
Randomized versus Nondeterministic Communication Complexity
*

Abstract

Paul Beame

Joan Lawry

Department of Computer Science and Engineering, FR-35
University of Washington

Seattle, Washington 98195

Our main result is the demonstration of a

Boolean function f with nondeterministic and co-

nondeterministic complexities O (log n) and c-error

randomized complexity fl(log2 n), for O < c < 1/2.

This is the first separation of this kind for a deci-

sion problem.

1 Introduction

The two-party communication complexity of

Boolean functions has been studied extensively

since [Yao79]. The ground-breaking work of

[KW88] connecting the depth complexity of

Boolean functions with the two-party communi-

cation complexity of related search problems has

sparked renewed interest in the subject. Fur-

thermore, [Raz88] and [RW90] have shown that

lower bounds for these related search problems may

sometimes be found by reduction from known lower

bounds in the st andard model of two-party compu-

tation of decision problems.

Many variants of the standard model have been

analyzed. For not ation, let JVl ( f ) be the nondeter-

ministic complexity of a function f, No(f) be its co-

nondeterministic complexity-i.e., No( f ) = iVl (f),
N(f) be the maximum of Nl(f) and No(f), D(f)
be its deterministic complexity, and l?,(f) be its

c-error randomized complexity. llc( f ) is notable
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because of its use in [RW90] to obtain very strong

lower bounds on circuit depth.

The relationships among these complexities are

interesting as well. Clearly, D(f) 2 Ro(f) z N(f),
and it is easy to find Boolean functions f for

which R,(f) is substantially below N(f) [Yao81].

A somewhat surprising result is that for all Boolean

functions D(f) = O(N1(f)No(f)) [AUY83], which

was improved to D(f) ~ lVl(f)iVo(f)(l + o(l))

by [HR88]. [Fur87], [HR88], [Raz88] also demon-

strated functions for which this bound is tight,

which bettered a separation shown in [MS82].

[Fur87] actually improved the randomized up-

per bound of [MS82] to show that there exists

a Boolean function with Ro(f) = O(N(f)) and

D(f) = Q(lzg(f)). Our primary question is

whether there exists a Boolean function with O-

error randomized complexity bounded away from

its nondeterministic complexity. Of particular in-

terest is the range of Ro( f ) between D( f ) and N(f )
when D(f) = Q(lV1( f ). No( f )). Is there a function

with Ro(f) bounded as far away from N(f) as its

deterministic complexity? What about c-error ran-

domized complexity? Despite considerable study

of communication complexity these questions have

not been addressed previously.

Our main result is that there exists a Boolean

function f with JVl( f ) = IVo(f ) = O(log n) and

l?,(f) = $2(log2 n), for O ~ c < 1/2. Our deci-
sion problem is based on the following two-player

n-node graph game: the path player has an st-

path of length, e.g. nl/150, and the color player

has a 01-coloring of the n nodes, where together

the path-coloring input pair is such that the path

has exactly one hi-chromatic edge. The players co-

operatively try to determine the parity of the di-

chromatic edge, where edges are numbered accord-

ing to their position in the input path.
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The obvious nondeterministic solution has com-

plexity 2 log n + 2, for either a 1 or a O solution:

the color player guesses which edge of the path is

the hi-chromatic path edge, sends the edge num-

ber and the associated pair of vertices to the path

player, who then verifies that the edge vertices have

different colors and outputs the parity of the edge

number. It is not too hard to show that these are

asymptotically the best possible bounds for Nl (~)

and No(~).

The deterministic complexity of this problem

is @(log2 n). For the upper bound, the path

player simply binary searches his path for the

hi-chromatic edge, repeatedly querying the color

player for the color of a given node. The lower

bound follows from [KW88].

To bound randomized complexity away from

nondet erministic complexit y, the st at ic methods

previously used for probabilistic lower bounds on

decision problems are insufficient since they can

at best show a lower bound of N(f) on the ran-

domized complexity of ~: The rectangle approach

of [Yao79] as extended in [Yao83] for randomized

complexity requires one to show that, under some

distribution on the inputs, either every O- or 1-

rectangle with sufficiently high probability cannot

have a small probability of error. However, if N(f)

is small then there exists an entirely correct cover

of all possible inputs that contains very large O- and

l-rectangles.

Instead, we base our result on the iterative re-

striction techniques used to obtain deterministic

lower bounds for search problems in [KW88] and

[GH89], as well as on the extension of the latter by

[RW89] to an c-error randomized lower bound. The

general iterative approach consists of maintaining

sets of candidate inputs for each player, where each

input is consistent with the communication so far

and the input sets have a “nice” structure. In ad-

dition, for probabilistic arguments, the structure

must be such that, for many rounds of communi-

cation, the input sets retain a reasonable fraction of

inputs for which the protocol answers correctly. For

search problems this reasonable fraction is quite

low, since the many possible choices for the answer
are likely to prevent a correct guess. For a decision

problem, however, this fraction of correct answers

must be more than one-half. Furthermore, care

must be taken to maintain a roughly even balance

of the two possible answers.

The questions we address have been previously

considered in models where a similar quadratic

upper bound applies: For all Boolean func-

tions, [B187], [HH87], [Tar88] established D~(~) S

iVf(f)N~(f) in the decision tree model. [DF89]

noted the similarity between these quadratic up-

per bounds and developed a multi-party commu-

nication game that is a generalization of both

the 2-party game and decision trees. They were

only able to obtain a somewhat weaker upper

bound on deterministic multi-party complexity of

the same type, but [Law92] has shown that a

roughly quadratic upper bound does apply in this

model to the O-error randomized complexity. We

can generalize our questions above to whether or

not this latter bound is tight. We do have some ev-

idence for this in the decision tree model. [SW86]

show that a function given by [Sni85] has O-error

randomized complexity bounded away from Nd(f):

Nd(j) = D~(~)”5 and l?~(j) = @(.Dd(~)”753000). It

is also interesting to observe that for search prob-

lems the gaps between nondeterministic, random-

ized, and deterministic complexities can be arbi-

trarily large under both the two-party communi-

cation model [RW90] and the decision tree model

[LNNW91].

We should finally note that we have not quite

shown that the bounds of [AUY83] and [HR88] on

Ro(f) are the best possible. Our ~-error random-

ized lower bound applies to inputs that are cross

products, but the nondeterministic upper bounds

may not hold for either IVl (~) or No(f), depending

on how the problem is extended to a cross product.

While the deterministic upper bound of [AUY83],

[HR88] doesn’t apply to non-cross products, we do,

however, have the quadratic relationship between

deterministic and nondeterministic complexities for

our problem: D(j) = @(lV1(f)iVo(~)). Thus our

result bounds R,(f) as far away from N(j) as

possible—at D(f).

2 Overview

Given any protocol for the path-coloring problem

our goal is to prove the existence of an input pair

that forces the players to communicate many bits
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before they can determine the solution. We fol-

low [Yao81] and work with a deterministic protocol

that errs on some fixed fraction of the input. The

quality of the protocol on a given input domain is

the fraction of the input for which the protocol an-

swers correctly. For our decision problem, we must

ensure that the quality is bounded above one-half.

We base our lower bound strategy on that of

[RW89]. The proof of [RW89] extended the deter-

ministic result of [KW88] to an e-error randomized

lower bound by generalizing to a well behaved, non-

cross product input and accounting for input pairs

on which the protocol errs.

The strategy maintains a set of candidate inputs

for each player that are consistent with the commu-

nication sent so far. In addition, the strategy elim-

inates some of the eligible inputs in the interest of

imposing a favorable structure on the input sets—

one that precludes an easy solution. The relevant

quantities to preserve are set density and quality.

It turns out that the set density of the colorings is

very easy to maintain at a sufficiently high level,

and it is primarily the set density of the paths that

is at issue.

In order to admit a nontrivial lower bound, the

strategy must compensate for some of the effect of

the communication. Since set density is the quan-

tity most adversely affected, the main objective of

the strategy is to restore path set density, while

maintaining sufficiently high quality. The primary

tool for increasing set density is reduction of each

input path to a relatively large subpath—either the

left or the right side of the path. After this reduc-

tion, however, a clean-up of the input sets is nec-

essary to ensure that each reduced pair is from a

valid, high-quality pair from the original input—

and that the solution edge lies within the reduced

input.

One of the necessary conditions for improving
set density by path reduction is a large collection

of paths with high quality on both sides—that is,

both in the restricted path and its complement.

If we have this large collection of paths, a single

path restriction results in a large gain in set den-

sity: the path is reduced to the side of high quality

for many paths and the clean-up step ensures valid

input pairs. On the other hand, if we don’t have

enough paths with high quality on both sides, then

we show that applying path restriction in a dif-

ferent way improves average quality and, by doing

this repeatedly, overall quality eventually becomes

high enough that the density-increasing restriction

can be applied. Paradoxically, each step of path

restriction for this purpose incurs a loss in set den-

sity, which the strategy must also try to offset with

the density-increasing restriction. A clean-up also

follows each of these quality-increasing reductions,

though a couple of additional steps of refinement to

the input are necessary before the clean-up process

can be applied.

One consequence of our work is a significant sim-

plification of the proof in [RW89]. Furthermore,

our analysis differs from the simplified version of

their proof in that our lower bound strategy can-

not tolerate the low quality levels that are adequate

for the search problem. We compensate for this

difference by giving up subpath length in our re-

strictions. As a result, we argue termination of the

iterative quality-increasing path restrictions based

on quality alone, as opposed to the product of den-

sity and quality in [RW89], and we argue about

path length itself as opposed to the product of the

length and the 100th power of the quality. This

further streamlines some of the argument and, ad-

ditionally, affords application of the amortization

technique of [GH89] to bound parameters which

rely on the number of repetitions in a phase of

quality-increasing restrictions.

3 Definitions

We use the following decision problem in the two-

party communication model: Let D be a domain

of n vertices over which two sets P; and Cn are

defined, where P: is the set of all simple paths

from vertex s to vertex t of length 1, n11200 s 1<

(1/2) n1J100, and Cn is the set of all 01-colorings on

the n vertices. Let P ~ P: be the set of candi-

date inputs for the path player and C ~ C. be the

set of candidate inputs for the color player, where

P and C’ are determined by the communication of

the protocol and by restrictions of the lower bound

strategy. Additionally, any act ual path-coloring in-

put pair has exactly one hi-chromatic edge. Then,

the value of the function is the parity of the bi-
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chromatic edge, where edges are numbered accord-

ing to their position in the input path.

More formally, the input domain is defined as

@(P, C) = {(p, C) G 1’ x C : exactly one edge of
p is hi-colored by c}, where P(P, C) = I@(P, C)[.

The set density of the paths and the colorings are

defined as p(P) = lP1/[.P~\, p(C) = lC1/\Cn\. The

protocol is guaranteed to behave correctly on only

some fraction of the valid input pairs. We denote

this fraction by 7(P, C).

Since the input domain is not P x C, the path

splitting process will necessitate considering both

p(.P, C) and ~(.P, C) as weighted sums. To fa-

cilitate this, let @i(P, C) = {(p, c) ~ O(P, C) :

edge i of p is hi-colored by c}, with Pi(P, C) =

l@i(P, C)[. Define Vi(P, C) to be the fraction of

input pairs in @i(P, C) on which the protocol is

correct.

Let Z = {1,...,1L}, 7? = {lL+l,...,1} ,

lL + lR = /, be a hi-partition of the path length

1 into a left and a right side. Define ~L(P, C) and

~R(P, C) to be the average quality of the protocol
on inputs whose answer falls in the left and the

right sides, respectively, of paths in I’. That is, for

s~{l,...,l},

Also, define 7,s(p, C) to be 7s({p}, C).

Throughout the strategy, for the current values

of IL, ZR, s, t, and n, let X be the set of all paths

of length ZL on n vertices with first vertex s and

Y be the set of all paths of length ~R on n vertices

with last vertex t. Furthermore, let p = (z; y) de-

note a path consisting of a left subpath z e X

appended to a right subpath y G Y. For each

z E X, let 6(z) = [{Y c y : (~; Y) E ~}1/lV
be the fraction of valid extensions of x that form

a path in P, Similarly, for each y G Y, let

d’(y) = I{z ~ X : (x; y) c P}l/lXl be the frac-

tion” of valid extensions of

P.

y that form a path in

4 The Strategy

From the point of view of the lower bound strategy,

a round consists of /3 bits sent between the two

players, in any alternation. Later, we will set the

number of bits that comprise a round to optimize

the lower bound, subject to constraints that arise

on /3. The strategy of the lower bound adversary

consists of the following steps for each round:

1.

2.

3.

4,

Select @ bits to be sent during the round such

that these bits correspond to a subset of the can-

didate inputs that retains relatively high set den-

sity and quality.

(P, C) + some (P’ ~ P, C’ ~ C) such

that 7( P’, C’) ~ (1 – 2-~)7(P, C), p(P’) >

2-3~p(F’) and p(C’) z 2–3~p(C), where

(P’, C’) is consistent with the bits chosen.

Partition the path into the subpath that will be-

come the restricted path and the complement of

the subpath.

Determine a hi-partition ,C = {1 ,..., ~L},

7? = {lL+ l,..., i}, lL+~R=Z, Of the

path length i, such that ZL, JR ~ &, and

TL(P, C),7R(P, C) 2 (1 – ~) T(P, C).

For each side of the partition, form the subset

of the input set consisting of paths on which the

protocol performs well when the hi-colored edge

lies on the side in question.

PL + {PC P : 7L(p, C) ~ (1 – ~)7L(p~c)}~

PR + {P E P : 7R(P, C) > (1 – ~)7R(8C)}.

While less than 1/2 of the paths have high qual-

ity on both sides, iteratively and selectively re-

strict the path length to increase average quality.

The density of paths having high quality on

one side is too low to apply the density-

increasing reduction to either side. We repeat-

edly increase 7(P, C) by restricting the path

set to members with high quality on the side

of the low density set. Eventually, the aver-

age quality will be high enough to guarantee

that many paths will have high quality on both

sides.

one of the sets is small; either IPLI < ~lP[ or

1%1 ~ ?l~l, SayIPLI.

(a) Keep only those paths whose contribution

to pL(P, C) is about average.
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(b)

(c)

(d)

(e)

This allows accounting for the non-cross

product nature of the input in subsequent

-4f
calculations. Let @= w ~ .

p~{p~p:~h(p,c)=

@(l + O(?Z-*))}.

Restrict the input to high quality paths.

~~{pcp:~h(p,c)~

(1+ #)yL(P>C)}.

Let I’ = (1+ ~)yL(P, C) denote the high

minimum per-path left quality achieved

in this step. We will call the left subpaths

stems and the right subpaths extensions.

We say a stem has many extensions if the

stem is a left subpath of many paths in

P. Eventually, we will restrict the set of

paths to a subset of the stems,

Eliminate paths whose stem is not the stem

of many paths.

This step refines the input set for condi-

tion 1 of Lemma 4, enabling Step 4d.

P+ {p= (z; y)E P:6(Z)2?A}.

Denote the set of stems by

x%{zex: 3p=(z; y)e P}.

Clean-up and restrict input sets.

D - ‘D’ c 9, where D’ is a new domain

setofn’=n — A vertices so that the

following may be found:

(P, C) 4- some (P’ ~ P$, C’ ~ Cn,) over

domain 2S such that

● /J’(P’) = pl/lPjl 2 lxq/(mlxl),

● #u’(c’) = lc’l/lcntl > (1 -
O(n-’/’”))p(c),

● and ~L(P’, C’) 2 (1 – O(n–l’lO))l’;

~+!L;n*n’.

Partition the path and, for each side of the

partition, form the subsets of high-quality

paths.

That is, execute Steps 2 and 3; repeat

Step 4, if necessary.

5.

6.

7,

5

For

Once 1/2 of the paths have high quality on both

halves, restrict the input to a subset of the inter-

section of the two filtered sets, thereby increasing

path set density.

The strategy is now in a position to substan-

tially increase the density of the set of remain-

ing paths, which will be accomplished by re-

st ricting the path length. First, however, we

keep only those paths with high quality on

both sides.

Now, the strategy decides which subpath will

become the reduced path. Consider the left

and right sides of paths in P. Let

Xp + {z c x : 6(Z) 2 P(p)/4}?

Yp +- {y E Y : c$’(y) ~ fJ(P)/4}.

Either lXp]/lXl ~ ~m” or lYpl/lYl

-. Say ]Xpl/lXl ? ~w~.

P+{p+;y)eF’:zexp}o

Keep only those paths whose contribution

WL(~, C) k about average.

Same as Step 4a.

Clean-up and restrict path length.

Same as Step 4d. Note that here, the mini-

mum per-path quality is ~L = (1 - ?)7(P, C),
which was determined by the most recent ex-

ecution of Steps 2 and 3.

Lemmas for Structured, Non-

Cross Product Inputs

the analysis of the lower bound strategy we

need to quantify the effects of each step on ;(P),

P(C), and -y(P, C). We would like to consider P

and C in isolation, but to do so we would need

to assume that the input is a cross-product of the

two sets. However, even though our input is not a

cross product, for our purposes the input behaves

as if it were, according to the following results from

[RW89]:
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Lemma 1 Let / < nlllm, p(P) ~ n-llloo, and

p(c) ~ 2-J”O0 . Then, for all i, qi(P, C) =

I’4W’%+(EUC’n)(l * O(?Z+1O)).

Corollary 2 Let 1< nllloo, p(P) z

p(C) ~ 2-n’”00. Then, for all 1

#(P, c)= @“(P, C)(I + O(n-w)).

Corollary 3 Let 1 < nllloo, p(P)

and P(C) ~ 2-nl’100. Then

/4(P)/J(c)q(P:, Cn)(l * 0(?2-1/10)).

We also use the following lemma from [RW89] to

“clean-up” the input sets after reducing the path

set to a subset of what it was previously. This re-

sult ensures that the shortened input paths each

have a valid, high quality extension in the origi-

nal set of paths that is consistent with the current

restricted set of colorings.

Lemma 4 Let P be a domain of n vertices over

which the sets of paths P; , where i < n–l/lOO, and

the set of colorings C. are defined. Let P ~ P; and

C S C., such that for all p = (z; y) 6 P, where the

length Of X iS ~L, lR = ~– [L,

$(2) ~ n-llloo, (1)

~dp>c)dP> c) > 2-nl/1””

IG-lRI
(2)

Then, there exists V’ c ‘D, where D’ is a set of

n’=n -6 vertices, P’ ~ P, C’ ~ C, and A =

(1 - O(n-*)) such that

● all c c C’ agree on the colors of D \ P’,

● for all x c X such that there is some p =

(x; y) G P’ this y is unique, the vertices of z

are in D’, the vertices of y are in 2) \ D’ and

colored the same as t for all c 6 C’, and

[cn/[A
~L(p, C’)W(P, C’) 2 yL(p, C) PL(P, C)—

IG-lJ ‘

● /J’(P’) = [P’1/lPjl 2 lxpl/(51xl),

● letting p’(C’) = lC’l/lCn,l we have p(C)/J z

/J’(c’) 2 p(cpi.

Proof [RW89], Lemma 2.4, Lemma 2.3, and a

slightly modified version of Claim 3.2. ❑

6 The Lower Bound

we now bound the changes in N(P), P(C), 7(P, C),

and / for the steps of the lower bound strategy. In

what follows, we give full details for each step of

the strategy for an Q(log2 n/ log log n) lower bound.

We also sketch the modifications that give the

f2(log2 n) bound.

The following lemma describes how in Step 1 the

lower bound strategy limits the loss in set density

and quality due to the communication.

Lemma 5 Suppose that, at the beginning of

Step 1, the path player has some input from P

and the color player has some input from C, such

that P(P) ~ 23@n-1/100, p(C) > 23~-nl’100, and

T(P, C) > 1/2. Let the path and the cut player

together send at most @ > 1 bits in the round.

Then, there exist P’ ~ P and C’ ~ C consis-

tent with the communication such that p(P’) z

2-3@p(P), p(C’) z 2-3~p(C), and v(P’, C’) z (1 –

2+)7(P, c).

Proof Let a be the fraction of path-coloring

pairs (p, c) that are in classes (P’, C’) such that

-y(P’, C’) ~ (1 – 2-@)7(P, C). a is smallest when

those classes with quality at least (1 – 2-~)-y(P, C)

actually have perfect quality and the remaining

1 – a fraction all have quality just less than (1 –

2-~)7(P, C). From this, 7(P, C) < a +(1 – a)(l –

2-g)7(P, C), which implies 7(P, C)/2@ s a. Since

this fraction is non-zero, there exists some class

(P’, C’) such that 7( P’,C’) ~ (1 - 2-@)7(P, C).

We show that one of these classes (P’, C’) is

large enough by partitioning a into an a. frac-

tion of pairs in classes (P’, C’) with p(P’)p(C’) <

2-3~p(P)p(C) and anal fraction of pairs in classes

(P’, C’) with p(P’)p(C’) z 2-3@p(P)p(C). It suf-

fices to show that al is nonzero, and we do so by

showing as < 7(P, C)/2@.

Consider some class (P’, C’) with p(P’)p(C’) ~

2-39P(P)N(C). If p(P’) z n-l/lOO and p(C’) z

2-J”O0 , we can apply Lemma 1 to show that

q(P’, c’)/q(P, c) < Ap(P’)p(c’)/(p( P)p(c)),

where A < 1 + en-l/lO, for some constant c. Thus

the contribution of any such class to a, cannot be

more than a 2-3@A fraction of all pairs in @(P, C).

193



If p(P’) < n-lllm then we can apply Lemma 1 to

show that

-V~p(c)p(P;,cn)~p(P’, C’) ~ n

~ (??-+1OO/P(~))9(~> c)~’>

where J’ < 1 + C’n–lilo, for some constant c’. By

the conditions on p(P), n-lilm/p(P) ~ 2-3P, and

any such class contributes at most a 2-3@A’ frac-

tion of @(P, C). If p(C’) < 2-n’”00 then similar

reasoning shows that v(.P’, C’) ~ 2-3@q(P, C)A

In each case any such class contributes at most

a 2-3fl(l + O(n-*)) fraction of pairs in @(P, C).

Since there are at most 2P such classes,

a$ < 2-26(1 + O(n-*)) < 2-P-1 < 7(P, C)/2°,

as required. ❑

The following lemma ensures that the strategy

is always able to execute Step 2; that is, it guar-

antees the existence an appropriate hi-partition of

the path length.

Lemma 6 Let M(P) ~ n-liloo, and -y(P, C) > 1/2

be the path set density and protocol quality on the

left side just prior to step 2 of the lower bound

strategy. In addition, let the paths in P be of

length J z 4k and P(C) z 2-’’”00 be the coloring

set density. Then, there exist lL and !& lL + lR = 1,

such that

(a) lJj, JR ~ 1/(4k) and 7L(P, C),7R(P, C) ~ (1 -

l/k)7(P, C), and

(b) if the smaller of lL and ZR, say ZR, is at most

//m then ~R(~, C) ~ (1+ (m - 3)/3k)7(P, C).

Proof Part (a): From the definitions of 7(P, C),

7L(P, C), 7R(P, C), and Corollary 2, we know:

J~(P, c) = ~ 7’(P,C)(l + o(n-~)),
iELU’R

2L7L(F, C) = ~+(1=, C)(I + W-*)),

iCC

1R7R(P, C) = ~ 7’(P, C)(l + O(n-*)).
w?

Therefore,

ZL7L(P, C) + 1R7R(P, C)= J7(P, C)(l * o(n-*))

217(R C)A

where A ~ 1 – Cn-lllo, for some constant c.

First try !L = 11/2j . If both 7L(P, C) and

7~(P, C) are at leut (1 - l/k)y(P, C) then we
are done. Otherwise one of them is smaller, say

7L(P, C) < (1 – l/k)7(.P, C). Now consider the

smallest iL > 2/2 such that the average quality

7L(P, C) > (1 - l/k)7(P, C). We will show that
lR 2 l/4k and 7R(P, C) ~ (1 – l/k)7(P, C).

From our construction of ZL and JR,

lL(l–1/k)7(P, C)+l+(/-lL)7R(P, C) ~ 17(P, C)A,

where the +1 term compensates for the discrete-

ness of IL. Since J z 4k and 7(P, C) > 1/2 we have

1< Z?(P, C)/2k. Using this substitution and col-

lecting like terms in the above inequality we have

(1 - 1L)7R(P, C)

~ [(A – l/2k)l – (1 - l/k)lL]7(P, C)

= (1 - l/k)(l - 1L)7(P, C)

+(1/2k + A - 1)17(P, c)

~ (1 – l/k)(J – 1L)7(P, C) + (Z/3k)~(P, C).

Thus ~R(P, C) > (1 - l/k)7(P, C).

Using 7R(P, C) S 1, lR = z – lL, and 7(P, c) ~

1/2,

JR ~ (1 - l/k)~R~(P, C) + (Z/3k)7(P, C)

> (1 – l/k)~R/2 + lf6k.

Therefore 1< 3k(l + l/k)lR < 4klR, and so lR ~

l/4k as required. CI

Step 4a is necessary for relating path quali-

ties weighted by the contribution of the paths to

v’L(~, C) to the average quality of the path set.

Lemma 7 Let p(P) z 4n-1/lw be the path set

density, p(C) z 2-n’”00 be the coloring set density,

and TL(P, C) > 1/2 be the protocol quality on the
left side just prior to Step 4a of the lower bound

strategy, and p(P’), 7L(P’, C) be the subsequent

density and quality. Then, p(P’) ~ p(P)/2 and

7L(~’, c) ~ 7L(P, C)(l – O(n-*)).

Proof More specifically, Step 4a does the follow-

ing: P - {p 6 P : 4(1 - 2cn-*) ~ ~L(p,C) ~

@(l +2cn-*)}, where c is the constant of Lemma 1
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and # = qL(P, C)/]Pl. Alternately, ~ can be ex-
pressed as ~ = lLp(C)lCn l/2~, since # is the av-

erage number of colorings per path that color one

edge in ZL with both O and 1 and color all of JR the

same color as t. We show that the fraction of paths

eliminated by thk filter is small.

Let P< = {p C P : ‘#L(~,C) < 4(1 - 2cn-~)}.
By definition, for all paths p c P“, ~L(p, C.) =

2L]Cnl/2~. Therefore, ~L(P~,Cn) = lLIP~llCnl/2~.

Suppose p(P<) z n-lllm. Then, by applying

Lemma 1,

~L(P< , C)

~ P(P<)P(C)~L(~~, Cn)(l – cn-& )

2 /J(p<)/J(c)
zL/PAllCni

z, (1 - en-+).

However, according to the definition of P>,

9L(P<~C) < lP<!+(l – 2cn-*)

which is a cent radiction,

Similarly, we can arg~e that P> = {p ~ P :

9L(p! C) > 4(1 + 2CTZ-m)} must have IJ(P>) <
‘l/lm. Thus p(p> UP<) < 2n-1/100, and p(P’) ~

;(P) – “2n-1/loo > p(P)/2.

Since either p(P’) or p(.P\P’) ~ n-lllOO, where

P\P’ = P< u P2, we can apply Lemma 1 to derive

the following:

TL(P>C)VL(8 C)(l – C@-+))

~ ~L(~’, C)(l –
p(P\P’)

~(p) )W(P, C)

‘(p\p’)@,C).+~L(p\p’, C) ~(p)

VL(P’, C) is lowestwhen the eliminated paths have
perfect qua.My. Hence,

from which we get

7L(P’> c) ~ 7L(pj C)(l – O(n-A)) – 2n-11100

= 7L(P, C)(1 – O(n-~)),

since YL(P, C) ~ 1/2. Cl

The next lemma precisely quantifies the increase

in qufllty-and decrease in set density—due to

Step 4b’s restriction of the input to the high qual-

ity paths in the low density set formed in Step 3.

Step 4b is the only way the lower bound strategy in-

creases average quality, and the increase is enough

that Step 4 has a net gain in quality. Thus, as 7

increases, more and more paths have high qudlty

on both sides, and eventually the path set will meet

the termination conditions for Step 4.

Lemma 8 Let P(P) ~ n-ljlOO, P(C) ~ 2-”’”00,

and 7L(P, C) > 1/2 be the path set density, col-

oring set density, and protocol qufllty on the left

side just prior to step 4b of the lower bound strat-

egy, and let p(P’) and 7L(p’, C) be the subsequent

path set density and per-path left protocol qufllty.

Then,

(a) p(P’) z p(P)/2k and for all p’ G P’,

~L(p’, C) Z (1+ 2/k)7L(P, C),

(b) there is an i, O s i s log”(k) such that if
P“ = {p ~ P’ : [1+ 10$’+l)(k)/~]~L( p,c) <

7L(P~ c) < [1 -i- log(*) (k)/k]vL(P, C)} then
p(P”) > p(P)/(2 log(’) (k))2, where log(i) is

the i-fold iteration of log.

Proof Part (a): Because the contribution to

9L(P, C) is about the same for each path after

Step 4a, the contribution to ~L(P, C) by any sub-

set of P is approximately proportional to the size of

the subset. A factor of A ~ 1 – Cn-lllo, for c some

constant, accounts for the the slight discrepancies

w
in contribution to yYL(P, C). Let a = ~ ~’ be the

fraction of paths retained in Step 4b. a 1s smallest

when the paths retained have perfect qudlty and

the paths eliminated in both Step 3 and Step 4b

have qualRy just less than the thresholds for each

of those steps. Also, we know the average qufllt y

of retained paths is at most 1 s 27L(P, C), since

7L(P, C) > 1/2. The derivation of a lower bound
on a starts with this worst-case relationship.

7L(P, c)~ < ~(1 - ;)~L(P, c)

+(:– ~)(1 + ~)7L(P, C)

+ 2cu7L(P, C).
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Collecting like terms and dividing by 7L(P, C), we

have

A<l–2/k+cl’(1-2/k)

and therefore CY~ l/2k. 0

Note that at this point we are no longer con-

cerned wit h decreases in y; we have achieved a

high minimum per-path quality. The remaining

substeps of Step 4 make sure that all reduced in-

put path-coloring pairs will contain exactly one di-

chromatic edge and will originate from an initial

path-coloring pair that is vdld and of high quality.

Step 4C anticipates condition 1 of Lemma 4 by

eliminating those paths whose left subpath is not

the left subpath of sufficiently many paths. Fur-

thermore, the density of the stems is high following

this step.

Lemma 9 Let P(P) 2 3n-11100 be the path set

density quahty just prior to Step 4C of the lower

bound strategy, and lXP1/lXl be the subsequent

density of the stems. Then, lXP1/lXl ~ p(P)/2.

Proof By definition, ll?~l ~ (1 - 12/n) lX]lYl z

(1–n-112)lXllYl, where the factor accounts for the

possibility of common vertices in X and Y. There-

fore, before Step 4c, IF’1 ~ p(P)(l - n-J12)lXllYl.

Since each stem not in IXPI contributes at most

n ‘llloolll paths to P, the total number of removed

paths is at most n ‘lllOOIXllll. The total number

of remaining paths is less than IXPI IYI so we have

IXPI]YI + n-l/lOOIXllYl ~ p(P)(l - n-112)lXllYl.

Collecting terms and dividing by IXIIYI,

by the conditions on p(P). 0

Lemma 10 Let P and C be the path and color-

ing sets just after Step 4C of the lower bound strat-

egy! where N(c) ~ 2-(1/2 bd/100 and 7L(P, C) >
1/2. Furthermore, suppose 3 ~ IL < (1/2) nl11°0

is the left path length. Then, for all p c P,

~L(p> C) PL(P> C) > 1&fR12-nl”O0 .

Proof By definition for all paths p G I’;,

~L(pY Cn) = lLlcnl/2J = ZLICr,_lR l/21L. After

Step 4a, every path p E P has

W(P>c) 2 ~L(p, WAC)(1 - O(n-+))

zL#(C)l&lRl(l - OW*))
=

21L,

> 2-” -’/loo+l,~n_,iR,

by the bounds on p(C) and ZL. Since 7L(p, C) ~

1/2, the desired result follows. ❑

The lower bound strategy is now prepared to re-

duce the input domain, path length, and the path

and coloring sets so that all vaEd input pairs con-

tain a hi-chromatic edge and are parts of valid,

Klgh qutilty original input pairs. The following

lemma ensures that we can do this necessary clean-

up without too much loss in input set densities or

qudlty.

Lemma 11 Let P be the set of pakhs with distinct

left stems Xp, lXpl/lXl ~ 20n-1/100, and C be the

set of colorings prior to Step 4d of the lower bound

strategy such that for all p 6 P, TL(P, C) 2 r.
Let D’, P’, C’, v(P’, C’), and 1’ be the subsequent

vertex domain, pat h and coloring sets, quality, and

path lengt~ following Step 4d, Then there is a A ~

(1 - O(n-m)) such that, n’ = IZJ’I = n -@,1’=

IL, p’(P’) = lP’1/lPjl ~ lXpl/(l.OIXl), p’(C’) =

lc’l/lcn,l z p(cp, 7( P’, c’) z r~.

Proof By Step 4a all paths p c P have ~L(p, C) ~

ZLICnl/J(C)~’/2~, where ~’ ~ 1 – cn-~, for some

constant c. Because of the conditions guaranteed

by Lemmas 9 and 10, we can apply Lemma 4 to

get D’, P“, C“, and ~’ = (1 – O(n-A)), such that

lP’’l/lP$l ~ lxq/(51xl), p(c)/A > lc’’l/lcnll ~

p(C)A, for all p 6 P“

all colorings in C“ agree on ‘D\ D’, and for each x c
Xp there is a unique y E Y such that (z; y) c P“,

all vertices in this y are in D \ D’ and are colored

the same as i!.

Now we let P’” be the set of stems of paths in P“,

and C’ be the set of colorings of C“ restricted to
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the set 2)’. We clearly have p’(P’”) z lXP1/(51Xl),

p(C)/J ~ p’(C’) ~ p(C)~ and for all p ~ P’”,

7(P) c’)fP(P,c’) z JYlcnllp(c)~x/2*’
z rt’lcn, lp(c’)A2A’/2i’.

We now let P’ be th~se paths p < P’” such that

9(P, c’) = (1*0( ~-m)) l’14C’)lCn/l/2~’, analogous
to Steps 4a and 6. Then according to Lemma 7,

p(P’) ~ p(P’’’2/2 ~ lXpl/(lOIXl), and we derive

that for all paths p c P’, ~(p, C) ~ I’A”, for some

A“ = (1 - O(n-+))o o

We now summarize the effects of the lower bound

strategy using only the (a) parts of the two-part

lemmas. The next three lemmas progressively re-

capitulate the effects of qualit y-increasing loop, the

round, and finally the entire lower bound strat-

egy. The following lemma summarizes the effects

of Step 4 on p(P), p(C), Y(P, C), and 1.

Lemma 12 Let p(P) z 160kn-lf100, p(C) z

2-tlf2Jm’”00, T(P, C) z 1/[2(1 – 2/k)], and

(1/2)nlf1°0 ~ 1 ~ 12k be the path and coloring

set densities, protocol quality, and path length just

prior to an iteration of Step 4 of the lower bound

strategy. Let p(P’), p(C’), T(P’, C’), and 1’ be the

corresponding values at the end of the it erat ion.

Then, p(P’) ~ (1/80k)p(P), p(C’) ~ p(C)/2,

Y(P’, C’) ~ (1+ l/2k)7(P, C), and 1’ ~ l/4k.

Proof By the previous lemmas, p(P) declines by

factors of at most 2 in each of Steps 4a and 4c, at

most 2k in Step 4b, and at most 10 ~n Step 4d.

P(C) declines only by an (1 – O(n” m)) amount

and only in Step 4d. 1 declines by at most a 4k

factor in Step 4d. Finally, 7(P, C) increases by

a (1 + 2/k) factor in Step 4b and declines by a

(1 - l/k)(l -O(n-~)) factor in Step 4d (since this

is where we actually restrict to the left side quality)

and only a (1 – O(n-~)) factor in Step 4a. u

Once the strategy is out of the loop of Step 4,

set density can be substantially increased by a path

reduction to one side or the other in Steps 5 and 7,

which includes an input clean-up identical to that

of Lemma 11. We get a net improvement in path

set density from P(P) to (3(~). Thus we have:

Lemma 13 Let P(P) > 2(80k)~2s@n-1/100,

p(C) ~ zW+2k+1-O/2hI/100 3 and v(P, C) z

1/[2(1 - 10/k)] be the path and coloring set densi-

ties and protocol quality just prior to a round of the

lower bound strategy. Also, let (1/2) nlllm 21 z

3(4k)2~+l be the length of the paths at thk point.

If p(P’), p(C’), T(P’, C’), and 1’ are the corre-

sponding values at the end of the round, assuming

that x iterations through Step 4 were made, then

r
z s 2k, p(P’) z (1/40 )(1/80 k)”12 p(P)2-3~

p(C’) 2 2-38-Z-1P(C), v(P’, C’) z (1 – 10/k)(l +

l/(2k))7’(P, c), 1’~ (4k)-~-l/o

Proof Since 7(P, C) is greater than 1/2 just prior

to Step 4, increases by a factor of (1 + l/(2k)) per

iteration, and cannot exceed 1, we can use the fact

that for all a, O ~ a ~ 1, 1 + a. ~ 2ff to show that

the maximum number, z, of iterations of Step 4 in

a round is 2k.

By the previous lemmas, p(P) first declines by a

factor of 2-3P in Step 1, a factor of l/80k for each

iteration of Step 4, and a factor of 2 in the first

part of Step 5, where P h PL f) PR. The density-

increasing part of Step 5 then increases p(P) to the

square root of half this intermediate value. Steps 6

and 7 somewhat reduce this increased value of p(J’)

by additional factors of 2 and 10.

In each round P(C) declines by a factor of 2-3P

in Step 1 and by easily no more than a factor of 2

both for each iteration of Step 4 and for Step 7.

7(P, C) declines by a factor of (1 – l/k) in Step 2,

a single factor of (1 - 8/k) due to Steps 3 and 4b,

and a factor of (1 – O(n- A )) each for Steps 6 and

4d—for a total decline per round of at most a (1 –

10/k) factor. From Lemma 12 we know 7( f’, C)

increases by a factor of (1 + l/2k) per iteration of

Step 4.

The path length 1 is shortened by a factor of 4k

both for each iteration of Step 4 and for Step 7. u

We are now in a position to determine the num-

ber ~ of bits sent per round, constraints on the

length 1 of the paths, and the maximum number

t of rounds possible according to the lower bound

strategy. In the following lemma we are able to

obtain a bound on the total number of times the

quality-increasing loop of Step 4 is executed, which

allows us to bound the total decrease in path length

in terms of t and k.
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Lemma 14 Let /3 ~ & log n, n1i200 ~ [0 <

(1/2)nl@o , where 10is the initial path length, 40 s

_ & log n/ log log n, and the initial protocolk<

quality be 3/4, Then, for t < k/35, after t rounds

of the strategy, if Step 4 is iterated a total of y

times, the following hold: p(.P) z n-11200, p(C) ~

2-3@-@, Y(P, C) ~ (1 - 10/k)’(1 + l/2k)’(3/4),

Z z (4k)-t-~lo, and y < 40t + 2k.

Proof By induction on t. First note that

Y(P, C) ~ (1 – 10/k)t(3/4) ~ 2-~110tlkJ(3/4) ~ .51

since 1 — a 2 2-$ff for O s a s 1/4 and since t is

at most k/35. It is easy to verify that all the con-

ditions of Lemma 13 are satisfied. Suppose that

Step 4 is iterated y’ – y times in the round. Then

Y’ – Y S Zk, md at the end of the round it is easy to
see that N(P) z n-1 f200, p(C) z 2-t3fl+l)(t+l)-V’,

y(P, c) ~ (1 - 10/k) t~l(l + l/(2k))~’(3/4), and

/ z (2k)-2@+1)-2~’lo. Since -y(P, C) s 1, we can

derive y’ < 40(i! + 1) + 2k. 0

Let k and ~ be chosen as large as possible in

Lemma 14 and consider any t < k/35. After t

rounds, the strategy is correct on at least a .51 frac-

tion of the inputs remaining but, for n sufficiently

large, I is sufficiently large, and by Corollary 2 the

function takes on any fixed value on less than this

fraction of the inputs so the protocol must continue.

Thus the tot al number of bits communicated must

be more than t~ = Q(log2 n/ log log n).

In the calculations of Lemmas 12,13, and 14, the

most important factors influencing the value of k

are the decrease in path length by a factor of 4k in

Steps 2 and 4e, and the decrease in path set density

by a factor of 2k in Step 4b. By applying part (b)

of Lemma 6 we can show that the total decrease

in path length over the course of the strategy is at

most 20(k) rather than k“(~). By using the thresh-

old from part (b) of Lemma 8 in Step 4b we can

show that the total decrease in path set density
through the iterations of Step 4 in a single round

is also 20(k) rather than k“(k). Thus we can show

the following:

Theorem 15 For O ~ c < 1/2, the c-error ran-

domized communication complexity of the path-

coloring decision problem on a graph with n nodes

is fl(log2 n).
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