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ABSTRACT
The growing demand for large-scale data mining and data anal-
ysis applications has led both industry and academia to design
new types of highly scalable data-intensive computing platforms.
MapReduce and Dryad are two popular platforms in which the
dataflow takes the form of a directed acyclic graph of operators.
These platforms lack built-in support for iterative programs, which
arise naturally in many applications including data mining, web
ranking, graph analysis, model fitting, and so on. This paper
presents HaLoop, a modified version of the Hadoop MapReduce
framework that is designed to serve these applications. HaLoop
not only extends MapReduce with programming support for it-
erative applications, it also dramatically improves their efficiency
by making the task scheduler loop-aware and by adding various
caching mechanisms. We evaluated HaLoop on real queries and
real datasets. Compared with Hadoop, on average, HaLoop reduces
query runtimes by 1.85, and shuffles only 4% of the data between
mappers and reducers.

1. INTRODUCTION
The need for highly scalable parallel data processing platforms

is rising due to an explosion in the number of massive-scale data-
intensive applications both in industry (e.g., web-data analysis,
click-stream analysis, network-monitoring log analysis) and in the
sciences (e.g., analysis of data produced by massive-scale simula-
tions, sensor deployments, high-throughput lab equipment).

MapReduce [4] is a well-known framework for programming
commodity computer clusters to perform large-scale data process-
ing in a single pass. A MapReduce cluster can scale to thousands
of nodes in a fault-tolerant manner. Although parallel database sys-
tems [5] may also serve these data analysis applications, they can
be expensive, difficult to administer, and lack fault-tolerance for
long-running queries [16]. Hadoop [7], an open-source MapRe-
duce implementation, has been adopted by Yahoo!, Facebook, and
other companies for large-scale data analysis. With the MapReduce
framework, programmers can parallelize their applications simply
by implementing a map function and a reduce function to transform
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(a) Initial Rank Table R0 (b) Linkage Table L

MR1


T1 = Ri 1url=url source L

T2 = γ
url,rank, rank

COUNT(url dest)→new rank
(T1)

T3 = T2 1url=url source L

MR2

{
Ri+1 = γurl dest→url,SUM(new rank)→rank (T3)

url rank
www.a.com 2.13
www.b.com 3.89
www.c.com 2.60
www.d.com 2.60
www.e.com 2.13

(c) Loop Body (d) Rank Table R3

Figure 1: PageRank example

and aggregate their data, respectively. Many algorithms naturally
fit into the MapReduce model, such as word counting, equi-join
queries, and inverted list construction [4].

However, many data analysis techniques require iterative com-
putations, including PageRank [15], HITS (Hypertext-Induced
Topic Search) [11], recursive relational queries [3], clustering,
neural-network analysis, social network analysis, and network traf-
fic analysis. These techniques have a common trait: data are pro-
cessed iteratively until the computation satisfies a convergence or
stopping condition. The MapReduce framework does not directly
support these iterative data analysis applications. Instead, program-
mers must implement iterative programs by manually issuing mul-
tiple MapReduce jobs and orchestrating their execution using a
driver program [12].

There are two key problems with manually orchestrating an iter-
ative program in MapReduce. The first problem is that even though
much of the data may be unchanged from iteration to iteration, the
data must be re-loaded and re-processed at each iteration, wasting
I/O, network bandwidth, and CPU resources. The second prob-
lem is that the termination condition may involve detecting when
a fixpoint has been reached — i.e., when the application’s output
does not change for two consecutive iterations. This condition may
itself require an extra MapReduce job on each iteration, again in-
curring overhead in terms of scheduling extra tasks, reading extra
data from disk, and moving data across the network. To illustrate
these problems, consider the following two examples.

EXAMPLE 1. (PageRank) PageRank is a link analysis algo-
rithm that assigns weights (ranks) to each vertex in a graph by
iteratively computing the weight of each vertex based on the weight
of its inbound neighbors. In the relational algebra, the PageRank
algorithm can be expressed as a join followed by an update with



name1 name2
Tom Bob
Tom Alice
Elisa Tom
Elisa Harry

Sherry Todd
Eric Elisa
Todd John
Robin Edward

MR1

{
T1 = ∆Si 1∆Si.name2=F.name1 F

T2 = π∆Si.name1,F.name2(T1)

MR2

{
T3 =

⋃
0≤j≤(i−1) ∆Sj

∆Si+1 = δ(T2 − T3)

(a) Friend Table F (b) Loop Body

Eric(∆S0)

Elisa(∆S1)

Tom(∆S2) Harry(∆S2)

name1 name2
Eric Elisa
Eric Tom
Eric Harry

(c) Result Generating Trace (d) Result Table ∆S

Figure 2: Descendant query example

two aggregations. These steps must be repeated by a driver pro-
gram until a termination condition is satisfied (e.g., the rank of
each page converges or a specified number of iterations has been
performed).

Figure 1 shows a concrete example. R0 (Figure 1(a)) is the
initial rank table, and L (Figure 1(b)) is the linkage table. Two
MapReduce jobs (MR1 and MR2 in Figure 1(c)) are required to
implement the loop body of PageRank. The first MapReduce job
joins the rank and linkage tables. Mappers emit records from the
two relations with the join column as the key and the remaining
columns as the value. Reducers compute the join for each unique
source URL, as well as the rank contribution for each outbound
edge (new rank). The second MapReduce job computes the ag-
gregate rank of each unique destination URL: the map function is
the identity function, and the reducers sum the rank contributions
of each incoming edge. In each iteration, Ri is updated to Ri+1.
For example, one could obtain R3 (Figure 1(d)) by iteratively com-
puting R1, R2, R3.

In the PageRank algorithm, the linkage table L is invariant across
iterations. Because the MapReduce framework is unaware of this
property, however, L is processed and shuffled at each iteration.
Worse, the invariant linkage data may frequently be larger than the
resulting rank table. Finally, determining whether the ranks have
converged requires an extra MapReduce job on each iteration.

EXAMPLE 2. (Descendant Query) Given the social network re-
lation in Figure 2(a), who is within two friend-hops from Eric? To
answer this query, we can first find Eric’s direct friends, and then
all the friends of these friends. A related query is to find all peo-
ple who can be reached from Eric following the friend relation F .
These queries can be implemented by a driver program that exe-
cutes two MapReduce jobs (MR1 and MR2 in Figure 2(b)), either
for two iterations or until fixpoint, respectively. The first MapRe-
duce job finds a new generation of friends by joining the friend ta-
ble F with the friends discovered in the previous iteration, ∆Si.
The second MapReduce job removes duplicate tuples from ∆Si

that also appear in ∆Sj for j < i. The final result is the union
of results from each iteration.

Let ∆Si be the result of the join after iteration i, computed
by joining ∆Si−1 with F and removing duplicates. ∆S0={Eric,
Eric} is the trivial friend relationship that initiates the computa-
tion. Figure 2(c) shows how results evolve from ∆S0 to ∆S2. Fi-
nally, ∆S =

⋃
0<i≤2 ∆Si is returned as the final result, as in

Figure 2(d).

As in the PageRank example, a significant fraction of the data

(the friend table F ) remains constant throughout the execution of
the query, yet still gets processed and shuffled at each iteration.

Many other data analysis applications have characteristics sim-
ilar to the above two examples: a significant fraction of the pro-
cessed data remains invariant across iterations, and the analysis
should typically continue until a fixpoint is reached. Examples
include most iterative model-fitting algorithms (such as k-means
clustering and neural network analysis), most web/graph ranking
algorithms (such as HITS [11]), and recursive graph or network
queries.

This paper presents a new system called HaLoop that is designed
to efficiently handle the above types of applications. HaLoop ex-
tends MapReduce and is based on two simple intuitions. First, a
MapReduce cluster can cache the invariant data in the first itera-
tion, and then reuse them in later iterations. Second, a MapReduce
cluster can cache reducer outputs, which makes checking for a fix-
point more efficient, without an extra MapReduce job.

This paper makes the following contributions:

• New Programming Model and Architecture for Iterative Pro-
grams: HaLoop handles loop control that would otherwise have
to be manually programmed. It offers a programming interface
to express iterative data analysis applications (Section 2).

• Loop-Aware Task Scheduling: HaLoop’s task scheduler enables
data reuse across iterations, by physically co-locating tasks that
process the same data in different iterations (Section 3).

• Caching for Loop-Invariant Data: HaLoop caches and indexes
data that are invariant across iterations in cluster nodes during
the first iteration of an application. Caching the invariant data
reduces the I/O cost for loading and shuffling them in subsequent
iterations (Section 4.1 and Section 4.3).

• Caching to Support Fixpoint Evaluation: HaLoop caches and
indexes a reducer’s local output. This avoids the need for a
dedicated map-reduce step for fixpoint or convergence checking
(Section 4.2).

• Experimental Study: We evaluated our system on iterative
programs that process both synthetic and real world datasets.
HaLoop outperforms Hadoop in all metrics; on average, HaLoop
reduces query runtimes by 1.85, and shuffles only 4% of the data
between mappers and reducers (Section 5).

2. HALOOP OVERVIEW
This section introduces HaLoop’s architecture and its application

programming model.

2.1 Architecture
Figure 3 illustrates the architecture of HaLoop, a modified ver-

sion of the open source MapReduce implementation Hadoop [7].
HaLoop inherits the basic distributed computing model and ar-

chitecture of Hadoop. HaLoop relies on a distributed file system
(HDFS [8]) that stores each job’s input and output data. The sys-
tem is divided into two parts: one master node and many slave
nodes. A client submits jobs to the master node. For each submit-
ted job, the master node schedules a number of parallel tasks to run
on slave nodes. Every slave node has a task tracker daemon pro-
cess to communicate with the master node and manage each task’s
execution. Each task is either a map task (which usually performs
transformations on an input data partition, and calls a user-defined
map function with one 〈key, value〉 pair each time) or a reduce
task (which usually copies the corresponding partition of mapper
output, groups the input keys, and invokes a user-defined reduce
function with one key and its associated values each time). For ex-
ample, in Figure 3, there are three jobs running in the system: job
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Figure 3: The HaLoop framework, a variant of Hadoop
MapReduce framework.

1, job 2, and job 3. Each job has three tasks running concurrently
on slave nodes.

In order to accommodate the requirements of iterative data anal-
ysis applications, we made several changes to the basic Hadoop
MapReduce framework. First, HaLoop exposes a new application
programming interface to users that simplifies the expression of
iterative MapReduce programs (Section 2.2). Second, HaLoop’s
master node contains a new loop control module that repeatedly
starts new map-reduce steps that compose the loop body, until
a user-specified stopping condition is met (Section 2.2). Third,
HaLoop uses a new task scheduler for iterative applications that
leverages data locality in these applications (Section 3). Fourth,
HaLoop caches and indexes application data on slave nodes (Sec-
tion 4). As shown in Figure 3, HaLoop relies on the same file
system and has the same task queue structure as Hadoop, but the
task scheduler and task tracker modules are modified, and the loop
control, caching, and indexing modules are new. The task tracker
not only manages task execution, but also manages caches and in-
dices on the slave node, and redirects each task’s cache and index
accesses to local file system.

2.2 Programming Model
The PageRank and descendant query examples are representative

of the types of iterative programs that HaLoop supports. Here, we
present the general form of the recursive programs we support and
a detailed API.

The iterative programs that HaLoop supports can be distilled into
the following core construct:

Ri+1 = R0 ∪ (Ri ./ L)

where R0 is an initial result and L is an invariant relation. A
program in this form terminates when a fixpoint is reached —
when the result does not change from one iteration to the next, i.e.
Ri+1 = Ri. This formulation is sufficient to express a broad class
of recursive programs.1

1SQL (ANSI SQL 2003, ISO/IEC 9075-2:2003) queries using the
WITH clause can also express a variety of iterative applications, in-
cluding complex analytics that are not typically implemented in
SQL such as k-means and PageRank; see Section 9.5.

A fixpoint is typically defined by exact equality between iter-
ations, but HaLoop also supports the concept of an approximate
fixpoint, where the computation terminates when either the differ-
ence between two consecutive iterations is less than a user-specified
threshold, or the maximum number of iterations has been reached.
Both kinds of approximate fixpoints are useful for expressing con-
vergence conditions in machine learning and complex analytics.
For example, for PageRank, it is common to either use a user-
specified convergence threshold ε [15] or a fixed number of iter-
ations as the loop termination condition.

Although our recursive formulation describes the class of iter-
ative programs we intend to support, this work does not develop
a high-level declarative language for expressing recursive queries.
Rather, we focus on providing an efficient foundation API for it-
erative MapReduce programs; we posit that a variety of high-level
languages (e.g., Datalog) could be implemented on this foundation.

To write a HaLoop program, a programmer specifies the loop
body (as one or more map-reduce pairs) and optionally specifies
a termination condition and loop-invariant data. We now discuss
HaLoop’s API (see Figure 16 in the appendix for a summary). Map
and Reduce are similar to standard MapReduce and are required;
the rest of the API is new and is optional.

To specify the loop body, the programmer constructs a multi-step
MapReduce job, using the following functions:

• Map transforms an input 〈key, value〉 tuple into intermediate
〈in key, in value〉 tuples.

• Reduce processes intermediate tuples sharing the same in key,
to produce 〈out key, out value〉 tuples. The interface contains
a new parameter for cached invariant values associated with the
in key.

• AddMap and AddReduce express a loop body that consists of
more than one MapReduce step. AddMap (AddReduce) asso-
ciates a Map (Reduce) function with an integer indicating the
order of the step.

HaLoop defaults to testing for equality from one iteration to the
next to determine when to terminate the computation. To specify an
approximate fixpoint termination condition, the programmer uses
the following functions.

• SetFixedPointThreshold sets a bound on the distance be-
tween one iteration and the next. If the threshold is exceeded,
then the approximate fixpoint has not yet been reached, and the
computation continues.

• The ResultDistance function calculates the distance between
two out value sets sharing the same out key. One out value set vi

is from the reducer output of the current iteration, and the other
out value set vi−1 is from the previous iteration’s reducer output.
The distance between the reducer outputs of the current iteration
i and the last iteration i − 1 is the sum of ResultDistance on
every key. (It is straightforward to support additional aggrega-
tions besides sum.)

• SetMaxNumOfIterations provides further control of the loop
termination condition. HaLoop terminates a job if the maxi-
mum number of iterations has been executed, regardless of the
distance between the current and previous iteration’s outputs.
SetMaxNumOfIterations can also be used to implement a
simple for-loop.

To specify and control inputs, the programmer uses:

• SetIterationInput associates an input source with a specific
iteration, since the input files to different iterations may be dif-
ferent. For example, in Example 1, at each iteration i + 1, the
input is Ri ∪ L.
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Figure 5: A schedule exhibiting inter-iteration locality. Tasks
processing the same inputs on consecutive iterations are sched-
uled to the same physical nodes.

• AddStepInput associates an additional input source with an in-
termediate map-reduce pair in the loop body. The output of pre-
ceding map-reduce pair is always in the input of the next map-
reduce pair.

• AddInvariantTable specifies an input table (an HDFS file)
that is loop-invariant. During job execution, HaLoop will cache
this table on cluster nodes.

This programming interface is sufficient to express a variety of
iterative applications. The appendix sketches the implementation
of PageRank (Section 9.2), descendant query (Section 9.3), and k-
means (Section 9.4) using this programming interface. Figure 4
shows the difference between HaLoop and Hadoop, from the appli-
cation’s perspective: in HaLoop, a user program specifies loop set-
tings and the framework controls the loop execution, but in Hadoop,
it is the application’s responsibility to control the loops.

3. LOOP-AWARE TASK SCHEDULING
This section introduces the HaLoop task scheduler. The sched-

uler provides potentially better schedules for iterative programs
than Hadoop’s scheduler. Sections 3.1 and 3.2 illustrate the desired
schedules and scheduling algorithm respectively.

3.1 Inter-Iteration Locality
The high-level goal of HaLoop’s scheduler is to place on the

same physical machines those map and reduce tasks that occur in
different iterations but access the same data. With this approach,
data can more easily be cached and re-used between iterations. For
example, Figure 5 is a sample schedule for the join step (MR1 in
Figure 1(c)) of the PageRank application from Example 1. There
are two iterations and three slave nodes involved in the job.

The scheduling of iteration 1 is no different than in Hadoop. In
the join step of the first iteration, the input tables are L and R0.
Three map tasks are executed, each of which loads a part of one or
the other input data file (a.k.a., a file split). As in ordinary Hadoop,
the mapper output key (the join attribute in this example) is hashed
to determine the reduce task to which it should be assigned. Then,

three reduce tasks are executed, each of which loads a partition of
the collective mapper output. In Figure 5, reducer R00 processes
mapper output keys whose hash value is 0, reducer R10 processes
keys with hash value 1, and reducer R20 processes keys with hash
value 2.

The scheduling of the join step of iteration 2 can take advantage
of inter-iteration locality: the task (either mapper or reducer) that
processes a specific data partition D is scheduled on the physical
node where D was processed in iteration 1. Note that the two file
inputs to the join step in iteration 2 are L and R1.

The schedule in Figure 5 provides the feasibility to reuse loop-
invariant data from past iterations. Because L is loop-invariant,
mappers M01 and M11 would compute identical results to M00

and M10. There is no need to re-compute these mapper outputs,
nor to communicate them to the reducers. In iteration 1, if reducer
input partitions 0, 1, and 2 are stored on nodes n3, n1, and n2

respectively, then in iteration 2, L need not be loaded, processed
or shuffled again. In that case, in iteration 2, only one mapper
M21 for R1-split0 needs to be launched, and thus the three reducers
will only copy intermediate data from M21. With this strategy, the
reducer input is no different, but it now comes from two sources:
the output of the mappers (as usual) and the local disk.

We refer to the property of the schedule in Figure 5 as inter-
iteration locality. Let d be a file split (mapper input partition) or a
reducer input partition2, and let T i

d be a task consuming d in itera-
tion i. Then we say that a schedule exhibits inter-iteration locality
if for all i > 1, T i

d and T i−1
d are assigned to the same physical node

if T i−1
d exists.

The goal of task scheduling in HaLoop is to achieve inter-
iteration locality. To achieve this goal, the only restriction is that
HaLoop requires that the number of reduce tasks should be invari-
ant across iterations, so that the hash function assigning mapper
outputs to reducer nodes remains unchanged.

3.2 Scheduling Algorithm
HaLoop’s scheduler keeps track of the data partitions processed

by each map and reduce task on each physical machine, and it uses
that information to schedule subsequent tasks taking inter-iteration
locality into account.

More specifically, the HaLoop scheduler works as follows. Upon
receiving a heartbeat from a slave node, the master node tries to
assign the slave node an unassigned task that uses data cached on
that node. To support this assignment, the master node maintains a
mapping from each slave node to the data partitions that this node
processed in the previous iteration. If the slave node already has a
full load, the master re-assigns its tasks to a nearby slave node.

Figure 6 gives pseudocode for the scheduling algorithm. Before
each iteration, previous is set to current, and then current is
set to a new empty HashMap object. In a job’s first iteration, the
schedule is exactly the same as that produced by Hadoop (line 2).
After scheduling, the master remembers the association between
data and node (lines 3 and 13). In later iterations, the scheduler
tries to retain previous data-node associations (lines 11 and 12). If
the associations can no longer hold due to the load, the master node
will associate the data with another node (lines 6–8).

4. CACHING AND INDEXING
Thanks to the inter-iteration locality offered by the task sched-

uler, access to a particular loop-invariant data partition is usually
2Mapper input partitions are represented by an input file URL plus
an offset and length; reducer input partitions are represented by an
integer hash value. Two partitions are assumed to be equal if their
representations are equal.



Task Scheduling
Input: Node node
// The current iteration’s schedule; initially empty
Global variable: Map〈Node, List〈Partition〉〉 current
// The previous iteration’s schedule
Global variable: Map〈Node, List〈Partition〉〉 previous
1: if iteration == 0 then
2: Partition part = hadoopSchedule(node);
3: current.get(node).add(part);
4: else
5: if node.hasFullLoad() then
6: Node substitution = findNearestIdleNode(node);
7: previous.get(substitution).addAll(previous.remove(node));
8: return;
9: end if

10: if previous.get(node).size()>0 then
11: Partition part = previous.get(node).get(0);
12: schedule(part, node);
13: current.get(node).add(part);
14: previous.remove(part);
15: end if
16: end if
Figure 6: Task scheduling algorithm. If there are running jobs,
this function is called when master node receives a heartbeat
from a slave.

only needed by one physical node. To reduce I/O cost, HaLoop
caches those data partitions on the physical node’s local disk for
subsequent re-use. To further accelerate processing, it indexes the
cached data. If a cache becomes unavailable, it is automatically
re-loaded, either from map task physical nodes, or from HDFS.
HaLoop maintains three types of caches: reducer input cache, re-
ducer output cache, and mapper input cache. Each of them fits
a number of application scenarios. Application programmers can
choose to enable or disable a cache type using the HaLoop API (see
Appendix 9.1).

4.1 Reducer Input Cache
If an intermediate table is specified to be loop-invariant (via the

HaLoop API AddInvariantTable) and the reducer input cache is
enabled, HaLoop will cache reducer inputs across all reducers and
create a local index for the cached data. Note that reducer inputs
are cached before each reduce function invocation, so that tuples
in the reducer input cache are sorted and grouped by reducer input
key.

Let us consider the social network example (Example 2) to see
how the reducer input cache works. Three physical nodes n1, n2,
and n3 are involved in the job, and the number of reducers is set
to 2. In the join step of the first iteration, there are three mappers:
one processes F -split0, one processes F -split1, and one processes
∆S0-split0. The three splits are shown in Figure 7. The two re-
ducer input partitions are shown in Figure 8. The reducer on n1

corresponds to hash value 0, while the reducer on n2 corresponds
to hash value 1. Then, since table F (with table ID “#1”) is set
to be invariant by the programmer using the AddInvariantTable
function, every reducer will cache the tuples with table ID “#1” in
its local file system.

In later iterations, when a reducer passes a shuffled key with
associated values to the user-defined Reduce function, it also
searches for the key in the local reducer input cache to find associ-
ated values and passes them together to the Reduce function (note
that HaLoop’s modified Reduce interface accepts this parameter;
see details in Appendix 9.1). Also, if the reducer input cache is
enabled, mapper outputs in the first iteration are cached in the cor-
responding mapper’s local disk, for future reducer cache reloading.

In the physical layout of the cache, keys and values are separated

name1 name2
Tom Bob
Tom Alice
Elisa Tom
Elisa Harry

name1 name2
Sherry Todd
Eric Elisa
Todd John
Robin Edward

name1 name2
Eric Eric

(a) F -split0 (b) F -split1 (c) ∆S0-split0

Figure 7: Mapper Input Splits in Example 2
name1 name2 table ID
Elisa Tom #1
Elisa Harry #1
Robin Edward #1
Tom Bob #1
Tom Alice #1

name1 name2 table ID
Eric Elisa #1
Eric Eric #2

Sherry Todd #1
Todd John #1

(a) partition 0 (b) partition 1

Figure 8: Reducer Input Partitions in Example 2

into two files, and each key has an associated pointer to its cor-
responding values. Sometimes the selectivity in the cached loop-
invariant data is low. Thus, after reducer input data are cached to
local disk, HaLoop creates an index over the keys and stores it in
the local file system too. Since the reducer input cache is sorted
and then accessed by reducer input key in the same sorted order,
the disk seek operations are only conducted in a forward manner,
and in the worst case, in each iteration, the input cache is sequen-
tially scanned from local disk only once.

The reducer input cache is suitable for PageRank, HITS, various
recursive relational queries, and any other algorithm with repeated
joins against large invariant data. The reducer input cache requires
that the partition function f for every mapper output tuple t satis-
fies that: (1) f must be deterministic, (2) f must remain the same
across iterations, and (3) f must not take any inputs other than the
tuple t. In HaLoop, the number of reduce tasks is unchanged across
iterations, therefore the default hash partitioning satisfies these con-
ditions.

4.2 Reducer Output Cache
The reducer output cache stores and indexes the most recent local

output on each reducer node. This cache is used to reduce the cost
of evaluating fixpoint termination conditions. That is, if the appli-
cation must test the convergence condition by comparing the cur-
rent iteration output with the previous iteration output, the reducer
output cache enables the framework to perform the comparison in
a distributed fashion.

The reducer output cache is used in applications where fixpoint
evaluation should be conducted after each iteration. For example,
in PageRank, a user may set a convergence condition specifying
that the total rank difference from one iteration to the next is below
a given threshold. With the reducer output cache, the fixpoint can
be evaluated in a distributed manner without requiring a separate
MapReduce step. After all Reduce function invocations are done,
each reducer evaluates the fixpoint condition within the reduce pro-
cess and reports local evaluation results to the master node, which
computes the final answer.

The reducer output cache requires that in the last map-reduce
pair of the loop body, the mapper output partition function f and
the reduce function satisfy the following conditions: if (ko1,
vo1)∈reduce(ki, Vi), (ko2, vo2)∈reduce(kj , Vj), and ko1=ko2,
then f (ki)=f (kj). That is, if two Reduce function calls produce
the same output key from two different reducer input keys, both
reducer input keys must be in the same partition so that they are
sent to the same reduce task. Further, f should also meet the re-
quirements of the reducer input cache. Satisfying these require-
ments guarantees that reducer output tuples in different iterations
but with the same output key are produced on the same physical
node, which ensures the usefulness of reducer output cache and the



correctness of the local fixpoint evaluation. Our PageRank, descen-
dant query, and k-means clustering implementations on HaLoop all
satisfy these conditions.

4.3 Mapper Input Cache
Hadoop [7] attempts to co-locate map tasks with their input data.

On a real-world Hadoop cluster [1], the rate of data-local map-
pers is around 70%–95%, depending on the runtime environment.
HaLoop’s mapper input cache aims to avoid non-local data reads
in mappers during non-initial iterations. In the first iteration, if a
mapper performs a non-local read on an input split, the split will
be cached in the local disk of the mapper’s physical node. Then,
with loop-aware task scheduling, in later iterations, all mappers
read data only from local disks, either from HDFS or from the local
file system. The mapper input cache can be used by model-fitting
applications such as k-means clustering, neural network analysis,
and any other iterative algorithm consuming mapper inputs that do
not change across iterations.

4.4 Cache Reloading
There are a few cases where the cache must be re-constructed:

(1) the hosting node fails, or (2) the hosting node has a full load
and a map or reduce task must be scheduled on a different substitu-
tion node. A reducer reconstructs the reducer input cache by copy-
ing the desired partition from all first-iteration mapper outputs. To
reload the mapper input cache or the reducer output cache, the map-
per/reducer only needs to read the corresponding chunks from the
distributed file system, where replicas of the cached data are stored.
Cache re-loading is completely transparent to user programs.

5. EXPERIMENTAL EVALUATION
We compared the performance of iterative data analysis applica-

tions on HaLoop and Hadoop. Since use of the reducer input cache,
reducer output cache, and mapper input cache are independent op-
tions, we evaluated them separately in Sections 5.1–5.3.

5.1 Evaluation of Reducer Input Cache
This suite of experiments used virtual machine clusters of 50 and

90 slave nodes in Amazon’s Elastic Compute Cloud (EC2). There
is always one master node. The applications were PageRank and
descendant query. Both are implemented in both HaLoop (using
our new programming model) and Hadoop (using the traditional
driver approach).

We used both semi-synthetic and real-world datasets: Livejour-
nal (18GB, social network data), Triples (120GB, semantic web
data) and Freebase (12GB, concept linkage graph). Detailed hard-
ware and dataset descriptions are in Section 9.6.

We executed the PageRank query on the Livejournal and Free-
base datasets and the descendant query on the Livejournal and
Triples datasets. Figures 9–12 show the results for Hadoop and
HaLoop. The number of reduce tasks is set to the number of slave
nodes. The performance with fail-overs has not been quantified; all
experimental results are obtained without any node failures.

Overall, as the figures show, for a 10-iteration job, HaLoop low-
ers the runtime by 1.85 on average when the reducer input cache is
used. As we discuss later, the reducer output cache creates an addi-
tional gap between Hadoop and HaLoop but the impact is less sig-
nificant on overall runtime. We now present these results in more
detail.

Overall Run Time. In this experiment, we used SetMaxNumOf-
Iterations, rather than fixedPointThreshold and Result-

Distance, to specify the loop termination condition. The results

are plotted in Figure 9(a), Figure 10(a), Figure 11(a), and Fig-
ure 12(a).

In the PageRank algorithm, there are two steps in every itera-
tion: join and aggregation. The running time in Figure 9(a) and
Figure 10(a) is the sum of join time and aggregation time over all
iterations. In the descendant query algorithm, there are also two
steps per iteration: join and duplicate elimination. The running
time in Figure 11(a) and Figure 12(a) is the sum of join time and
“duplicate elimination” time over all iterations.

HaLoop always performs better than Hadoop. The descendant
query on the Triples dataset has the best improvement, PageRank
on Livejournal and Freebase have intermediate gains, but the de-
scendant query on the Livejournal dataset has the least improve-
ment. Livejournal is a social network dataset with high fan-out and
reachability. As a result, the descendant query in later iterations
(>3) produces so many duplicates that duplicate elimination dom-
inates the cost, and HaLoop’s caching mechanism does not signifi-
cantly reduce overall runtime. In contrast, the Triples dataset is less
connected, thus the join step is the dominant cost and the cache is
crucial.

Join Step Run Time. HaLoop’s task scheduling and reducer in-
put cache potentially reduce join step time, but do not reduce the
cost of the “duplicate elimination” step for the descendant query,
nor the final aggregation step in PageRank. Thus, to partially ex-
plain why overall job running time is shorter with HaLooop, we
compare the performance of the join step in each iteration. Fig-
ure 9(b), Figure 10(b), Figure 11(b), and Figure 12(b) plot join
time in each iteration. HaLoop significantly outperforms Hadoop.

In the first iteration, HaLoop is slower than Hadoop, as shown in
(a) and (b) of all four figures. The reason is that HaLoop performs
additional work in the first iteration: HaLoop caches the sorted and
grouped data on each reducer’s local disks, creates an index for
the cached data, and stores the index to disk. That is, in the first
iteration, HaLoop does the exact same thing as Hadoop, but also
writes caches to local disk.

Cost Distribution for Join Step. To better understand HaLoop’s
improvements to each phase, we compared the cost distribution of
the join step across Map and Reduce phases. Figure 9(c), Fig-
ure 10(c), Figure 11(c), and Figure 12(c) show the cost distribu-
tion of the join step in a certain iteration (here it is iteration 3).
The measurement is time spent on each phase. In both HaLoop
and Hadoop, reducers start to copy data immediately after the first
mapper completes. “Shuffle time” is normally the time between
reducers starting to copy map output data, and reducers starting to
sort copied data; shuffling is concurrent with the rest of the unfin-
ished mappers. The first completed mapper’s running time in the
two algorithms is very short, e.g., 1–5 seconds to read data from one
64MB HDFS block. If we were to plot the first mapper’s running
time as “map phase”, the duration would be too brief to be visible
compared to shuffle phase and reduce phase. Therefore we let the
“shuffle time” in the plots be the usual shuffle time plus the first
completed mapper’s running time. The “reduce time” in the plots
is the total time a reducer spends after the shuffle phase, including
sorting and grouping, as well as accumulated Reduce function call
time. Note that in the plots, “shuffle time” plus “reduce time” con-
stitutes what we have referred to as the “join step”. Considering all
four plots, we conclude that HaLoop outperforms Hadoop in both
phases.

The “reduce” bar is not visible in Figure 11(c), although it is
present. The “reduce time” is not 0, but rather very short compared
to “shuffle” bar. It takes advantage of the index HaLoop creates
for the cache data. Then the join between ∆Si and F will use an
index seek to search qualified tuples in the cache of F . Also, in
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Figure 9: PageRank Performance: HaLoop vs. Hadoop (Livejournal Dataset, 50 nodes)
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Figure 10: PageRank Performance: HaLoop vs. Hadoop (Freebase Dataset, 90 nodes)
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Figure 11: Descendant Query Performance: HaLoop vs. Hadoop (Triples Dataset, 90 nodes)
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Figure 12: Descendant Query Performance: HaLoop vs. Hadoop (Livejournal Dataset, 50 nodes)

each iteration, there are few new records produced, so the join’s
selectivity on F is very low. Thus the cost becomes negligible.
By contrast, for PageRank, the index does not help much, because
the selectivity is high. For the descendants query on Livejournal
(Figure 12), in iteration>3, the index does not help either, because
the selectivity becomes high.

I/O in Shuffle Phase of Join Step. To tell how much shuffling
I/O is saved, we compared the amount of shuffled data in the join
step of each iteration. Since HaLoop caches loop-invariant data, the
overhead of shuffling these invariant data are completely avoided.
These savings contribute an important part of the overall perfor-
mance improvement. Figure 9(d), Figure 10(d), Figure 11(d), and
Figure 12(d) plot the sizes of shuffled data. On average, HaLoop’s
join step shuffles 4% as much data as Hadoop’s does.

5.2 Evaluation of Reducer Output Cache
This experiment shares the same hardware and dataset as the re-

ducer input cache experiments. To see how effective HaLoop’s re-
ducer output cache is, we compared the cost of fixpoint evaluation
in each iteration. Since descendant query has a trivial fixpoint eval-
uation step that only requires testing to see if a file is empty, we run

the PageRank implementation in Section 9.2 on Livejournal and
Freebase. In the Hadoop implementation, the fixpoint evaluation is
implemented by an extra MapReduce job. On average, compared
with Hadoop, HaLoop reduces the cost of this step to 40%, by tak-
ing advantage of the reducer output cache and a built-in distributed
fixpoint evaluation. Figure 13(a) and (b) shows the time spent on
fixpoint evaluation in each iteration.

5.3 Evaluation of Mapper Input Cache
Since the mapper input cache aims to reduce data transportation

between slave nodes but we do not know the disk I/O implemen-
tations of EC2 virtual machines, this suite of experiments uses an
8-node physical machine cluster. PageRank and descendant query
cannot utilize the mapper input cache because their inputs change
from iteration to iteration. Thus, the application used in the eval-
uation is the k-means clustering algorithm. We used two real-
world Astronomy datasets (multi-dimensional tuples): cosmo-dark
(46GB) and cosmo-gas (54GB). Detailed hardware and dataset de-
scriptions are in Section 9.6. We vary the number of total iterations,
and plot the algorithm running time in Figure 14. The mapper lo-
cality rate is around 95% since there are not concurrent jobs in our
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Figure 14: Performance of k-means: HaLoop vs. Hadoop

lab HaLoop cluster. By avoiding non-local data loading, HaLoop
performs marginally better than Hadoop.

6. RELATED WORK
Parallel database systems [5] partition data storage and paral-

lelize query workloads to achieve better performance. However,
they are sensitive to failures and have not been shown to scale to
thousands of nodes. Various optimization techniques for evaluat-
ing recursive queries have been proposed in the literature [3, 17].
The existing work has not been shown to operate at large scale.
Further, most of these techniques are orthogonal to our research;
we provide a low-level foundation for implementing data-intensive
iterative programs.

More recently, MapReduce [4] has emerged as a popular alterna-
tive for massive-scale parallel data analysis in shared-nothing clus-
ters. Hadoop [7] is an open-source implementation of MapReduce.
MapReduce has been followed by a series of related systems in-
cluding Dryad [10], Hive [9], Pig [14], and HadoopDB [2]. Like
Hadoop, none of these systems provides explicit support and opti-
mizations for iterative or recursive types of analysis.

Mahout [12] is a project whose goal is to build a set of scal-
able machine learning libraries on top of Hadoop. Since most
machine learning algorithms are model fitting applications, nearly
all of them involve iterative programs. Mahout uses an outside
driver program to control the loops, and new MapReduce jobs are
launched in each iteration. The drawback of this approach has been
discussed in Section 1. Like Mahout, we are trying to help itera-
tive data analysis algorithms work on scalable architectures, but we
are different in that we are modifying the fundamental system: we
inject the iterative capability into a MapReduce engine.

Twister [6] is a stream-based MapReduce framework that sup-
ports iterative programs, in which mappers and reducers are long
running with distributed memory caches. They are established to
avoid repeated mapper data loading from disks. However, Twister’s
streaming architecture between mappers and reducers is sensitive
to failures, and long-running mappers/reducers plus memory cache
is not a scalable solution for commodity machine clusters, where
each node has limited memory and resources.

Finally, Pregel [13] is a distributed system for processing large-

size graph datasets, but it does not support general iterative pro-
grams.

7. CONCLUSION AND FUTURE WORK
This paper presents the design, implementation, and evaluation

of HaLoop, a novel parallel and distributed system that supports
large-scale iterative data analysis applications. HaLoop is built on
top of Hadoop and extends it with a new programming model and
several important optimizations that include (1) a loop-aware task
scheduler, (2) loop-invariant data caching, and (3) caching for effi-
cient fixpoint verification. We evaluated our HaLoop prototype on
several large datasets and iterative queries. Our results demonstrate
that pushing support for iterative programs into the MapReduce
engine greatly improves the overall performance of iterative data
analysis applications. In future work, we would like to implement
a simplified Datalog evaluation engine on top of HaLoop, to enable
large-scale iterative data analysis programmed in a declarative way.
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9. APPENDIX
This appendix presents additional implementation details for the

HaLoop system and our sample applications, experiment setup de-
tails, and a discussion.

9.1 HaLoop Implementation Details
We first provide some additional details about HaLoop’s exten-

sions of Hadoop.

9.1.1 Background on Hadoop
In Hadoop, client programs must implement the fixpoint evalua-

tion on their own, either in a centralized way or by an extra MapRe-
duce job. They must also decide when to launch a new MapReduce
job. The Mahout [12] project has implemented multiple iterative
machine learning and data mining algorithms with this approach.

Figure 15 demonstrates how an iterative program is executed in
Hadoop. It also shows how the following classes fit together in the
Hadoop system.

Hadoop master node. In Hadoop, interface TaskScheduler

and class JobInProgress play the role of master node: they ac-
cept heartbeats from slave nodes and manage task scheduling.

Hadoop slave nodes. Class TaskTracker is a daemon process
on every slave node. It sends heartbeats to the master node includ-
ing information about completed tasks. It receives task execution
commands from the master node.

User-defined map and reduce functions. Class MapTask and
ReduceTask are containers for user-defined Mapper and Reducer
classes. These wrapper classes load, preprocess and pass data to
user code. Once a TaskTracker gets task execution commands
from the TaskScheduler, it kicks off a process to start a MapTask
or ReduceTask thread.

9.1.2 HaLoop Extensions to Hadoop
We extended and modified Hadoop as follows:
Hadoop master node: loop control and new API. We im-

plemented HaLoop’s loop control and task scheduler by im-
plementing our own TaskScheduler and modifying the class
JobInProgress.

Additionally, HaLoop provides an extended API to facilitate
client programming, with functions to set up the loop body, as-
sociate the input files with each iteration, specify a loop termina-
tion condition, enable/disable caches, and inform HaLoop about
any loop-invariant data. JobConf class represents a client job and
hosts these APIs. Figure 16 shows the descriptions of this API.

Hadoop slave nodes: caching. We implemented HaLoop’s
caching mechanisms by modifying classes MapTask, ReduceTask
and TaskTracker. In map/reduce tasks, HaLoop creates a direc-
tory in the local file system to store the cached data. The directory
is under the task’s working directory, and is tagged with iteration
number. Therefore, tasks accessing the cache in the future could
know the data is generated from which iteration. After the iterative
job finishes, the whole cache related to the job will be erased.

User-defined map and reduce functions: iterations. We added
abstract classes MapperIterative and ReducerIterative to
wrap the Mapper/Reducer interfaces in Hadoop. They both pro-
vide an empty implementation for the user-defined map/reduce
functions and add new map/reduce functions to accept both pa-
rameters for ordinary map/reduce functions and iteration-related
parameters such as current iteration number. ReduceIterative’s new
reduce function also adds another new parameter, which stores the
cached reducer input values associated with the key.

User-defined map and reduce functions: fixpoint evalua-
tion. HaLoop evaluates the fixpoint in a distributed fashion.

TaskScheduler

TaskTracker

Map
Task

Reduce
Task

TaskTracker

Map
Task

Reduce
Task

TaskTracker

Map
Task

Reduce
Task

Job Client

runjobComputeDistance();
while(! isFixedPoint() &&

! exceedMaxIterations())
{

kickOffJobForNewIteration();
…}

aggregateDistance();
while(! isFixedPoint() &&

!exceedMaxIterations())
{

kickOffNewIteration();
….}

in HaLoop:

in Hadoop:

Figure 15: Job Execution: HaLoop V.s. Hadoop
Name Functionality
AddMap & AddReduce specify a step in loop
SetDistanceMeasure specify a distance for results
SetInput specify inputs to iterations
AddInvariantTable specify loop-invariant data
SetFixedPointThreshold a loop termination condition
SetMaxNumOfIterations specify the max iterations
SetReducerInputCache enable/disable reducer input caches
SetReducerOutputCache enable/disable reducer output caches
SetMapperInputCache enable/disable mapper input caches

Figure 16: HaLoop API

After the final reduce phase of an iteration, ReduceTask com-
putes the sum of the user-defined distances between the current
output and that of the previous iteration by executing the user-
defined distance function. Then, the host TaskTracker sends
the aggregated value back to JobInProgress. JobInProgress

computes the sum of the locally pre-aggregated distance values
returned by each TaskTracker and compares the overall dis-
tance value with fixedPointThreshold. If the distance is
less than fixedPointThreshold or current iteration number
is already maxNumOfIterations, JobInProgress will raise a
“job complete” event to terminate the job execution. Otherwise,
JobInProgress will put a number of tasks in its task queue to
start a new iteration. Figure 15 also shows how HaLoop executes
a job. In particular, we see that the TaskScheduler manages the
lifecycle of an iterative job execution.

9.2 PageRank Implementation
Let us walk through how PageRank (from Example 1) is imple-

mented on top of HaLoop. Figure 17 shows the pseudo-code of
this implementation. There are two steps in PageRank’s loop body:
one is to join Ri and L and populate ranks; the other is to aggre-
gate ranks on each URL. Each step is a map-reduce pair. Each
pair is added to the overall iterative program by calling HaLoop’s
AddMap and AddReduce functions (line 2-5 in Main).

The join step is comprised of two user-defined functions,
Map Rank and Reduce Rank. In the first iteration, Map Rank reads
an input tuple, either from the linkage table L or the initial rank
table R0. It outputs the join column as key (L.url src or R0.url)
and the rest of the input tuple as the value. It also attaches a table
ID to each output tuple to distinguish their sources. In Figure 17,
#1 is the table ID for L, while #2 is the table ID for rank table Ri.
In later iterations, Map Rank simply reads tuples from Ri, outputs
column url as the key and column rank as the value, and attaches
the table ID as before.

On each iteration, the Reduce Rank calculates the local rank for
destination URLs (in invariantValues), where each destination



Map Rank
Input: Key k, Value v, int iteration
1: if v from L then
2: Output(v.url src, v.url dest, #1);
3: else
4: Output(v.url, v.rank, #2);
5: end if

Reduce Rank
Input: Key key, Set values, Set invariantValues,
int iteration
1: for url dest in invariantValues do
2: Output(url dest, values.get(0)/invariantValues.size());
3: end for

Map Aggregate
Input: Key k, Value v, int iteration
1: Output(v.url, v.rank);

Reduce Aggregate
Input: Key key, Set values, int iteration
1: Output(key, AggregateRank(values));

ResultDistance
Input: Key out key, Set vi−1, Set vi

1: return |vi.get(0)−vi−1.get(0)|;

IterationInput
Input: int iteration
1: if iteration==1 then
2: return L ∪ R0;
3: else
4: return Riteration−1

5: end if

Main
1: Job job = new Job();
2: job.AddMap(Map Rank, 1);
3: job.AddReduce(Reduce Rank, 1);
4: job.AddMap(Map Aggregate, 2);
5: job.AddReduce(Reduce Aggregate, 2);
6: job.SetDistanceMeasure(ResultDistance);
7: job.AddInvariantTable(#1);
8: job.SetInput(IterationInput);
9: job.SetFixedPointThreshold(0.1);

10: job.SetMaxNumOfIterations(10);
11: job.SetReducerInputCache(true);
12: job.SetReducerOutputCache(true);
13: job.Submit();

Figure 17: Implementation of Example 1 on HaLoop

URL’s rank is assigned to the source URL’s rank divided by the
number of destination URLs.

The aggregation step includes Map Aggregate and
Reduce Aggregate, where Map Aggregate reads raw ranks
produced by Reduce Rank, and Reduce Aggregate sums the
local ranks for each URL.

The distance measure between reducer outputs from consec-
utive iterations is simply the rank difference (ResultDistance
and line 6 in Main). Table L is set as loop-invariant (line 1-2 in
Map Rank and line 7 in Main). IterationInput and line 8 in
Main specify the input to each iteration: {L, R0} for the first iter-
ation and {Ri−1} for later iteration i. Therefore, in Reduce Rank,
invariantValues are obtained by querying key(in the input to
Reduce Rank) from the cached L partition and projecting on the
url dest column. The fixedPointThreshold is set to 0.1,
while the maxNumOfIterations is set to 10 (line 9-10 in Main).
Lines 11-12 in Main enable the reducer input cache to improve the

Map Join
Input: Key k, Value v, int iteration
1: if v from F then
2: Output(v.name1, v.name2, #1);
3: else
4: Output(v.name2, v.name1, #2);
5: end if

Reduce Join
Input: Key key, Set values, Set invariantValues,
int iteration
1: Output(Product(values, invariantValues));

Map Distinct
Input: Key k, Value v, int iteration
1: Output(v.name1, v.name2, iteration);

Reduce Distinct
Input: Key key, Set values, int iteration
1: for name in values do
2: if (name.iteration < iteration) then
3: set old.add(name);
4: else set new.add(name);
5: end for
6: Output(Product(key, Distinct(set new-set old)));

IterationInput
Input: int iteration
1: if iteration==1 then
2: return F ∪ ∆S0;
3: else
4: return ∆Siteration−1

5: end if

StepInput
Input: int step, int iteration
1: if step==2 then
2: return

⋃
0≤j≤(iteration−1) ∆Sj

3: end if

ResultDistance
Input: Key out key, Set vi−1, Set vi

1: return vi.size();

Main
1: Job job = new Job();
2: job.AddMap(Map Join, 1);
3: job.AddReduce(Reduce Join, 1);
4: job.AddMap(Map Distinct, 2);
5: job.AddReduce(Reduce Distinct, 2);
6: job.SetDistanceMeasure(ResultDistance);
7: job.SetInput(IterationInput);
8: job.AddInvariantTable(#1);
9: job.SetFixedPointThreshold(1);

10: job.SetMaxNumOfIterations(2);
11: job.SetReducerInputCache(true);
12: job.AddStepInput(StepInput);
13: job.Submit();

Figure 18: Implementation of Example 2 on HaLoop

performance of the join step and enable the reducer output cache to
support distributed fixpoint evaluation. Finally, the job is submitted
to the HaLoop master node (line 13 in Main).

9.3 Descendant Query Implementation
We present the pseudo-code for the HaLoop implementation of

Example 2 (descendant query) in Figure 18. Similar to PageRank
example, the loop body also has two steps: one is join (to find
friends-of-friends by looking one hop further), and the other one is



Map Kmeans Configure
1: loadLatestCluster();

Map Kmeans
Input: Key k, Value v, int iteration
1: Output(assignCluster(v), v);

Reduce Kmeans
Input: Key key, Set values, Set invariantValues,
int iteration
1: Output(key, AVG(values));

IterationInput
Input: int iteration
1: return “input”;

ResultDistance
Input: Key out key, Set vi−1, Set vi

1: return Manhattan Distance(vi.get(0), vi−1.get(0));

Main
1: Job job = new Job();
2: job.AddMap(Map Kmeans, 1);
3: job.AddReduce(Reduce Kmeans, 1);
4: job.SetDistanceMeasure(ResultDistance);
5: job.SetFixedPointThreshold(0.01);
6: job.SetMaxNumOfIterations(12);
7: job.SetInput(IterationInput);
8: job.SetMapperInputCache(true);
9: job.Submit();

Figure 19: K-means Implementation on HaLoop

duplicate elimination (to remove duplicates in the extended friends
set). We still utilize reducer input cache (line 11 in Main), and set
F to be loop invariant (line 1-2 in Map Join and line 8 in Main).
Map Join and Reduce Join form the join step. In the first itera-
tion, Map Join reads input tuples from both F and ∆S0, and out-
puts the join column as key and the remaining columns and the
table ID as value. In this example, #1 is the ID of the friend ta-
ble F and #2 is the ID of ∆Si−1. In later iteration i, Map Join

simply reads ∆Si−1 tuples and attaches the table ID to them as
output. For each key (∆Si−1.name2), Reduce Join computes
the cartesian product of the corresponding values (∆Si−1.name1)
and invariantValues (F .name2). The duplicate elimi-
nation step includes Map Distinct and Reduce Distinct.
Map Distinct emits tuples with column name1 as key and col-
umn name2 as value, while Reduce Distinct outputs distinct
〈key, value〉 (〈∆Si.name1, ∆Si.name2〉) pairs. The binding to
IterationInput at line 7 in Main specifies the input to each
iteration: {F , ∆S0} for the first iteration and {∆Si−1} for
later iteration i. The ResultDistance function simply returns
current out key’s corresponding out value set vi’s size. The
fixedPointThreshold is set to 1 at line 9 in Main. The
maxNumOfIteration is set to 2. Thus, the loop termination con-
dition is that either ∆Si is empty or two iterations pass. Since the
fixpoint evaluation does not compare results from two iterations,
we disable reducer output cache option. Other parts in the Main

function are similar to the corresponding parts in Figure 17.

9.4 K-means Implementation
K-means clustering is another popular iterative data analysis al-

gorithm that can be implemented on top of HaLoop. Unlike the
previous two examples, however, k-means takes advantage of the
mapper input cache rather than the reducer input cache, because
the input data to mappers at each iteration are invariant, while the

reducer input data keep changing. Also, since the output from each
iteration has a very small size, there is no need to enable reducer
output cache.

We sketch the code for this application in Figure 19. There
is only one map-reduce step in the program: Map Kmeans and
Reduce Kmeans. Map Kmeans assigns an input tuple to the nearest
cluster (based on the distances between the tuple and every cluster’s
mean), outputs the cluster ID as the key, and the tuple as value,
while Reduce Kmeans calculates the means of all tuples in one
cluster. We only output cluster means as the result of each iter-
ation. There is one extra MapReduce job to finally determine and
output every tuple’s cluster membership after the loop is completed.
For simplicity, we omit this extra job here. IterationInput re-
turns a constant (the HDFS path to the dataset), such that each it-
eration Map Kmeans reads the same input files. Each mapper also
loads the latest cluster means from HDFS in mapper hook function
Map Kmeans Configure before the mapper function Map Kmeans

is called. The ResultDistance measures the dissimilarity be-
tween two clusters produced from different iterations but with the
same cluster ID. The distance measure is the Manhattan distance3

between two cluster means. The fixedPointThreshold is set to
0.01 at line 5 in Main, while the maxNumOfIteration is set to
12 at the next line. At line 8 of Main, the mapper input cache is
enabled.

9.5 Higher-Level Query Language
We observe that the general form of the recursive queries we

support has a basic structure similar to recursive queries as defined
in the SQL standard.

Recall that our recursive programs have the form:

Ri+1 = R0 ∪ (Ri ./ L)

Descendant Query in SQL using WITH. To illustrate how this
formulation relates to a recursive query expressed in SQL using the
WITH syntax, consider a simple descendant query as an example:

WITH descendants (parent, child) AS (
-- R0: base case
SELECT parent, child FROM parentof
WHERE parent = ‘Eric’

UNION ALL
-- R ./ L: step case
SELECT d.parent, e.child
FROM descendants d, parentof e
WHERE d.child = e.parent

)
-- Ri+1 = R0 ∪ (Ri ./ L)

SELECT DISTINCT * FROM descendants

This query computes the transitive closure of the parentof ta-
ble by repeatedly joining an initial result set (records with parent =
‘Eric’) with an invariant relation (the entire parentof relation),
and (optionally) appending the results. The last line removes dupli-
cates and returns all results.

We find this formulation to be very general; SQL queries us-
ing the WITH clause are sufficient to express a variety of iterative
applications, including complex analytics that are not typically im-
plemented in SQL.

K-means in SQL using WITH. We now show how to express
k-means clustering as a recursive query. Assume there are two re-
lations points(pid , point),means(kid , center). The points rela-
tion holds data values for which we wish to compute the k clusters.
The means relation holds an initial estimate of the means, usually
randomized.
3http://en.wikipedia.org/wiki/Manhattan distance



Name Nodes Edges size
Livejournal 4,847,571 68, 993,773 18GB
Triples 1,464,829,200 1,649,506,981 120GB
Freebase 7,024,741 154,544,312 12GB

Figure 20: Dataset Descriptions

-- find minimum dist for each point
CREATE VIEW dmin SELECT pid,
min(dist(pp.point, kk.mean)) AS dist,center
FROM points pp, means kk
GROUP BY pid

-- find mean for each pid
CREATE VIEW assign_cluster
SELECT pid, point, kid
FROM points p, means k, dmin d

WHERE dist(p.point, k.mean) = d.dist

-- update step
CREATE VIEW newmeans AS
SELECT kid, avg(point)
FROM assign_cluster

GROUP BY kid

-- put it all together
WITH means AS (
SELECT kid, mean, 0 FROM initial_means
UNION ALL
SELECT kid, avg(point), level + 1
FROM points p, means k

WHERE dist(p.point, k.center) =
(select min(dist(p.point, m.center))
FROM means m)

AND k.level = (select max(level) FROM means)
AND dist(k.center, d.center) < $threshold

GROUP BY kid
);
SELECT * FROM means

Since MapReduce has been used as a foundation to express rela-
tional algebra operators, it is straightforward to translate these SQL
queries into MapReduce jobs. Essentially, PageRank, descendant
query, and k-means clustering all share a recursive join structure.
Our PageRank and descendant query implementations are similar
to map-reduce joins in Hive [9], while k-means implementation is
similar to Hive’s map-side joins; the difference is that these three
applications are recursive, which neither Hive nor MapReduce has
built-in support. Further, with a modest extension to high-level lan-
guages such as Hive, common table expressions could be supported
directly and optimized using HaLoop, and then programmers’ im-
plementation effort could be greatly reduced.

9.6 Hardware and Dataset Descriptions
This section presents additional details about our experimental

design, for both reducer (input/output) cache evaluation and map-
per input cache evaluation.

9.6.1 Settings for Reducer Cache Evaluations
All nodes in these experiments are default Amazon small in-

stances4, with 1.7 GB of memory, 1 EC2 Compute Unit (1 virtual
core with 1 EC2 Compute Unit), 160 GB of instance storage (150
GB plus 10 GB for the root partition), 32-bit platform, and moder-
ate I/O performance.

Livejournal is a semi-synthetic dataset generated from a base
real-world dataset5. The base dataset consists of all edge tuples
4http://aws.amazon.com/ec2/instance-types/
5http://snap.stanford.edu/data/index.html

in a social network, and its size is 1GB. We substituted all node
identifiers with longer strings to make the dataset larger without
changing the network structure. The extended Livejournal dataset
is 18GB.

Triples is an RDF benchmark (resource description framework)
graph dataset from the billion triple challenge6. Each raw tuple in
Triples is a line of 〈subject, predicate, object, context〉. We ignore
the predicate and context columns, and treat the dataset as a graph
where each unique string that appears as either a subject or an ob-
ject is a node, and each 〈subject, object〉 tuple as an edge. The
filtered Triples dataset is 120GB in size.

Freebase is another real-world dataset7, where a large amount of
concepts are connected by various relationships. If we search for
a keyword or concept ID on the Freebase website, it returns the
description of a matched concept, as well as outgoing links to the
connected concepts. Therefore, we filter the Freebase raw dataset
(which is the crawl of the whole Freebase website) to extract tuples
of the form of 〈concept id1, concept id2〉. The filtered Freebase
dataset (12.2GB in total) is actually a concept-connection graph,
where each unique concept id is a node and each tuple represents
an edge. Detailed data set statistics are in Figure 20.

We run PageRank on the Livejournal and Freebase datasets be-
cause ranking on social network and crawl graphs makes sense in
practice. Similarly, we run the descendant query on the Livejournal
and Triples datasets. In the social network application, a descen-
dant query finds one’s friend network, while for the RDF triples,
such a query finds a subject’s impacted scope. The initial source
node in the query is chosen at random.

By default, experiments on Livejournal are run on a 50-node
cluster, while experiments for both Triples and Freebase are exe-
cuted on a 90-node cluster.

9.6.2 Settings for Mapper Input Cache Evaluations
All nodes in these experiments contain a 2.60GHz dual quad-

core Intel Xeon CPU with 16GB of RAM. The Cosmo dataset8 is a
snapshot from an astronomy simulation of the universe. The simu-
lation covered a volume of 110 million light years on a side, with
900 million particles total. Tuples in Cosmo are multi-dimensional
vectors.

9.7 Discussion
Here we compare some other design alternatives with HaLoop.

• Disk Cache vs. Memory Cache. To cache loop-invariant data,
one can use either disk or memory. HaLoop only caches data
to disk. The reason is that in a commodity machine cluster, a
slave node does not have sufficient memory to hold the cache,
especially when there are a large number of tasks that have to
run on the node.

• Synchronized Iteration vs. Asynchronous Iteration. HaLoop only
utilizes partitioned parallelism. There could be some dataflow
parallelism if iterations are not strictly synchronized. However,
dataflow parallelism is not the goal of MapReduce, and it is also
out of this work’s scope.

• Loop Body: Single Pipeline vs. DAGs. Currently, HaLoop only
supports articulated map-reduce pairs with a single pipeline in
the loop body, rather than DAGs. Although DAGs are a more
general form of loop body, we believe the current design can
meet the requirements of many iterative data analysis applica-
tions.

6http://challenge.semanticweb.org/
7http://www.freebase.com/
8http://nuage.cs.washington.edu/benchmark/astro-
nbody/dataset.php


