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Abstract

For each k ≥ 4, we give rk > 0 such that a random
k-CNF formula F with n variables and brknc clauses
is satisfiable with high probability, but ordered-dll
takes exponential time on F with uniformly positive
probability. Using results of [2], this can be strength-
ened to a high probability result for certain natu-
ral backtracking schemes and extended to many other
DPLL algorithms.

1 Previous work

In the last twenty years a significant amount of work
has been devoted to the study of randomly generated
satisfiability instances and the performance of different
algorithms on them. Historically, a major motivation
for studying random instances has been the desire to
understand the hardness of “typical” instances. Indeed,
some of the better practical ideas in use today come
from insights gained by studying the performance of
algorithms on random k-SAT instances (defined below).

Let Ck(n) denote the set of all possible disjunctions
of k distinct, non-complementary literals (k-clauses)
from some canonical set of n Boolean variables. A ran-
dom k-CNF formula Fk(n, m) is formed by selecting uni-
formly, independently, and with replacement m clauses
from Ck(n) and taking their conjunction. We will say
that a sequence of random events En occurs with high
probability (w.h.p.) if limn→∞ Pr[En] = 1 and with uni-
formly positive probability if lim infn→∞ Pr[En] > 0.

It is widely believed that for each k ≥ 3, there
exists a constant ck such that Fk(n, m = cn) is w.h.p.
satisfiable if c < ck and w.h.p. unsatisfiable if c > ck.
Currently, the best general bounds are 2k ln 2−O(k) <
ck < 2k ln 2 − O(1) , where by ck < c we mean that
Fk(n, cn) is w.h.p. unsatisfiable (analogously for ck > c).

Let res(F ) denote the size of the minimal resolution
refutation of a formula F (we define res(F ) to be infinite
when F is satisfiable). A celebrated result of Chvátal
and Szemerédi [5] asserts that for all k ≥ 3 and every
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constant c > 0, w.h.p. res(Fk(n, cn)) = 2Ω(n). Since
res(F ) is always a lower bound on the time it takes a
DPLL algorithm to determine that F is unsatisfiable,
this implies that every such algorithm w.h.p. requires
exponential time on Fk(n, cn) when c > ck.

In [2] we studied the behaviour of DPLL algorithms
on random 3-CNF formulas when c is somewhat below
the conjectured value for c3 (≈ 4.2). Using standard
techniques it is not hard to show that many natural
DPLL algorithms when applied to such formulas, gen-
erate at least one unsatisfiable subproblem consisting
of a random mixture of m2 = (1 − ε)n 2-clauses and
m3 = ∆n 3-clauses. Our main contribution was the
following theorem, implying that in that case the algo-
rithm must spend an exponential amount of time before
it can resolve such a subproblem and backtrack.

Theorem 1.1. [2] For every ∆, ε > 0, if F is the union
of (1− ε)n random 2-clauses and ∆n random 3-clauses
then w.h.p. res(F ) = 2Ω(n).

Theorem 1.1 extends the result of Chvátal and Sze-
merédi [5] to accommodate random 2-clauses (such as
those present in the subproblems generated by DPLL
running on random k-CNF formulas). It asserts that
such clauses do not significantly reduce the resolution
complexity when m2 ≤ (1 − ε)n (for such m2 w.h.p.
the 2-clauses by themselves are satisfiable). Thus, we
proved that certain natural DPLL algorithms require
exponential time significantly below the generally ac-
cepted range for the random 3-SAT threshold. As an
example, for ordered-dll (which performs unit-clause
propagation but, otherwise, sets variables in an a priori
fixed random order/sign) we proved

Theorem 1.2. [2] For c ≥ 3.81, ordered-dll re-
quires time 2Ω(n) on F3(n, cn) with uniformly positive
probability.

Indeed, we proved that Theorem 1.2 also holds for a
few other (more intelligent) DPLL algorithms with 3.81
replaced by slightly larger values (but still significantly
below 4.2). Moreover, we showed that for certain natu-
ral and effective forms of backtracking, “with uniformly
positive probability” can be replaced with “w.h.p.” in
Theorem 1.2. Indeed, it appears that this should be
true for every form of backtracking, but technical rea-
sons make a general analysis rather unwieldy.
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2 Our new contributions

The most obvious drawback of Theorem 1.2 is that it
holds for values of c that are only conjectured (but not
proven) to be in the “satisfiable regime”. In this paper,
we rectify this problem by showing that for all k ≥ 4,
the analogue to Theorem 1.2 holds for values of c that
are proven to be in the satisfiable regime. Moreover, the
gap between the density at which the algorithm begins
to require exponential time, and the greatest density
for which formulas are known to be satisfiable w.h.p. is
large. In fact, the two densities are not even of the same
asymptotic order in k. Specifically, we prove that

Theorem 2.1. With uniformly positive probability
ordered-dll requires time 2Ω(n) on Fk(n, cn) if k = 4
and c ≥ 7.5 or k ≥ 5 and c ≥ (11/k) 2k−2.

The values of c in Theorem 2.1 include values in the
satisfiable regime by the following recent result of [3].

Theorem 2.2. [3] Fk(n, cn) is w.h.p. satisfiable if k =
4 and c < 7.91 or k ≥ 5 and c < 2k ln 2− (k + 4)/2.

We note that Theorem 2.1 is, perhaps, only the
simplest theorem that our techniques can deliver.
ordered-dll is an extension to a full DPLL algorithm
of the non-backtracking uc algorithm [4]. We can,
for example, prove analogues of Theorem 2.1 for any
DPLL algorithm extending many other “myopic” [1] al-
gorithms, that are much more sophisticated than uc.
The arguments are technically more complex but in
spirit they completely parallel the proof of Theorem 2.1.

3 The proof

Our strategy is to prove that, even for a satisfiable for-
mula F , the algorithm will w.h.p. reach an unsatisfiable
subformula F ′ where res(F ′) = 2Ω(n). Thus, the algo-
rithm will take 2Ω(n) steps just to determine that F ′ is
unsatisfiable before backtracking away from it.

Lemma 3.1. Let F be a random CNF formula on n
variables with mi ≥ rin clauses of length i. If λ =
ln 2+

∑
i ri ln(1−2−i) < 0 then F is unsatisfiable w.h.p.

Proof. If X is the expected number of satisfying as-
signments of F then E[X] = 2n

∏
i

(
1− 2−i

)mi . Thus,
Pr[X > 0] ≤ E[X] ≤ exp(λn). �

We will say that a DPLL algorithm makes a “step”
every time it assigns a value to a variable. Thus, the
number of steps is non-decreasing (it stays constant as
variables are unassigned during backtracking). Given
an input formula F , we will denote the residual formula
after t steps by Ft.

Lemma 3.2. [4] Let A be any DPLL algorithm extend-
ing uc. If during the first t steps of an execution of A on
a random k-CNF formula no backtracking has occurred,
then for each i, the set of i-clauses in Ft is uniformly
random conditional on its size.

Definition 3.1. For any fixed integers k, i ≥ 2 and
any real c > 0 define fi : [0, 1] → R as

fi(x) = c

(
k

i

)
2i−k(1− x)ixk−i .

Lemma 3.3. [4, 1] Assume that k, c, x0 are such that
f2(x) < 1 − x for all x ∈ [0, x0]. Fix x ∈ [0, x0] and
let t = bxnc. If we run any DPLL algorithm extending
uc on a random k-CNF formula with bcnc clauses then
with uniformly positive probability all of the following
hold after exactly t steps:
a) No backtracking has occurred, b) No 0- or 1-clauses
are present in Ft, c) For every 2 ≤ i ≤ k, the number
of i-clauses in Ft is fi(x) · n + o(n).

Using Lemmata 3.1 and 3.3 we prove the following which
readily implies Theorem 2.1.

Lemma 3.4.

• Let F be a random 4-CNF formula on n variables
with bcnc clauses, where c ≥ 7.5. There exists t
such that with uniformly positive probability, Ft is
unsatisfiable and res(Ft) = 2Ω(n).

• For fixed k ≥ 5, let F be a random k-CNF formula
on n variables with bcnc clauses, c ≥ (11/k) 2k−2.
There exists t such that with uniformly positive
probability, Ft is unsatisfiable and res(Ft) = 2Ω(n).

Proof Elements. For k = 4, take x4 = 0.375, t = bx4nc
and observe that for c = 7.5, f2(x) < (1 − x) for all
x < x0 ≡ 0.378. To prove that Ft is unsatisfiable, let
ri = 0.999× fi(x4)/(1− x4) and apply Lemma 3.1. For
k ≥ 5, take xk = k−4

k−1 , t = bxknc and argue analogously
for c = (11/k) 2k−2. For all k, the result for larger c
follows by a monotonicity argument.
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