
Making Branching Programs Oblivious Requires Superlogarithmic Overhead

Paul Beame∗

Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

beame@cs.washington.edu

Widad Machmouchi∗

Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

widad@cs.washington.edu

Abstract— We prove a time-space tradeoff lower bound
of T = Ω

`
n log(n

S
) log log(n

S
)
´

for randomized oblivious
branching programs to compute 1GAP , also known as the
pointer jumping problem, a problem for which there is
a simple deterministic time n and space O(log n) RAM
(random access machine) algorithm. We give a similar
time-space tradeoff of T = Ω

`
n log(n

S
) log log(n

S
)
´

for
Boolean randomized oblivious branching programs computing
GIP -MAP , a variation of the generalized inner product
problem that can be computed in time n and space O(log2 n)
by a deterministic Boolean branching program.

These are also the first lower bounds for randomized
oblivious branching programs computing explicit functions
that apply for T = ω(n log n). They also show that any
simulation of general branching programs by randomized
oblivious ones requires either a superlogarithmic increase in
time or an exponential increase in space.

Keywords-time-space tradeoffs, lower bounds, branching
programs, oblivious computation, randomization

1. INTRODUCTION

An algorithm is oblivious (sometimes also called
input-oblivious) if and only if its every operation,
operand, as well as the order of those operations is
determined independent of its input. Certain models of
computation, such as circuits or straight-line programs
are inherently oblivious. However, many computing
models such as Turing machines and random access
machines (RAMs), which use non-oblivious operations
such as indirect addressing, are not, though fairly effi-
cient simulations of these general models by their more
restricted oblivious variants have been shown [20], [3].

Our main result implies that a superlogarithmic in-
crease in time or an exponential increase in space
is necessary to convert a general algorithm to a ran-
domized oblivious one. We derive this separation by
considering a very simple problem for deterministic
RAM algorithms, the pointer jumping problem of out-
degree 1 graph reachability, 1GAPn.

∗Research supported by NSF grant CCF-0830626. Part of this
research was done at the Institute for Advanced Study and also
supported by NSF grant CCF-0832797.

Our lower bounds apply not only to randomized
oblivious RAM algorithms but also to more powerful
randomized oblivious branching programs. Branching
programs are the natural generalization of decision trees
to directed acyclic graphs and simultaneously model
time and space for both Turing machines and RAMs:
Time is the length of the longest path from the start
(source) node to a sink and space is the logarithm of the
number of nodes. Our precise results are the following.

Theorem 1. Let ε < 1/2. Randomized oblivious
branching programs or random access machines com-
puting 1GAPn using time T , space S and with error
at most ε require T = Ω

(
n log(nS) log log(nS)

)
.

Since 1GAPn can be computed by a RAM algorithm
in time n and space O(log n), which follows the path
from vertex 1 maintaining the current vertex and a step
counter, we immediately obtain the following corollary.

Corollary 2. Any method for converting determinis-
tic random access machine algorithms to randomized
oblivious algorithms requires either an n1−o(1) factor
increase in space or an Ω(log n log logn) factor in-
crease in time.

The 1GAPn problem has input variables from a
linear-sized domain that the RAM can read in one step.
Because of this, the lower bound for computing 1GAPn
is at most Ω(log log(n/S)) larger than the number of
its input bits and so is sub-logarithmic for Boolean
branching programs. However, we also obtain analogues
of the above results for Boolean branching programs
computing a variant of the generalized inner product
problem that we denote by GIP -MAP .

Deterministic oblivious branching programs have
been studied in many contexts. Indeed the much-studied
ordered binary decision diagrams (or OBDDs) [11]
correspond to the special case of deterministic obliv-
ious branching programs that are also read-once in
that any source–sink path queries each input at most
once. Our lower bound approach follows a line of

2011 26th Annual IEEE Conference on Computational Complexity

1093-0159/11 $26.00 © 2011 IEEE

DOI 10.1109/CCC.2011.35

12

work based on another reason to consider oblivious
algorithms: their behavior is restricted and thus simpler
to analyze than that of general algorithms. Alon and
Maass [5] showed T = Ω(n log(n/S)) lower bounds
for certain natural Boolean functions on deterministic
oblivious branching programs and this lower bound
tradeoff was increased by Babai, Nisan, and Szegedy [6]
to T = Ω(n log2(n/S)) for a different Boolean function
based on the generalized inner product. Beame and Vee
[10] also used a variant of [6] using generalized inner
product to give an Ω(log2 n) factor separation between
general branching programs and deterministic oblivious
branching programs by proving a T = Ω(n log2(n/S))
lower bound for the 1GAPn problem. However, that
separation does not apply to the randomized simulations
nor to the Boolean branching programs that we consider.

Though a number of time-space tradeoff lower
bounds have been proven for natural problems in NP
for general deterministic and nondeterministic [9], [1],
[2] and randomized [8] computation, all of the lower
bounds are sub-logarithmic and, naturally, none can
yield a separation between general and randomized
oblivious branching programs. Indeed the largest pre-
vious lower bounds for solving decision problems on
randomized branching programs are of the form T =
Ω(n log(n/S)) which is at most a logarithmic factor
larger than the trivial time bound of n. These bounds
also apply to randomized read-k branching programs
(which roughly generalize oblivious branching pro-
grams for related problems) for k = O(log n) [21]. No
prior separations of randomized oblivious computations
from general computation have been known.

Our argument uses the well-known connection be-
tween oblivious branching programs and (best-partition)
communication complexity that is implicit in [5] and
first made explicit in the context of multiparty commu-
nication complexity in [12], [6]. We make use of the fact
that inputs to the 1GAPn problem conveniently encode
any function computable by a small branching program.

More precisely, we show that, since the generalized
inner product GIP can be computed by a constant-
width read-once branching program, we can convert
any oblivious branching programs for 1GAPn to a
(partially) oblivious branching program that computes
Permuted-GIP which takes as input both a GIP input
z and a permutation π to determine how the GIP
function is applied to z. The permutation allows us
to convert the lower bound for GIP in fixed-partition
multiparty communication complexity to a best-partition
lower bound, reminiscent of a similar conversion in
the context of 2-party communication complexity [16].

Though that idea would have been sufficient for the
deterministic non-Boolean separations in [10], we need
much more here. The key to our argument is a way
of extending this idea to a more involved analysis that
yields a reduction that works for distributional complex-
ity. Our Boolean lower bounds follow for GIP -MAP ,
a version of Permuted-GIP based on pseudo-random
permutations.

The questions we consider here were inspired by
recent results of Ajtai [3], [4] (and similar results of
Damgård, Meldgaard, and Nielsen [13]) who, eliminat-
ing cryptographic assumptions from [14], [19], [15],
showed efficient simulations of general RAM algo-
rithms by randomized algorithms that are oblivious and
succeed with high probability, with only a polylogarith-
mic factor overhead in both time and space. However,
our separations do not apply in the context of their
simulations for two reasons. First, their simulations
assume that the original RAM algorithm only has se-
quential access to its input in which case the small space
upper bound for 1GAPn does not apply (or alternatively
the original RAM algorithm has linear space which a
deterministic oblivious branching program can use to
compute any function in linear time). Second, our lower
bounds apply only to randomized oblivious simulations,
in which the sequence of locations accessed must be
independent of the input but may depend on the random
choices, whereas Ajtai’s simulations are more general
oblivious randomized simulations in that the probability
distribution of the sequence of locations accessed is
input independent1.

2. PRELIMINARIES AND DEFINITIONS

Branching programs: Let D be a finite set and
n a positive integer. A D-way branching program is
a connected directed acyclic graph with special nodes:
the source node, the 1-sink node and the 0-sink node, a
set of n inputs and one output. Each non-sink node is
labeled with an input index and every edge is labeled
with a symbol from D, which corresponds to the value
of the input in the originating node. The branching
program computes a function f : Dn → {0, 1} by
starting at the source and then proceeding along the
nodes of the graph by querying the corresponding inputs
and following the corresponding edges. The output is
the label of the sink node reached. The time T of a

1A simple algorithm that flips a random bit r and then chooses
which order to read bits x2 and x3 based on the value of x1 ⊕ r
is oblivious randomized but not randomized oblivious: Each order of
reading x2, x3 has probability 1/2 independent of the input, but for
each fixed value of r, the order of reading x2, x3 depends on the
value of x1

13

branching program is the length of the longest path
from the source to a sink and the space S is the
logarithm base 2 of the number of the nodes in the
branching program. The branching program is Boolean
if D = {0, 1}.

A branching program B computes a function f if for
every x ∈ Dn, the output of B on x, denoted B(x), is
equal to f(x). B approximates f under µ with error at
most ε iff B(x) = f(x) for all but an ε-measure of x ∈
Dn under distribution µ. (For a probability distribution
µ we write supp(µ) denote its support.)

A branching program is leveled if the underlying
graph is leveled. For a leveled branching program, the
width is the maximum number of nodes on any of
its levels and thus the space of a width W leveled
branching program is at least logW . (We write log x
to denote log2 x.) A branching program is read-once if
each input is queried at most once on every path in the
program. An oblivious branching program is a leveled
branching program in which the same input symbol is
queried by all the nodes at any given level. A ran-
domized oblivious branching program B is a probability
distribution over deterministic oblivious branching pro-
grams with the same input set. B computes a function
f with error at most ε if for every input x ∈ Dn,
PrB∼B[B(x) = f(x)] ≥ 1− ε.

For I ⊆ [n], we also find it useful to define the
I-time, I-size, and I-width of a branching program
to denote the previous measures where we only count
nodes at which variables with indices in I are queried. A
branching program is I-oblivious if it is leveled and any
level at which a variable with an index in I is queried,
the same variable is queried at each node in the level.

Multiparty communication complexity: Let f :
Dn → {0, 1}. Assume that p parties, each having
access to a part of the input x, wish to communicate
in order to compute f(x). The set [n] is partitioned
into p pieces, P = {P1, P2, . . . , Pp} such that each
party i has access to every input whose index in Pj for
j 6= i. (Because player i has access to all of the inputs
except for those in set Pi, we can view the set Pi as
a set of inputs being written on player i’s forehead.)
The parties communicate by broadcasting bits to the
other players, which can be viewed as writing the bits
on a common board, switching turns based on the
content of the board. The number-on-forehead (NOF)
multiparty communication complexity of f with respect
to the partition P , denoted CP(f), is the minimum
total number of bits written. When there is a standard
partition of the input into p-parties associated with a
given function f , we will simply write Cp(f) instead

of CP(f).
Let µ be a probability distribution over Dn. The

(µ, ε)-distributional communication complexity of f
with respect to P , denoted Dµ

ε,P(f), is the minimum
number of bits exchanged in a NOF communication pro-
tocol with input partition P that computes f correctly
on a 1− ε fraction of the inputs weighted according to
µ. Again, we replace the P by p when P is a p-partition
that is understood in the context.

Branching Program Complexity and NOF Mul-
tiparty communication: Let B be a deterministic I-
oblivious branching program of width W computing a
function from Dn to {0, 1}. Since B is I-oblivious,
it yields a sequence π of queries to the input symbols
indexed by I . The following proposition is adapted from
[6], [10] for oblivious BPs approximating a function.

Proposition 3. Let f : Dn → {0, 1}. Let B be a
deterministic I-oblivious branching program of width
W that approximates f under a probability distribution
µ with error at most ε. Let P ′ be a partition of a
subset I ′ ⊆ I of [n], and let µ be a distribution on
Dn that has fixed values for all input variables indexed
by [n]− I ′. Suppose that the query sequence of B can
be written as s1 . . . sr such that for each si, there is
some class Pji ∈ P ′ whose variables do not appear in
si. Then for any partition P that extends P ′ to all of
[n], (r − 1) log(W) + 1 ≥ Dµ

ε,P(f).

Proof: Associate party j with each class Pj of P
and place all input variables in class Pj on the forehead
of party j. For i = 1, . . . , r, party ji simulates B on
segment si and broadcasts the name of the node of B
reached at the end of the segment.

Pointer Jumping and Generalized Inner Product:
We consider the out-degree 1 directed graph reachability
problem, 1GAP , which is also known as the pointer
jumping problem. Define 1GAPn : [n + 1]n → {0, 1}
such that 1GAPn(x) = 1 iff there is a sequence of
indices i1, 12, . . . , i` such that i1 = 1, i` = n + 1 and
xij = ij+1 for all j = 2, . . . `−1. The 1GAPn problem
is s-t connectivity in (n+ 1)-vertex directed graphs of
out-degree 1, where x1, . . . , xn represent the out-edges
of nodes 1 through n, s is 1, and t is n+ 1 and vertex
n+ 1 has a self-loop.

We will relate the complexity of 1GAPn for ran-
domized oblivious branching programs to that of the
generalized inner product problem GIPp,n for a suit-
able value of p. GIPp,n : ({0, 1}n)p → {0, 1} is
given by GIPp,n(z1, . . . , zp) = ⊕nj=1

∧p
i=1 zij . The

standard input partition for GIPp,n places each zi in
a separate class. Babai, Nisan, and Szegedy [6] proved
that under the uniform distribution the p-party NOF

14

communication complexity of GIPp,n is large. We also
will use the fact that GIPp,n can be computed easily
by a leveled width 4, oblivious read-once branching
program.

3. REDUCING PERMUTED PROBLEMS TO 1GAP

In order to derive time-space tradeoffs for the 1GAP
problem, we will use a reduction from a permuted
version of GIP . Since the idea is more general we state
the reduction more generally.

Let f : {0, 1}N → {0, 1} be a Boolean func-
tion. Define the promise problem Permuted-f :
{0, 1}N × [N]N → {0, 1} by Permuted-f(z, π) =
f(zπ(1), zπ(2), . . . zπ(N)) where π is guaranteed to be
a permutation.2

Lemma 4. Let n = Nw+1. If f : {0, 1}N → {0, 1} is
a Boolean function computable by a width w oblivious
read-once branching program then there is a reduction
g from Permuted-f to 1GAPn mapping (z, π) to x
such that the value of each xi depends on π and at
most one bit of z, whose index is independent of π.

Proof: Let Bf be a width-w oblivious read-once
branching program computing f . We assume wlog that
Bf queries the bits of z in the order z1, z2, . . . , zN ; if
not, we can modify the construction below by applying
the fixed ordering given by the queries of Bf . Given π,
the function Permuted-f is computed by a modifica-
tion of Bπf that replaces each query to zj in Bf by a
query to zπ(j).

Vertex n+1 for the 1GAPn problem will correspond
to the 1-sink of Bπf . Vertex 1 will point to the start node
of Bπf and will also be identified with the 0-sink node
of Bπf . More precisely, x1 has value w ∗ (π(1)−1) + 2,
assuming that the first node in that level is the start
node.

Vertices 2 though n will correspond to the nodes
of Bπf . For j ∈ [N] and k ∈ [w], vertex i =
(j − 1) ∗ w + k + 1 will correspond to the k-th node
of the level in Bπf that queries zj . Note that, given
i, the values j and k are uniquely determined. More
precisely, given i ∈ [2, n], the value of xi is determined
as follows: Determine j and k. Query zj . Also query3 π
to determine ` = π−1(j), the level in Bπf at which zj is
queried. Unless ` = N , the next variable that Bπf will
query is zπ(`+1). Suppose that the 0- and 1-outedges
from the k-th node at level ` in Bf are to the k0-th and

2The function is well-defined even when π is not a permutation.
Determining whether or not π is a permutation is precisely the
ELEMENT -DISTINCTNESS problem [23], [7], [8] with
range [N] whose time-space tradeoff complexity is open.

3This is where we need that π is a permutation.

s

0-edges are

1-edges are

Start node : s

z11

z21

z31

z12

z22

z32

z13

10

Start node : s

z14

z24

z34

z13

z23

z33

Figure 1. A width 4 branching program computing GIP3,4.

k1-th nodes at level ` + 1 in Bf respectively; then the
value of xi will be (π(`+1)−1)∗w+kzj+1. Otherwise,
set the value of xi depending on zj to either 1 or n+ 1
depending on whether the corresponding edge goes to
the 0-sink or 1-sink. Correctness is immediate.

Overloading notation we identify the subset [N] of
the 2N indices of Permuted-f with z.

Corollary 5. Let n = Nw+1 and f : {0, 1}N → {0, 1}
be a Boolean function computable by a width-w oblivi-
ous read-once branching program. If there is a (random-
ized) oblivious branching program for 1GAPn of time
T , space S, and width W , then there is a (randomized)
z-oblivious branching program for Permuted-f with
z-time T , z-space S, and z-width W .

Proof: Use the reduction g given by Lemma 4 to
replace each query to an input xi of 1GAPn by the
single query of zj depending on i and then query π as
given by g. There is one z-query for each x-query. (We
do not care that queries to π are efficient.)

The construction shown in Figure 1 is easily general-
ized to show that we can apply Corollary 5 to GIPp,m.

Proposition 6. Let p,m ≥ 0 and N = mp, There is
a width-4 read-once oblivious branching program for
GIPp,m.

15

4. TIME-SPACE TRADEOFF LOWER BOUND FOR
Permuted-GIP AND 1GAP

Following the last section, to derive lower bounds for
1GAPn we consider randomized z-oblivious branching
programs for Permuted-GIPp,m. Since such programs
are distributions over deterministic programs, as usual
we invoke the easy half of Yao’s Lemma [22] to
show that it is enough to find a distribution µ such
that every ε-error deterministic z-oblivious branching
program approximating Permuted-GIPp,m under µ
will have a large time-space tradeoff.

The distribution µ we consider is the uniform dis-
tribution on the inputs of Permuted-GIPp,m, i.e. the
uniform distribution on all inputs (z1, z2, . . . , zp, π) ∈
({0, 1}m)p × S[p]×[m] where S[p]×[m]

∼= SN is the
set of all permutations of the N = pm inputs to
GIPp,m. We will write µ as Z × U , where Z is the
uniform distribution on {0, 1}pm and U is the uniform
distribution on S[p]×[m]. The random permutation π
induces a random partition of the bits of z into blocks
of size p: U1, U2, . . . , Um where each Ui contains bits
zπ(1,i), zπ(2,i), . . . , zπ(p,i).

We will apply the reduction to communication com-
plexity given by Proposition 3 to obtain our lower
bound. To do this we will break the branching program
for Permuted-GIPp,M into r layers consisting of
many time steps and randomly assign each layer to
the party that will simulate the layer. The following
lemma will be useful in arguing that in the course of
this assignment, it is likely that a block of p tuples in
the Permuted-GIPp,m input distribution can be placed
on the foreheads of p different players.

Lemma 7. For every δ > 0, there is a pδ > 0 such that
for every integer p ≥ pδ and d ≤ 1

8 p log p, the following
holds: Let G = (L,R) be a bipartite graph, where
|L| = |R| = p. For each i ∈ L, repeat the following
process di ≤ d times: independently at random choose
a node j from R with probability 1/p and add edge
(i, j) if it is not already present. Let H be the graph
resulting from subtracting G from Kp,p. Then H has
a perfect matching with probability at least 1 − δ. In
particular, if p ≥ 69, this probability is at least 15/16.

Note that Lemma 7 is asymptotically tight with
respect to d since, by the standard coupon collector
analysis, for any c > 1/ ln 2 and p ≥ cp log p, the
probability that even a single left vertex has a neighbor
in H goes to 0 as p goes to infinity. Indeed its proof
follows from the fact that below the coupon-collector
bound the complement graph is a random bipartite graph
of relatively large left degree and hence likely contains

a matching.
Proof: By Hall’s theorem we can upper bound

the probability that there is no perfect matching in
H by the probability that there is some S ⊆ L with
1 ≤ |S| ≤ p−1 and |N(S)| ≤ |S|. (Any witnessing set
S′ for Hall’s Theorem must be non-empty and the case
that |S′| = p is included in the probability that there
is a set S with |N(S)| ≤ |S| = p − 1.) Fix S ⊆ L,
let |S| = s, and fix T ⊆ R such that |T | = s. Now
N(S) ⊆ T in H iff every i ∈ S has an edge to every
j ∈ R \ T in the original graph G. (i, j) is not an
edge in G if j is not one of the di choices for i; thus,

we have Pr[(i, j) is an edge in G] = 1−
(

1− 1
p

)di
≤

1 −
(

1− 1
p

)d
≤ 1 − 4−d/p ≤ 1 − 1

p1/4
, since

di ≤ d ≤ 1
8 p log p and

(
1− 1

p

)d
≥ 4−d/p for p ≥ 2.

For each j ∈ R \ T , these events are negatively corre-
lated, hence Pr[∀j ∈ R \ T, (i, j) is an edge in G] ≤(

1− 1
p1/4

)p−s
. Since the choices for each i ∈ S are

independent, it follows that:

Pr[∀i ∈ S, ∀j ∈ R \ T,(i, j) is an edge in G]

≤
(

1− 1
p1/4

)s(p−s)
.

By a union bound, we have

Pr[∃S ⊆ L, T ⊆ R, s. t. |T | = |S| and N(S) ⊆ T]

≤
p−1∑
s=1

(
p

s

)2

(1− 1
p1/4

)s(p−s)

≤
∑

1≤s≤p/2

(
p

s

)2

(1− 1
p1/4

)sp/2

+
∑

p−1≥s≥p/2

(
p

s

)2

(1− 1
p1/4

)(p−s)p/2

=
∑

1≤s≤p/2

(
p

s

)2

(1− 1
p1/4

)sp/2

+
∑

1≤p−s≤p/2

(
p

p− s

)2

(1− 1
p1/4

)(p−s)p/2

≤2
∑

1≤s≤p/2

[
p2(1− 1

p1/4
)p/2

]s
≤2
∑
s≥1

[
p2e−p

3/4/2
]s

≤ 2p2e−p
3/4/2

1− p2e−p3/4/2
≤ δ

16

provided that p ≥ pδ , where pδ is a constant such that
2p2δe

−p3/4
δ

/2

1−p2δe
−p3/4
δ

/2
≤ δ. For δ = 1

16 , pδ ≤ 69. Therefore, H

has a perfect matching with probability at least 15/16,
for p ≥ 69.

The following is our main lemma showing that we
can convert z-oblivious branching programs approxi-
mating Permuted-GIP under the hard distribution µ to
an efficient communication protocol for GIPp,m′ under
the uniform distribution.

Lemma 8. Let p,m > 0 be positive integers and
let N = mp. Assume that 69 ≤ p ≤

√
N/2 and

let k ≤ 1
16p log p. Let B be a z-oblivious branching

program of z-length T ≤ kN and z-width W that
approximates Permuted-GIPp,m with error at most ε
under the probability distribution µ. Then, for m′ =
m

2p+4 and ε′ = ε+ e−
m

22p+3 + 1
p + 1

8 , under the uniform
distribution on inputs there is a deterministic ε′-error
NOF p-party protocol for GIPp,m′ of complexity at
most k2p32p+3 logW .

Proof: Let I = [N] be the set of input posi-
tions in z. Since B is z-oblivious we can let s be
the sequence of at most kN elements from I that
B queries in order. Divide s into r equal segments
s1, s2, . . . , sr, each of length kN

r , where r will be
specified later. Independently assign each segment si
to a set in A1, A2, . . . , Ap with probability 1/p. Denote
this probability distribution by A. Each Aj represents
the elements of I that party j will have access to and
hence we will place a subset of I \Aj on the forehead
of party j. Since the sets I \ Aj , j = 1, . . . , p, might
overlap, they might not form a partition of I into p sets.

The distribution µ = (Z,U) on Permuted-GIPp,m
inputs randomly divides the elements of I into m
blocks U1, U2, . . . , Um, each of size p. We calculate the
probability, under the random assignment of segments
to parties and z-bits to blocks, that we obtain a relatively
large number of blocks such that, for every party j, each
block contains exactly one z-bit not belonging to Aj .
We bound the probability that a block has z-bits such
that:

(1) they do not occur too frequently in the sequence,
(2) their assignments to parties are independent, and
(3) each z-bit can be placed on the forehead of a

different party.

Claim 9. Except with probability at most e−m/2
2p+3

over U , all bits in at least m/2p+2 blocks are read at
most 2k times in s.

By Markov’s inequality, at least half the z-bits appear

at most 2k times in s. For ` ∈ [m],

Pr
U

[all z-bits in U` appear at most 2k times in s]

≥ (N/2)(p)/(N)(p) =
N/2
N
· · · (N/2− (p− 1))

(N − (p− 1))

= 2−p ·
p−1∏
i=0

(
1− i

N − i

)
>

1
2p

(
1− 2p2

N

)
≥ 1

2p+1

since p ≤
√
N/2. Hence, the expected number of such

blocks is at least m
2p+1 . Let E1 be the event that the

number of blocks for which all z-bits appear at most
2k times in s is at least m

2p+2 , which is at least half the
expected number.

For simplicity here we use a single index i to select
the bits of z. Let Bi be the block that z-bit i falls into
according to the distribution U . Let Y be the number of
blocks for which all z-bits appear at most 2k times in s.
Then Yt = E[Y |B1, B2, . . . , Bt] is a Doob’s martingale,
with Y0 = E[Y] ≥ m

2p+1 and Ym = Y . Let E1 be the
event that Y is at least m/2p+2. Then, by the Azuma-
Hoeffding inequality, we have

Pr
U

[E1] = Pr
[
|Ym − Y0| ≥

m

2p+2

]
≤ e−2

(m
2p+2)2

m = e−m/2
2p+3

.

Claim 10. Except with probability at most 1/p in U ,
there are at most m/2p+3 blocks in which any two z-
bits are queried in the same segment.

Let t(i) be the number of segments in which z-bit i
appears, and write i ∼ i′ if z-bits i and i′ appear in the
same segment at least once. Then

∑
i t(i) ≤ kN and

the number of i′ such that i ∼ i′ is at most t(i)kN/r. A
z-bit i is in a given block U` with probability 1/m and
the events that i and i′ are mapped there are negatively
correlated. Hence for every ` ∈ [m], we have

Pr
U

[∃i, i′ ∈ U` such that i ∼ i′]

≤
∑
i

∑
i′∼i

1
m2
≤
∑
i

t(i)kN
r

1
m2

=
k2N2

rm2
=
p2k2

r
.

Setting r = 8k2p32p, the expected number of such
bad blocks is at most m/(p2p+3). Hence, by Markov’s
inequality,

Pr
U

[
of blocks with ∼ z-bits ≥ m/2p+3

]
≤ 1/p.

Let E2 be the event that there are at least m′′ =
m/2p+3 blocks such that each z-bit in these blocks is
read at most 2k times and no two z-bits in any given
block are read in the same segment. Call these blocks
good. Then the above claims imply that PrU [E2] ≤

17

e−m/2
2p+3

+ 1/p. For the remainder we condition on
event E2.

Given that a block has z-bits occurring at most 2k
times in s and no two z-bits appear in the same segment,
we calculate the probability over A that the assignment
of segments to parties ensures that each of the z-bits
in the block can be placed on the forehead a different
party. For such a block U`, we construct a bipartite
graph where the left vertices represent the p z-bits in the
block and the right vertices represent the p parties. We
add an edge (i, j) if z-bit i cannot be assigned to party
j, because it is read in a segment in Aj . Observe that
each z-bit in block U` can be placed on the forehead
of a different party if and only if this graph contains a
perfect matching. Since the segments are assigned to the
various Aj independently, each with probability 1/p, the
resulting distribution on the graph is equivalent to that
of the graph H in Lemma 7 with d = 2k ≤ 1

8 p log p.
Since p ≥ 69, we can apply Lemma 7 to say that

the probability that the graph associated with block U`
does not contain a perfect matching is at most 1/16.
By Markov’s inequality, the probability, conditioned on
E2, that fewer than m′′/2 such blocks contain a perfect
matching is at most 1/8.

Let E3 ⊆ supp(U)× supp(A) be the event that there
are at least m′ = m/2p+4 blocks whose z-bits can be
placed on the foreheads of different parties. Combining
all the above, E3 occurs except with probability at most
ε1 = e−

m

22p+3 + 1
p + 1

8 over the distributions U and
A. There must be some choice of A = (A1, . . . , Ap)
for which the probability, over the distribution U on the
grouping of blocks, that E3 does not occur is at most
the average ε1. We fix such an A.

Since the branching program B correctly computes
Permuted-GIPp,m under distribution µ with probabil-
ity at least 1 − ε, there must be some choice π of the
permutation on the bits of z1, z2, . . . , zp with (π,A) ∈
E3 such that B correctly computes Permuted-GIPp,m
with probability at least 1−ε−ε1 under the distribution
µ conditioned on the choice of π. This conditional
distribution is now determined entirely by the uniform
distribution Z . Let I ′, with |I ′| = m′ be the set of
blocks witnessing event E3. By simple averaging there
must be some assignment ζ to the blocks not in I ′

so that B correctly computes Permuted-GIPp,m with
probability at least 1 − ε − ε1 under distribution µ
conditioned on the choice of π and assignment ζ.

By construction, we can create a p-partition P ′ of
the set of pm′ bits in the blocks in I ′ so that each
class contains precisely one z-bit from each block. We
extend P ′ to a partition P of all of [N] by arbitrarily

assigning to each class one z-bit of each block not in I ′

and dividing the N values representing π equally among
the parties. Applying Proposition 3 with r = k2p32p+3,
we obtain a deterministic NOF p-party protocol of com-
plexity k2p32p+3 logW for Permuted-GIPp,m with
error ε′ = ε+ ε1 under distribution µ′.

We reduce the communication problem for GIPp,m′
under the uniform distribution to that for 1GAPn under
µ′ by observing that the inputs to the GIPp,m′ problem
on a uniformly random input can be embedded into
the unfixed blocks of the Permuted-GIPp,m instances
induced by the permutation π given by the distribution
µ′.

We now apply the following lower bound for GIPp,m
under the uniform distribution.

Proposition 11. [6] Duniform
ε,p (GIPp,m) is

Ω(m/4p + log(1− 2ε)).

Theorem 12. Let ε < 1/2. There is a p ≤
log(m/S) such that if a randomized z-oblivious
branching program computes Permuted-GIPp,m with
time T , space S and error at most ε, then T =
Ω
(
N log(NS) log log(NS)

)
where N = pm.

Proof: Let B̃ be a z-oblivious randomized branch-
ing program computing Permuted-GIPp,m. By stan-
dard probability amplification which increases the width
by an additive constant and the time by a constant
factor we can assume without loss of generality that
the error ε of B̃ is < 1/5. Apply Yao’s Lemma to B̃
using distribution µ to obtain a deterministic z-oblivious
branching program B with the same time and space
bounds that computes Permuted-GIPp,m with error
at most ε under µ.

Let T = kN and let p be the smallest integer ≥ 69
such that k ≤ 1

16p log p. If p ≥ log(N/S)/4 then the
result is immediate so assume without loss of generality
that 69 ≤ p < log(N/S)/4. Let ε1 = e−

m

22p+3 + 1
p + 1

8

which is < 1/5 for these values of p.
Since 69 ≤ p ≤

√
N/2 we can combine Lemma 8

and Proposition 11 to say that there is a constant C
independent of N and p such that

k2p32p+3 logW ≥ C(
m′

4p
+ log(1− 2ε′)),

where m′ = m/2p+4 = N
p2p+4 and ε′ = ε + ε1 ≤ 2/5.

Rewriting m′ and k in terms of N and p and using
S ≥ logW , we obtain Sp7 log2 p ≥ C1n4−2p, for
some constant C1. Simplifying and taking logarithms,
we have p ≥ C2 log(NS), for some constant C2. Since
p is the smallest integer ≥ 69 such that k ≤ 1

16p log p,
we have k ≥ C3 log(NS) log log(NS) for some constant

18

C3 and the theorem follows.
Using Theorem 12 together with Proposition 6 and

Corollary 5, we immediately get our claimed time-space
tradeoff for randomized oblivious branching programs
computing 1GAPn.

Corollary 13. Let ε < 1/2. If a randomized
oblivious branching program computes 1GAPn with
time T , space S and error at most ε, then T =
Ω
(
n log(nS) log log(nS)

)
.

5. TIME-SPACE TRADEOFF LOWER BOUND FOR
RANDOMIZED OBLIVIOUS BOOLEAN BRANCHING

PROGRAMS

1GAPn requires Ω(n log n) bits of input and hence is
unsuitable for separations involving Boolean branching
programs. As with 1GAPn, specifying the permuta-
tion in the input to Permuted-GIPp,m also requires
Θ(N logN) bits where N = pm. Instead, we consider
GIP -MAP , an extension of GIPp,n/p where the input
bits are shuffled by an almost 2p-wise independent
permutation and arranges these bits into the p vectors
z1, z2, . . . , zp that are the input to GIPp,n/p. The key
difference is that specifying the permutation requires
only O(p log n) bits.

DEFINITION 1. A set of permutations F of A with
|A| = n is a δ-almost t-wise independent family
of permutations iff for every set of t distinct points
a1, . . . , at ∈ A and for π chosen uniformly from F ,
the distribution of (π(a1), . . . , π(at)) is δ-close to the
uniform distribution on sequences of t distinct points
from A. It is simply t-wise independent if δ = 0.

For any prime power q, the set of permutations on
Fq given by F2,q = {fa,b | a 6= 0, b ∈ Fq} where
fa,b(x) = ax + b over Fq is a pairwise independent
family of permutations. For t > 2, the family Ft,q
consisting of all polynomials of degree t − 1 over
Fq is a t-wise independent family of functions but
there is no analogous subset of this family that yields
a t-wise independent family of permutations. While
there are now a number of constructions of almost
2p-wise independent random permutations in the lit-
erature, for simplicity we fix a construction of Naor
and Reingold [18] based on analyzing variants of Luby
and Rackoff’s pseudorandom permutation construction
that uses Feistel operations [17]. They showed that a
simple combination of two copies of each of these
two kinds of pseudorandom families yields a family of
permutations that is δ-almost t-wise independent and
pairwise independent provided t is not too large and δ
is not too small.

Let w be an integer and for ` = w, 2w, identify the
elements of F2` with {0, 1}`. The construction uses the
Feistel operator Ff on 2w bits which maps (x, y) for
x, y ∈ {0, 1}w to (y, f(x) ⊕ y) where f : {0, 1}w →
{0, 1}w. Define a family Fwt of permutations on F22w is
the set of all functions constructed as follows: For each
independent choice of h1, h2 from F2,22w and f1, f2
from Ft,2w define the permutation

πh1,h2,f1,f2 = h−1
2 ◦ Ff2 ◦ Ff1 ◦ h1.

Observe that 8w+2tw bits suffice to specify an element
of Fwt .

Proposition 14. ([18] Corollary 8.1) Let w be an
integer and t be an integer. Then Fwt is δ-almost
t-wise independent family of permutations on F22w

for δ = t2/2w + t2/22w that also forms a pairwise
independent family of permutations.

DEFINITION 2. Let N be a positive integer and
n = 22w be the largest even power of 2 such that
n + log2 n ≤ N . Let p be a power of 2 such that
2 ≤ p ≤ 1

8 log n (of which the are fewer than log log n
possibilities).

Define GIP -MAPN : {0, 1}N → {0, 1} as follows:
We interpret input bits n + 1, . . . , n + log log logn as
encoding the value p ≤ 1

8 log n and the next 8w+4pw ≤
3
4 log2 n bits as encoding a permutation π from Fw2p
which we identify with permutation on [n].

GIP -MAPN (x1x2 . . . xn, p, π)
= GIPp,n(z1, z2, . . . , zp)

where zi = xπ((i−1)n/p+1) . . . xπ(in/p), i = 1, . . . , p.

Proposition 15. GIP -MAPN is computable by a
deterministic Boolean branching program using time N
and O(log2N) space.

Proof: The program begins with a full decision tree
that first reads the bits of the encoding of p and then the
bits encoding π. At each leaf of the tree, the program
contains a copy of the width 4 branching program
computing GIPp,n/p where variable zij is replaced by
xπ((i−1)n+j).

We obtain the following time-space tradeoff lower
bound for GIP -MAPN .

Theorem 16. Let ε < 1/2. Any randomized oblivious
Boolean branching program computing GIP -MAPN
with time T , space S and error at most ε requires then
T = Ω

(
N log(NS) log log(NS)

)
.

Proof: The proof follows the basic structure of the
argument for Permuted-GIPp,m, except that we now

19

fix the p that is part of the input. Let n be given as in the
definition of GIP -MAPN . The δ-almost 2p-wise inde-
pendence of the permutation ensures that the probability
that a block of the permuted GIPp,n/p problem has all
its variables accessed at most 2k times is roughly 2−p

and that these events are roughly pairwise independent.
The pairwise independence of the permutation ensures
that two variables in a block are unlikely to be assigned
to the same segment.

Let B̃ be a randomized oblvious branching program
computing GIP -MAPN and assume wlog that the
error ε of B̃ is < 1/5. We can assume wlog that
log(n/S) ≥ 210 or the result follows immediately.
Otherwise let p be the largest power of 2 such that
p ≤ 1

8 log(n/S). Then p ≥ 69. Let µp be the uniform
distribution over the input bits to GIP -MAPN condi-
tioned on the fixed value of p. Apply Yao’s Lemma to B̃
using distribution µp to obtain a deterministic oblivious
branching program B with the same time and space that
computes GIP -MAPN with error at most ε under µp.

Suppose that the time of B, T ≤ kn where k =
1
16p log p. Since B is oblivious we can let s be the
sequence of at most kn elements from the set of input
positions I = [n] that B queries, in order. (We do
not include the input positions queried outside of [n]
since their values will eventually be fixed.) Divide s
into r equal segments s1, s2, . . . , sr, each of length at
most knr , where r will be specified later. Independently
assign each segment si to a set in A1, A2, . . . , Ap with
probability 1/p. Denote this probability distribution A.
Each Aj represents the elements of L that party j will
have access to and hence we will place a subset of
I \Aj on the forehead of party j. Since the sets L\Aj ,
j = 1, . . . , p, might overlap, they might not form a
partition of I into p sets.

The permutation π randomly divides [n] into m =
n/p blocks U1, U2, . . . , Um, each of size p where block
Uj contains the jth bits of the vectors z1, z2, . . . , zp
as given in the definition of GIP -MAPN . By con-
struction, the distribution of π is δ-almost 2p-wise
independent for δ = 8p2/

√
n.

We now follow many of the lines of the remainder
of the proof of Lemma 8 and give full details where
the proofs differ. The key difference in the calculations
is that we no longer have a truly random permutation.
The parameter n here corresponds to N in the proof of
Lemma 8.

As before, we calculate the probability, under the
random assignment of segments to parties and elements
of [n] to blocks, that we obtain a relatively large number
of blocks such that, for every party j, each block

contains exactly one element of [n] not belonging to
Aj . To do this, we bound the probability that a block
has elements of [n] such that:
(1) they do not occur too frequently in the sequence,
(2) their assignments to parties are independent, and
(3) each element can be placed on the forehead of a

different party.
In the proof of Lemma 8, conditioned on (1) and (2),

the argument for (3) is independent of the choice of π
and depends only on the randomness of the assignment
of segments to parties. The proof of (2) depends only
on the pairwise independence of π which is guaranteed
here by Proposition 14. Only the proof of part (1) needs
to be modified substantially.

As before, we first remove all input indices that ap-
pear more than 2k times in the sequence s. By Markov’s
inequality, at least half the input indices appear at most
2k times in s. Let the first n/2 elements of this set be
G.

Therefore, for ` ∈ [m], let Y` be the indicator function
for the event that U` ⊂ G. Then since π is δ-almost 2p-
wise independent

Pr
µp

[Y` = 1] = Pr
µp

[U` ⊂ G]

≥ (n/2)(p)/n(p) − δ
> 2−p − 2−p−1p2/n− δ
= 2−p − δ′

where δ′ = δ + 2−p−1p2/n < 9p2/
√
n. Similarly and

more simply, Prµp [Y` = 1] ≤ 2−p + δ ≤ 2−p + δ′. Let
E1 be the event that the number of blocks for which
all elements appear at most 2k times in s is at least
m′′ = n

p2p+1 .
We use the second moment method to upper bound

Prµp [E1]. Let Y be the number of blocks for which
all elements appear in G. Then Y =

∑
`∈[n/p] Y`

and |E(Y) − n
p2p | ≤

n
p δ
′. Since the Yi are indicator

variables V ar(Y) = E(Y) +
∑
i 6=j Cov(Yi, Yj) where

Cov(Yi, Yj) = Pr[YiYj = 1] − Pr[Yi = 1] Pr[Yj = 1].
Since the outputs of π are δ-almost 2p-wise indepen-
dent, we have: Pr[YiYj = 1] = Pr[Ui ∪ Uj ⊆ G] ≤
2−2p + δ ≤ 2−2p + δ′. Therefore

V ar(Y) ≤n
p

2−p +
n

p
δ′

+
n

p
(
n

p
− 1)[2−2p + δ′ + (2−p − δ′)2]

=
n

p
2−p +

n

p
δ′ +

n

p
(
n

p
− 1)δ′[1 + 21−p − δ′]

≤n
p

2−p +
2n2

p2
δ′.

20

Now E1 holds if Y ≥ m′′ = n
p2p+1 ≥ E(Y) −

n
p (2−p−1 + δ′). So by Chebyshev’s inequality, we have

Pr
µp

[E1] ≤ Pr
[
|Y − E(Y)| ≥ n

p
(2−p−1 + δ′)

]
≤ V ar(Y)

(np (2−p−1 + δ′))2

≤ (n/p)2−p + 2(n/p)2δ′

(n/p)2(2−p−1 + δ′)2

≤ p2p+2

n
+ 2δ′

=
p2p+2

n
+

18p2

√
n

Since 69 ≤ p ≤ 1
8 log n, we obtain Prµp [E1] ≤ 2−3p.

As in the proof of Lemma 8 let t(i) be the number
of segments in which i appears, and write i ∼ i′

if elements i and i′ appear in the same segment at
least once. Then the number of i′ such that i ∼ i′ is
at most t(i)kn/r and

∑
i t(i) = kn. By construction

the random permutation π is pairwise independent and
hence it maps any two input bits i 6= i′ ∈ [n] to two
randomly chosen distinct points in [n]. Therefore the
probability that they are both chosen for some block
Uj is precisely p(p− 1)/n(n− 1) ≤ p2/n2. Hence for
every ` ∈ [n/p], we have

Pr
µp

[∃i, i′ ∈ U` such that i ∼ i′]

≤
∑
i

∑
i′∼i

p2

n2
=
∑
i

t(i)kn
r

p2

n2
=
k2p2n2

rn2
=
k2p2

r
.

Setting r = k2p32p+2, the expected number
of such blocks is at most n

p22p+2 =
m′′/(2p). Hence, by Markov’s inequality,
Prµp [the number of blocks with ∼ tuples ≥ m′′/2] ≤
1
p . Let E2 be the event that there are at least m

′′

2 = n
p2p+2

blocks such that each bit in these blocks is read at
most 2k times and no two bits in any block are read in
the same segment. Then Prµp [E2] ≤ 2−3p + 1/p.

Conditioned on the event E2, the probability that
the number of blocks among the m′ = m′′/2 blocks
guaranteed by E2 for which elements that can be placed
on the forehead of the p different parties is independent
of the choice of π and depends only on the assignment
A. By the same calculation as that of Lemma 8 with
the value of m′′ here, except with a probability of 1/8,
conditioned on E2, there are at least m′ = n

8p2p blocks
whose elements can be placed on the foreheads of
different parties. Let E3 be the probability over the joint
distribution of µp and A that there are at least m′ such
blocks. The Pr[E3] is at most ε1 = 2−3p + 1/p+ 1/8.

There must be some choice of A = (A1, . . . , Ap) for
which the probability, over the distribution µp on the
grouping of blocks, that E3 does not occur is at most
the average ε1. We fix such an A.

Since the branching program B correctly computes
GIP -MAPN under distribution µp with probability
at least 1 − ε, there must some choice π of the per-
mutation that groups the elements of [n] into blocks
with (π, A) ∈ E3 such that B correctly computes
GIP -MAPN with probability at least 1− ε− ε1 under
the distribution µp conditioned on the choice of π. (This
conditional distribution is now determined entirely by
the uniform distribution over {0, 1}n.)

Let I ′, with |I ′| = m′ be the set of blocks witnessing
event E3. By averaging there must be some assignment
ζ to the blocks not in I ′ so that B correctly computes
GIP -MAPN with probability at least 1− ε− ε1 under
distribution µ conditioned on the choice of the permu-
tation π and assignment ζ. Let µ′ be this conditional
distribution which is uniform on the inputs appearing in
the blocks of I ′. As in the proof of Lemma 8 we can
use the branching program B to obtain a deterministic
p-party communication protocol of complexity at most
rS = k2p32p+2S that computes GIPp,m′ with the
standard input partition for a uniformly random input
in {0, 1}pm′ with error at most ε′ = ε+ ε1 < 2/5.

Hence, by Proposition 11, there is an absolute con-
stant C such that k2p32p+2S ≥ Cm′

4p = Cn
8p23p . Since

k = 1
16p log p, we obtain 24pp6 log2 p ≥ 8Cn/S which

contradicts the assumption that p is the largest power of
2 smaller than 1

8 log(n/S) for n/S sufficiently large.
Our only hypothesis was that T ≤ kn so we

must have T > kn = 1
16np log p which is at least

cn log(n/S) log log(n/S)) for some constant c > 0.
Since n is Θ(N), the theorem follows.

6. DISCUSSION

Our results apply to randomized oblivious algorithms
and are the largest explicit time-space tradeoff lower
bounds known for randomized non-uniform branching
programs. However, it would be interesting to extend
these bounds to more powerful classes of randomized
branching programs, in particular oblivious randomized
ones where the probability distribution on the input
sequence is independent of the input. We conjecture
that 1GAPn is also hard for this stronger oblivious
randomized model. It is important to note that if we
applied Yao’s Lemma directly on this model then we
would lose the requirement of obliviousness when the
randomness is fixed.

21

ACKNOWLEDGEMENTS

We are very grateful to Russell Impagliazzo for
helping us to clarify the difference between randomized
oblivious and oblivious randomized branching programs
and for suggesting the approach for separations for
Boolean branching programs based on pseudorandom
permutations of the generalized inner product.

REFERENCES

[1] M. Ajtai, “Determinism versus non-determinism for lin-
ear time RAMs with memory restrictions,” Journal of
Computer and System Sciences, vol. 65, no. 1, pp. 2–37,
Aug. 2002.

[2] ——, “A non-linear time lower bound for Boolean
branching programs,” Theory of Computing, vol. 1, no. 1,
pp. 149–176, 2005.

[3] ——, “Oblivious RAMs without cryptographic assump-
tions,” in Proceedings of the Forty-Second Annual ACM
Symposium on Theory of Computing, Cambridge, Ma,
Jun. 2010, pp. 181–190.

[4] ——, “Oblivious RAMs without cryptographic assump-
tions,” Electronic Colloquium in Computation Complex-
ity, http://www.eccc.uni-trier.de/eccc/,
Tech. Rep. TR10-028, 2010.

[5] N. Alon and W. Maass, “Meanders and their applications
in lower bounds arguments,” Journal of Computer and
System Sciences, vol. 37, pp. 118–129, 1988.

[6] L. Babai, N. Nisan, and M. Szegedy, “Multiparty proto-
cols, pseudorandom generators for logspace, and time-
space trade-offs,” Journal of Computer and System Sci-
ences, vol. 45, no. 2, pp. 204–232, Oct. 1992.

[7] P. Beame, “A general time-space tradeoff for finding
unique elements,” SIAM Journal on Computing, vol. 20,
no. 2, pp. 270–277, 1991.

[8] P. Beame, M. Saks, X. Sun, and E. Vee, “Time-space
trade-off lower bounds for randomized computation of
decision problems,” Journal of the ACM, vol. 50, no. 2,
pp. 154–195, 2003.

[9] P. Beame, T. S. Jayram, and M. Saks, “Time-space
tradeoffs for branching programs,” Journal of Computer
and System Sciences, vol. 63, no. 4, pp. 542–572, Dec.
2001.

[10] P. Beame and E. Vee, “Time-space tradeoffs, multiparty
communication complexity, and nearest-neighbor prob-
lems,” in Proceedings of the Thirty-Fourth Annual ACM
Symposium on Theory of Computing, Montreal, Quebec,
Canada, May 2002, pp. 688–697.

[11] R. E. Bryant, “Symbolic Boolean manipulation with
ordered binary decision diagrams,” ACM Computing
Surveys, vol. 24, no. 3, pp. 283–316, 1992.

[12] A. K. Chandra, M. L. Furst, and R. J. Lipton, “Multi-
party protocols,” in Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing, Boston, MA,
Apr. 1983, pp. 94–99.

[13] I. Damgård, S. Meldgaard, and J. B. Nielsen, “Perfectly
secure oblivious RAM without random oracles,” Cryp-
tology ePrint Archive, Tech. Rep. 2010/108, 2010.

[14] O. Goldreich, “Towards a theory of software protection
and simulation by oblivious RAMs,” in Proceedings of
the Nineteenth Annual ACM Symposium on Theory of
Computing, New York, NY, May 1987, pp. 182–194.

[15] O. Goldreich and R. Ostrovsky, “Software protection and
simulation on oblivious RAMs,” Journal of the ACM,
vol. 43, no. 3, pp. 431–473, 1996.

[16] T. W. Lam and W. L. Ruzzo, “Results on communication
complexity classes,” Journal of Computer and System
Sciences, vol. 44, no. 2, pp. 324–342, Apr. 1992.

[17] M. Luby and C. Rackoff, “How to construct pseudoran-
dom permutations from pseudorandom functions,” SIAM
Journal on Computing, vol. 17, no. 2, pp. 373–386, 1988.

[18] M. Naor and O. Reingold, “On the construction of
pseudorandom permutations: Luby-rackoff revisited,” J.
Cryptology, vol. 12, no. 1, pp. 29–66, 1999.

[19] R. Ostrovsky, “Efficient computation on oblivious
RAMs,” in Proceedings of the Twenty-Second Annual
ACM Symposium on Theory of Computing, Baltimore,
MD, May 1990, pp. 514–523.

[20] N. J. Pippenger and M. J. Fischer, “Relations among
complexity measures,” Journal of the ACM, vol. 26,
no. 2, pp. 361–381, Apr. 1979.

[21] M. Sauerhoff, “A lower bound for randomized read-k-
times branching programs,” in (STACS) 98: 15th Annual
Symposium on Theoretical Aspects of Computer Science,
ser. Lecture Notes in Computer Science, vol. 1373.
Paris, France: Springer-Verlag, Feb. 1998, pp. 105–115.

[22] A. C. Yao, “Probabilistic computations: Toward a unified
measure of complexity,” in 18th Annual Symposium on
Foundations of Computer Science. Providence, RI:
IEEE, Oct. 1977, pp. 222–227.

[23] ——, “Near-optimal time-space tradeoff for element
distinctness,” in 29th Annual Symposium on Foundations
of Computer Science. White Plains, NY: IEEE, Oct.
1988, pp. 91–97.

22

