5).

We note that given an arbitrary system, it is often not
obvious what domain-specific properties to verify. In our
experiments, we based these properties on published
documents and our own knowledge of the system. In this
section, we only report the most interesting results we
found. We will discuss some approaches to identifying
properties to check in Section 8.4.

Table 1 shows the resources needed to analyze the prop-
erties. The time, the number of BDD nodes, and the memory
allocated were reported by SMV. These include the resources
used to construct the global transition relation, evaluate the
formula, and find a counterexample if the formula was
evaluated false. The first row gives the resources used just to
build the global transition relation. The experiments were
performed on a lightly loaded Sun SPARCstation 10 running
SunOS 4.1.3 with 128 MB of main memory. We modeled the
global state space with 227 boolean variables, 10 of which are
for events, 36 for the states of Own-Aircraft, 19 for the states
of Other-Aircraft, 134 for altitude and altitude rates, 22 for
inputs other than altitude and altitude rates, and six for other
purposes. The size of the state space is about 1.4 × 1065. The
size of the reachable state space is at least 9.6 × 1056. We ob-
tained this lower bound by executing SMV with the com-
mand line option -f but without running it to completion.
This option forces SMV to find the reachable state space be-
fore evaluating any formula.

6.1 Transition Consistency
We need to distinguish two kinds of nondeterministic tran-
sitions, namely those that are intentional, resulting from
either the logic of the original specification (the rare case) or
the abstraction that we employed (Section 5), and those that
exist in the original specification but are unintentional,
which we want to detect.
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TABLE 1
RESOURCES USED IN ANALYSIS

Properties Result
Time
(sec)

No. of
BDD

Nodes

Memory
Allocated

(MB)

Building the
transition relation

  N/A   46.6 124,618   7.1

Transition
consistency

False 387.0 717,275 16.4

Function
consistency

False 289.5 387,167 11.5

Step termination  True   57.5  142,937   7.4
Descend Inhibition True 166.8 429,983 11.8
Increase-Descend
Inhibition

False 193.7 282,694   9.9

Output agreement False 325.6 376,716 11.6

There are two reasons why we want to find the latter
transitions. First, as Jaffe et al. [41] argue, nondeterminism
in software requirements usually reflects inconsistency and
should be avoided. Second, in our translation into SMV, we
assumed the transitions are deterministic and separately
dealt with the nondeterministic transitions as special cases
(Section 4.4). If unintentional nondeterministic transitions
are present, the SMV program in general will behave differ-
ently and all analyses will become invalid.

There are known nondeterministic transitions in early
versions of the specification. For example, TCAS II has the
notion of sensitivity level, which determines the volume of
protected airspace around the aircraft. Some of the nonde-
terministic transitions allow a choice, under identical con-
ditions, of increasing or decreasing the sensitivity level,
which is clearly an inconsistency in these early versions of
the specification. So, our first attempt was to find such tran-
sitions with the model checker. (For the other properties
that we checked, we worked with a later draft specification,
in which there are no inconsistencies in Own-Aircraft.)
These nondeterministic transitions had previously been
identified by Heimdahl and Leveson [34] using a different
technique. We were interested in checking these properties
to show that model checking could match previous results.
In Section 7.3 we will summarize the differences between
our model checking approach and the technique used by
Heimdahl and Leveson.

In our example in Fig. 2, transitions t9 and t12 can be en-
abled simultaneously. We can check this with the model
checker by the CTL formula

AG !(t9 & t12)

which says that the two transitions are never enabled si-
multaneously. We can check a similar formula for every
pair of conflicting transitions that are not meant to be si-
multaneously enabled. This may seem a large number of
cases to check, but often, the guarding conditions alone
prevent the transitions from being enabled at the same
time, such as the transitions in Alt-Layer. (Indeed, this is the
premise of Heimdahl and Leveson’s technique.) In this
case, the state space is not explored, because the BDD
quickly reduces the CTL formula to AG true, which in turn
is trivially evaluated to true. Otherwise, the model checker
will search for a counterexample. Using this technique, we

were able to find the nondeterministic transitions in a ver-
sion of the TCAS II specification, and verify that these tran-
sitions do not exist in a later version.

6.1.1 Soundness of the Analysis
A subtle but important issue demands additional attention:
As mentioned, our translation is not faithful if the RSML ma-
chine contains unintentional nondeterministic transitions. So,
it may seem circular to show the absence of such transitions
in the RSML machine using the translated SMV program.

However, we can prove that this is not a problem. We
say that a global state q is reachable if q appears on some
path starting at some initial state, and a set of global states
is reachable if some element in the set is reachable. We have
the following lemma.

LEMMA 1. Given two state transition systems M1 =  〈Q, R1, I〉
and M2 =  〈Q, R2, I〉 with identical state spaces and initial
states. Define

      N = {q ∈ Q | ∃q′.   (q, q′) ∈ (R2 − R1) <  (R1 − R2)}.

The set N is reachable in M1 if and only if it is reachable in
M2.

The set N in the lemma is the set of “bad” global states
that may lead to different behaviors in M1 and M2. The
lemma says that some state in N is reachable in M1 if and
only if some state in N is reachable in M2, but does not re-
quire that the two states be the same. Intuitively, this is true
because the shortest path to any state of N in M1 must also
appear in M2 and vice versa. A proof is given in Appendix B.

Let MRSML and MSMV be the state transition systems repre-
senting the RSML machine and the translated SMV pro-
gram, respectively, and let N be as defined above with M1
and M2 being MRSML and MSMV. Let’s assume for now that
abstraction by nondeterminism discussed in Section 5 was
not used. By definition, the set N contains precisely the set
of global states that are not faithfully translated. Because
our translation handles deterministic transitions (and the
intentional nondeterministic transitions) faithfully, the set N
is exactly the set of global states that contains unintentional
nondeterministic transitions. This means that N is reachable
in MRSML if and only if MRSML exhibits unintentional nonde-
terministic behavior. Therefore, by the lemma, it is suffi-
cient to analyze MSMV to detect the nondeterminism, and, in
addition, we will not obtain false negative results. If, on the
other hand, some intentionally nondeterministic transitions
of MRSML are mistakenly modeled as deterministic ones in
MSMV, this analysis will reveal them and the designer can
then use this information to correct the model.

False negatives are in principle possible when abstrac-
tion is used, because the set N may now be reachable in
MSMV but not in MRSML. However, such false negatives never
happened in our experiments. We did find false negatives
when checking other properties as discussed below.

6.2 Function Consistency
The value of the function Displayed-Model-Goal, shown in
Fig. 10, is displayed to the pilot when an event called Com-
posite-RA-Evaluated-Event occurs. (Most of the identifiers
in the figure are RSML macros or abbreviations, the defini-
tions of which are omitted here due to limited space.) The
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function represents the optimal altitude rate at which the
pilot should aim (a positive value indicates the upward
direction). The function definition consists of eight cases,
which are supposed to be mutually exclusive. It is not obvi-
ous whether this is the case since the mutual exclusion de-
pends on logic elsewhere in the specification.

Checking for mutual exclusion of the cases, which we
call function consistency, is similar to checking for transi-
tion consistency in the previous subsection. We defined a
boolean symbol Case-i for the ith case, and checked the
CTL formula

AG (Composite-RA−Evaluated-Event −>
    !((Case-1 & Case-2) |
     (Case-1 & Case-3) |
                              :
     (Case-6 & Case-7)))

The model checker found a counterexample showing that the
formula was false. After carefully examining the counterex-
ample, we decided that the scenario was due to the oversim-
plified model of Other-Aircraft, which we had considered as
a part of the nondeterministic environment. In the counter-
example, Other-Aircraft reverses from an Increase-Climb RA
to an Increase-Descend RA in one step, which is prohibited
by the logic in the specification. After we changed the code to
prevent Other-Aircraft from making such spurious transi-
tions, no counterexamples were found.

This refinement of Other-Aircraft to allow successful
checking of a property has implications for the use of model
checking during the development of specifications. In es-
sence, the examination of the scenario and the subsequent
refinement can be considered to be a way of documenting

an intended, but implicit, interaction between the Own-
Aircraft and Other-Aircraft state machines. As an after-the-
fact occurrence, as in our case, the refinement is an effective
way to allow us to translate and check properties on a por-
tion of the specification, rather than on the full specifica-
tion. If done as the specification was developed, it could
also be an effective way to understand and document the
interactions between the parts of the specification.

6.3 Step Termination
A step in an RSML state machine may not terminate if the
machine contains a cycle of events under the transition re-
lation [44]. However, the precedence relation of the events
in an RSML specification usually forms a partial order, so it
is easy to see that a step will always terminate; this happens
in the TCAS II specification. Alternatively, in our frame-
work we can verify termination with the CTL formula

AG AF stable

which means that the machine is stable infinitely often. In
other words, it can only stay unstable for a finite number of
microsteps. This formula was found to be true for our
model of the specification, as expected.

6.4 Inhibition of Resolution Advisories
A TCAS II document [28] claims that: 1) all Descend RAs
are inhibited when the own aircraft is below 1,000 ft above
ground level and 2) all Increase-Descend RAs are inhibited
below 1,450 ft above ground level. The logic that guarantees
these safety properties resides in both Own-Aircraft and
Other-Aircraft. We imposed the necessary constraints on
the transitions of Other-Aircraft in order to check whether

Fig. 10. Definition of Displayed-Model-Goal.
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the part of the logic in Own-Aircraft is correct. The model
checker found that while the first property is satisfied, the
second is not. The formula that we checked for the second
property was roughly

AG ((stable
     & Radio-Altimeter-Status = Valid
     & Own-Alt-Radio <= 1450)
     −> !Increase-Descend)

where Own-Alt-Radio is an input representing the altitude
of the own aircraft above ground level, Radio-Altimeter-
Status an input indicating whether Own-Alt-Radio is valid,
and Increase-Descend an expression evaluating to true
when an Increase-Descend RA is issued. (As mentioned in
Section 5.3, the inequality is actually a long expression re-
lating the bits of Own-Alt-Radio.) The counterexample
given by the model checker revealed a typographical error
in a guarding condition in the specification (> instead of ≤).1

The effect of the error was that the Increase-Descend RA
was inhibited for only one step, thus allowing the safety
property to be violated.

6.5 Output Agreement
In addition to the value of Displayed-Model-Goal, the state
of Composite-RA in Fig. 5 is also shown to the pilot when
Composite-RA-Evaluated-Event occurs. Therefore, it seems
safety-critical that Composite-RA and Displayed-Model-
Goal agree with each other. We checked for several such
properties. For example, one would expect that if Compos-
ite-RA is in state Climb, then Displayed-Model-Goal should
be at least 1,500 ft/min. However, the model checker re-
vealed that this is not true. In fact, it showed a stronger re-
sult: When RA is Climb, Displayed-Model-Goal could be
negative. The CTL formula we checked was the following:

AG ((Composite-RA = Climb
     & Composite-RA-Evaluated-Event)
     −> Displayed-Model−Goal >= 1500)

The counterexample given by the model checker was a
three-step scenario (consisting of 23 global transitions):

1)�At time t0, there is an intruder aircraft and Other-
Aircraft gives a Descend RA. As a result, Composite-
RA is in state Descend and by case 3 in Fig. 10, we
have Displayed-Model-Goal ≤ – 1,500 ft/min.

2)�At time t1 > t0, Other-Aircraft realizes that an increase
in descend rate is necessary and issues an Increase-
Descend RA, which puts Displayed-Model-Goal at –
2500 ft/min by case 5.

3)�At time t1 + 1, the situation has changed and Other-
Aircraft projects that a climb would result in greater
separation from the intruder. So it reverses its RA to
Climb, making Composite-RA enter state Climb. At
that point, case 7 applies, so Displayed-Model-Goal ≤
–1,500 ft/min, resulting in contradictory outputs.

To the best of our knowledge, this behavior of the version
of the specification was not known before. The resources
shown in the last row of Table 1 are for this analysis.

Another output agreement property is that when a new
Increase-Climb RA is issued, the value of Displayed-Model-

1. We discovered the typographical error by observation during the
translation process.

Goal should not decrease. The result was similar to that of
function consistency: The model checker found a counter-
example, which was due to the abstracted model of Other-
Aircraft. After refining the model, no counterexamples were
found. The CTL formula checked was:

AG ((Composite-RA−Evaluated-Event
     & New-Increase-Climb) −>
    Displayed-Model-Goal >=
      prev-Displayed−Model-Goal)

6.6 Miscellaneous
The value of any PREV(expr) is undefined in the first step.
As mentioned in Section 4.6, we did not constrain the initial
value of the SMV variable representing PREV(expr) to let the
model checker find an initial value that falsifies the prop-
erty being checked. So while verifying the properties men-
tioned above, we also discovered situations in which PREV

values are referenced in the first step.
In addition to AG and AG AF formulas, we also checked

some formulas of the form AG EF p, which asserts that p is
always possible in the future. For example, p may be a
predicate on inputs, as in the following formulas:

AG EF Radio-Altimeter-Status = Valid
AG EF Radio-Altimeter-Status = Invalid

Note, however, that verifying such formulas does not es-
tablish any property of the RSML specification; it is merely
a sanity check to ensure that our model does not prevent
the environment from changing.

Another common use of AG EF formulas is to specify
that it is always possible to shut down or restart the ma-
chine. While the notions of shutdown or restart are not ap-
plicable to our model of Own-Aircraft, we could check, for
example, that it is always possible for the system to enter
certain states or produce certain outputs (for example, the
machine is never locked in a certain RA that no inputs can
change). However, because nondeterminism was used to
abstract out certain details, a behavior that is possible in the
SMV program is not guaranteed to exist in the RSML ma-
chine. So the analysis of such AG EF formulas is not sound.
(This problem can be solved by a recent technique called
module checking [42].)

7 RELATED WORK

7.1 Case Studies
There have been several other independent case studies of
model checking for real-life software requirements. In gen-
eral, a major difference from our work is that their system
environments were abstracted as a set of predicates or vari-
ables with a small enumerative range, whereas the inputs to
our system include numerical values. Numerical calcula-
tion and comparison are abundant in the TCAS II specifica-
tion, and they caused significant problems in the model
checking process. These studies also differ from ours in the
requirements languages used. For example, they do not
contain features such as hierarchical states or microsteps, or
do not assume the synchrony hypothesis.

Sreemani and Atlee [53] used SMV to analyze the A-7E
aircraft software requirements, written in the Software Cost
Reduction (SCR) notation [1], [36]. They successfully veri-
fied and falsified several temporal properties. From an in-
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formal specification of a hydroelectric power plant, Pugli-
ese and Tronci [50] developed a process-algebra specifica-
tion, which was then verified with an in-house BDD-based
model checker. Crow and Di Vito [24] analyzed the re-
quirements for a software subsystem on the Space Shuttle
of NASA, using the explicit model checker Murϕ [26] to
verify invariants. Since symbolic representations like BDDs
were not used, they manually reduced the ranges of the
environment inputs to control the size of the state space.

Helbig and Kelb [35] gave a BDD encoding for state-
charts. The version of statecharts semantics and the state
hierarchy encoding that they used are similar to ours, ex-
cept that they did not assume the synchrony hypothesis
and did not flatten nested-or states (Section 4.2). With a
custom-built BDD-based model checker, they encoded the
transition relation more generally than we did to allow for
arbitrary nondeterministic transitions, at the expense of the
construction cost of the BDDs. We, in contrast, focused on
deterministic transitions and certain nondeterministic ones
that are easy to model and sufficient for our experiments.
Their scheme was used to analyze a hypothetical produc-
tion cell [25]. A compositional approach was used to cope
with the BDD explosion problem.

7.2 Approaches to Fighting State Explosion
There are a number of other widely researched approaches
to handling the state space explosion problem. In contrast
to our work, which studies a single data point for a single
approach, Corbett recently compared three approaches,
BDD-based model checking (using SMV), partial-order
state-space reduction, and inequality necessary conditions,
all in the context of detecting deadlock in Ada tasking pro-
grams [23]. For deadlock, Corbett observed that “no tech-
nique was clearly superior to the others, but rather each
excelled on certain kinds of programs,” [23, p. 179].

Although the model of synchronization that Corbett
considered was different from ours, some issues in the
translation to SMV are relevant. He considered two trans-
lation schemes. One translation, on which he based his
comparison with other techniques, precluded maximum
parallelism among transitions (that is, some simultaneously
enabled nonconflicting transitions are not allowed to be
taken simultaneously and have to be taken in sequence),
and therefore might not be optimal for symbolic model
checking. The other translation, which he found less suc-
cessful, did allow maximum parallelism, but used many
extra variables. We, on the other hand, require maximum
parallelism owing to the semantics of a microstep, and take
pains to avoid introducing extra variables. Using a simple
modification of our translation described in Section 4 for
the class of problems he considered would only require
extra variables where parallel nondeterministic transitions
occur between the same two states. Use of such a transla-
tion might change the outcome of Corbett’s comparison,
but further work is needed to determine which approaches
are most effective for checking particular properties on spe-
cific classes of systems.

7.3 Consistency and Completeness
Instead of exploring the state space, Heimdahl and Leveson
compose results of local analysis to deduce global proper-

ties of the TCAS II specification [34]. However, the proper-
ties that we checked were different. Their concerns were
transition consistency and completeness [41], which are
domain-independent properties. In Section 6.1 we dis-
cussed how we verified transition consistency. Complete-
ness intuitively means that a response is specified for every
input, and in principle can also be checked in our frame-
work. In general, our approach permits analysis of arbitrary
CTL formulas, and is therefore capable of verifying do-
main-specific properties as well.

Consider consistency in more detail. Their tool checks
that the conjunction of the guarding conditions of every
pair of conflicting transitions with the same trigger is a con-
tradiction. That is, for the example in Fig. 2, while we check
whether the CTL formula AG !(t1 & t5) holds in the
system, they check whether the conjunction of the guarding
conditions of t1 and t5 is a contradiction. In general, their
method can be less accurate, for three orthogonal reasons.

First of all, since they did not explore the reachable state
space, the states that exhibit inconsistency or incomplete-
ness may not be reachable. In other words, when the con-
junction of the guarding conditions is satisfiable, the user is
responsible for determining whether the failure represents
a genuine problem, while in our case, the model checker
will help by finding a counterexample. This is an inherent
limitation of their approach, but is also an inherent advan-
tage, because it allows simple analysis.

The second source of inaccuracy stems from their deci-
sion to consider only transitions with the same trigger.
Consider again Fig. 2. Conflicting transitions t9 and t12 can
be simultaneously enabled because their triggers u and v
may occur at the same time. Their tool, however, would fail
to detect them, simply because it never considers transi-
tions with different triggers together. (On the other hand, if
it makes the conservative assumption that any subset of
events may occur at the same time, it will mistakenly report
that t9 and t10 may cause nondeterminism, without realizing
that their triggers u and w are mutually exclusive in any
reachable states.)

The last source of inaccuracy in their method is the way
they construct a boolean formula for checking: They create
one boolean variable for each predicate in the guarding
condition. For example, to check whether t4 and t7 are mu-
tually exclusive, they would have a boolean variable x1 for
Alt > 10,050 and another variable x2 for Alt < 1,950, and
check whether x1 ∧ x2 is a contradiction. This clearly results
in a false negative. Heimdahl and Czerny [33] use the theo-
rem prover PVS [48] to attack this problem. On the other
hand, for the same property, we would have 15 boolean
variables representing the bit encoding of Alt and then con-
struct the BDD for the predicate alt > 10,050 ∧ alt < 1,950,
which is automatically reduced to a contradiction. Note
that although we would have more boolean variables, the
BDD size scales well for inequalities and linear arithmetic
operations. A disadvantage is the inability to deal with real
numbers, which have to be discretized as bounded integers.
BDDs also cannot efficiently handle the complicated non-
linear predicates in TCAS II, but currently neither can their
theorem-proving approach [33].
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Although model checking can give more accurate re-
sults, it is also more costly. However, the two approaches
are complementary and can be used together for system
development or verification.

7.4 Hybrid Systems
Our verification results are robust in the sense that, except
for the synchrony hypothesis, we do not make any as-
sumption about the environment, which includes the pilot
and the aircraft. However, we cannot verify properties that
depend on the environment, such as “two aircraft will not
collide if the pilots follow the RAs.” In addition to robust-
ness, the reason for not having modeled the environment
more precisely is the lack of such information in the specifi-
cation. In principle, were such information available, we
could have incorporated it in our model, but we would
have to discretize the inherently continuous environment.

Verification of hybrid systems tackles this problem by
modeling the environment with a set of real-valued vari-
ables governed by constraints on their derivatives [3]. The
complexity of model checking becomes much higher and
some problems even become undecidable, but symbolic
model checkers for hybrid systems have been built [38].
Currently, they cannot cope with TCAS II: They cannot
handle multiplication, and the sizes of the models ana-
lyzed in published case studies are orders of magnitude
smaller than TCAS II. It would be interesting to see
whether the next-generation tools can scale to signifi-
cantly larger systems.

8 DISCUSSION

In Section 8, we address several common concerns about
applying model checking to software, suggest the use of
model checking as a development tool, and discuss some
research directions.

8.1 Feasibility
The belief that model checking cannot apply well to com-
plex software systems has been prevalent. This work (and
other related work in Section 7.1) has shown why several
concerns may not be as serious as commonly believed.

8.1.1 Restriction to Finite States
One concern is that BDD-based model checking can only
apply to finite state systems, but software is often specified
with infinite states. A current research trend is to devise
symbolic representations and model-checking algorithms to
directly verify some classes of infinite state systems [3], [9],
[14], although these techniques are far less mature than
BDD-based methods. However, many infinite state systems
can be abstracted as finite state ones, which are then ame-
nable to conventional model-checking analysis [39], [55].
Often, the abstraction is conservative in the sense that, if the
properties hold in the abstraction, they are guaranteed to
hold in the full specification. If the goal of analysis is to find
errors instead of proving correctness, this preservation
guarantee can be forsaken, using techniques like model
checking to find counterexamples but not to guarantee
properties [40]. In our work, for example, some inputs of

one of the versions of TCAS II are specified as real num-
bers, which were discretized as integers in our model (Sec-
tion 5.2). The counterexamples we found in the finite-state
model also exist in the full specification.

8.1.2 Regularity
Another concern is that, unlike hardware circuits, software
systems may not exhibit the necessary regularity to yield to
symbolic techniques. On the contrary, we found that BDDs
seem to capture the complex control structures of TCAS II.
However, some “regular” operations, such as multiplica-
tion, do appear in the specification and cannot be handled
efficiently by BDDs. Indeed, the data paths seem to be the
real obstacle to analyzing the entire TCAS II. We will say
more about arithmetic later.

8.1.3 Scale
Our work demonstrates that symbolic model checking can
be successfully applied to a real-life system that is widely
recognized as complex. We have yet to analyze the entire
specification, but this just shows that we can obtain useful
results from incomplete models. In other words, it is not
necessary to check a complete specification to get signifi-
cant benefits from the technique.

Abstraction is the key to scale. In our experiment, most
details in Other-Aircraft and arithmetic operations that are
inefficient for BDDs were manually abstracted away by
nondeterminism. Some form of abstraction can be auto-
mated by performing dependency analysis [7], [18].

Another approach to scale is automatic reduction tech-
niques, of which the most relevant is perhaps BDD-based
symmetry reduction [20]. The technique is not applicable to
our current model of TCAS II because it lacks symmetries,
but it will become a perfect candidate if we extend the model
to include several instances of Other-Aircraft. (Recall that our
current model contains only one instance of Other-Aircraft.)
Symmetries arise in this case because two global states are
equivalent if one can be obtained from the other by permut-
ing the local states of the instances of Other-Aircraft.

8.2 Model Checking as a Design Tool

8.2.1 Understanding and Documentation
As shown in Section 6.2, we sometimes obtained false coun-
terexamples because of the over-abstracted model. Only
when we refined the model to remove the spurious transi-
tions could we verify the properties in question. This process
of getting incorrect counterexamples and then removing
them may seem counterproductive, but there are a number
of reasons why this approach is in fact useful. A software
engineer can use the information obtained from analyzing
the counterexamples to clarify the relationship between parts
of the specification, in particular between those parts that are
fully modeled and those that are partially modeled. In com-
plex specifications like TCAS II, the interconnections be-
tween the subsystems are often not fully described and
documented. Our style of model checking can be viewed as a
way of learning about and documenting the interconnections
between parts of the specification.
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8.2.2 Iterative Development
Furthermore, we claim that this iterative approach can serve
as a development tool. A common conception is that verifi-
cation is the finale of the specification process—it either
shows correctness or reveals problems to be fixed. This view
makes verification less effective in two ways. First, the com-
plete specification may be too large to analyze, and, as men-
tioned above, abstraction becomes necessary to cope with the
complexity. Second, when problems are found, fixing them is
expensive this late in the specification stage (although still
less costly than problems found in the implementation).

Using verification techniques early in the development
cycle to interleave design and analysis can tackle these
problems. The complexity only gradually increases as the
specification evolves, and verification at early stages is
more likely to be tractable. In addition, analysis results can
give fast feedback to designers to improve the cost-
effectiveness of the technique. Researchers on hardware
verification have also pointed out some advantages of early
use of verification [46].

For example, when developing the TCAS II specification,
an engineer could have specified Own-Aircraft first and have
left Other-Aircraft nondeterministic. Then an analyst could
have analyzed Own-Aircraft with model checking and dis-
covered the assumptions on the behaviors of Other-Aircraft
that are necessary for Own-Aircraft’s correct operations. This
information then could have been used to develop Other-
Aircraft. During the development of Other-Aircraft, the
properties can be rechecked, as with regression testing, to
ensure that the properties are continually maintained.

As an alternative to regression checking, if the abstracted
model of Other-Aircraft simulates (in the sense of Milner
[47]) a refined model, then every CTL formula in Sections
6.1–6.5 that holds in the former is guaranteed to hold in the
latter as well. More generally, simulations preserve ACTL
formulas, which intuitively include the CTL formulas with-
out the E operator and with negations applied only to
propositions. Efficient algorithms for simulation exist [22],
[37] and provide an attractive way of hierarchical develop-
ment of systems, although more experimental work for
software specification is needed.

8.3 Tool Integration
Few, if any, integrated CASE tools today offer symbolic
model checking as an option for verification. Software en-
gineers who wish to use this technology may follow our
strategy by translating their specifications to inputs to one
of the model checkers available. Automatic translation is
possible, as the rules in Section 4 show, although initially
manual translation may help understand the subtleties that
may arise in the translation process. Whether manual or
automatic translation is used, our experiences showed that
checking simple properties like transition consistency and
completeness is useful in catching translation bugs.

Symbolic model checking, in its purest form at least, is
conceptually simple and, with one of the available BDD
packages [52], incorporating model checking algorithms
into an integrated CASE tool should not be difficult in prin-
ciple (although integration is almost always more difficult
than anticipated [29]). The advantages of so doing com-

pared with the translation approach include more flexibility
in the construction of the BDDs, and more efficient and ap-
plication-sensitive model checking algorithms. For exam-
ple, the performance of the analysis in this paper can be
improved by orders of magnitude by modifying the model
checker [18].

It is important to design tools that domain experts feel
comfortable in using. For example, AND/OR tables (Sec-
tion 3.1) were designed to replace propositional logic for
specifying guarding conditions in RSML because avionic
engineers did not find the latter natural [34]. Similarly, do-
main experts may not like temporal logic or understand its
intricacies. Finding intuitive alternatives (perhaps even sac-
rificing some of the expressive power of the logic) is critical
for gaining wider acceptance. Recently, Dwyer et al. have
worked along this line and suggested using “specification
patterns” [27].

8.4 Properties to Check
Model checking (or any form of property verification) is of
no use if we do not know what properties to check. Finding a
set of properties with good coverage can also increase our
confidence in the correctness of the specification. A number
of approaches can be used to address this complex question.

•� The specification may already state some properties
that are supposed to hold.

•� Jaffe et al. [41] described a number of properties that
should be satisfied by specifications (at least those
with a safety-critical component): determinism, com-
pleteness, etc. We also believe that certain domain-
specific properties like output agreement (Section 6.5)
are applicable across many applications.

•� Some other software analysis problems, such as de-
viation analysis [51], can be posed as model-checking
problems.

•� Some properties to check may arise in the field. For
example, pilots have reported anomalous behavior
that they observed while using some versions of
TCAS II. Such anomalies could be checked atgainst
the specification, and one may determine if the prob-
lem is in the specification, in the implementation, or
in the report itself.

8.5 Nonlinear Arithmetic
The most serious hurdle to applying BDD-based model
checking to the remaining portion of the TCAS II specifica-
tion is the abundance of the nonlinear arithmetic operations
like multiplication of variables. It is not hard to see that
model checking in the presence of predicates with integer
multiplication is an intractable problem, at least as hard as
factorization: Given a number z, we can build a transition
with a guarding condition xy = z ∧ x > 1 ∧ y > 1, and deter-
mine whether z is a prime number by model-checking
whether the transition is never enabled; finding a counter-
example corresponds to factoring z. (Bryant and Chen ob-
served a similar connection between BDDs and factoring
[12].) Nevertheless, we should note that multiplication does
not change the worst-case complexity of model checking,
which is already a theoretically intractable problem without
it. It follows that any symbolic technique is a heuristic.
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Theoretically, BDDs require exponential size for almost all
boolean functions; the efficiency of BDDs is due to their
ability to capture concisely many of the control and data
patterns that arise in practice. Similarly, there may be other
techniques or representations that can handle the nonlinear
arithmetic calculations that arise in practice.

It is tempting to adapt BDDs to handle multiplication.
Word-level model checking is one such technique [21].
There, control is represented using BDDs and operations on
integers are represented using binary moment diagrams [13],
which can concisely represent the product of two integers.
The algorithm in Clarke et al. [21] allows multiplication in
the temporal logic formula, but not multiplicative predi-
cates in the guarding conditions. It is unclear how this
method can be adapted to solve our problem.

Some of us have proposed tightly coupling BDDs with a
decision procedure for nonlinear predicates to attack the
problem [17], but more work is needed to investigate its
practicality. Another possible approach is approximation, as
a middle ground between abstracting out multiplication
completely and representing it precisely.

8.6 More Case Studies
Additional experience is needed in applying model check-
ing to realistic state-based specifications. We are in the early
stages of studying a statecharts specification of an electrical
distribution system for avionics. But many additional ex-
periments are needed to determine the overall applicability
of model checking to state-based software specifications. As
mentioned above, we also feel strongly that the most effec-
tive use of this technology will come in aiding the devel-
opment of specifications, rather than in the after-the-fact
checking of them. The real benefit of this approach can only
be shown in practice by developing specifications with
model checking.

9 CONCLUSION

We have shown how to translate part of a large system re-
quirements specification into input to a symbolic model
checker, and check several nontrivial properties. Our ap-
proach to analyzing the specification iteratively, by model-
ing some components nondeterministically and then refin-
ing them, proved to be powerful. These are critical steps
towards realizing symbolic model checking as an effective
tool in the process of analyzing and developing software
specifications.

We believe that this investigation contributes to an in-
crease in optimism that symbolic model checking can over-
come predicted impediments and thus be successful in the
analysis of realistic software specifications.

APPENDIX A—TRANSLATION EXAMPLE

This is the complete SMV translation of the RSML example
in Fig. 2 (but as explained in Section 5.3, SMV does not
handle this program well as it is).
MODULE main
VAR
  u: boolean;
  v: boolean;

  w: boolean;
  switch: {up, down, test};
  alt: 0..20000;
  prev-alt: 0..200000;
  Alt-Layer: {High, Mid, Low};
  Alarm: {Shutdown, Operating};
  Mode: {Off, On};
  Volume: {12};
  time-Mid: 0..5;
DEFINE
  stable := !(u|v|w);
  in-Sys := 1;
  in-Alt-Layer := in-Sys:
  in-High := in-Alt-Layer & Alt-Layer = High;
  in-Mid := in-Alt-Layer & Alt-Layer = Mid;
  in-Low := in-alt-Layer & Alt-Layer = Low;
  in-Alerm := in-Sys;
  in-Shutdown := in-Alarm & Alarm = Shutdown;
  in-Operating := in-alarm & alarm = Operating;
  in-Mode := in-Operating;
  in-Volume := in-Operating;
  in-Off := in-Mode & Mode = On;
  in-1 := in-Volume & Volume = 1;
  in-2 := in-Volume & Volume = 2;
  t1 := in-High & u & alt >= 9950;
  t2 := in-Mid & u
        & 1950 <= alt & alt <= 10050;
  t3 := in-Low & u & alt <= 2050;
  t4 := in-Mid & u & alt > 10050;
  t5 := in-High & u & alt < 9950;
  t6 := in-Low & u & alt > 2050;
  t7 := in-Mid & u & alt < 1950;
  t8 := in-Shutdown & u & switch=up;
  t9 := in-Shutdown & u & switch=down;
  t10 := in-Off & w & c;
  t11 := in-On & w & in-Mid;
  t12 := in-1 & v;
  t13 := in-2 & v;
  t14 := in-Shutdown & u & switch=test;
  c := in-Low &
         (alt<1000
          |(alt<1500 & prev-alt<1500)
          |time-Mid >= 5);
ASSIGN
  init(Alt-Layer) := Mid;
  next(alt-Layer) :=
    case
      t1|t4   : High;
      t2|t5|t6: Mid;
      t3|t7   : Low;
      1       : Alt-Layer;
    esac;
  init(Alarm) := Shutdown;
  next(Alarm) :=
    case
      t8|t14: Operating;
      t9    : Shutdown;
      1     : Alarm;
      esac;
  init(Mode) := Off;
  next(Mode) :=
    case
      t10|t14: On;
      t8|t11 : Off;
      1      : Mode;
    esac;
  init(Volume) := 1;
  next(Volume) :=
    case



518 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,  VOL.  24,  NO.  7,  JULY  1998

      t8|t13|t14: 1;
      t12       : 2;
      1         : Volume;
    esac;
  init(w) := 0;
  next(w) := t1|t2|t3|t4|t5|t6|t7;
  next(u)  :=
    case
      stable: {0,1};
      1     : 0;
    esac;
  next(v) :=
    case
      stable: {0,1};
      1     :  0;
    esac;
  next(switch) :=
    case
      stable: {up, down, test};
      1   : switch;
    esac;
  next(alt) :=
    case
      stable: 0..20000;

1: alt;
    esac;
  next(prev-alt) :=
    case
      stable: alt;
      1     : prev-alt;
  esac;
  next(time-Mid) :=
    case
      t2|t4|tt7    : 0;
      stable & time-Mid < 5: time-Mid + 1;
      1                    : time-Mid;
    esac;

APPENDIX B—PROOF OF LEMMA 1
We assume that N is reachable in M2 and argue that it is
reachable in M1 as well. The other direction is symmetric.

By the definition of reachability, there exists a finite se-
quence of states q0, q1, …, qn such that q0 ∈ I, qn ∈ N and

(qi, qi+1) ∈ R2  for every i < n.                     (1)

Let k be the smallest i with qi ∈ N; that is, qk ∈ N and

qj ∉ N for every j < k.                           (2)

We argue qk is reachable in M1 by showing that q0, q1, …, qk
is a trace in M1. Since by assumption q0 ∈ I, we only need to
show (qj, qj+1) ∈ R1 for every j < k.

For every such j, from (1) we know that (qj, qj+1) ∈ R2. If
(qj, qj+1) ∉ R1, then by the definition of N, we will have qj ∈
N, contradicting (2). Therefore, we must have (qj, qj+1) ∈ R1.o
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