
Time-Space Tradeoffs, Multiparty Communication
Complexity, and Nearest-Neighbor Problems

Paul Beame�
Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

beame@cs.washington.edu

Erik Vee�
Computer Science and Engineering

University of Washington
Seattle, WA 98195-2350

env@cs.washington.edu

ABSTRACT
We extend recent techniques for time-space tradeoff lower bounds
using multiparty communication complexity ideas. Using these ar-
guments, for inputs from large domains we prove larger tradeoff
lower bounds than previously known for general branching pro-
grams, yielding time lower bounds of the form T = 
(n log2 n)
when space S = n1��, up from T = 
(n log n) for the best
previous results. We also prove the first unrestricted separation of
the power of general and oblivious branching programs by proving
that 1GAP , which is trivial on general branching programs, has a
time-space tradeoff of the form T = 
(n log2(n=S)) on oblivious
branching programs.

Finally, using time-space tradeoffs for branching programs, we
improve the lower bounds on query time of data structures for near-
est neighbor problems in d dimensions from 
(d= log n), proved
in the cell-probe model [8, 5], to 
(d) or 
(d

p
log d= log log d)

or even 
(d log d) (depending on the metric space involved) in
slightly less general but more reasonable data structure models.

1. INTRODUCTION
Recently, the first non-trivial time-space tradeoff lower bounds

have been shown for decision problems in P [7, 1, 2, 6]. These
results are the culmination of almost two decades of analysis of
branching programs, natural generalizations of decision trees to di-
rected graphs that provide elegant models of both non-uniform time
T and space S simultaneously. The key ideas in these recent papers
extend notions from 2-party communication complexity previously
used in the study of restricted branching programs, such as obliv-
ious branching programs [3] or read-k branching programs [9], to
general branching programs.

In this paper we extend and improve these results in several
directions. We develop a new lower bound criterion, based on
extending 2-party communication complexity ideas to multiparty
communication complexity, that applies to general branching pro-
grams. We show that if a function is not constant on large embed-

� Research supported by NSF grants CCR-9800124 and CCR-
0098066.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’02, May 19-21, 2002, Montreal, Quebec, Canada.
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

ded cylinder intersections then it has a large time-space tradeoff
lower bound. This generalizes a lower bound technique from [7, 6]
based on analyzing functions on large embedded rectangles. Ap-
plying this criterion to an explicit Boolean function based on a
multilinear form over F2s for suitable s, we show lower bounds
that yield T = 
(n log2 n) when S � n1�� log jDj for large
input domain D. This improves the best lower bounds for gen-
eral branching programs and matches the best lower bounds known
even for oblivious branching programs.

As a warm up for our argument we give an alternative, conceptu-
ally simple proof, based on the ideas in the recent lower bounds for
general branching programs, of the relationship between multiparty
communication complexity and time-space tradeoffs for oblivious
branching programs shown by Babai, Nisan, and Szegedy [4].

Using this we obtain time-space tradeoff lower bounds of the
form T = 
(n log2(n=S)) for 1GAP on oblivious branching
programs. Since 1GAP , the canonical complete problem for L,
has a trivial general branching program of time n and width n
(and therefore space O(log n)), this provides the first separation
between general and oblivious branching program computation.
(Separations have previously been shown between oblivious read-
once branching programs and read-once branching programs, but
not in the general case.)

Finally, extending the observation of Miltersen, Nisan, Safra,
and Wigderson [13] that small space branching programs are nat-
ural choices for static data structures and, thus, that query lower
bounds are related to time-space tradeoff lower bounds, we develop
lower bounds for nearest-neighbor problems in a variety of metric
spaces (Ud;�). In the nearest neighbor problem we are given a
database of n points in Ud and a query point x 2 Ud and must
determine the closest element to x in the database. We analyze the
�-near neighbor problem, a decision version of this problem, that as
observed in [8], is at least as easy as the nearest-neighbor problem.

The obvious algorithms for either problem are simply to store
the elements of the database themselves and compare the query
x in turn to each element of the database, using O(dn) words and
O(dn) query time, or, if jU j is small, to pre-compute the answers to
all possible queries using O(jU jd) space and constant query time.
More complex algorithms achieve query time polynomial in d and
log n in spaces with larger jU j but they still require n
(d) storage
in the worst case (see [8] for an overview of these algorithms). In
general, for large dimensions d, no better algorithms are known.

It is generally conjectured that there is no nearest neighbor data
structure having (nd)O(1) memory cells of size (log n)O(1) and
query-time (d log n)O(1). However, even small lower bounds are
of interest since in certain applications, such as semantic indexing,
d is the number of terms, on the order of tens of thousands, and n
is the number of texts, on the order of millions to billions.
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Borodin, Ostrovsky, and Rabani [8], show that even for compu-
tation in Yao’s strong cell-probe model with cells that may contain
up to (d log n)O(1) bits, solving the �-near neighbor problem on
the Hamming cube f0; 1gd requires query time 
(d= log n) if the
number of words is polynomial in dn. Barkol and Rabani [5], have
even extended these results to randomized computation but the re-
sults are still far from the upper bounds.

While lower bounds in the cell probe model apply to the broadest
possible class of data structure algorithms, it is not reasonable to
expect that data structure algorithms can implement all the features
of the cell probe model which includes, at zero cost, the ability to
have a completely different access algorithm for each instantiation
of the query and the ability to remember the entire history of the
computation given the query.

We consider slightly more restricted data structure algorithms
with word size O(log n) that are allowed to make decisions based
on one coordinate xi 2 U of the query at a time (at unit cost)
and which use only (dn)o(1) bits of extra space during their exe-
cution. In this model, for certain d-dimensional metric spaces,
we prove query time lower bounds of the form 
(d log d), or

(d
p
log d= log log d), depending on the space. These results

follow easily from time-space tradeoff lower bounds for general
branching programs.

The set U in each of the metric spaces in these lower bounds
is of size dc for some constant c and it would be interesting if we
could extend these bounds to the Hamming space f0; 1gd consid-
ered in [8, 5]. We are able to do this in the special case that the
data structure corresponds to an oblivious branching program; that
is, the bits of the query x are accessed in the same order, no matter
what the values of these bits are. In this case we obtain a query time
lower bound of the form 
(d log d). This lower bound is based on
a careful combinatorial construction of a suitable database.

2. DEFINITIONS
Throughout this paper, D will denote a finite set and n a positive

integer. We use [n] to denote the set f1; : : : ; ng and [n] � 1 to
denote f0; : : : n � 1g. We view the input space, DN , as the set of
maps from N to D; we normally take N to be [n], and write Dn

for D[n]. If A � N , a point � 2 DA is a partial input on A. For
a partial input �, vars(�) denotes the set of indices A for which �
makes an assignment, and unset(�) denotes the set N � vars(�).
If � and � are partial inputs with vars(�)\ vars(�) = ;, then ��
denotes the partial input on vars(�) [ vars(�) that agrees with �
and vars(�) and with � on vars(�).

For x 2 DN and A � N , the projection xA of x onto A is the
partial input on A that agrees with x. For S � DN , SA = fxA :
x 2 Sg. If f is a function with domain DN and � is a partial input,
the restriction of f by �, denoted f�, is the function with domain
Dunset(�) defined by the rule f�(�) = f(��) for � 2 Dunset(�).

We adopt the usual definitions of deterministic branching pro-
grams. A D-way branching program is a directed acyclic graph
satisfying the following: There is a unique vertex with in-degree
0, called the start node. The sink nodes are labeled with an output
value. Every non-sink node is labeled with a variable name. The
out-degree of every non-sink node, v, is precisely jDj (we allow
multi-edges), and every value from D is assigned to precisely one
out-edge from v.

A branching program computes a function in the same way a
decision tree does. Time, T , is the length of the longest consis-
tently labeled path from the start node to a sink node. The size of a
branching program is the number of its nodes. Space, S, is the base
2 logarithm of size. Any lower bound proven for a branching pro-

gram also implies a lower bound for other computational models,
such as Turing machines and Random Access Machines.

A leveled branching program is a branching program in which
the underlying graph is leveled. By a result of Pippenger [14],
making a branching program leveled does not change T and adds
at most log T to S. An oblivious branching program is a leveled
branching program in which all the nodes on each level are labeled
with the same variable. Call the sequence of variables reached at
each level the query sequence of the oblivious branching program.

Multiparty communication complexity, introduced by Chandra,
Furst and Lipton [10] in order to study oblivious branching pro-
grams, is an extension of the usual 2-party communication com-
plexity. Suppose that p parties, each with unlimited computa-
tional power, wish to exchange information to compute the value
of f : Dn ! f0; 1g, whose input has been divided according
P = fP1; : : : ; Ppg, a p-partition of the n variables fx1; : : : ; xng.
The i-th party receives the value of every xj except for those in Pi.
The parties exchange information by writing bits one at a time on a
common blackboard according to a protocol which specifies, based
on the bits on the blackboard, who is to write next. The multiparty
communication complexity of f with respect to the fixed partition
P , CP(f), is the minimum number of bits required to be written.
We also define the best partition p-party communication complexity
of f , Cbest

p (f), to be the minimum fixed-partition communication
complexity of f , taken over all p-partitions of the inputs into equal
size sets.

Several lower bounds on the multiparty communication com-
plexity of Boolean functions have been shown in [10, 4, 11, 12,
15] in the fixed partition model. The lower bound techniques for
multiparty communication complexity developed following [4] are
an extension of the lower bound techniques for 2-party communica-
tion complexity which rely on analyzing the properties of functions
on large combinatorial rectangles. In the case of p-party commu-
nication complexity, lower bounds are proven by analyzing proper-
ties of functions on large cylinder intersections, which are sets of
the form C1 \ C2 \ � � � \ Cp where each Ci = C0i �DPi � DN

is a cylinder in that it only depends on the variables read by party i.

3. MULTIPARTY COMMUNICATION
COMPLEXITY AND BRANCHING
PROGRAMS

3.1 Oblivious Branching Programs
There is a close relationship between multiparty communication

complexity and oblivious branching program complexity.

DEFINITION 3.1. Given a sequence s of values from a finite set
N and a partition P of N 0 � N , the number of alternations of
s with respect to P is the minimal r such that s can be written as
s = s1s2 � � � sr and each si contains no elements from at least one
class in P . Each si is called an alternation of s with respect to P .

PROPOSITION 3.1. [10, 3, 4] Let f : DN ! f0; 1g, let � be
a partial assignment to the variables of f , and let P be a partition
of unset(�). If there is an oblivious branching program B comput-
ing f that has width W and whose query sequence has at most r
alternations with respect to P , then (r� 1) logW +1 � CP(f

�).

PROOF. Associate one party j with each Pj 2 P . Each party
has access to � and B. Suppose that the query sequence of B is
s1 : : : sr where each si is an alternation with respect to P and does
not contain any element from the class Pji 2 P . The parties all
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follow the computation beginning with the start node of B. For
i = 1; : : : ; r, party ji follows the path in B until the end of the
query sequence si and writes the name of the node of B reached at
the end of si on the blackboard. This is possible since any query to
vars(�) can be answered by any party and any query to unset(�)
avoids Pji and so can be answered by party ji. For i < r the name
of the node requires at most logW bits since B has width at most
W . For i = r this requires only 1 bit to yield the value of f�.

The following lemma, an extension of one found in [7, 6], is an
alternative to the approach based on generalized meanders in [4].

LEMMA 3.2. Let s be a sequence of kn elements from [n]. Di-
vide s into r equal segments s1 : : : sr each of length kn=r. Inde-
pendently assign each s` to one of p sets B1; : : : ; Bp uniformly
at random with Pr[s` 2 Bj ] = 1=p. Define a random vari-
able �j to be the number of elements of [n] not appearing in any
segment in Bj and let � = E(�j). Then � > n4�k=p and
Pr[j�j � �j > 1

2
�] < 4k=p+1k2=r.

PROOF. We first calculate the expectation. For any i 2 [n], the
probability that element i never appears in any segment in Bj is
(1 � 1=p)t(i), where t(i) is the number of segments in which i

appears. Since p � 2, this probability is at least 4�t(i)=p. Thus

E(�j) �
nX
i=1

4�t(i)=p � n4�
Pn

i=1 t(i)=(pn) = n4�k=p:

The second inequality follows from the arithmetic-geometric mean
inequality, and the last equality follows from the fact that the se-
quence s is of length kn, hence

Pn
i=1 t(i) = kn.

We next bound the variance. Let Gi be the event that variable
i 2 [n]�Ss`2Bj

s` where here we identify each segment with the

set of elements it contains. Further, for 1 � i; i0 � n, write i � i0

if i and i0 appear in the same segment at least once. Then

V ar(�j) =
X
i;i0

(Pr[Gi ^Gi0 ]� Pr[Gi] � Pr[Gi0 ])

If i and i0 never appear in a segment together, then the events Gi
and Gi0 are independent, and the term (Pr[Gi ^ Gi0 ] � Pr[Gi] �
Pr[Gi0 ]) is 0. If i and i0 do appear together in at least one segment,
we upper bound the corresponding term by Pr[Gi] = (1�1=p)t(i).
Since each segment contains at most kn=r elements of [n], the
number of i0 such that i � i0 is bounded above by t(i)kn=r. So

V ar(�j) =

nX
i=1

X
i�i0

Pr[Gi] � k

r
n

nX
i=1

t(i)(1� 1=p)t(i)

� k

r

nX
i=1

t(i)
nX

i0=1

(1� 1=p)t(i) � k2n�=r:

where the third inequality follows since t(i) and (1� 1=p)t(i) are
positive and anti-correlated. Applying Chebyshev’s inequality we
have

Pr[j�j � �j > 1

2
�] � V ar(�j)

( 1
2
�)2

< 4k=p+1k2=r

as required.

Combining Lemma 3.2 with Proposition 3.1, we have

THEOREM 3.3. Let f : Dn ! f0; 1g and let B be an oblivious
branching program that computes f in time T = kn and width
W . Then there is a subset of the variables N0 � [n] of size n �
1
2
4�k=pn such that for any partial input � on N0, 4k=p+1k2p �

logW � Cbest

p (f�):

PROOF. Apply Lemma 3.2 with r = 4k=p+1k2p to the query
sequence s of B. This divides B into r blocks of height kn=r cor-
responding to the segments of s. Given a set of such blocks B, let
unseen(B) be the set of variables not queried at any level in B.
By Lemma 3.2, for j = 1; : : : ; p, the probability that a random
assignment of these blocks to sets B1; : : : ; Bp has unseen(Bj) <

4�k=pn=2 is less than 4k=p+1k2=r � 1=p. Therefore by the proba-
bilistic method there exists an assignment of blocks to the sets such
that all p sets Bj have unseen(Bj) � 4�k=pn=2.

Under this assignment, the unseen(Bj) do not necessarily form
a partition, since the sets may overlap. However, it is straightfor-
ward to choose p disjoint sets, U1; U2; : : : ; Up, with the property
that Uj � unseen(Bj) and jUj j = 1

2p
4�k=pn for all parties, j.

Now, set N 0 = [n] �Sn
i=1 Ui. Then the Ui form an equal-size p-

partition, P of [n]�N 0 . Also, by construction, the query sequence
of B has at most r alternations with respect to P .

Let � be any partial assignment on N0. Proposition 3.1 imme-
diately yields 4k=p+1k2p � logW � CP(f

�) � Cbest

p (f�) as re-
quired.

3.2 Lower Bounds for 1GAP

Recall that 1GAP is simply the problem of st-connectivity for
directed graphs that have out-degree one. More formally, for x 2
[n]n , we define 1GAPn : [n]n ! f0; 1g by 1GAPn(x) = 1 if
and only if there is a sequence of indices, i1; i2; : : : ; i` such that
i1 = 1, i` = n and for all j = 1; : : : ; `� 1, we have xij = ij+1.
(Notice that under this encoding, the vertices s and t correspond
to indices 1 and n, respectively, and that the value of xn does not
affect the value of 1GAPn(x).)

To prove lower bounds for 1GAP we will use p-party communi-
cation complexity lower bounds previously shown for generalized
inner product (GIP), which is given by GIPm;p(z1; z2; : : : zp) =Lm

j=1

Vp
i=1 zi;j where each zi 2 f0; 1gm and zi;j is the j-th bit

of zi.

PROPOSITION 3.4. [4] Let P be the ‘uniform’ partition in
which each fzi;1; : : : ; zi;mg is a single class. Then CP(GIPm;p)
= 
(m=4p).

THEOREM 3.5. Let N 0 � [n] with jN 0j = n � (2m +

1)p. Then there is a partial assignment, � 2 [n]N
0

, such that
Cbest

p (1GAP�
n) = 
(m=4p):

PROOF. We give a reduction from GIPm;p based on the simple
ordered binary decision diagram (OBDD) (a variant of an oblivious
read-once branching program in which edges may skip over levels,
see e.g. [16]), B, of width 2 with 2pm + 2 nodes that computes
GIPm;p.

Set � to be the partial assignment that puts a self-loop at all ver-
tices corresponding to indices in N0 � f1g. If 1 =2 N 0, let node
s = 1 2 [n] � N 0; otherwise let s be some node in [n] � N0

and set �(1) = s. Given a best-partition p-party communication
complexity protocol for 1GAP�

n, let P = fP1; : : : ; Ppg be the
partition of [n] �N 0 into p equal-sized classes used by this proto-
col and assume w.l.o.g. that s 2 P1. We embed the nodes of B in
([n] � N 0) [ fng by mapping the start node of B to s, mapping
the remaining nodes in B that read each zj to the nodes of Pj , and
mapping the 1-sink node of B to n and the 0-sink to 1. Given an
input z, we fix the out-edges of the embedded B to obtain a graph
Gz for which 1GAP

�(Gz) = GIPm;p(z). Since each party can
construct the part of Gz it needs, we have a p-party communication
complexity protocol solving GIPm;p under the uniform partition
P 0. Hence, Cbest

p (1GAP�
n) � CP0(GIPm;p) = 
(m=4p) by

Proposition 3.4.
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THEOREM 3.6. If an oblivious branching program with time T
and space S solves 1GAPn, then T = 
(n log2(n=S)).

PROOF. Let k = T=n. From Theorem 3.3, for any p � 2,
there is a N 0 of size n � 1

2
4�k=pn such that, for any partial as-

signment � on N 0, 4k=p+1k2p logW � Cbest

p (1GAP�
n). Fur-

ther, from Theorem 3.5, we know that for the uniform partition P ,
Cbest

p (1GAP�
n) � CP(GIPm;p) for m = 4�k=pn=(4p). Com-

bining this with Proposition 3.4, we see that 4k=p+1k2p logW �
CP(GIPm;p) � C0m=4p = C04�k=p�p�1n=p for some constant
C0 > 0. Rearranging and using p � log p, setting p =

p
k in order

to minimize k=p + p, using S � logW , and taking logarithms we
obtain log(n=S) � C00

p
k for some constant C00 > 0. Therefore

T = kn � Cn log2(n=S) for some C > 0 as required.

3.3 General Branching Programs
We say that a subset E � DN is an embedded p-cylinder inter-

section iff there exist p disjoint subsets A1; : : : ; Ap � N , a partial
assignment � to N �Sp

j=1 Aj , and sets Cj � Dunset(�)�Aj for

j = 1; : : : ; p such that E =
Tp
j=1(Cj �DAj ��). Following [6],

we call the Aj the feet of E, � the spine of E, and the Cj the legs
of E. (�;A1; : : : ; Ap) is called a footprint of E; it is balanced if
jA1j = jA2j = : : : = jApj, and ordered if A1 < A2 < : : : < Ap,
where A < B for sets A and B if every element of A is smaller
than every element of B. The foot-size m(E) is minj jAj j and the
density Æ(E) is jEj=jDjunset(�). Embedded rectangles are embed-
ded 2-cylinder intersections.

Here, we extend one of the approaches to obtaining time-space
tradeoff lower bounds in [7, 6] from one based on embedded rect-
angles to one based on embedded p-cylinder intersections.

THEOREM 3.7. Let k; p; r � 2 be integers such that n �
r � 4k=p+2k2p and let m � d4�k=pn=(2p2)e. Let B be a D-
way branching program of length at most (k � 1)n and size at
most 2S and let I � B�1(1). There is a set E of embedded
p-cylinder intersections with balanced, ordered footprints whose
union covers a subset I0 � I with jI 0j � jIj=2 such that each
E 2 E satisfies E � B�1(1), m(E) = m and Æ(E) �
2�2mp log2(n=m)�Sr�2jIj=jDnj.

LetB be a leveled branching program onDn of length kn. Given
L � [kn] � 1 and an input x 2 Dn define readsB(x; L) � [n] to
be the set of indices of variables queried in B on input x at levels
in L and let unseenB(x; L) = [n]� readsB(x;L).

Given a partition L = (L1; : : : ; Lp) of [kn]�1 and an input x 2
Dn, define nodesB(x;L1; : : : ; Lp) to be the sequence of nodes of
B that x reaches at levels ` 2 [kn � 1] such that ` 2 Lj for some
j � p for which `� 1 =2 Lj .

LEMMA 3.8. Let B be a leveled branching program of
length kn and (L1; : : : ; Lp) be a partition of [kn] � 1. Let
A0; A1; : : : ; Ap be a partition of [n], � 2 DA0 , and let
(v1; : : : ; vr) be a set of nodes of B. Define E � B�1(1) to
be the set of all inputs x such that nodesB(x;L1; : : : ; Lp) =
(v1; : : : ; vr), Aj � unseenB(x;Lj) for all j = 1; : : : ; p, and
xA0 = �. Then E is an embedded p-cylinder intersection with
footprint (�;A1; : : : ; Ap).

PROOF. Let C1 = E[n]�A0�A1
; : : : ; Cp = E[n]�A0�Ap

and let F be the embedded p-cylinder intersection defined by �,
A1 : : : ; Ap and C1; : : : ; Cp. Clearly, E � F , and it suffices to
show that F � E.

Let z 2 F . By definition of F , for each j = 1; : : : ; p there
is a yj 2 E such that z[n]�A0�Aj

= yj[n]�A0�Aj
. Furthermore

zA0 = yjA0
= � so z[n]�Aj

= yj[n]�Aj
for j = 1; : : : ; p.

For any j, on input yj , levels of B in Lj only access variables
in [n] � Aj and yj and z agree on those variables, so the out-
comes of queries on z at levels in Lj are the same those as on input
yj , although it is not immediate that they both follow the same
path since they a priori might arrive at different nodes in these lev-
els to begin with. However, since z; y1; : : : ; yp all begin at the
same start node in Lj we see that by induction on the length of the
path that for each j, z follows precisely the same path in Lj as yj .
This implies that nodesB(z;L1; : : : ; Lp) = (v1; : : : ; vr) and that
unseenB(z; Lj) = unseenB(y

j ; Lj) � Aj for j = 1; : : : ; p and
B(z) = 1. Therefore z 2 E as required.

The follow proposition will be useful for satisfying the ordered
footprint condition.

PROPOSITION 3.9. Let B01; : : : ; B
0
p � [n] be disjoint sets.

Then there exist sets Bj � B0j for each j = 1; : : : ; p and a permu-
tation � : [p] ! [p] such that B�(1) < B�(2) < � � � < B�(p) and
jBj j � jB0j j=p for each j.

PROOF. We prove this by induction on p. The statement is
clearly true for p = 1. Suppose it is true for p� 1 > 0. Let i 2 [n]
be minimum such that there is some k with jB0k \ [i]j � jB0kj=p.
Let Bk = B0k \ [i], �(1) = k, and define B00j = B0j n [i] for
j 6= k. By construction, jB0j n [i]j � (p � 1)jB0j j=p for j 6= k.
We now apply the inductive hypothesis to the p � 1 sets B00j for
j 6= k to define the remainder of � and sets Bj � B00j � B0j with
jBj j � jB00j j=(p�1) � jB0j j=p for j 6= k. Clearly B1; : : : ; Bp are
disjoint.

PROOF OF THEOREM 3.7. Assume that r divides kn. By
Lemma 3.2, if we choose L1; : : : ; Lp 2 [kn] � 1 by dividing the
levels of B into r blocks of height kn=r and randomly, uniformly,
and independently include each block in one of the Lj , then for any
x 2 Dn, for each j 2 [p], Pr[junseenB(x;Lj)j < 4�k=pn=2] <

4k=p+1k2=r � 1=(4p). Therefore, there exists a choice of this as-
signment such that for some I00 � I with jI 00j � 3jIj=4, for all in-
puts x 2 I 00, junseenB(x; Lj)j � 4�k=pn=2 for all j = 1; : : : ; p.
Fix this choice.

For the choice of L1; : : : ; Lp and all x, there are r0 < r el-
ements in nodesB(x;L1; : : : ; Lp), at most one each from levels
ikn=r of B, for i = 1; : : : ; r � 1. For any input x 2 I00, we
find disjoint B01; : : : ; B

0
p with each jB0j j = 4�k=pn=(2p) = m0,

B0j � unseenB(x; Lj). We then apply Proposition 3.9 to find
sets Bj 2 B0j with jBj j = m � dm0=pe and a permutation
� : [p]! [p] such that B�(1) < B�(2) < � � � < B�(p).

Let B0 = [n] � B1 � � � � Bp. Using the construction given by
Lemma 3.8, let E be the embedded p-cylinder intersection con-
taining x on which B outputs 1 defined by B0; B1 : : : ; Bp, node
sequence (v1; : : : ; vr0) = nodesB(x;L1; : : : ; Lp), and � = xB0 .
Finally, we define A0 = B0 and Aj = B�(j) for j = 1; : : : ; p to
yield an ordered footprint (�;A1; : : : ; Ap) for E.

We count the total number of such embedded p-cylinder intersec-
tions over all elements in I00. To specify one such cylinder inter-
section, it suffices to describe its feet, spine, and its associated node
sequence. There are fewer than 2Sr choices of its node sequence,
jDjn�pm choices of its spine, and at most

�
n
m

�p � 2pH2(m=n)n =

22pm log2(n=m) choices of disjoint A1; : : : ; Ap each of size m.
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Thus in total we obtain 22pm log2(n=m)+SrjDjn�pm such cylinder
intersections E that partition a set containing I00. Therefore, by
Markov’s inequality, the portion of I00 covered by such intersec-
tions that have density Æ(E) < 2�2pm log2(n=m)�Sr�2jIj=jDnj is
at most 1=3 of I 00. Therefore there is an I0 � I 00 with jI 0j � jIj=2
covered by embedded p-cylinder intersections with feet of size m
and with density at least 2�2pm log2(n=m)�Sr�2jIj=jDnj.

To use Theorem 3.7, we need a function with high p-party com-
munication complexity when p > 2. We use p-tensor analogues
of the quadratic forms considered in [7, 2, 6], although our tensors
do not generalize either the modified Sylvester or random Hankel
matrices used in those bounds.

We define our function TENSp;t;q in several steps. For simplicity,
Let q = 2s > n and e1; : : : en be distinct elements of field Fq .
Over Fq define vectors v1; : : : ; vt 2 Fnq by vi = (ei�11 ; : : : ; ei�1n ).
Let T =

Pt
i=1

Np
j=1 vi; that is, for y1; : : : yp 2 Fnq ,

T (y1; : : : ; yp) =
tX

i=1

pY
j=1

(vi�yj) =
X

k1;:::;kp2[n]

ak1;:::;kp

pY
j=1

yj;kj

where

ak1;:::;kp =
tX

i=1

vi;k1 � � � vi;kp =
tX

i=1

ei�1k1
� � � ei�1kp

:

Thus we can identify T by the [n]p array of coefficients ak1;:::;kp .
Then in analogy with the argument in [2] we modify T by setting
most of the entries in this array to 0, defining L(T )(y1; : : : ; yp) =P

1�k1<k2<:::<kp�n
ak1;:::;kp

Qp
j=1 yj;kj . Finally, let � : F2s !

F2 be any linear map and define TENSp;t;q : Fn2s ! F2 by
TENSp;t;q(x) = �(L(T )(x; : : : ; x)); for definiteness, we identify
the elements of F2s with the residues of polynomials in F2 [z] mod-
ulo some irreducible degree s polynomial and take �(h) = h(0).

THEOREM 3.10. Let 1 > � > 0 be arbitrary, let p � 2 be an
integer with p < (�=8) log n, let s � �p4p log n, let q = 2s, D =

Fq and let t = dn1��=4e. then any D-way branching program
computing TENSp;t;q : D

n ! f0; 1g in time T � (�=16)np log n
requires space S � n1�� log jDj.

In order to derive our results for TENSp;t;q we must show that
it is not constant on any embedded p-cylinder intersection with a
balanced, ordered footprint that has large feet and density.

For any disjoint A1; : : : ; Ap � [n], and a tensor T define
TA1;:::;Ap to be the tensor on FA1

q � : : : � FAp
q given by the

A1 � : : : Ap subarray of the array of T . Observe that for T ,
TA1;:::;Ap =

Pt
i=1

Np
j=1 uji where uji = (vi)Aj

.

LEMMA 3.11. IfE is an embedded p-cylinder intersection with
balanced, ordered footprint (�;A1; : : : ; Ap) on which TENSp;t;q is
constant then there is an embedded p-cylinder intersection E0 �
E with the same footprint and Æ(E0) � Æ(E)=2p on which � Æ
TA1;:::;Ap is constant.

PROOF. Let A0 = [n] � A1 � : : : � Ap. Observe that, since
tensors are multilinear, L(T )(x; : : : ; x) equals

X
j1;:::;jp2f0;1;:::;pg

L(T )Aj1
;:::Ajp

(xAj1
; : : : ; xAjp

):

On E, note that xA0 = �. By construction of the map L
and the fact that the footprint is ordered, for a permutation �,
L(T )A�(1);:::;A�(p)

= 0 unless � is the identity. Further, any term
that has an index containing A0 must not have an index for at least

one of the Aj for j � 1. For j = 1; : : : ; p, collect all terms in the
sum that have indices Ai for all i < j but do not have index Aj and
call the function given by that sum fj . Then

�(L(T )(x; : : : ; x))
= �(L(T )A1;:::Ap(xA1 ; : : : ; xAp) + f1 + : : :+ fp)

= �(TA1;:::Ap(xA1 ; : : : ; xAp)) + �(f1) + : : :+ �(fp)

by the order condition on the footprint and the linearity of �.
Let C1; : : : ; Cp be the legs of E. For b 2 F2 let Let

Cb
j = fz 2 Cj j �(f�j (z)) = bg and for b1; : : : ; bp 2 Fq

let Eb1;:::;bp � E be the embedded p-cylinder intersection de-
fined by � and Cb1

1 ; : : : ; C
bp
p . Choose E0 = Eb1;:::;bp for the

(b1; : : : ; bp) that maximizes jEb1;:::;bp j. Clearly jE0j � jEj=2p
and � Æ f1 + : : :+ � Æ fp is constant on E0.

If A is a footprint of an embedded p-cylinder intersection, then
C(A) denotes the set of all embedded p-cylinder intersections
whose footprint is A; we extend this to p-partitions of P by identi-
fying P with a footprint with an empty spine.

For any function f : Fnq ! f0; 1g, we define its discrepancy
with respect to A by

�A(f) = max
C2C(A)

jPr [f(x) = 1 and x 2 C]

�Pr [f(x) = 0 and x 2 C] j:
Following Raz [15], for f : (Fmq )p ! F2 define �(f) =

jEy1;:::;yp [(�1)f(y1;:::;yp)]j. We say that f is additive in its j-th
component if for all a1; : : : ; ap; bj 2 Fmq ,

f(a1; : : : ; aj + bj ; : : : ; ap) = f(a1; : : : ; aj ; : : : ; ap)

+f(a1; : : : ; bj ; : : : ; ap):

The following proposition is implicit in [15] and extends ideas
from [11, 12].

PROPOSITION 3.12 ([15]). Let P be the p-partition of [mp]
into [m]; [m] +m; : : : ; [m] + (p � 1)m. If f : (Fmq )p ! F2 is
additive on each component then �P(f) � �(f)1=2

p

.

Since the function f : F
A1[:::[Ap
q ! F2 given by f =

�ÆTA1;:::;Ap is additive in each component, by Proposition 3.12 we
need only bound �(f) to bound �(A1;:::;Ap)(f). The key property
we use in this analysis is that if t � jA1j; : : : ; jApj, the defining
vectors for TA1;:::;Ap have the property that uj1; : : : ; ujt are lin-
early independent for each j = 1; : : : ; p. This is immediate from
the following lemma.

LEMMA 3.13. Let A � [n] with jAj � t and for i = 1; : : : ; t.
For v1; : : : ; vt defined as above (v1)A; : : : ; (vt)A are linearly in-
dependent.

PROOF. Suppose that �1(v1)A+� � �+�t(vt)A = 0. Define the
polynomial f(z) = �1+�2z+� � �+�tzt�1. Then our assumption
implies that f(e`) = 0 for all ` 2 A. Therefore f has at least
jAj � t distinct roots and since it has degree at most t� 1, it must
be identically 0, implying that all the �j are 0.

We now analyze the behavior of TA1;:::;Ap , finding it convenient
to do this analysis in a more general fashion by analyzing arbitrary
tensors T with similar properties.

LEMMA 3.14. If T =
Pt

i=1 �i
Np

j=1 uji and
�; �0 2 Fq � f0g then Pry1;:::;yp [T (y1; : : : ; yp) = �] =
Pry1;:::;yp [T (y1; : : : ; yp) = �0] and Pry1;:::;yp [T (y1; : : : ; yp) =
0] � 1=q
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PROOF. Fix a2; : : : ; ap 2 Fnq . Then

T (y1; a2; : : : ; ap) =
tX

i=1

�i(

pY
j=2

(uji�aj))(u1i�y1) = va2;:::;ap �y1

where va2;:::;ap =
Pt

i=1 �i(
Qp

j=2(uji � aj))u1i. If va2;:::;ap = 0

then Pry1 [va2;:::;ap � y1 = �] = 0 = Pry1 [va2;:::;ap � y1 = �0]
and Pry1 [va2;:::;ap � y1 = 0] = 1. Otherwise, for any 
 2 Fq ,
Pry1 [va2;:::;ap � y1 = 
] = 1=q. The lemma follows.

LEMMA 3.15. Suppose that T =
Pt

i=1 �i
Np

j=1 uji, that
for each j = 1; : : : ; p, uj1; : : : ; ujr are linearly independent
over Fq , and that at least w > 0 of the �i are nonzero. Then

Pry1;:::;yp [T (y1; : : : ; yp) = 0] �Pp�1
k=1(4=q)

w=2k + 1=q.

PROOF. We prove this by induction on p for all such T . In the
case p = 1,

T (y1) =
tX

i=1

�i(u1i � y1) = (
tX

i=1

�iu1i) � y1:

Since
Pt

i=1 �iu1i 6= 0 by the linear independence of u11; : : : ; u1t,
Pry1 [T (y1) = 0] = 1=q as required.

Now assume the statement for all (p�1)-tensors T 0 of this form
and all w > 0 for p > 1. For a 2 Fnq let Np(a) = #fi j upi � a 6=
0 and �i 6= 0g. Let Sp = fa 2 Fnq j Np(a) � w=2g.

Pr
y1;:::;yp

[T (y1; : : : ; yp) = 0] � Pr
yp
[yp =2 Sp]

+ max
ap2Sp

Pr
y1;:::;yp�1

[T (y1; : : : ; yp�1; ap) = 0] (1)

Now for a 2 Sp,

T (y1; : : : ; yp�1; a) =
tX

i=1

�i(upi � a)
p�1O
j=1

uji =
X
i=1

�0i

p�1O
j=1

uji

where �0i = �i(upi �a) and, since a 2 Sp, �0i 6= 0 for at least w0 =
w=2 values of i. Therefore we can apply the inductive hypothesis
to the (p� 1)-tensor T (y1; : : : ; yp�1; a) and w0 = w=2 to bound
the second term in (1). The first term in (1) is bounded above byP

k�w=2

�
w
k

�
q�k < 2wq�w=2 = (4=q)w=2 . Adding both bounds

yields the desired result.

COROLLARY 3.16. If m � t then �(� Æ TA1;:::;Ap) �
2
Pp�1

k=1(4=q)
t=2k � (4=q)t=2

p

and �(A1;:::;Ap)(�ÆTA1;:::;Ap) �
(4=q)t=4

p

.

PROOF OF THEOREM 3.10. Let m = t, k =
b(p=2) log(n=(2p2m))c � (�=16)p log n and observe that
m � 4�k=pn=(2p2) � 41=pm. Let r = d4k=p+2k2pe and
observe that r � (4np=m) log2(n=(2p2m)) � n. Since
jTENS�1p;t;q(1)j > jDnj=4 we apply Theorem 3.7 to any branching
program B computing TENSp;t;q to find an embedded p-cylinder
intersection E with balanced, ordered footprint (�;A1; : : : ; Ap)

with m(E) = m and Æ(E) � 2�2mp log2(n=m)�Sr�4 on
which TENSp;t;q is 1. Applying Lemma 3.11 we get an em-
bedded p-cylinder intersection E0 on the same footprint and
Æ(E0) � Æ(E)=2p on which � Æ TA1;:::;Ap is constant. By corol-
lary 3.16 we must have 2�2mp log2(n=m)�Sr�p�4 � (4=q)m=4p .
Solving for S, plugging in the upper bound on r,
and bounding tiny terms yields S � m2[4�p log q �
2p log(n=m)]=(16np log2(n=(2p2m))). Since s = log q �
�p4p log n, S � m2(log q)=(32np4p log2(n=(2p2m))) �
n1�� log q since p � (�=8) log n.

Although we would like to derive improved bounds for the
Boolean case as well, the prospects are not good for obtaining such
bounds based on using multiple parties in the subtler argument for
this case introduced by Ajtai [1, 2]. The key argument there uses
a property that is true in the 2-party case but whose analogue is
false in the p-party case for p � 3. Furthermore, in this argument a
distribution of layers is chosen so that most layers are not assigned
to any party. Values read in these layers would become part of the
spine of the embedded cylinder intersection and the main multi-
party advantage, larger feet for these cylinder intersections, would
evaporate.

4. NEAREST NEIGHBOR DATA STRUC-
TURES AND TIME-SPACE TRADEOFFS

The �-near neighbor problem �NN over a metric space defined
on Ud with metric �, has as input a query x 2 Ud, a database D =
fy1; : : : ; yng � Ud as well as a fixed real number � = �(n; d) and
accepts iff there is some y 2 D such that �(x; y) � �. The static
data structure version of the problem allows arbitrary preprocessing
based on D, �, and � and allows one to store information in some
number of cells of memory, each of limited size so that given the
query x as input, one can compute �NN(x;D) efficiently. Thus
three natural complexity measures are the amount that can be stored
in each memory cell, the number of memory cells, and the query
time.

The following is an extension of an observation of Miltersen,
Nisan, Safra, and Wigderson [13] on the relationship between static
data structure problems in the cell-probe model and time-space
tradeoffs.

THEOREM 4.1. Let f : Qm �Dn ! O be a static data struc-
ture problem; i.e., given a query x 2 Dm and a database D 2 Dn,
compute an output f(x;D) 2 O. If for every D0 2 Dn there is
a Q-way branching program BD0 computing the function fD0 in
time T and space S, then for any k � 1 there is a static cell-probe
data structure using 2S memory cells of b = jQjk(S + logm) bits
each to store any database so that the query time to solve f is at
most dT=ke.

PROOF. The memory cells of the data structure will store the
2S nodes of the Q-way branching program BD0 . Each memory
cell corresponding to a node v 2 BD0 contains the names of the
variables queried and pointers to the nodes reachable by each of
the jQjk paths of length k starting at v in BD0 .

Thus cell-probe lower bounds require time-space tradeoff lower
bounds. We prove a converse under somewhat more restrictive as-
sumptions about the data structure. We assume that, given a query,
a data structure algorithm initially reads some portion of the input
query and then chooses a memory cell from which to read. At each
subsequent step, based on the contents of the memory cell iden-
tified in the previous step, it reads some more from the input and
determines which memory cell to read from next. Such an algo-
rithm will always have enough storage to name a memory location
in the data structure and it may have some additional work space.

THEOREM 4.2. Let f : Qm �Dn ! O be a static data struc-
ture problem. If there is a data structure having at most 2S cells of
memory that reads at most k consecutive components of the query
in a single time step and solves f using query time at most T and
additional work space at most S, then for every D0 � Dn there
is a Qk-way branching program running in time O(T ) and space
O(S + log T ) that computes f(x;D0).
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PROOF. A node in the branching program will correspond to a
pair consisting of the name of a memory cell and a configuration of
the additional work space of the data structure (including the pro-
gram counter of the algorithm). With the database fixed to D0, the
contents of each memory cell are determined by its name. Given
this configuration, the k components of the query to be accessed in
a single time-step are determined by the algorithm, the configura-
tion of the additional work space and the memory cell just accessed
from the previous step. The new values of these quantities are de-
termined by the value of these query components.

Thus we can obtain lower bounds for data structure problems for
natural classes of such algorithms by proving time-space tradeoff
lower bounds. In this section we do this for several �-near neigh-
bor problems. Although the memory cell size does not appear in
the above statement explicitly, the bound on the number of query
components that can be read in a single step is usually a function
of the number that can fit in a single memory cell.

4.1 �-Near Neighbor Lower bounds in Large
Spaces

Given a metric �0 on U we can derive a metric � on Ud as
the `1 composition of �0, defining �(x; y) =

Pd
i=1�0(xi; yi).

Thus the usual Hamming metric on Ud is just the `1 composition
of the inequality metric. Similarly if U = f0; 1gk and �0 is the
Hamming metric on U then its `1 composition is just the Hamming
metric on f0; 1gkd. Call this the compositional Hamming metric
on Ud.

For a 2 f0; 1gk , define a to be a with each bit complemented
and double(a) = aa 2 f0; 1g2k . For x = (x1; : : : ; xd) 2
(f0; 1gk)d define double�(x) = (double(x1); : : : ; double(xd)).
Define Dk � (f0; 1g2k)d to be the set of all

�
d
2

�
2k vectors yki;j;a

for 1 � i < j � d, a 2 f0; 1gk where yki;j;a is double(a) in its
i-th and j-th coordinate and 02k in all other coordinates.

THEOREM 4.3. Let (Ud;�) be the metric space where U =
[d4] � 1, and �(x; y) is the usual Hamming metric on Ud, the
number of coordinates on which x and y differ. Then there ex-
ists a database D0 � Ud of size n = �(d4) and � such that
any U -way branching program (or RAM algorithm) computing
�NN(x;D0) on (Ud;�) in time T and space S requires T =


(d
p
log(d=S)= log log(d=S)).

PROOF. Assume without loss of generality that d = 2k for some
integer k. In [6], it is shown that the element distinctness problem,
EDd : ([d

2]�1)d ! f0; 1g has a time-space tradeoff lower bound
of the form T = 
(d

p
log(d=S)= log log(d=S)). For suitable �

and D0 we give a reduction from EDd to �NN(x;D0).
We identify elements of [d2] � 1 with elements of f0; 1g2k and

elements of [d4]� 1 with elements of f0; 1g4k . SetD0 = D2k and
� = d� 2.

Observe that for all a 2 f0; 1g2k , double(a) 6= 04k . If
EDd(x) = 1 then there is an a 2 [d2] � 1 and i 6= j such that
xi = a = xj and it is easy to see that �(double�(x); y2ki;j;a) =

d � 2 = �. Furthermore, if EDd(x) = 0 then for all y 2 D2k ,
�(double�(x); y) � d� 1 > �.

COROLLARY 4.4. Any data structure algorithm solving �NN
over (Ud;�) where U = [d4]� 1, and �(x; y) is the usual Ham-

ming metric on Ud, that uses 2(nd)
o(1)

memory cells and at most
(nd)o(1) additional space and reads one component of the query
per time step requires query time 
(d

p
log d= log log d).

THEOREM 4.5. Let (Ud;�) be the metric space where U =
[d6]�1, and �(x; y) is the compositional Hamming metric on Ud.
Then there exists a database D0 � Ud of size n = �(d5) and �
such that any U -way branching program (or RAM algorithm) com-
puting �NN(x;D0) on (Ud;�) in time T and space S requires
T = 
(d log((d log d)=S)).

PROOF. Assume without loss of generality that d = 2k is an
integral power of 2. For 
 < 1=2, define the Hamming close-
ness problem HAM
 : (f0; 1gk)d ! f0; 1g to be one on input
(x1; : : : ; xd) if and only if there is some i 6= j such that the Ham-
ming distance between xi and xj is at most 
k. In [6], it is shown
that the Hamming closeness problem, HAM
 : ([d`] � 1)d !
f0; 1g where ` > 2=(1�H2(
)) and H2(
) = �
 log2 
 � (1�

) log2(1 � 
) has a time-space tradeoff lower bound of the form
T = 
(d log((d log d)=S)). We will consider 
 = 1=20 for which
2=(1 �H2(
)) < 3. For a suitable D0 and � we give a reduction
from HAM
 to �NN(x;D0).

We identify elements of [d3] � 1 with elements of f0; 1g3k and
elements of [d6]� 1 with elements of f0; 1g6k . Set D0 = D3k and
� = 3(d� 2)k + 6
k = (3d � 5:7) log d.

Observe that for a 2 f0; 1g3k , �0(double(a); 0
6k) = 3k and

that for any a; b; c 2 f0; 1g3k

�0(double(a); double(c)) +�0(double(b); double(c))

= 2(�0(a; c) + �0(b; c)) � 2�0(a; b)

by the triangle inequality. Therefore, if HAM
(x) = 1 then
there are a; b 2 [d2] � 1 and i 6= j such that xi = a,
xj = b, and �0(a; b) � 3
k. For this value observe that
�(double�(x); y3ki;j;a) � �. If HAM
(x) = 0 then by the above
observations for every y3ki;j;c 2 D3k , �(double�(x); y3ki;j;c) �
�+ 2.

COROLLARY 4.6. Any data structure algorithm solving �NN
over (Ud;�) where U = [d6] � 1, and �(x; y) is the composi-

tional Hamming metric on Ud, that uses 2(nd)
o(1)

memory cells
and at most (nd)o(1) additional space and reads one component of
the query per time step requires query time 
(d log d).

4.2 �-Near Neighbor Lower Bounds in f0; 1gd
Note that by setting d = 6d0 log d0 and apply Corollary 4.6 with

d0 instead of d, we obtain

COROLLARY 4.7. Any data structure algorithm solving �NN

on the Hamming space over f0; 1gd with 2(nd)
o(1)

memory cells
and (nd)o(1) additional space that reads O(log d) = O(log n)
consecutive bits of the query per step requires 
(d) query time.

This lower bound is larger than those of [8, 5] by a �(log n)
factor. (Note that, in the communication game model used in those
papers, a model even stronger and less reasonable than the cell-
probe model, query time �(d= log n) is optimal.)

In this section we prove a query-time lower bound for the f0; 1gd
Hamming model that is a factor 
(log d) larger still but under the
restriction that we can access only one bit of the query per step and
that this corresponds to an oblivious rather than a general branching
program. Note that this is incomparable with Corollary 4.7.

THEOREM 4.8. Any data structure algorithm solving �NN on

the Hamming space over f0; 1gd using 2(nd)
o(1)

memory cells and
(nd)o(1) additional space that accesses one query bit per time step
and in a fixed order requires query time 
(d log d).
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The rest of this section is devoted to the proof of the time-space
tradeoff lower bound for �NN over f0; 1gd on oblivious branching
programs that implies this theorem.

It will be useful to consider elements of f0; 1gd as vectors from
F
d
2 whose indices are from [d] � 1 rather than [d]. Furthermore,

we assume that d is a power of two, set k = log2 d, and view those
indices as themselves elements of Fk2 . Thus, if i 2 Fk2 and v 2 Fd2 is
a vector, then vi will denote the i-th coordinate of v and we extend
this notation to the partial vectors vJ for subsets J � Fk2 defined
as the projection of v on J in accordance with our usual notation.
Given indices i; j for coordinates of v 2 Fd2 , the expressions i � j
and i + j are well-defined, taking place in Fk2 rather than over the
integers. We will use 0 and 1 to denote the all 0’s and all 1’s vectors
respectively.

DEFINITION 4.1. Let V � FNq be a vector space, v 2 V , and
S � V . Define zeroes(v) = fi 2 N : vi = 0g, let ones(v)
denote the complement of zeroes(v), and define zeroes(S) =T
s2S zeroes(s).

Throughout this section, � will denote the usual Hamming met-
ric on Fd2 . For any subset of the coordinates, S � Fk2 , we ex-
tend this metric to pairs of partial vectors uS; vS defined on S
in the obvious way and define �S(u; v) = �(uS ; vS). Fi-
nally, for u; v 2 Fd2 , let u ^ v denote the bitwise AND of u
and v so that (u ^ v)i = uivi for all i 2 Fk2 . Notice that
�(u ^ v; u ^ w) = �ones(u)(v; w) for any u; v; w 2 Fd2 .

We create a database D0 with �(d2) elements over Fd2 for which
computing �NND0(x) = �NN(x;D0) with � = d=4 has a large
time-space tradeoff lower bound on oblivious branching programs.
We will derive the lower bound using Theorem 3.3 with p = 2 and
a reduction of the 2-party fixed-partition communication problem
EQUALITY to the 2-party best-partition communication prob-
lem �NN�

D0
for a suitable �.

The database D0 is based on extensions of Hadamard codes.
Given v 2 Fk2 and � 2 F2 , define � : Fk+1

2 ! Fd2 by
�(v; �)i = v � i+ � for each i 2 Fk2 . Define the database

D0 = f�(u; �0)^�(v; �1) : �0; �1 2 F2 ; u; v 2 Fd2 ; u � v = 1g:
The elements of our database are based on pairs of outputs of �. If
we only needed to prove lower bounds with respect to the 2-party
fixed-partition as opposed to the best-partition model then a sim-
pler construction based on the following Lemma 4.9 would suffice.
It shows that, if a set of coordinates S has a natural pairing and a
vector ! is far away on S from every member of a family of out-
puts of �, then the values of ! on those paired coordinates satisfy
EQUALITY or its dual. Lemma 4.10 shows that whenever !
satisfies these properties then a simple encoding of ! is in fact far
from all vectors in D0, and conversely. This is the key property that
allows us to prove the reduction from EQUALITY even in the
best-partition model.

LEMMA 4.9. Let c 2 Fk2 � f0g and � 2 F2 . Let S � Fd2 be
such that for all i 2 S, i + c 2 S. Suppose that for all (v; �) 2
F
k+1
2 with v � c = �, �S(�(v; �); !) � 1

2
jSj.

1. If � = 0, then !i+c = !i for all i 2 S.
2. If � = 1, then !i+c = !i for all i 2 S.

LEMMA 4.10. Let ! 2 Fd2 . Let (u; �) 2 Fk+1
2 , with u 6= 0.

Let � 2 f0; : : : ; dg. Then �((�(u; �) ^ !); z) � � for all z 2
D0 if and only if

1. �ones(�(u;�))(!;0) � � and
2. �ones(�(u;�))(!;�(v; �)) � � for all (v; �) 2 Fk+1

2 such
that u � v = 1.

We give the proofs of these lemmas after some preliminaries.
Given a vector space W with subspace U and u 2 W , the set
u + U = fw 2 W : w = u + u0 for some u0 2 Ug is called
an affine subspace of W , or simply an affine space; U is called the
underlying space of u + U . If V is an affine subspace, we denote
its underlying space by bV . Observe that

PROPERTY 4.11. (1) if V; V 0 are affine spaces then V \ V 0 is
an affine space and \V \ V 0 = bV \cV 0 unless V \ V 0 = ;. (2) If
V 6� V 0, then jV \ V 0j � jV \ V 0j.
We use two key properties of �.

PROPERTY 4.12. (1) � : Fk+1
2 ! Fd2 is linear and (2) For any

(v; �) 2 Fk+1
2 , the sets zeroes(�(v; �)) and ones(�(v; �)) are

affine subspaces of Fk2 .

We rely on the linearity of � for our reduction from
EQUALITY. Since some of our properties apply to all linear
functions over larger fields we state them in this form. Let Fq be
the field of q elements, and let n0, k0 be integers such that n0 = qk

0

.
We will think of the indices of vectors from Fn

0

q as elements of Fk
0

q .

LEMMA 4.13. Let V be a vector space, and suppose � : V !
Fn

0

q is a linear function. Let x 2 Fn0q , let u; v 2 V , and let S �
ones(�(v)). Then

P
�2Fq

�S(x; �(u+ �v)) = (q � 1)jSj.

PROOF. Let i 2 S � ones(�(v)). Clearly, there is exactly
one � 2 Fq such that xi = �(ui) + ��(vi) since �(vi) 6= 0. SoP

�2Fq
�i(x; �(u+ �v)) = (q � 1). Our claim follows.

LEMMA 4.14. Let V be an affine subspace of Fk
00

q with un-

derlying space bV . Let � : Fk
00

q ! Fn0q be a linear function.

Let S � Fk0q , T � bV , and x 2 Fn0q . If for all v 2 V ,
�S(�(v); x) � (1 � 1

q
)jSj, then �S\zeroes(�(T ))(�(v); x) �

(1� 1
q
)jS \ zeroes(�(T ))j for all v 2 V .

PROOF. Suppose �S(�(v); x) � (1� 1
q
)jSj, and let T be any

subset of bV . We will show by induction on the size of T that
�S\zeroes(�(T ))(�(v); x) � (1� 1

q
)jS \ zeroes(�(T ))j.

The base case is trivial, so suppose that for all v 2 V ,
�S0(�(v); x) � (1� 1

q
)jS0j for S0 = S \ zeroes(�(T 0)) and T 0

a subset of T with jT j = jT 0j+ 1.
Let u 2 T � T 0. Notice that for � 2 Fq that v + �u 2 V

since u 2 bV . Hence, for any � 2 Fq , �S0(�(v + �u); x) � (1 �
1
q
)jS0j. Further, since �(v+�u) and �(v) agree on all coordinates

in zeroes(�(u)),

�S0\zeroes(�(u))(�(v); x) + �S0\ones(�(u))(�(v + �u); x)

� (1� 1

q
)jS0j:

Summing the above inequalities over all � 2 Fq and applying
Lemma 4.13, we see that

�S0\zeroes(�(u))(�(v); x) � (1� 1

q
)jS0 \ zeroes(�(u))j:

Since S0 \ zeroes(�(u)) = S \ zeroes(�(T )), this proves our
claim.

We can now apply this q = 2 to derive Lemma 4.9 as a corollary.
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PROOF OF LEMMA 4.9. Fix i 2 S. Let U0
i = f(v; �) 2

F
k+1
2 : v � i+ � = 0g and let V �

c = f(v; �) 2 Fk+1
2 : v � c = �g.

Clearly, U0
i \ V 0

c � bV �
c . Furthermore, zeroes(�(U0

i \ V 0
c )) =

fi; i + cg � S. Applying Lemma 4.14 with T = U0
i \ V 0

c we see
that �fi;i+cg(�(v; �); !) � 1 for all (v; �) 2 V �

c .
(i) If � = 0, then (0; 0); (0; 1) 2 V �

c and so

�fi;i+cg(0; !) � 1 and �fi;i+cg(1; !) � 1

which together imply that !i+c = !i.
(ii) If � = 1, then choose a u such that u � c = 1. We see that the

i-th coordinate and the (i+ c)-th coordinate of �(u; �) must differ
for any � 2 F2 . Further, �(u; �) = �(u; �). Hence,

�fi;i+cg((0; 1); !fi;i+cg) � 1

�fi;i+cg((1; 0); !fi;i+cg) � 1

and thus !i+c = !i.

In order to prove Lemma 4.10, we use the following technical
lemma based on the fact that Hadamard codewords are characteris-
tic vectors of affine subspaces.

LEMMA 4.15. Let z 2 D0 with z 6= 0. Let (u; �) 2 Fk+1
2

with u 6= 0. If ones(�(u; �)) � ones(z), then there exists a
(v; �) 2 Fk+1

2 such that z = �(u; �) ^ �(v; �).

PROOF. Since z 2 D0, there are (s; �0); (t; �1) 2 Fk+1
2 with

s � t = 1 such that z = �(s; �0) ^ �(t; �1). For convenience, let
U = ones(�(u; �)) and let V = ones(z) = ones(�(s; �0)) \
ones(�(t; �1)). Note that both U and V are affine spaces. Since
z 6= 0, V 6= ;. Hence, bV = fi 2 Fk2 : s � i = 0 = t � ig, so
that bV ? = f0; s; t; s + tg. Similarly, we see that bU? = f0; ug.
By hypothesis, U � V , so bU � bV and thus bU? � bV ?. Hence,
u 2 f0; s; t; s + tg. Since u 6= 0 by assumption, we have three
cases to consider.
(i) If u = s, then z = �(u; �0) ^ �(t; �1) with u � t = 1.
(ii) If u = t, then z = �(s; �0) ^ �(u; �1) with s � u = 1.
(iii) If u = s + t, then note that z = �(s; �0) ^ �(t; �1) =
(�(s; �0) + �(t; �1)) ^ �(t; �1) = �(u; �0 + �1) ^ �(t; �1) by
linearity of �. Furthermore, u � t = (s+ t) � t = s � t+ t � t = 1.

So in all cases, z = �(u; �0) ^ �(v; �) for some �0 2 F2 and
(v; �) 2 Fk+1

2 with u � v = 1.
If �0 = �, we are done. Otherwise, �0 = �, so that

ones(z) � ones(�(v; �)) = zeroes(�(v; �)). But ones(z) �
ones(�(v; �)) by assumption. So ones(z) = ;. That is, z = 0,
a contradiction.

PROOF OF LEMMA 4.10. For the first direction, suppose that
�((�(u; �) ^ !); z) � � for all z 2 D0. Then in
particular for any (v; �) 2 Fk+1

2 with u � v = 1,
�((�(u; �) ^ !); (�(u; �) ^ �(v; �))) � �. This implies that
�ones(�(u;�))(!;�(v; �)) � � for all such (v; �). Furthermore,
�ones(�(u;�))(!;0) = �((�(u; �) ^ !);0) � � since 0 2 D0.
This proves the first direction.

For the other direction, suppose that �((�(u; �) ^ !); z) <
� for some z 2 D0. If z = 0, then
�ones(�(u;�))(!;0) = �((�(u; �) ^ !);0) < �. So we
may assume that z 6= 0. We have two cases to consider:
(i) If ones(�(u; �)) � ones(z), then by Lemma 4.15,
z = �(u; �) ^ �(v; �) for some (v; �) 2 Fk+1

2 such that
u � v = 1. Hence,

�ones(�(u;�))(!;�(v; �))

= �((�(u; �) ^ !); (�(u; �) ^ �(v; �)))

= �(�(u; �) ^ !; z) < �:

(ii) If ones(�(u; �)) 6� ones(z), then jones(�(u; �)) \
ones(z)j � jzeroes(�(u; �)) \ ones(z)j by Property 4.11
since ones(�(u; �)) and ones(z) are both affine spaces. That
is, �ones(�(u;�))(0; z) � �zeroes(�(u;�))(0; z). Hence,

�ones(�(u;�))(!;0)

� �ones(�(u;�))(!; z) + �ones(�(u;�))(0; z)

� �ones(�(u;�))(!; z) + �zeroes(�(u;�))(0; z)

= �((�(u; �) ^ !); z) < �

This completes the proof.

In order to define the encoding of the input to EQUALITY
we use the following simple extension of the usual arguments for
best-partition communication complexity with additional twists to
handle our particular needs.

LEMMA 4.16. Let A;B � Fk2 with jAj = jBj = m > 1 and
A \ B = ;. Then there exist c 2 Fk2 � f0; 1g, �c 2 F2 , and sets
A0 � A \ ones(�(c; �c)) and B0 � B \ ones(�(c; �c)) such
that B0 = c+A0 and jA0j = jB0j = m2=(4d).

PROOF. We first find an appropriate c. Notice that
X

u2Fd2;u6=1

jA\ (u+B)j � (
X
a2A

jBj)�jA\ (1+B)j � m2�m

where the first inequality stems from the fact that for every a 2 A,
there are at least jBj values for u such that a 2 u +B. Hence, by
the pigeonhole principle, there is a c 6= 1 such that jA\(c+B)j �
(m2�m)=d � m2

2d
for m > 1. Also, c 6= 0 since A\B = ;. Let

A00 = A \ (c + B), and let B00 = c + A00. Notice that A00 � A
and B00 � B.

Since ones(�(c; 0)) and ones(�(c; 1)) are disjoint and to-
gether cover all of Fk2 , there is an �c 2 F2 such that jA00 \
ones(�(c; �c))j � 1

2
jA00j = m2=(4d). Choose A0 so that A0 �

A00 \ ones(�(c; �c)) and jA0j = m2=(4d). Let B0 = c + A0.
Observe that since, trivially, c � c = 0 we have ones(�(c; �c)) =
c+ ones(�(c; �c)). Therefore,

B0 = c+A0 � (c+A00) \ (c+ ones(�(c; �c)))

= B00 \ ones(�(c; �c)):
This completes the proof.

Given A;B as in Lemma 4.16, fix some A0, B0, c and �c guar-
anteed by the lemma. Write A0 as A0 = fa1; a2; : : : ; am2=(4d)g.
Since B0 = c + A0, we may also write B0 as B0 =
fb1; b2; : : : ; bm2=(4d)g with bi = c + ai for all i =

1; 2; : : : ;m2=(4d). For x; y 2 f0; 1gm2=(4d), define a vector

A;B(x; y) 2 Fd2 as follows: If c � c = 0, define 
A;B(x; y) to
be the vector which is 0 outside ones(�(c; �c)) � A0 [ B0, and
has xj in location aj , yj in location bj for j = 1; : : : ;m2=(4d),
and 1 elsewhere. If c � c = 1, define 
A;B(x; y) to be the vector
which is 0 outside A0 [ B0, and has xj in location aj and yj in
location bj for j = 1; : : : ; m2=(4d).

Observe that for c � c = 0, 
A;B(x; y)i = 
A;B(x; y)i+c for all
i 2 Fk2 if and only if x = y. Further, we note that for c � c = 1,

A;B(x; y)i = 
A;B(x; y)i+c for all i 2 Fk2 if and only if x = y.
Also observe that �(
A;B(x; y);0) � d=4 whenever x = y.

Notice that 
A;B(x; y) is 0 for all coordinates in
ones(�(c; �c)). Also notice that given the coordinate sets
A and B, it is possible to compute the value of 
A;B(x; y) on
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all coordinates of B given only the value of x. Similarly, we can
compute the value of 
A;B(x; y) on all coordinates of A given the
value of y.

LEMMA 4.17. Given disjoint A;B � Fk2 with jAj = jBj = m,

and x; y 2 f0; 1gm2=(4d), let c 2 Fk2 and 
A;B(x; y) be defined as
above. Then x = y if and only if for all (v; �) 2 Fk+1

2 such that
v � c = 1, �ones(�(c;�c))(
A;B(x; y);�(v; �)) � d=4.

PROOF. Either c � c = 0 or c � c = 1. (i) Suppose c � c = 0.
To prove one direction, suppose that

�ones(�(c;�c))(
A;B(x; y);�(v; �)) � d=4

for all (v; �) 2 Fk+1
2 such that v � c = 1. Note that v � c = 1 if and

only if v � c = 1 since c � c = 0. So we may apply Lemma 4.9 with
S = ones(�(c; �c)) to see that 
A;B(x; y)i = 
A;B(x; y)i+c for
all i 2 ones(�(c; �c)). That is, x = y as required.

Now consider the other direction. Suppose that x = y. Then

A;B(x; y)i = 
A;B(x; y)i+c for all i 2 ones(�(c; �c)).

For any (v; �) 2 F
k+1
2 with v � c = 1, we

see that �(v; �)i = �(v; �)i+c for all i 2 F
d
2 .

Hence, �fi;i+cg(
A;B(x; y);�(v; �)) = 1 for any i 2
ones(�(c; �c)). Thus, �ones(�(c;�c))(
A;B(x; y);�(v; �)) =
jones(�(c; �c))j=2 = d=4:

(ii) The case when c � c = 1 follows analogously.

THEOREM 4.18. Let � = 1=4, d = 2k, N = Fk2 , and N 0 �
N with jN 0j = d � 2m. Then over f0; 1gN , there is a partial

assignment, � 2 f0; 1gN0

, such that Cbest

2 (�NN�
D0

) � m2=(4d)

PROOF. We do this by reduction from EQUALITYm2=4d.
Let A;B be disjoint subsets of N � N 0 with jAj = jBj =

m. Given x; y 2 f0; 1gm2=(4d), define 
A;B(x; y) based on
A and B as above. By Lemma 4.17, x = y if and only if
�ones(�(c;�c))(
A;B(x; y);�(v; �)) � d=4 for all (v; �) 2 Fk+1

2

such that v � c = 1. For x = y, �ones(�(c;�c))(
A;B(x; y);0) �
d=4, so we may apply Lemma 4.10 to find that x = y if and only if
for all z 2 D0, �(
A;B(x; y); z) � d=4

Set � to be the partial assignment that is equal to 
A;B(x; y) for
coordinates in A \ B, and unassigned elsewhere. Note that � is
constant with respect to x and y. Then given a two-party best-
partition communication complexity protocol solving �NN�

D0
,

we can construct a two-party communication complexity protocol
solvingEQUALITY onm2=4d bits. Hence,Cbest

2 (�NN�
D0

) �
C2(EQUALITYm2=4d) = m2=(4d).

THEOREM 4.19. If an oblivious branching program with time
T and space S solves �NND0 over f0; 1gd, then T =

(d log(d=S)).

PROOF. Let ` = T=d. From Theorem 3.3 with p = 2, there is
an N 0 of size jN 0j = d� 2�`�1d along with a partial assignment,
� on N 0 such that Cbest

2 (�NN�
D0

) � 2`+3`2 logW and from

Corollary 4.18 with m = 2�`�2d, we have Cbest

2 (�NN�
D0

) �
2�2`�6d. Combining this, we obtain 23`+9`2 � d= logW . Since
S � logW we obtain ` � C0 log(d=S) for some constant C0 > 0
and thus T = `d � C0d log(d=S).
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