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ABSTRACT
We give the first example of a sharp threshold in proof complex-
ity. More precisely, we show that for any sufficiently small � > 0
and � > 2:28, random formulas consisting of (1� �)n 2-clauses
and �n 3-clauses, which are known to be unsatisfiable almost cer-
tainly, almost certainly require resolution and Davis-Putnam proofs
of unsatisfiability of exponential size, whereas it is easily seen that
random formulas with (1+ �)n 2-clauses (and �n 3-clauses) have
linear size proofs of unsatisfiability almost certainly.

A consequence of our result also yields the first proof that typi-
cal random 3-CNF formulas at ratios below the generally accepted
range of the satisfiability threshold (and thus expected to be satis-
fiable almost certainly) cause natural Davis-Putnam algorithms to
take exponential time to find satisfying assignments.

1. INTRODUCTION
The satisfiability problem has received a great deal of study

as the canonical NP-complete problem. In the last several years
the very universality and flexibility of the satisfiability problem
that made it a natural starting point for NP-completeness has also
made it the basis for significant progress in the solution of a va-
riety of practical problems including problems in constraint satis-
faction [31], planning [24, 23], and symbolic model checking [9].
The basic tools for these advances are some very tight and effi-
cient implementations of satisfiability algorithms using backtrack-
ing search based on the Davis-Putnam/DLL (DPLL) procedure [16,
15] and using heuristic search based on hill-climbing and random
walks [31, 30]. In a sense, these satisfiability algorithms have be-
come the hammer and there is now a small industry turning com-
putational problems into nails.

A folklore property of these satisfiability algorithms is that they
work extremely well at handling typical satisfiable formulas, al-
though outlying satisfiable formulas can cause very bad behavior
for any specific algorithm. (One highly successful strategy is to
use randomized DPLL algorithms and re-start them with different
random bits if they begin to take too long [21, 20].)
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It has previously been shown that DPLL algorithms are expo-
nentially inefficient for proving unsatisfiability for typical unsatis-
fiable formulas [13, 8, 6, 7]. We give a method to prove the first
lower bounds on the running times of DPLL algorithms for typical
satisfiable CNF formulas. We show that certain natural DPLL al-
gorithms when applied to random 3-CNF formulas for which there
is strong empirical evidence of satisfiability (density below 3.98)
almost certainly generate subproblems consisting of unsatisfiable
mixed formulas of 2- and 3-clauses for which we can prove that
exponential-size proofs of unsatisfiability are required. The key to
this result is the proof complexity lower bound for these mixed for-
mulas.

Let Fn
�;� be the distribution of random CNF formulas with

(1� �)n 2-clauses and �n 3-clauses, for some arbitrary constants
�; � > 0. Let res(F ) and DLL(F ) be the sizes of the minimal
resolution and Davis-Putnam/DLL proofs of the unsatisfiability of
F . We will say that a sequence of random events En occurs with
high probability (w.h.p.) if limn!1 Pr[En] = 1 and with constant
probability if lim infn!1 Pr[En] > 0.

THEOREM 1. For every �; � > 0, if F � Fn
�;�, then w.h.p.,

res(F ) = 2
(n) and DLL(F ) = 2
(n).

This bound is interesting in its own right since it yields the first
example of a sharp threshold for the proof complexity of unsat-
isfiable formulas. More precisely, for � > 2:28 formulas from
Fn
�;� are unsatisfiable almost certainly [4] and require exponential-

size resolution and DPLL proofs of this fact, but if we slightly in-
crease the number of 2-clauses from (1 � �)n to (1 + �)n, the 2-
CNF subformula alone becomes unsatisfiable almost certainly and
this unsatisfiability problem becomes trivial for resolution or DPLL
proofs.

Mixed formulas consisting of 2- and 3-clauses arise for two nat-
ural reasons. A frequent observation about converting problems
from other domains into satisfiability problems is that they typically
become mixed CNF formulas with a substantial number of clauses
of length 2 along with clauses of length 3. Also, as DPLL algo-
rithms run, they recursively solve satisfiability on restricted ver-
sions of their input CNF formula which are mixtures of clauses of
length at least 2. Randomly-chosen k-CNF formulas are an impor-
tant test case for satisfiability algorithms. When given randomly-
chosen 3-CNF formulas as input, many DPLL algorithms produce
restricted mixed formulas that are distributed precisely in the form
that we analyze.

A fundamental conjecture about random k-CNF formulas says
that for each k � 2, there is a constant �k, the satisfiability thresh-
old, such that a random k-CNF formula of clause-variable ratio �
is almost certainly satisfiable for � < �k and almost certainly
unsatisfiable if � > �k. It is known that 1 is the threshold for
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random 2-SAT [12, 19] and empirically, it appears that there is a
threshold for random 3-SAT around 4.2 [32, 25]. The best proven
bounds show that random 3-SAT formulas are almost certainly sat-
isfiable for � < 3:26 [5] and almost certainly unsatisfiable for
� > 4:598 [22] and it is known that the ‘phase’ transition from sat-
isfiable to unsatisfiable formulas is asymptotically sharp [17]. The
proven lower bounds on the satisfiability thresholds have all been
derived by analyzing specific DPLL-like algorithms without back-
tracking (‘card-type/myopic algorithms’ in the terminology of [1,
5]). The formulas we consider are at densities bounded well be-
low the empirical 4.2 threshold and thus should be almost certainly
satisfiable.

An extension of random 3-SAT problems to mixed formulas has
led to the study of the so-called (2 + p)-SAT problem. Here one
looks at randomly-generated formulas on n variables with a mix of
clauses of length 2 and 3 where the fraction of clauses of length
3 is p. Using a mixture of empirical results and heuristic, non-
rigorous techniques of statistical physics, Kirkpatrick et. al. [27,
28, 29] gave evidence that one could add up to roughly 2n=3 ran-
dom 3-clauses (corresponding to p around 0:4) and have no im-
pact on typical satisfiability problems in that the point at which
the threshold is reached is dependent solely on the number of 2-
clauses. Furthermore they suggested that the phase transition for
the (2 + p)-SAT problem itself changed character from a so-called
first-order transition (discontinuous “order parameter”) representa-
tive of 2-SAT to a second-order transition (continuous “order pa-
rameter”) believed to be representative of 3-SAT at this point and
suggested that this second-order phase transition somehow charac-
terizes NP-hard problems. (This latter conjecture has been put in
further perspective by the results in [3].)

In [4], Achlioptas et. al. proved a number of rigorous results
about (2 + p)-SAT. They showed that adding 2n=3 randomly cho-
sen 3-clauses to a random formula with (1� �)n 2-clauses yields a
formula that is almost surely satisfiable (and this assignment can
be found by a simple card-type algorithm), while adding 2:28n
random 3-clauses yields an almost certainly unsatisfiable formula.
Moreover, they proved that the transition from satisfiability to un-
satisfiability is sharp and empirical evidence suggests that the 2n=3
bound is much closer to the truth [29]. Furthermore 2n=3 is the
provable limit for showing satisfiability by card-type algorithms [1]
and, in [2], it was conjectured that it is tight for all algorithms.

The card-type algorithms analyzed for 3-SAT have the property
that they make irrevocable choices to the partial assignment and
at each point in their execution the restricted formula that remains
is an unbiased random formula characterized by a pair of integers
(c2n; c3n) describing the number of 2- and 3-clauses respectively
that remain. The algorithms will succeed almost certainly if they
exhaust the 3-clauses without c2 ever reaching 1. In fact, if they
reach ((1��)n; 2n=3) without c2 ever reaching 1 they will succeed
with constant probability [4].

One can extend the card-type algorithms, such as UC (unit
clauses first) and GUC [11], into full backtracking DPLL algorithms
in a variety of different ways so that the execution of the original
algorithm is the first path explored in the tree of recursive calls. If
the original card-type algorithm reaches ((1��)n; c3n) where c3 is
at least 2.28, the resulting formula is almost certainly unsatisfiable,
and by our argument it almost certainly requires an exponential-
size DPLL proof. Thus, once this node has been explored in the
backtracking search, the search cannot leave the sub-tree for an ex-
ponentially long time.

Our results show that this happens with constant probability for
UC started 3:81n 3-clauses and for GUC started with 3:98n 3-
clauses (it would happen almost certainly except that the card-type

algorithm might reach a dead end before then) and thus with con-
stant probability any backtracking extension of UC and GUC ap-
plied to random 3-CNF formulas above these ratios will run for ex-
ponential time. Furthermore, by generalizing a limited backtrack-
ing heuristic used by Frieze and Suen [18] into a full backtracking
heuristic we create natural DPLL algorithms, UC-FS and GUC-FS,
extending UC and GUC respectively, for which we can show that
above exponential lower bounds hold almost certainly rather than
just with constant probability.

These results shed light on a widely-cited and repeated observa-
tion of Selman, Mitchell, and Levesque [32], based on experiments
with ORDERED-DLL, a backtracking version of an algorithm prob-
abilistically equivalent to UC, on small problems, was that random
3-SAT is easy in the satisfiable region up to the 4.2 threshold, be-
comes sharply much harder at the threshold and quickly becomes
easy again at larger densities in the unsatisfiable region. The upper
end of this ‘easy-hard-easy’ characterization is somewhat mislead-
ing since it is known that at any constant ratio above the threshold
any DPLL or resolution algorithm almost certainly requires expo-
nential size proofs of unsatisfiability [13]. By now the rate of de-
cline in proof complexity as the ratio is increased has been analyzed
as well [6].

Our new results show that the lower end of this characterization
is also somewhat misleading; in fact, our results show that the ex-
ponentially hard region for ORDERED-DLL begins at least at ratio
3:81, well before ratio 4:2. (This concurs with recent experimental
evidence that even the best of current DPLL implementations seem
to have bad behavior below the threshold [14].) As we discuss in
section 7, our upper bounds on the number of 3-clauses needed to
cause exponential behavior in satisfiability algorithms will be read-
ily improved with any improvement on the upper bound for unsat-
isfiability in random (2 + p)-SAT. In fact if it turns out that, as was
conjectured in [2], for every Æ > 0 there exists � > 0 such that a
random formula with (2=3+Æ)n 3-clauses and (1��)n 2-clause is
unsatisfiable w.h.p. then our results would imply a perfectly sharp
characterization for these DPLL algorithms.

Our lower bound on the proof complexity of mixed formulas is
similar in general spirit to other lower bounds for resolution al-
gorithms but requires considerably more subtlety. We first prove
a number of detailed combinatorial properties of random 2-CNF
formulas with (1 � �)n clauses. To do this we consider the stan-
dard directed graphs associated with 2-CNF formulas and, for such
graphs, we introduce the notion of the clan of a vertex. Clans seem
to be the appropriate extension of “connected components” in this
context, allowing for an amortization of the boundary of the 2-CNF
formula. By carefully bounding the number of vertices in clans
of each size we show that random 2-CNF with (1 � �)n clauses,
w.h.p. have properties that guarante that almost all extensions by
linear-sized 3-CNF formulas yield exponential size resolution (and
DPLL) proofs. The latter argument relies on specialized sharp mo-
ment bounds as well particular properties of clans.

2. BOUNDING RESOLUTION
REFUTATION SIZE

The resolution rule allows one to derive a clause (A _ B) from
two clauses (A _ x) and (B _ �x). A resolution refutation of an
unsatisfiable CNF formula F begins with the clauses of F and by a
sequence of inferences using the resolution rule derives the empty
clause. The size of a resolution refutation is the number of clauses
appearing in the proof. Given F , let res(F ) be the length of the
shortest resolution refutation of F . The Davis-Putnam/DLL algo-
rithm on a CNF formula F performs a backtracking search for a
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satisfying assignment of F by extending partial assignments until
they either reach a satisfying assignment or violate a clause of F . It
is well known that for an unsatisfiable formula F , the tree of nodes
explored by any DLL algorithm can be converted to a resolution
refutation of F where the pattern of inferences forms a tree. Let
DLL(F ) be the size of the smallest such refutation, i.e. the size of
the smallest DLL tree associated with F .

DEFINITION 2. Let F be an an arbitrary CNF formula.

� Given a set F of clauses, a literal x is pure in F if and only
if x appears in F but :x does not appear in F .

� V (F ) denotes the set of variables of F .

� jF j denotes the number of clauses in F .

� The degree of a variable v, deg(v), is the number of clauses
of F containing one of v; �v (analogously for literals). The
average degree of F is

�P
v deg(v)

�
=jV (F )j.

� With any 2-CNF formula F on variables fx1; : : : ; xng we
associate the following directed graph ~D(F ):

– The vertex set is fx1; : : : ; xn; �x1; : : : ; �xng.

– The edge set is

f(�x! y); (�y! x) : (x _ y) is a clause in Fg :

� We say that a literal ` is near-pure in F if deg(�̀) = 1.

� We say that a directed cycle C = `1 ! `2 ! � � � ! `q !
`1 in ~D(F2) is pure if all of `1; : : : ; `q are near pure in F .
(Note that each literal can appear in at most one pure cycle.)

� F is �-pure if it has at most �jV (F )j pure items, i.e. pure
literals and cycles.

The boundary of F , b(F ), is the set of pure items in F . Note
that this generalizes the definition of boundary from [8] where the
boundary was defined to be those literals whose variables appeared
in precisely one clause of F . Define the satisfiability threshold for
F , s(F ), to be the size of the minimal unsatisfiable subset of G.

Given a set of clauses F we say that F )Res C if and
only if there is a resolution derivation of C from F that uses all
clauses in F . Define the sub-critical expansion of F , e(F ) =
maxs�s(F )minfjb(G)j : s=2 � jGj < sg. The following are
extensions of [8].

LEMMA 3. If F )Res C then C contains at least jb(F )j liter-
als.

PROOF. This is trivial for pure literals since, once they appear
in the derivation, they cannot be removed. For pure cycles, observe
that once a literal from the pure cycle appears in a clause in the
derivation, all clauses derived from it will also contain a literal from
that cycle. The argument is by induction on the proof in topological
order: Suppose that a literal x from the cycle appears in clause A
and does not appear in clause D where D is derived from A and
some clause B by the resolution rule. Therefore x must appear
negatively in B and the resolution rule must use x. The only way
that �x can be in B is if B is derived using the one negative clause
�x _ y that appears in the pure cycle containing x. Therefore by the
induction hypothesis B contains some literal in this pure cycle and
this literal will appear in D. Since each literal is in at most one pure
cycle, the lemma follows.

Using Lemma 3 the following is immediate from [8].

PROPOSITION 4. If all clauses in a formula F have size at most

k, then res(F ) = 2
([e(F )�k]
2=n) and DLL(F ) � 2e(F )�k.

For each n, let us fix a canonical set of n variables and for each
fixed k � 0, let Ck(n) denote the set containing all 2k

�
n
k

�
non-

trivial k-clauses on our canonical set of variables. We will consider
a random formula F on n variables formed by selecting uniformly,
independently and with replacement m2 = m2(n) clauses from
C2(n) and m3 = m3(n) clauses from C3(n).

Let Fn
�;� be the distribution where m2 = (1 � �)n and m3 =

�n, for some arbitrary constants �; � > 0.

LEMMA 5. For every �; � > 0 there exist � = �(�; �) > 0
and � = �(�; �) > 0 such that

1. W.h.p. F contains no unsatisfiable subformula on v � �n
variables.

2. W.h.p. F contains no �-pure subformula on 1
2
�n � v � �n

variables.

COROLLARY 6. For F � Fn
�;�, w.h.p., res(F ) = 2
(n) and

DLL(F ) = 2
(n).

The overall proof strategy will be to analyze almost certain
properties of the 2-clauses of F and show that such subformulas
must have large boundaries and then to show that the addition of
3-clauses does not significantly reduce the size of the boundary.
(Since the 2-clause subformula of F alone is almost certainly sat-
isfiable, the fact that the two clauses alone have a large boundary
does not contradict the fact that 2-SAT is easy for resolution.) This
argument is subtle because the 2-clauses of F are so close to being
unsatisfiable themselves and because we need to handle all possi-
ble subformulas among the 2-clauses. The latter requirement ne-
cessitates the introduction of a somewhat unusual graph-theoretic
concept in the di-graph associated with the 2-clauses of F .

3. BOUNDING PURITY
By Lemma 3, any minimal unsatisfiable formula must have no

pure items. Therefore, it will be convenient to restate Lemma 5 in
terms of the following definition.

DEFINITION 7. A subformula H of F on v variables is (�; �)-
pure if: i) v < 1

2
�n and H is 0-pure, or, ii) 1

2
�n � v � �n and H

is �-pure.

Hence, Lemma 5 can be restated as

LEMMA 8. For every �; � > 0, there exists � = �(�; �) > 0,
� = �(�; �) such that w.h.p. F contains no (�; �)-pure subfor-
mula.

To prove Lemma 5 we will need need to consider two possibil-
ities for the fraction of 3-clauses appearing in a potential (�; �)-
pure subformula. In particular, it will be relatively easy to prove
that w.h.p. every subformula rich in 3-clauses is not (�; �)-pure
(Lemma 11). Proving the same assertion for subformulas where
the fraction of 3-clauses is arbitrarily small (Lemma 10) will be
harder, comprising Sections 4 and 5. More precisely, let us say that

DEFINITION 9. A formula F is Æ-rich if it has at least ÆjV (F )j
3-clauses, and Æ-poor otherwise.
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Lemma 8 will follow readily from the following two lemmas.

LEMMA 10. For every �; � > 0 and all � � �1(�; �), there
exist Æ1 = Æ1(�; �; �) > 0 and �1 = �1(�; �; �) such that w.h.p.
Fn
�;� contains no Æ1-poor, (�1; �)-pure subformula.

LEMMA 11. For every �; �; Æ > 0, and all � � �2(�; �; Æ),
there exists �2 = �2(�; �; �) such that w.h.p. Fn

�;� contains no
Æ-rich, (�2; �)-pure subformula.

PROOF OF LEMMA 8. Given �; � > 0 we start by applying
Lemma 10 with � = �1(�; �). This determines a value Æ� =
Æ1(�; �; �1) > 0. We then apply Lemma 11 with Æ = Æ� and
� = �2(�; �; Æ

�) > 0.
As a result, for � = minf�1(�; �); �2(�; �; Æ�)g > 0 and � =

maxf�1(�; �; �); �2(�; �; �)g > 0, we see that w.h.p. there are
no Æ�-poor, (�; �)-pure subformulas and no Æ�-rich, (�; �)-pure
subformulas.

To prove Lemma 11 we will need the following

LEMMA 12. For every �; �; � > 0 there is � = �(�; �; �) > 0
such that w.h.p. no subformula of F � Fn

�;� on v � �n variables
has average degree at least 2� �=2 and at least �v 3-clauses.

PROOF. For a given � > 0 let� be such that 2�+3� = 2��=2,
implying �+2��1 = �=4. We will bound the expected number of
subformulas on v variables having �v 2-clauses and �v 3-clauses.
Using this bound we will show that there exists � = �(�; �; �) > 0
such that the total expected number of such subformulas for 1 �
v � �n variables is o(1).

For a fixed v, we can bound the expected number, Q�(v), of
such subformulas by 

n

v

! 
(1� �)n

�v

! 
�n

�v

!� v
n

�2�v+3�v

(1)

�
�en
v

�v �e(1� �)n

�v

��v �
e�n

�v

��v � v
n

�2�v+3�v

=

�
(1� �)�e1+�+���

����
�
� v
n

��+2��1�v

=

�
K �

� v
n

��=4�v
; (2)

for some (constant) K = K(�;�; �). It is easy to see that for � =
�(�;K) sufficiently small and all n sufficiently large, if v � �n
the right hand side of (2) is decreasing with v. Therefore,

X
1�v��n

Q�(v) �
8=�X
v=1

Kn��=4 +
X
v>8=�

K � (8=�)�=4

n2
= o(1):

PROOF OF LEMMA 11. We first observe that any �-pure sub-
formula H on v variables must contain at most �v pure literals and
therefore have average degree at least 2(1��). Moreover, ifH is Æ-
rich, it contains at least Æv 3-clauses. We will take �2 = Æ=4. Thus,
any Æ-rich, �2-pure subformula must have average degree at least
2 � Æ=2 and contain at least Æv 3-clauses. But from Lemma 12,
there exists �2 = �(�; �; Æ) > 0 such that w.h.p. F contains no
such subformula on v � �2n variables.

To prove Lemma 10 we will in fact prove a stronger lemma.
In particular, rather than proving the lemma’s assertion for Fn

�;�,
we will prove it for an arbitrary formula on n variables formed
by starting with a 2-CNF formula satisfying certain properties and
adding to it m3 = �n random 3-clauses. To complete the proof,
in appendix A, we prove that F2 satisfies these properties w.h.p.

4. THE Æ-POOR CASE
As mentioned earlier, we will prove the assertion of Lemma 10

for formulas formed by starting with a 2-CNF formula satisfying
certain properties and adding m3 random 3-clauses. To describe
these properties we need to introduce the following definitions.

DEFINITION 13. Let F be an arbitrary 2-CNF formula. For
literals x; y appearing in F let us write x;F y iff x = y or there
exists a directed path in ~D(F ) from x to y.

� For each literal x we let InF (x) = fy : y ;F xg.

� For a set of literals S let G(S) = GF (S) be the undirected
graph formed by considering the subgraph of ~D(F ) induced
by the vertices corresponding to S and ignoring the direction
of arcs.

– We will say that InF (x) is tree-like if G(InF (x)) con-
tains no cycle.

– We will say that InF (x) is simple if G(InF (x)) con-
tains at most one cycle.

� For each literal x in F , the clan of x, ClanF (x) = InF (x) [S
y2InF (x) InF (�y).

� Ti(F ) = jfx : jClanF (x)j = igj.
Lemma 10 will follow readily from the following two lemmas.

LEMMA 14. Fix � 2 (0; 1) and � > 0. Let F � be a formula
formed by taking

� Any set of clauses fromC2(n) such that the resulting formula
F �2 satisfies:

1. For every literal `, InF�

2
(`) is simple.

2. There are at most log n literals `, such that InF�

2
(`) is

not tree-like.

3. For all i, Ti(F �2 ) � 2(1� �)i n.

� No more than �n clauses from C3(n), chosen uniformly in-
dependently and with replacement.

For all � � �0(�; �), there exist Æ = Æ0(�; �; �) > 0, and � =
�0(�; �; �) > 0 such that, w.h.p. F � contains no Æ-poor, (�; �)-
pure subformula.

LEMMA 15. Fix � > 0 and let F2 be a random 2-SAT formula
formed by selecting uniformly, independently and with replacement
m2 � (1 � �)n 2-clauses from C2(n). There exists � = �(�),
such that w.h.p. F2 simultaneously satisfies all three conditions of
Lemma 14 (where F �2 = F2).

PROOF OF LEMMA 10. Given �; � > 0 we start by apply-
ing Lemma 15 to get � = �(�) and then apply lemma 14 with
that �. Thus, we get that for all � � �0(�; �), there exist
Æ = Æ0(�; �; �) > 0, and � = �0(�; �; �) > 0 such that, w.h.p.
Fn
�;� contains no Æ-poor, (�; �)-pure subformula. To conclude the

proof we set �1(�; �) = �0(�; �(�)) and similarly for Æ1; �1.
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5. PROOF OF LEMMA 14
Let �;� > 0, F �2 be fixed and choose F� as in the statement of

the lemma. For any Æ; �; � > 0, consider any (candidate) Æ-poor,
(�; �)-pure subformula H of F�. Let v = jV (H)j and denote by
H2 the subformula induced by the 2-clauses of H .

The general idea of the argument is as follows. The subfor-
mula H2 has many loose ends, the pure items of H2, that must
be (mostly) covered by the 3-clauses of H in order to for H to
have very few pure items. More generally, H may itself create new
loose ends but then must cover most of them up again. We show
we can cover the literals appearing in H by the clans of the loose
ends. Further since the clan sizes are typically small we get a large
number of loose ends, the set P (H) below, each of which must be
covered by a different 3-clause literal.

In the case that the set of variables in H is large, we will set
parameters so that the contribution of all large clans is so small that
the Æ-poverty of H simply doesn’t allow enough 3-clause literals to
cover enough loose ends. In the case that the set of variables in H
is not so large, we get to use the fact that every loose end must be
covered but we need a probability argument. Intuitively, it seems
unlikely that the random 3-clauses of the formula will exactly cover
all loose ends, both those from H2 and the ones that the 3-clauses
themselves generate. One subtlety of the probability analysis is that
the new loose ends generated depend on the 3-clauses themselves.
In order to make this analysis work, we need stronger bounds on
the set of variables in H; we show that, except possibly for the
case of the very small number of clans that are not tree-like, we
get two loose ends per clan instead of just one and this is enough
to make the probability calculation work. Finally, we use a sharp
specialized moment bound to show that the rare large clans do not
skew the probabilities too much and derive the claimed result.

We now work through the details of the argument. Define the
set P = P (H) of literals based on H as follows: P consists of
the pure literals of H2, the smallest numbered literal in each pure
cycle of H2, and every literal on the variables of V (H)� V (H2).
Clearly P contains every pure literal of H and also contains one
literal from each pure cycle of H (and since pure cycles are disjoint
they are represented by distinct literals).

LEMMA 16. For any subformula H of F�, the number of dis-
tinct literals in the 3-clauses of H is at least the number of literals
in P (H) that are not contained in pure items in H .

PROOF. We define a one-to-one (but not necessarily onto) map-
ping from the literals of P = P (H) that are not contained in pure
items of H to the literals appearing in the 3-clauses of H . Any lit-
eral x in P , that was pure in H2 or is a literal on V (H)� V (H2)
but is not pure in H , must have �x in some 3-clause of H and so
we map x to �x. The pure cycles of H2, whose smallest numbered
literals form the remainder of P , are disjoint from each other and
from the other literals in P . Consider such a cycle C that is pure in
H2 and let x 2 P be the smallest numbered literal in C. C will re-
main pure in H unless there is some y in C such that �y appears in a
3-clause of H . We map x to �y. The fact that our map is one-to-one
follows from the disjointness property of the cycles.

LEMMA 17. For any subformula H of F�, for each literal x on
the variables in V (H), there is some literal y 2 P (H) such that
x 2 Clan�F2(y).

PROOF. If the literal x is on V (H)� V (H2) then x 2 P so we
can take y = x. If x is a literal on V (H2) and �x appears in H2,

then in the digraph ~D(H2) walk forward from x as far as possible,
since all clans contain at most one cycle, either we reach a sink of
~D(H2), in which case the label of that sink is a pure literal y in P
which satisfies x 2 InH2

(y) � InF2 (y), or we reach a pure cycle
of H2 in which case the smallest numbered literal y in this cycle
satisfies x 2 InH2

(y) � InF�

2
(y). Clearly in either case, both x

and �x appear in ClanF�

2
(y).

For convenience throughout the rest of this proof we will write
Clan(x) for ClanF�

2
(x) and for a set T of literals we will write

Clan(T ) =
S
x2T Clan(x).

LEMMA 18. For any � � 1, there are �0 = �0(�; �) and Æ0 =
Æ0(�; �) > 0 such that if � � �0, Æ � Æ0, and �n=2 � v =
jV (H)j then H is not a �-pure subformula of F�.

PROOF. Suppose that H is a �-pure subformula of F� and
�n=2 � V (H). Since H has at most Æv 3-clauses and at most
�v items remain pure in H , by Lemma 16, jP j � (3Æ + �)v.
Choose I = I(�; �) such that

P
i>I 2i(1 � �)i < �=2 and let

�0 = �0(�; �) = 1=(4I) and Æ0 = Æ0(�; �) = 1=(4I). There-
fore jP j � v=I . By Lemma 17, jClan(P )j � 2v. Let LI =
fx : jClan(x)j > Ig. Using the bound on the sizes of Ti(F �2 ),
jClan(P \LI)j � jClan(LI)j �Pi>I 2i(1��)in < �n=2 � v.
Therefore jClan(P � LI)j � jClan(P ) � Clan(P \ LI)j > v.
However, jClan(P � LI)j � jP j � I � v which is a contradic-
tion.

It remains to show that the probability there is a 0-pure subfor-
mula H of F � with jV (H)j < �n=2 is o(1) in n. Suppose that H
is 0-pure and v = jV (H)j < �n=2. For any literal x (set of literals
T ), let cover(x) (resp. cover(T )) be the set of literals appearing
in Clan(x) (resp. Clan(T )) together with their complements.

LEMMA 19. For any subformula H of F� that is 0-pure there
exists P � = P �(H) � P = P (H) such that

1. cover(P �) contains every literal appearing in H and

2. jP �j � b 1
2
(jP j + tc)c where tc = tc(H) is the number of

literals x 2 P � such that InH2
(x) is not tree-like.

PROOF. Let P̂ � P be the set of literals in P on variables in
V (H2). By definition, for every x 2 P � P̂ , �x 2 P � P̂ . Let
Ptree � P̂ be the set of all literals x 2 P̂ with InF�

2
(x) tree-like.

First we prove that for every x 2 Ptree there is at least one y 2 P̂ ,
y 6= x such that �y 2 InF�

2
(x). For x 2 Ptree, InH2

(x) is tree-
like since InH2

(x) � InF�

2
(x). Therefore there is a vertex z 2

InH2
(x) of in-degree 0 in ~D(H2) such that z 6= �x. Furthermore,

since z appears in H2, �x 2 P̂ so we can take y = �z =2 fx; �xg.
Note that �y 2 InH2

(x) � InF�

2
(x) implies �x 2 InF�

2
(y). Thus

we form an undirected graphGwith vertex set P̂ and an edge hx; yi
for each pair of literals with �y 2 InF�

2
(x). Let P 0 � Ptree be the

set of vertices in G of positive degree, consider a spanning forest
of the vertices in P 0, and consider any bipartition of that forest. Let
P1 be the smaller side of that bipartition. Therefore P1 dominates
P 0, i.e. every vertex in P 0 � P1 has a neighbor in P1 and thus
P1 [ (P̂ � P 0) dominates all of P̂ . Letting jP̂ � P 0j = a, jP1 [
(P̂ � P 0)j � a + b 1

2
(jP̂ j � a)c � b 1

2
(jP̂ j + a)c. Adding the

positive form of each literal in P � P̂ to P1 [ (P̂ � P 0) we obtain
a set P � of size at most b 1

2
(jP j + a)c. Since P̂ � P 0 � P � and

Ptree � P 0, tc � a and P � satisfies the claimed size condition.
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By definition of P , P̂ , and P �, P � contains the positive literal
corresponding to each variable in V (H)� V (H2), so cover(P �)
contains all literals on variables in V (H) � V (H2). Further for
every literal x such that �x appears in H2, as shown in the proof of
Lemma 17, x 2 InH2

(y) for some literal y in P . By definition
of P � either y 2 P � or there is some z 2 P � such that �y 2
InH2

(z). Therefore x 2 Clan(z) and thus both x and �x are in
cover(z). Thus cover(P �) contains all literals on V (H2) as well,
so the lemma follows.

We will bound the probability that F has a 0-pure subformula
H by bounding Pr[P�(H) = T ] for each set of literals T and
summing over all choices of T .

LEMMA 20. Let T be a set of literals, t = jT j, and suppose
that H is a 0-pure subformula of F� with P �(H) = T and tc =
tc(H). Then H and thus formula F� must contain at least 2t=3�
tc=3 3-clauses whose literals are contained in cover(T ); further if
t � 10tc then there are at least 3t=5 3-clauses of F� whose literals
are contained in cover(T ).

PROOF. By Lemma 19, since P �(H) = T , jP (H)j � 2jT j �
tc = 2t � tc. By Lemma 16, since H is 0-pure the 3-clauses of H
contain at least jP (H)j = 2t� tc literals and therefore H contains
at least (2t � tc)=3 3-clauses of F �. By Lemma 19, all literals in
these clauses are in cover(P�) = cover(T ). In case t � 10tc
then this is at least (2=3� 1=30)t > 3t=5.

LEMMA 21. Fix �; � > 0. There is K = K(�) such that for
T a set of literals, t = jT j, the probability that a random F� has a
0-pure subformula H with P�(H) = T is at most

1. R(T ) = (K=(tn2))3t=5jClan(T )j9t=5 if tc(H) � t=10,
and at most

2. R0(T; tc) = (K=n2)2t=3�tc=3jClan(T )j2t�tc if tc =
tc(H) > t=10.

PROOF. Since F � has �n 3-clauses, the probability that at least
s of them land entirely in cover(T ) is at most 

�n

s

!"
jcover(T )j3

8
�
n
3

�
#s

�
 
�n

s

!"
jClan(T )j3�

n
3

�
#s

� [K0=(sn2)]sjClan(T )j3s

for some constant K0 = K0(�). Let K = 5K 0=3. By Lemma 20,
if tc(H) � t=10 then we get the probability upper bound in part 1
by setting s = 3t=5 and if tc(H) > t=10 then we get the probabil-
ity upper bound in part 2 by setting s = 2t=3� tc=3 and observing
that s � 1.

LEMMA 22. Fix �; � > 0. The probability that there exists
some set T of literals and a 0-pure subformula H of F� with
P �(H) = T , and jT j � 10tc(H) is o(1) in n.

PROOF. Let t � 10tc and suppose that H is a 0-pure subfor-
mula of F � with tc(H) = tc and t = jP �(H)j. By assumption
about F �2 , tc � log n so t � 10 log n and thus jClan(P�(H))j �
K0 log

2 n for some constant K0 = K0(�) because our assumption
about the sizes of the Ti(F �2 ) implies that there are no clans of size
!(log n). For each t � 10 log n and each tc, tc � t, there are
at most

�
log n
tc

��
2n
t�tc

�
different sets T with jT j = t containing tc

literals x with non-tree-like InF�

2
(x). Therefore, by Lemma 21.2,

the probability that there is some 0-pure subformula H of F� with
jP �(H)j = t and jtc(H)j = tc is at most

(log n)tc(2n)t�tc(K=n2)2t=3�tc=3(K0 log
2 n)2t�tc

which is bounded by (K00 log n)4tn�t=3 for some constant K00 =
K00(�; �) > 0. The probability that an H satisfying the conditions
of the lemma exists is then at most

log nX
tc=1

10tcX
t=tc

((K00)2n�1=3 log4 n)t � 10(K00)2n�1=3 log6 n

for n sufficiently large, which is o(1) in n.

It will be convenient to rewrite the summations over all possible
choices of set T = P �(H) with jT j = t in terms of a probability
calculation involving a uniformly chosen random set of literals, T ,
of size t.

LEMMA 23. Fix � > 0. There is a constant B = B(�) > 0
such that for any t > 0 and for T a set of literals with jT j = t
chosen uniformly at random, ET (jClan(T )j) � Bt.

PROOF. Let B =
P

i�1 i(1 � �)i. By assumption, for x
chosen uniformly at random from among the 2n possible liter-
als, Ex(jClan(x)j) � P

i�1 i(1 � �)i = B and therefore
ET (jClan(T )j) � jT jEx(jClan(x)j) � Bt.

LEMMA 24. For every � > 0 there exists � = �(�) > 0 such
that for all r � 0 we have for T a set of literals with jT j = t chosen
uniformly at random,

PrT (jClan(T )j > (r+ 16)ET (jClan(T )j)) < 2 � e��
p
rt:

PROOF. See appendix.

LEMMA 25. Fix � > 0. There is K1 = K1(�) such that for
any t > 0 and for a set of literals T with jT j = t chosen uniformly
at random, ET (jClan(T )j9t=5) � (K1t)

9t=5.

PROOF. Fix an integer t and consider choosing T uniformly at
random with jT j = t. We divide up the range of possible values
of jClan(T )j into segments of size �(T ) = ET (jClan(T )j) � Bt
where B = B(�) is the constant from Lemma 23 and use our tail
bounds within each segment. Therefore by Lemma 24,

ET (jClan(T )j9t=5)
� 16(ET (jClan(T )j))9t=5

+
X
r�0

PrT (jClan(T )j > (r + 16)�(T ))� [(r + 17)�(T )]9t=5

� [�(T )]9t=5 � (16 + 2 �
X
r�0

e��
p
rt(r + 17)9t=5)

� (Bt)9t=5 �
�
K1

B

�9t=5

� (K1t)
9t=5;

for some K1 = K1(�;B) = K1(�).

LEMMA 26. Fix �; � > 0. There is �0 = �0(�; �) > 0 such
that the probability that a random F� has a 0-pure subformula H
with v = jV (H)j � �0n=2 is o(1) in n.
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PROOF. By Lemmas 21.1 and 22, the probability of this event
is at most

P
T;jT j=t�1R(T ) plus a term that is o(1) in n. By

Lemma 25,

X
T;jT j=t

R(T ) �
 
2n

t

!
(K=(tn2))3t=5ET (jClan(T )j9t=5)

� (2en=t)t(K=(tn2))3t=5(K1t)
9t=5

= ((2e)5K3K9
1 t=n)

t=5

� (K2t=n)
t=5

for some constant K2 = K2(�; �) > 0.
Now if we let �0 = 1=(32K2) then for v � �0n=2, t � v �

n=(32K2). Therefore by Lemma 21, the probability that such an
H exists is at most

n=(32K2)X
t=1

(K2t=n)
t=5 =

lognX
t=1

(K2t=n)
t=5 +

n=(32K2)X
t=logn+1

(K2t=n)
t=5:

The first summation totals less than (K2n
�1 log2 n)1=5 which is

o(1) in n and the second summation totals at most
P

t>logn 2
�t �

2=n which is o(1) in n.

Lemma 14 follows immediately from Lemmas 18 and 26.

6. IMPLICATIONS FOR
SATISFIABILITY ALGORITHMS

We now analyze natural DPLL algorithms that are the back-
tracking versions of several card-type algorithms described below.
During the execution of any such algorithm a partial assignment
may produce clauses of size 1 (unit clauses) which in turn force
additional choices in the partial assignment. The choices by the
algorithm made when there are no unit clauses are free choices.
In UC this free choice is a random assignment to a random unas-
signed variable; in ORDERED-DLL this is an assignment of 0 to the
smallest-numbered unassigned variable and in GUC this is the as-
signment that satisfies a random literal in a random clause of small-
est size.

As the algorithm searches, if the first path in the tree search fails
and finds a contradiction, a DPLL algorithm backtracks, undoing
the forced choices up to the last free choice, flips the assignment
to that variable, calls it forced, and then continues. At this point
there are many options for how to continue; probably the simplest
option would be to act as if the algorithm had reached this point
without backtracking and apply the original heuristic. An alter-
native heuristic we call FS-backtracking (inspired by [18]) is the
following: When a contradiction is reached, record the portion of
the assignment of the assignment between the last unexplored free
choice and the contradiction; these literals become hot. After flip-
ping the value of the last unexplored free choice, instead of making
the choice that the original heuristic would suggest, give priority to
the complements of the hot literals in the order that they appeared;
once the hot literals are exhausted continue as with the original
heuristic. FS-backtracking is quite natural in that this last part of
the partial assignment got us into trouble in the first place.

Given card-type algorithm A, we write A-FS for the DPLL al-
gorithm extending A using FS-backtracking. Initial experiments
comparing ORDERED-DLL-FS to the simple backtracking exten-
sion of ORDERED-DLL on random formulas at ratios between 3.8
and 4.0 show that the histogram of run-times of FS-backtracking
is significantly better than that of simple backtracking throughout
the range. The main property of FS-backtracking that is useful in

our analysis, as in that of [18], is that at any time when the value
of any variable in the partial assignment has flipped at most once
during the algorithm’s execution, the reduced formula is uniformly
random conditional on the number of clauses of each size.

We now give the main ideas for the DPLL lower bounds. Define
a stage during the execution of a DPLL algorithm to be the time
during which the partial assignment of values to variables is con-
stant. A t-stage is a stage in which the value of precisely t variables
has been set. The “residual formula” in a given stage is the formula
that results by removing all clauses that are satisfied by the current
(partial) assignment and shrinking all other clauses appropriately.

DEFINITION 27. Let � = 10�4 . A t-stage of a DPLL algo-
rithm is bad if the residual formula at that stage is distributed as
the union of a random 3-CNF formula with (2:281 � �)t clauses
and a random 2-CNF formula with (0:999 � �)t 2-clauses.

LEMMA 28. Let rUC = rORDERED-DLL = 3:81 and let
rGUC = 3:98. For each A 2 fUC,ORDERED-DLL,GUCg,
there exists pA > 0 such that an execution of algorithm A 2
fUC,ORDERED-DLL,GUCg on a random 3-CNF formula with rAn
clauses reaches a bad stage with t � n=2 with probability at least
pA. For each A 2 fUC,ORDERED-DLL,GUCg, an execution of
algorithm A-RS on a random 3-CNF formula with rAn clauses
reaches a bad stage with t � n=2 w.h.p.

COROLLARY 29. Let rUC = rORDERED-DLL = 3:81 and let
rGUC = 3:98. For A 2 fUC,ORDERED-DLL,GUCg, there exists
pA > 0 such that an execution of any backtracking extension of
algorithm A 2 fUC,ORDERED-DLL,GUCg on a random 3-CNF
formula with rAn clauses takes time 2
(n) with probability at least
pA. For A 2 fUC,ORDERED-DLL,GUCg, an execution of algo-
rithm A-RS on a random 3-CNF formula with rAn clauses takes
time 2
(n) w.h.p.

7. FURTHER RESEARCH
Our upper bounds on the number of 3-clauses needed to cause

exponential behavior in satisfiability algorithms will be readily im-
proved with any improvement on the 2:28n upper bound for un-
satisfiability in random (2 + p)-SAT. That is, if it is shown that
for some � > 0 and 2=3 � r < 2:28, random formulas with
(1 � �)n 2-clauses and rn 3-clauses are unsatisfiable w.h.p. then
the bounds of 3.81 and 3.98 will be immediately reduced. In fact, if
r is reduced to 2=3, to match the lower bound, then our results im-
mediately imply the following remarkably sharp behavior: every
card-type algorithm A is such that it operates in linear time with
constant probability up to some threshold �A but any backtracking
extension of A requires exponential time with constant probability
for all ratios larger than �A. In fact, if A uses FS-backtracking then
it would work in linear time almost surely at ratios below �A and
require exponential time almost surely above �A.

It seems quite likely that one can extend our w.h.p. analysis to
the simple backtracking versions of UC, GUC, ORDERED-DLL, and
other card-type algorithms.
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APPENDIX

A. PROPERTIES OF SUBCRITICAL
RANDOM 2-CNF FORMULAE

We will now prove that subcritical random 2-CNF formulas sat-
isfy the properties in Lemma 14 w.h.p.

LEMMA 30. Let F2 be random 2-SAT formula formed by pick-
ing m2 = (1 � �)n clauses from C2(n) uniformly, independently
and with replacement. There exists � = �(�) > 0 such that w.h.p.
all of the following hold simultaneously.

1. For every literal `, InF2(`) is simple.

2. There at most log n literals `, such that InF2 (`) is not tree-
like.

3. For all i, Ti(F2) � 2(1� �)i n.
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PROOF. (Sketch) We will choose � later as it only affects prov-
ing 3. Let p = (1��)=n and consider the random graph G(n; p) on
n vertices, where each of the

�
n
2

�
possible edges appears indepen-

dently with probability p. Fix a vertex v in G(n; p) and consider
the random subgraph C(v) that corresponds to the connected com-
ponent of v. Now, fix a literal ` in F2 and consider the undirected
graph G(InF2(`)). It is not hard to show that one can couple the
random graphs C(v) and G(InF2(`)) so that G(InF2(`)) � C(v)
always, i.e. G(InF2(`)) is always a subgraph of C(v). This cou-
pling allows us to exploit a number of well-known facts about the
components of subcritical random graphs, i.e.G(n; p = (1��)=n).

Proof of 1: Let R denote the set of all literals ` such that
G(InF2(`)) contains more than one cycle. It is well-known [10]
that Pr[C(v) contains more than one cycle] < B=n3=2 for some
B = B(�). Thus, E(jRj) = o(1) and hence w.h.p. R = ;.

Proof of 2: Let Q denote the set of all literals ` such that
G(InF2(`)) contains at least one cycle. It is well-known [10]
that Pr[C(v) contains at least one cycle] < C=n for some C =
C(�).Thus, E(jQj) < 2C and the claim follows from Markov’s
inequality.

Proof of 3: We will first establish that there exists � = �(�) such
that for any fixed literal ` and all q � 1,

Pr[jClanF2(`)j = q] < (1� �)q :

For that we observe that for a fixed literal ` one can construct
a random variable W that dominates jClanF2(`)j as follows. Let

X
D
= jC(v)j, where v is a fixed vertex in G(n; p = (1� �)=n) and

jC(v)j denotes the number of vertices in its connected component
C(v). Now, let

W = S1 + S2 + � � �+ SX

where the Si are i.i.d. random variables with Si
D
= jC(v)j. To

bound the upper tail of W we will use a standard moment generat-
ing function argument.

Let Pr[Si = k] = Pr[X = k] � pk and let c = 1 � �. Using
that, asymptotically in n,

pk = (1=c)
�
ce�c

�k
kk�1=k! (3)

and that for all c < 1, X
k�1

pk = 1 ; (4)

with a bit of work it follows that for any h > 0,

E(exp(hW )) <
X
k�1

pk(d=c)
k

= (1=c)
X
k�1

(de�c)kkk�1=k! < 1=c :

From this it’s rather straightforward to show that for all � > 0
there is � = �(�) > 0 and q0 = q0(�) such that for all q � q0,

Pr[jClanF2(`)j = q] � Pr[W = q]

<
1

1� �
exp

�
� �3

3
q

�
� (1� � )q :

Since for any fixed value of q, Pr[jClanF2(`)j = q] < 1, it follows
that there exists � = �(�; q0) such that for all q � 1,

Pr[jClanF2(`)j = q] < (1� �)q : (5)

By linearity of expectation and (5) we get that for all i,

E (Ti(F2)) < 2n� (1� �)i : (6)

Our next step is to show that for each i there exists Qi �
E (Ti(F2)) such that w.h.p. for all i,

jTi(F2)�Qij < n3=4 : (7)

Let us first observe that (5) also implies that there exists C =
C(�) such that w.h.p.

for all ` in F2, jClanF2(`)j < C log n : (8)

To prove (7) we will need to do some work before appealing to
a concentration inequality. The reason for this is that, a priori, re-
placing a single clause in F2 could change Ti(F2) dramatically, for
some i; luckily, this is an unlikely event. To capture this last fact we
will introduce a family of random variables Ui with the following
properties: i) w.h.p. Ui(F2) = Ti(F2) for all i, and ii) by definition
(of the Ui), replacing a clause in F2 can affect each Ui by at most
polylog(n). We omit the construction of the random variables Ui
from this extended abstract. The rough idea is that they correspond
to the Ti if we were number the appearances of clauses in clans
and ignore all but the first log n appearances of each clause. By
construction, the Ui do not suffer from the possibility of a single
clause making a dramatic difference in their value and hence con-
centration follows from standard martingale arguments.

Combinining (6) and (7) we get that there exists � = �(�) > 0
such that w.h.p.

Ti � 2n� (1� �)i + n3=4 : (9)

Further, recall that by (5)

w.h.p. Ti = 0 for all i � C log n : (10)

Let us now choose � < � such that (1��)C log n � n�1=4. Thus,
for all i < C log n, 2n � (1� �)i � 2n3=4. We claim that w.h.p.
for all i,

Ti � (4n)� (1� �)i : (11)

If i � C log n then (11) holds by (10). If i < C log n then by (9),
(11) and � < �, respectively,

Ti � 2n� (1� �)i + n3=4

� 2n� (1� �)i + 2n� (1� �)i

� 4n� (1� �)i :

By (9) and (11) it follows that there is � < � such that w.h.p. for
all i, Ti � 2n� (1� �)i:

B. PROOF OF LEMMA 24
We will prove a somewhat more general concentration statement,

cast in terms of picking weighted balls without replacement. In
particular, we assume that we have a set B of 2n weighted balls,
each ball x having weight(x) � 1. Let Ti denote the number
of balls with weight i. Our lemma holds for any weight sequence
T1; T2; : : : which satisfies the following condition: there exists � >
0 such that

Ti � 2(1� �)in; for all i : (12)

We will pick a random subset R � B of t � n balls, i.e. we pick
randomly without replacement, and let

W =
X
x2R

weight(x) :
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We will prove that there is � > 0 such that for every �; t � 1,

Pr[W > 4(1 + �)2E(W )] < 2 exp(�3��t) : (13)

Lemma 24 will follow from (13) by setting 4(1 + �)2 = r + 16

and observing that � =
p

4 + r=4� 1 � maxf1;pr=3g.

PROOF. We start by considering W to be defined in the follow-
ing, equivalent, manner. Let S be an infinite sequence of balls
formed by choosing balls uniformly, independently and with re-
placement from B. Let W be the sum of the weights of the first t
distinct elements of S.

Let us consider the prefix P = p1; p2; : : : ; pd of S where d =
2(1 + �) � t. In particular, let us form a random set R0 � B, by
scanning P linearly and adding to R0 every ball not seen before,
until either jR0j = t or we exhaust P . Let

W 0 =
X
x2R0

weight(x) and Q =
dX
i=1

weight(pi) :

Then, by (the miracle of) linearity of expectation, we see that
E(Q) = 2(1 + �)E(W ) and, thus, for any � > 0

Pr[W > 4(1 + �)2E(W )]

� Pr[W 0 > 4(1 + �)2E(W )] + Pr[W 0 6= W ]

� Pr[Q > 4(1 + �)2E(W )] + Pr[W 0 6= W ]

� Pr[Q > (2 + �)E(Q)] + Pr[W 0 6= W ] :

For W 0 6= W to occur it must be that we picked 2(1 + �)t balls
out of 2n balls with replacement and got fewer than t distinct balls.
Using standard results for the coupons collector problem, it is not
hard to show that since t � n, there exists � > 0 such that the
probability of this event is exp(���2t) � exp(���t) for � � 1.

We will prove below that Pr[Q > (2 + �)E(Q)] < exp(���t)
for some � = �(�) > 0. Combining this with the estimate
for W 0 6= W we get that for � � 1 the probability of having
W > 4(1 + �)2E(W ) is at most exp(���t) � exp(���t) �
2 exp(�3��t) for � = minf�; �g=3 as required.

To prove our tail bound on Q we first note that for any h > 0,

Pr[Q > (2 + �)E(Q)]

= Pr[exp(hQ) > exp((2 + �)hE(Q))]

� E(exp(hQ))� exp(�(2 + �)hE(Q)) : (14)

Now let fQigdi=1 be i.i.d.r.v. defined by Qi = weight(pi). Thus,
Q =

Pd
i=1Qi and as a result

E(exp(hQ)) = E

 
dY
i=1

exp(hQi)

!

=
dY
i=1

E (exp (hQi)) (15)

= (E (exp (hQi)))
d : (16)

To simplify notation let us replace Qi with T in the rest of the proof
and let � = E(T ).

To go from (17) to (18) we use (12). To go from (18) to (19) we
require h < �, which suffices to guarantee the sum’s convergence.
Finally, to go from (19) to (20) we use that for h > 0, e�h > 1�h.

E(exp(hT ))

=
1X
i=1

Pr[T = i] exp(hi)

=

1X
i=1

Pr[T = i] (1 + hi+ (exp(hi)� hi� 1)) (17)

� 1 + h�+

1X
i=1

(1� �)i(exp(hi)� hi� 1) (18)

= 1 + h�+ (1� �)

�
1

�� 1 + exp(�h) �
h+ �

�2

�
(19)

< 1 + h�+ (1� �)

�
1

�� h
� h + �

�2

�
(20)

= 1 + h�+
h2(1� �)

�2(�� h)
: (21)

Now, substituting h = �3 in (21) we get (22), while (23) follows
from � � 1 > (�+ 1)�1.

E(exp(�3T )) < 1 + �3� +
�3

�+ 1
(22)

< 1 + 2�3� : (23)

Note now that, by (14) and (16), for all h > 0,

Pr[Q > (2 + �)E(Q)]

�
�

E(exp(hT ))

exp((2 + �)hE(T ))

�2(1+�)t

�
�
E(exp(hT ))

exp(2hE(T ))

�2(1+�)t

� exp(�2h��t) : (24)

Taking h = �3, (23) implies that the ratio in (24) is bounded by 1.
Thus, since � � 1, if � = 2�3, then

Pr[Q > (2 + �)E(Q)] � exp(���t) :

346


