
Scientific Mashups: Runtime-Configurable Data
Product Ensembles

Bill Howe1?, Harrison Green-Fishback2, and David Maier2

1 University of Washington (billhowe@cs.washington.edu)
2 Portland State University ({hgmf, maier}@cs.pdx.edu)

Abstract. Mashups are gaining popularity as a rapid-development, re-
use-oriented programming model to replace monolithic, bottom-up appli-
cation development. This programming style is attractive for the “long
tail” of scientific data management applications, characterized by ex-
ploding data volumes, increasing requirements for data sharing and col-
laboration, but limited software engineering budgets.
We observe that scientists already routinely construct a primitive, static
form of mashup—an ensemble of related visualizations that convey a
specific scientific message encoded as, e.g., a Powerpoint slide. Inspired
by their ubiquity, we adopt these conventional data-product ensembles
as a core model, endow them with interactivity, publish them online, and
allow them to be repurposed at runtime by non-programmers.
We observe that these scientific mashups must accommodate a wider
audience than commerce-oriented and entertainment-oriented mashups.
Collaborators, students (K12 through graduate), the public, and pol-
icy makers are all potential consumers, but each group has a different
level of domain sophistication. We explore techniques for adapting one
mashup for different audiences by attaching additional context, assigning
defaults, and re-skinning component products.
Existing mashup frameworks (and scientific workflow systems) emphasize
an expressive “boxes-and-arrows” abstraction suitable for engineering
individual products but overlook requirements for organizing products
into synchronized ensembles or repurposing them for different audiences.
In this paper, we articulate these requirements for scientific mashups,
describe an architecture for composing mashups as interactive, reconfig-
urable, web-based, visualization-oriented data product ensembles, and
report on an initial implementation in use at an Ocean Observatory.

1 Introduction

A mashup is a web-based, lightweight, situational application integrating services
and data that were not necessarily designed to interoperate. The term was coined
to describe web applications developed by the general public exercising Google’s
Map API, but has come to refer to any “quick and dirty” web application based
on pre-existing data or services.

The popularity of mashups is attributable to the enormous rate of collective
data acquisition. Gray and Szalay argued that derived data dominates the total
? Work performed while author was at Oregon Health & Science University.

Fig. 1. A data product ensemble from a physical oceanography presentation on “cli-
matologies” (long-term averages). Each map displays the Columbia River Estuary with
the Pacific Ocean cropped at left and colored by bottom salinity. The large map at left
is the bottom salinity averaged over the entire time period 1999-2006. The six maps
at right are arranged in two colums: the left column is the yearly average, and the
right column the average bottom salinity subtracted from the overall average to give
an indication of variability from the mean.

data volume due to pairwise comparisons [4]. That is, N source datasets leads to
O(N2) derived comparison datasets. Similarly, the number of mashups deployed
on the web scales as O(N2) in the number of services available. For example,
one application overlays crime scenes on Google’s satellite images (via a join on
location) [2], another links your Twitter microblog with your Flickr photstream
(via a join on time) [15], another integrates your bank statements with your
investment portfolio [11], and so on. The quadratic growth rate in the number of
applications must be balanced by a reduction in development time, recruitment
of a new class of developer, a higher degree of reuse, or all three.

Of course, personal data management and social networking applications are
relatively simple problems — the amount of data processed in each operation
is small (a single RSS message, a screenful of search results), and the analysis
to be performed is predictable (items equipped with a latitude and longitude
are displayed on a map, images are displayed in the browser using thumbnails).
Many mashup frameworks rely crucially on these simplifying assumptions [6, 12,
20], making them inappropriate for enterprise mashups characterized by larger
datasets, specialized users, and domain-specific processing [7]. For example, an
enterprise mashup might be required access data from relational databases,
spreadsheets, documents, and other in-house proprietary data sources in order
to display the combined data in a business-specific format whereas a “consumer
grade” mashup will usually access a smaller set of standard data formats, but
produce result designed to be as generally accessible as possible.

Fig. 2. A data product comparing observed conductivity (top), simulated conductivity
(middle) and their difference (bottom) against depth from a vertically mobile platform.
In our framework, this kind of static data product becomes mashable: parameterized,
and reusable in various situational applications.

Scientific mashups push the requirements of enterprise mashups even fur-
ther. In addition to large datasets and domain-specialization, scientific mashups
are relevant to a much broader range of potential customers. Besides highly-
specialized domain experts (e.g., the seven people in the world who understand
your research the best), students from K12 through post-graduate, collaborators
from different fields, the press, the general public, industry colleagues, and policy
makers are all potential consumers of scientific results delivered by a mashup.
In contrast, an enterprise mashup is intended for a much narrower range of
user types — perhaps just one or two specialized analysts or a set of identically-
trained customer-service agents. Further, significant scientific findings are intrin-
sically non-obvious, complicating their exposition. Although a map of addresses
can be interpreted by nearly anyone, the meaning of Figure 1 is difficult to as-
certain without explanation. (The reader is encouraged to try to interpret the
ensemble before reading the explanation in Section 2).

Scientific mashups are also expected to present rather large datasets at one
time. For example, the timeseries in Figure 2 displays two days of measurements
from a profiling mooring managed by the Center for Coastal Margin Observation
and Prediction (CMOP). The sensor climbs up and down within the water col-
umn sampling at around 6Hz, generating over 1 million measurements over a two
day period. Apprehending the gross features of a million data points requires the
higher bandwidth of the human eye — visualization must replace top-k filtering
and coarse statistical aggregation at this scale and complexity.

Our work aims to simplify authorship and customization of scientific, visual-
ization-oriented “mashup” applications for diverse audiences.

2 Modeling Scientific Mashups

Our design of a mashup framework suitable for scientific data communication was
inspired by the ubiquity of visual data product ensembles in scientific discourse.

Example: Figure 1 provides an example of an ensemble from a Powerpoint
presentation. Each map represents the Columbia River Estuary colored by the
water’s salinity along the river bottom as computed by the SELFE ocean-
circulation model [21]. The large map at the left is the average bottom salinity
from 1999-2006. The dense, salty water at the bottom is less dominated by river
discharge and tidal influences, and is therefore a better characterization of es-
tuary behavior than other variables such as temperature. The six smaller maps
at the right are organized into two columns. Each row is a different year, and
only data from the two-month period of December and January is shown for each
year. The left column is the average bottom salinity for each of three years: 1999,
2001, 2006. The right column is the average bottom salinity subtracted from the
overall average salinity, indicating anomalies. The bar chart at the lower left
indicates anomolies for salinity intrusion length year-by-year.

This ensemble was constructed from static images by Antonio Baptista, di-
rector of CMOP, as part of a presentation on climatological (i.e., long-term)
variability. Each static image was generated by the programming staff at CMOP
specifically for the presentation. The ensemble was crafted to convey a specific
message — that the long-term collection of hindcast results generated from the
SELFE ocean-circulation model was accurately capturing climatological vari-
ability, including known anomalies. Specifically, this ensemble demonstrates that
the model captures the fact that 1999 was fresher than average, while 2006 was
unremarkable. The year 1999 is known to have exhibited extremely high river
discharge in late December, so a fresh estuary agrees with observation.

2.1 Injecting Interactivity

The example ensemble in Figure 1 immediately suggests a family of related
ensembles designed to answer related questions: Is the temperature signature
anomalous in 1999 as well? Does the 1999 anomaly persist through the Spring
freshet in May? This situation illustrates one goal of this research: to allow
scientists to re-parameterize and re-purpose this ensemble without relying on
programming staff.

To maximize the return on programmer effort, a scientific mashup framework
should allow a non-programmer to reuse and repurpose programmer-crafted data
products. In contrast, consider workflow systems, which also aim to raise the level
of abstraction for authoring data processing pipelines [8, 16] and visual scientific
applications [18, 1]. Workflow systems generally support reuse — a workflow
authored by one programmer can be accessed by other users of the same platform

Fig. 3. A mashup in use at the NSF Science and Technology Center for Coastal Margin
Observation and Prediction built to review profile measurements taken during research
cruises. The are four main sections: 1) a chain of parameters specifying which visu-
alizations to display, 2) the cast profile plot with two simultaneous variables on the
x-axis and depth on the y-axis, 3) a pair of maps providing spatial context for the cast,
and 4) A set of timeseries displaying surface measurements gathered from the vessel
during the same day.

[8, 16, 18]. However, our stakeholders find the expressive data-flow abstractions
adopted by most workflow systems to be only marginally more accessible than
general purpose programming languages — and therefore effectively inaccessible
to non-programmers.

The ensemble in Figure 1 is not designed to be interactive — it conveys a
specific scientific message without requiring additional user input. In contrast,
consider Figure 3. This ensemble is divided into four areas:

1. User controls: Users can select a completed research cruise using the top-
most select widget in area (1). The vessel of interest can be chosen using the
second select widget. The available vessels depend on the currently chosen
cruise. The third and fourth select widgets allow the user to choose the day
the cast was taken and particular cast, respectively. The choices available in
these selects are dependent on the chosen cruise and vessel. The final two

select widgets allow the user to choose the two x-axis variables that will be
displayed in the cast profile image.

2. Cast profile: The y-axis of the cast profile is depth, and the configurable
top and bottom axes reflect a measured variable.

3. Daily Map: The daily maps show vessel activity for the chosen day. The
vessel-path map shows the vessel path colored by time of day (red is later,
blue is earlier). The pink diamond shows the final vessel location at midnight.
The black dots show cast locations. The cast-location map shows the cast
locations as blue circles, with the selected cast highlighted in orange. These
maps provide spatial context needed to interpret the the cast profile. For
example, a cast profile near the estuary (as is the cast if Figure 3), then a
strong freshwater signal at the surface is expected.

4. Daily Timeseries: The timeseries plots show tidal elevations, near-surface
salinity, and near-surface temperature from the flow-through sensor package
on board the vessel. The tidal elevations provide temporal context — the
plume is fresher during low tide.

In contrast to the “display-only” mashup of Figure 1, Figure 3 involves user
controls for re-parameterizing the mashup. Our mashup model erases the dis-
tinction between input and output components, allowing any mashable item to
both display a set of values to the user, and (optionally) allow the user to select
a subset of values to return to the system. Using this simple data model, we
are able to express a wide variety of lightweight science applications without
requiring mashup developers to learn a broad repertoire of tools. That is, every
component is an instance of one underlying class: an adapted mashable.

2.2 Inferring Data Flow

Consider the following definitions. We adopt a parameterized type syntax bor-
rowed from the polymorphic features of C++ and Java. Each type variable is a
scheme — set of attribute names.

Environment〈E〉 :: E → list of strings
Domain〈T 〉 :: a relation with attributes T

Mashable〈E, T 〉 :: Environment〈E〉 → Domain〈T 〉
Adaptor〈E, T 〉 :: Environment〈E〉 → Domain〈T 〉 → Environment〈E ∪ T 〉

AdaptedMashable〈E, T 〉 :: Environment〈E〉 → Environment〈E ∪ T 〉

Each Mashable is a simple function abstraction for web services, database
queries, shell programs, etc: given a set of parameters, return a set of tuples.
Each formal parameter is a string (e.g.“cruise”, “date”, etc.). Parameter values
are sequences of strings to allow multi-valued selections (e.g., a range of dates
instead of a single date). Individual values are untyped; their interpretation is
left up to the consumer, following conventions of REST.

Informally, each adaptor takes a set of tuples, displays them to the user,
allows the user to select some subset, and then converts that subset to an envi-
ronment. The keys of the resulting environment are the attributes of the source
relation (as expressed in the definition of Adaptor above). For example, the
first select box in area (1) of Figure 3 is populated from a relation with at-
tributes (cruise, startdate). These tuples are converted into a drop down menu
by an appropriate adaptor. When the user selects a particular cruise, the adaptor
(back on the server, after appropriate translations) receives the user’s selection
[(“July 2007”, “7/4/2007”)]. The environment passed to the next mashable is
the current environment E updated with values from the new environment T
with keys (cruise, startdate).

In this model, a mashup is a graph where each vertex is an AdaptedMashable
(AM). Edges are derived implicitly from parameter dependency information. For
example, in Figure 3, one of the select widgets allows the user to choose a par-
ticular day of the research cruise. The two maps at the upper right both make
use of the selected day value to determine which data to display. No explicit
link between the day select widget and the two context maps is required. Simply
by appearing in the same scope, consumers of the day parameter are implicitly
dependent on the producer of the day parameter. By synchronizing the param-
eters of each mashable to common sources, we reduce the chance of presenting
a dangerously misleading mashup. For example, Figure 1 only make sense if all
products pertain to bottom salinity — the system can help enforce this con-
straint by keeping all products synchronized (unless explicitly overridden by the
user — see below).

Edge Inference. More precisely, we heuristically infer an edge between two
vertices X〈EX , TX〉 and Y 〈EY , TY 〉 if EY ⊂ TX . That is, if one AM supplies all
the parameters that another AM needs, then connect them. Next, we infer edges
wherever two upstream AMs together can supply the necessary parameters. That
is, given a vertex X〈EX , TX〉, and an edge (Y 〈EY , TY 〉, Z〈EZ , TZ〉), infer an edge
(Z, X) if EX ⊂ TY ∪ TZ . We continue this process for longer paths through the
graph until we converge. For example, the plot in area (2) of Figure 3 (call it P1)
requires values for cruise, vessel, and castId. The first select box S1 provides
values for cruise and startdate, the second select box S2 requires values for
vessel (given a cruise), and the third S3 provides values for castid (given a
cruise and a vessel), so we infer a path in the graph S1→ S2→ S3→ P1.

Since we rely on an implicit dependency graph among AMs, we must toler-
ate both underspecified and overspecified mashups. An underspecified mashup
involves AMs that require values for parameters not supplied by any other AMs.
We address underspecified mashups by requiring that all mashables either adopt
default values for all required parameters or tolerate their omission. For exam-
ple, the right-hand map plot in area (3) of Figure 3 displays all casts for a given
day, but also highlights a particular cast. The author of the underlying adaptor
is expected to handle the case where no cast is specified: perhaps no cast is
highlighted, or the first cast in the list is highlighted, for example. By requir-
ing that all mashables and tolerate missing parameters, we reduce the number

of invalid mashups that can be expressed by the user. Anecdotally, we observe
that exceptions and error messages are to be avoided at all costs: Users simply
assume that the system is not working and stop using it rather than read the
message and correct the problem.

An overspecified mashup provides multiple sources for the same parameter
values. For example, the choice of a cast implies a temporal context: the time
the cast was taken. However, the choice of a cruise also implies a temporal
context: the start time of the cruise itself. A mashable that looks up the tidal
elevation based on time must choose between these two timestamps, but there
is not necessarily an unambiguous way to do so. In this case, we break the tie
by observing that the cast is influenced by the cruise, so the cast time is in a
sense more specific — it already takes into account the information supplied
by the cruise. We refer to this heuristic as the path of greatest influence (PGI).
The PGI is simply the backwards path through the directed graph that passes
through largest number of competing sources for a parameter. The source to use
is the nearest node along the PGI. The algorithm to implement this decision is
straightforward: reverse the edges, find the longest path from the target vertex
to a vertex supplying the overspecified parameter, and select the first vertex.
Ties are currently broken by document order in the HTML — nearest nodes
in document order are linked, under the assumption that products are usually
added to the mashup in dependency order. Another tie-breaking strategy we are
exploring is to automatically multiplex the overspecified product. For example,
if two casts are in scope and the designer appends a tidal chart product, there is
no unambiguous way to choose between them. Rather than assume the second
cast is preferable to first, we can simply insert an additional copy of the tidal
chart — one for each cast. This feature is not yet tested.

The implicit dependency graph is one mechanism for specifying data flow,
but there are two others. Each mashup is equipped with a root environment con-
figured by the mashup designer. The root environment is by default empty, but
can be populated with metadata (parameter-value pairs) to resolve ambiguities
in the dependency graph or to supply information that cannot be derived any-
where else. For example, the colors in Figure 1 all pertain to bottom salinity in
the period 1999-2006. The pairs (variable = bottomsalinity, startyear = 1999,
and endyear = 2006) can be inserted into the root environment. The root envi-
ronment is just another node in the dependency graph — products will still pull
their parameters from the nearest upstream source unless explicitly overridden
by the designer.

Mashup developers may also individually set parameter values for individual
products. Parameters set explicitly for individual products override other sources
of parameters and allow fine-tuning of the mashup. For example, the individual
years selected for the rows at the right-hand side of Figure 1 are explicitly set
by the designer rather than being passed by the dataflow graph.

2.3 Tailoring Mashups for Specific Audiences

Consider the context provided by the static ensemble in Figure 1 for interpret-
ing the underlying data, both explicit and implicit. The title at the upper left

gives explicit context: the proper interpretation of the color (bottom salinity)
and the overall time period considered (1999-2006). The fact that all the map
images pertain to the same geographical region (the Columbia River Estuary), is
implicit. The units of the color bar (practical salinity units, or just psu) are also
implicit, since no other units are in common usage. The meaning of the y-axis
label (SIL stands for Salinity Intrusion Length) is also implicit. Even knowledge
of the expanded acronym does not necessarily help a novice interpret the graph.
The intrusion length is in meters, but what distance is it measuring? Domain
experts will understand that an estuary length is measured along its primary
channel, which is usually well-defined for ship traffic, but a novice will find it
difficult to develop intuition for the physics without further explanation.

We therefore seek transformations that preserve the scientific meaning of
the mashup but tailor it to different audiences. We define three techniques for
tailoring mashups: inserting context products, changing application style, and
re-skinning.

The first method is to insert new products into the mashup that expose
what was going on “nearby” — not just in time and space, but nearby in the
overall parameter space. For example, information on tides, weather, daylight,
other observational platforms, other models, and so on all potentially enhance
interpretation. Additional products that simply display values in the root en-
vironment are also applicable here: the title bar in Figure 1 is an example of a
simple “product.”

The second method is to tailor the application style for different audiences.
Anecdotally, we find that experts prefer to fill screen real estate with additional
data, but novices prefer to study one product at a time to avoid feeling over-
whelmed. The mashup framework supports converting from a dashboard-style
interface (all products at once) to a wizard-style interface (one product at at
time) without additional programming.

Finally, mashups can be re-purposed for display to different audiences by
re-skinning the mashable components of the mashup with different adaptors.
The mashup in Figure 3 depicts temperature as a variable on the x-axis of a
cast-profile plot. This succinct approach to data visualization is desirable when
the intended audience is a group of domain experts. However, this visualization
is likely difficult to understand and un-engaging for elementary-school science
students. In order to address this issue, the original mashup can be re-skinned
to appeal to a wider audience. As shown in Figure 4, the product which displays
depth on the y-axis and temperature and salinity on the x-axis is replaced by a
product which displays depth as an animation of a cast profiling device beneath
the vessel moving up and down in the water column, with the corresponding
temperature and salinity displayed as familiar graphical thermometers. In this
fashion, re-skinning makes the same data product accessible to users of widely
differing backgrounds and skill sets.

The discussion in this section exposes three steps in creating a scientific
mashup:

Fig. 4. Different adaptors can present data from the same mashable in different ways.
The adaptor on the left displays depth along the y-axis and temperature and salinity
along the x-axis of the cast plot. The adaptor on the right illustrates the dependency
between temperature and salinity and depth by allowing the user to drag the cast probe
up and down within the water column in order to see the change in temperature and
salinity associated with the change in depth.

1. Wrap Programmers must wrap each data source as a mashable accepting
an arbitrary environment of parameters mapped to sequences of values and
returning a set of tuples.

2. Synch Mashup authors (usually non-programmers) choose from a set of
adapted mashables — each one a mashable with a specific visual “skin.” The
set of selected mashables are wired together as a data flow graph derived
using heuristics involving document order, implicit dependency information,
and user input.

3. Tailor Mashups can be re-purposed for different audiences by attaching
additional adapted mashables, using different adaptors for the same mash-
ables, or re-organizing into a different application style (i.e., a dense, AJAX-
powered single-screen application vs. a wizard-style, question-and-answer-
oriented application).

2.4 Challenges and Limitations

The challenge of the Scientific Mashup problem is to support a broadly func-
tional class of web applications without incurring the cognitive load associated
with traditional programming. We are experimenting with an extremely simple
conceptual model: mashables for retrieving data, adaptors for interacting with
the user, and sequences of strings for data flow. As a result of this design choice,
we rely heavily on the functionality of the mashables.

By design, we do not permit additional operations between adaptors and
mashables, such as filtering, data cleaning, type conversion, or arithmetic. We
assume that all such work is done inside the mashable. We impose no restric-
tions on the expressiveness of the mashable internals. We anticipate that some
mashable components will execute complex scientific workflows to generate the
domain, or otherwise execute arbitrary programs. However, because we are ag-
nostic to the language or system used to author mashables, our work is comple-
mentary to research in programming languages, scientific workflows, and data

integration systems. We are interested in empowering the non-programmer to
craft interactive scientific ensembles using basic building blocks. We are exploring
the question, ”What are the limits to the applications can we provide assuming
the user is only willing to specify 1) the visualizations they are interested in, 2)
their arrangement on-screen, 3) a few parameter values in a root environment?”

Our reliance on a simplified relational model represents another limitation:
data sources that return XML must be flattened into relations before they can
be used with our system. We have found XML to be rather unpopular among
scientific programmers for simple tasks, and we want to keep the barrier to entry
for our mashable authors as low as possible.

3 Related Work

Workflow systems attempt to raise the level of abstraction for scientific program-
mers by adding language features: visual programming, provenance, limited task
parallelism, fault tolerance, type-checking, sophisticated execution models [3, 8,
16, 18]. In contrast, we adopt a top-down approach: begin with a static data
product ensemble, then endow it with interactivity and publish it online.

The VisTrails system has a suite of advanced features useful as mashup
support services. VisTrails exploits the graph structure of the workflow and
a database of existing workflows to provide a higher-level interface for workflow
composition. Users can create new workflows “by analogy” to existing workflows
and the system can help “autocomplete” a workflow by offering suggestions
based on the graph structure [14]. Both features rely on graph matching with an
existing corpus of workflows . VisTrails also adopts a spreadsheet metaphor for
displaying and browsing related visualizations. A series of workflow executions
can be compared side-by-side in the cells of a grid. Further, a series of relaetd
images can be generated in one step using a parameter exploration — an itera-
tive execution of the same workflow across a range of parameter values. finally,
the VisTrails system also allows an individual workflow to be compiled into a
simple web application[19]. These features all help reduce the programmer effort
required to create and re-purpose workflows. Our approach is complementary —
we explore the configuration space of multiple synchronized visualizations, while
remaining agnostic to how the visualizations are created.

Marini et al. describe a system to publish workflows to the web as interactive
applications [9] and corroborate our emphasis on domain-specific solutions [5],
but do not consider multiple synchronized workflows, nor runtime-configuration
for different audiences.

There exist many commerce- and web-oriented mashup development frame-
works freely available for public use [6, 12, 20]. From among the systems available
to us we chose to examine Yahoo Pipes and Microsoft’s Popfly in detail.

Yahoo Pipes is a web-based mashup solution. Pipes allows users to compose
existing data feeds into new feeds that can be made available on the web. The
Pipes system appears to be well suited to this task, but requires that a user be at
least passingly familiar with standard Internet feed formats and XML concepts.
Pipes does attempt to allow users to integrate less-structured information from

arbitrary web pages into its mashups; this integration appears to be limited to
displaying the contents of a page (or portion thereof) alongside structured feed
information. In contrast, our requirements demand that users be able to draw
from a wide range of scientific data without being forced to understand the
particular storage format of that data.

Popfly is Microsoft’s offering for a mashup-development framework. Popfly
differentiates itself from other mashup solutions by offering a very rich user inter-
face. Of particular interest is the feature that allows a user to examine a mashup
component at different levels of abstraction. At the simplest level, a mashup
component is presented as a graphical control with inputs and outputs that can
be connected via drag and drop operations, similarly to Yahoo Pipes. At the
next level of detail, a mashup component is presented as a choice of operations
that can be performed on the inputs — integer addition, string concatenation,
filtering, etc. At the lowest level of detail, a user is invited to directly edit the
javascript code behind a mashup component. In this fashion, different designers
with varying levels of programming expertise can interact with Popfly in the fash-
ion that best suits their needs and abilities — all within the same development
interface. This ability to drill down to a preferred level of programming-interface
complexity is well-suited to a scientific mashup application where a substantial
number of users can be expected to have advanced mathematical skills as well as
a reasonably advanced programing skill set. However, data processing in Popfly
is performed in client-side javascript, which is inefficient in the context of the
large data sets and computationally expensive operations inherent in a scientific
mashup.

We observe that software vendors are increasingly aware of audience-adapt-
ibility. Microsoft Office products hide unused options from their menus in order
to avoid overwhelming novice users. Tax preparation software (e.g. TurboTax
[17]) provide multiple application styles for the same core content. A question-
naire application style (called EasyStep in TurboTax) can be used in conjunction
with a form-oriented application style designed for experts. We are studying how
these techniques may be adopted for scientific mashups.

4 System architecture

Our initial mashup system is comprised of five major components. The environ-
ment, the mashable, the domain, the adaptor, and the mashup engine.

1. Environment An environment is a map of keys to values and is the input
to a mashable. All mashups are designed to accommodate an empty or de-
fault environment. Thus a valid product ensemble is guaranteed even in the
absence of user interaction.

2. Mashable The mashable is the primary means of data-source abstraction.
A mashable takes an environment as input and produces a domain as output.
Mashables are reusable components created by programmers for end users
to work with during runtime configuration of a mashup.

3. Domain A domain is a set of tuples returned by a mashable.

Pipeability of Products Shared Environment

Adaptor

Environment

 Mashable

 Domain

Adaptor

 Mashable

 Domain

Adaptor

 Mashable

 Domain

Adaptor

Adaptor

Environment

 Mashable

 Domain

Adaptor

Mashable
Domain

Environment

Adaptor

Mashable

DomainAdaptor

Environment

Adaptor

Fig. 5. Possible mashup graph configurations.

4. Adaptor Adaptors render domains. All user-interface components are adap-
tors. Adaptors can be display-only or interactive. Interactive adaptors allows
users to modify the environment passed to subsequent mashables in the
mashup graph. Like mashables, adaptors are created by programmers for
configuration within a mashup by end users. Different adaptors may be as-
sociated with a single mashable allowing audience-specific presentations of
data.

5. Mashup Engine The mashup engine is the context within which the other
mashup components exist. Designers browse for mashables and adaptors
which have been previously defined and link them together at runtime within
the mashup engine. The mashup engine is responsible for automatically syn-
chronizing the mashup components when a user alters the state of an envi-
ronment via interaction with an adaptor.

It is possible to have multiple products share a single environment, as il-
lustrated in Figure 5 (left). Constructing a mashup in this fashion allows user
interaction with a single Adaptor to effect the state of all products that are
members of the mashup tree rooted at the shared environment. Products lo-
cated within a separate subtree of the mashup are not affected by this adaptor
interaction. A users interaction with a given product within a product ensemble
effects the state of the environment. A cloned instance of the environment is
passed down from product to product as in Figure 5 (right). In this way the
result of interaction with one product in the chain is passed down to subsequent
products in the product chain.

Listing 1.1 provides an example of the mechanisms used to wire a set of
mashables and adaptors together in order to create a functioning mashup. In
this example the mashup wiring is shown explicitly. However, similar wiring
might just as easily take place at runtime as the result of a users interaction
with the system.

In line 1, a new instance of a mashup is created. The name (CmopTest)
of the mashup serves to identify this particular mashup within a system that
may host many different mashup instances at the same time. In lines 3 and 4,
A Mashable reference to the CmopVesselMashable is obtained and a new Selec-
tAdaptor is created and named. The CmopVesselMashable is an implementation
of Mashable which abstracts vessel specific data within the cmop database. The
SelectAdaptor is an adaptor implementation which renders its adapted domain

Listing 1.1. A mashup example linking two select widgets
1 Mashup m = new MashupImpl (‘‘CmopTest”) ;

3 Mashable v e s s e l = CmopVesselMashable . g e t In s tance () ;
4 Adaptor s e l e c t v e s s e l = new SelectAdaptor (‘‘ v e s s e l ”) ;
5 Map<Str ing , Str ing> vesselmap = new HashMap<Str ing , Str ing >() ;
6 vesselmap . put (Se lectAdaptor .KEY, ‘‘ v e s s e l ”) ;
7 m. addMashable (v e s s e l) ;
8 m. l inkAdaptor (s e l e c t v e s s e l , v e s s e l , vesselmap) ;

10 Mashable c r u i s e = CmopCruiseMashable . g e t In s tance () ;
11 Adaptor s e l e c t c r u i s e = new SelectAdaptor (‘‘ c r u i s e ”) ;
12 Map<Str ing , Str ing> cruisemap = new HashMap<Str ing , Str ing >() ;
13 cruisemap . put (Se lectAdaptor .KEY, ‘‘ c r u i s e ”) ;
14 m. addMashable (c r u i s e) ;
15 m. l inkAdaptor (s e l e c t c r u i s e , c ru i s e , cruisemap) ;

17 m. l inkMashable (c ru i s e , v e s s e l) ;

as an html select widget. In lines 5 and 6, we define a mapping to associate the
attributes required by the adaptor with attributes available within the domain
produced by the adapted mashable. In lines 7 and 8, the mashable instance is
added to the mashup and linked to the configured adaptor.

In lines 10-15, a new mashable and adaptor are linked together and added
to the mashup. In this case, the mashable is an abstraction of cmop cruise data
and the adaptor is again an instance which renders as an html select widget.

Finally, in line 17, the two mashables are linked or ”mashed” together within
the context of the mashup. In this case the cruiseMashable is the ”masher” and
the vesselMashable is the “mashee”. As such, changes to the cruiseSelectAdaptor
made by the user will modify the environment provided to the vesselMashable.
This changed environment will cause a corresponding change to the domain
produced by the vesselMashable and ultimately to the data displayed to the
user by the vesselSelectAdaptor.

5 A Mashup Factory for an Ocean Observatory

In Section 4, we described an initial implementation of the complete mashup
model. In this section, we describe an earlier incarnation of these ideas called
the Product Factory. The Product Factory is currently deployed at the Center
for Coastal Margin Observation and Prediction, and is part of the infrastructure
for the upcoming Pacific FishTrax website sponsored by the project for Collab-
orative Research on Oregon Ocean Salmon (CROOS) [13]. The design goals of
the Product Factory are:

1. Replace static images with dynamic, user-configurable data products.
Method: Distill each product to a set of parameters, an SQL statement, and
a short plotting script. All other boilerplate code is provided by the factory.

2. Simplify the creation of web applications involving multiple data products.
Method: Expose each factory product as a RESTful web service, allowing
data products, parameter values, and source data to be embedded in HTML
without additional server-side programming.

3. Provide public access to the underlying data, not just the visualization.
Method: Registering a product in the factory automatically establishes a
web service for data access in a variety of common formats.

To create a new product, a programmer writes a product specification in either
XML or Python. An example XML product specification appears in Listing 1.2.
The specification involves three sections: a set of parameters (lines 3-15), an
extractwith clause indicating how to extract data (lines 16-21), and a plotwith

clause indicating how to render the data (lines 22-28).
The Product Factory extracts data and parameter domains from a relational

database. Generalization of the Factory to allow access to arbitrary data sources
was an important motivation in designing the architecture of Section 4.

Parameters have a type that determines their behavior. The base type
Parameter allows unconstrained user input, and is rendered as a simple text box.
A SelectParameter (lines 13-15) takes a comma-delimited list of strings and
forces the use to select one using an HTML select tag. A SQLSelectParameter
(e.g., lines 3-5) is similar to a SelectParameter, but the choices are drawn
from a database using an SQL statement. SQL-powered parameters may de-
pend on the values of earlier parameters. Syntactically, the SQL statement may
include embedded placeholders using Python string formatting conventions. In
the HTML interface, we use asynchronous javascript to dynamically refresh the
values of downstream parameters when upstream parameters change.

Other parameter types available include MultiSelect and SQLMultiSelect
versions that allow multiple option to be selected by the user, HiddenParameter
that computes a value for downstream processing but does not interact with
the user, and DynamicDefaultParameter that computes an initial value from
upstream parameters but allows arbitrary user input. Each SQL-driven param-
eters is similar to the product itself — data is extracted from the database and
displayed to the user. The observation that parameters are not fundamentally
different from products led to their unification in the current model (Section 2).

Like the SQL-powered parameters, the extractwith clause uses string-sub-
stitution placeholders to reference parameter values. The plotwith clause is
simply python code executed in an environment with all parameters and plot-
ting libraries pre-loaded as local variables. Most plotwith are remarkably short,
using just a few MATLAB-style calls provided by the matplotlib 2D plotting
library [10]. Since many of our programmers are familiar with MATLAB, mat-
plotlib provides an attractive alternative for programming visualizations.

Each parameter type specifies how to compute a default value. For the base
Parameter type, the default value is given explicitly in the definition. Parame-
ters with explicit domains use the first value in the domain as the default value.
If their domain is empty (e.g., the SQL query returns no records), then a sen-
tinel value akin to NULL is returned. A downstream parameter may or may
not be designed to tolerate NULL — if an exception is raised, the downstream

Listing 1.2. A factory product specification in XML. The Product Factory is
an early implementation of a scientific mashup framework focused on reducing
the code required to publish an interactive data product.

1 <s p e c i f i c a t i o n>
2 <product name=‘‘ c a s t p r o f i l e ”>
3 <parameter name=‘‘ v e s s e l ” type=‘‘SQLSelectParameter ”>
4 SELECT v e s s e l FROM c r u i s e . v e s s e l
5 </parameter>
6 <parameter name=‘‘ c r u i s e ” type=‘‘SQLSelectParameter ”>
7 SELECT c r u i s e FROM c r u i s e . c r u i s e WHERE v e s s e l =’%(v e s s e l) s ’
8 </parameter>
9 <parameter name=‘‘ ca s t ” type=‘‘SQLSelectParameter ”>

10 SELECT d i s t i n c t ca s t id , c a s t d e s c r i p t i o n FROM ctdca s t
11 WHERE v e s s e l = ’%(v e s s e l) s ’ AND c r u i s e = ’%(c r u i s e) s ’
12 </parameter>
13 <parameter name=” v a r i a b l e ” type=” SelectParameter ”>
14 s a l i n i t y , conduct iv i ty , temperature , pres sure , t u r b i d i t y
15 </parameter>
16 <extractwith >
17 SELECT time , −depth as depth , %(v a r i a b l e) s as va r i ab l eda ta
18 FROM c a s t o b s e r v a t i o n
19 WHERE v e s s e l = ’%(v e s s e l) s ’
20 AND c r u i s e = ’%(c r u i s e) s ’ AND c a s t i d = ’%(ca s t) s ’
21 </extractwith >
22 <plotwith>
23 t i t l e (”%s %s %s ’ % (cast , v e s s e l , c r u i s e) , s i z e=’ smal l ’)
24 s c a t t e r (var iab l edata , depth , f a c e t e d=False)
25 x l a b e l (va r i ab l e , s i z e=’ smal l ’)
26 y l a b e l (’ depth (m) ’ , s i z e=’ smal l ’)
27 </plotwith>
28 </product>
29 </ s p e c i f i c a t i o n >

parameter is itself assigned NULL. This aggressive propagation of NULL values
is necessary to prevent exception messages and errant behavior for the end user
— in our experience, a product that returns an empty dataset is tolerable, but
error messages are not. However, masking exceptions complicates debugging, so
we provide a command line tool for testing products in a controlled environment.

The Product Factory simplifies the Wrap step of mashup authorship by
changing the skillsets required to publish interactive data products on the web.
Instead of learning a host of languages and configuration tools, programmers
can simply write a series of related SQL statements and a short MATLAB style-
script — higher-level language skills that are generally easier to learn (and that
CMOP programmers happen to already possess!)

To register a specification with the Factory, the XML script is uploaded
through either a command-line tool or a web form. The script is first tested in
the empty environment (all products must produce meaningful results with no

user decisions), then loaded into the factory database. Once loaded, rendered
products, source data, parameter domains, and other information are all avail-
able through a RESTful web service interface. Factory calls are of the form

http://server.com?request=<r>&product=<prd>&<p1>=<v1>&...

where r is one of getproduct, getdata, getdomain, getspec, prd is the name
of a product, pi is a parameter name and vi is a url-encoded value.

To construct a synchronized ensemble from individual products as in Figure 3,
a mashup designer need only include each relevant product in the HTML page
using the syntax <div class="factory" product=‘‘cast"/> and include the
factory javascript library. Each product will be expanded into either an HTML
form or a simple image tag, depending on whether or not their parameters need
to be displayed. For example, in Figure 3, areas (1) and (2) are together an
HTML form rendered for the cast profile product (similar but not identical to
Listing 1.2). Any other products that share these parameters can “borrow” from
the castprofile product, thereby avoiding the need to have the user specify the
relevant cruise, vessel, and cast multiple times. This mechanism supports the
Synch step of mashup authorship — product “building blocks” can be brought
into the same scope, and the system will derive a wiring diagram for them based
on the dependency graph between parameters and products.

6 Conclusions and Future Work

The adoption of a mashup-style of application development is potentially trans-
formative for scientific communication. Faced with exploding data volumes, enor-
mous data heterogeneity, and limited programming staff, development of new
data product ensembles is becoming the bottleneck to dissemination of results.
Our model unifies visualizations with interactive user controls, providing a sim-
ple underlying model that can express a wide-variety of scientific applications.
The ability to adapt existing mashups to tailor them for new audiences pro-
vides another dimension of reuse. The initial deployment of the Product Factory
provides evidence that a successful mashup framework should not just raise the
level of abstraction for individual data products, but also provide tools for orga-
nizing constituent products into interactive data ensembles. With this approach,
scientists are empowered to reuse programmers’ work (via support for product
synchronization), and the end users are empowered to reuse a scientists’ work
(via interactive user controls).

Future work includes a formalization of the context model outlined in Sec-
tion 2. We hope to be able to quantify interpretability based on domain-specific
models of context. Equipping the mashup framework with semantics may allow a
broader and more useful consideration of context and interpretability. Endowing
individual mashable components with semantics will also allow more advanced
reasoning by the system. The current implementation relies too heavily on ad-
vanced programming skillsets. Mashup designers must at least write HTML to
connect mashable components together, but we plan a drag-and-drop interface
similar to Microsoft’s Popfly or Yahoo Pipes.

Acknowledgements

We wish to thank Antonio Baptista, Roger Barga, Juliana Friere, and Emanuele
Santos for helpful discussions. This work was supported by funding from the NSF
STC for Coastal Margin Observation and Prediction, a Jim Gray Seed Grant
from Microsoft, and the eScience Institute at the University of Washington.

References

[1] Barga, R., Jackson, J., Araujo, N., Guo, D., Gautam, N., Grochow, K., La-
zowska, E.: Trident: Scientific Workflow Workbench for Oceanography. In:
IEEE Congress on Services, 465–466, IEEE Computer Society, Los Alami-
tos, CA, USA (2008).

[2] CrimeMapping (2008), http://www.crimemapping.com/.
[3] Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta,

G., Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.:
Pegasus: a Framework for Mapping Complex Scientific Workflows onto Dis-
tributed Systems. Scientific Programming Journal 13, 3, 219–237 (2005).

[4] Gray, J., Szalay, A.S.: ”Where the Rubber Meets the Sky: Bridging the Gap
between Databases and Science”. IEEE Data Eng. Bull. 27, 4, 3–11 (2004).

[5] Hill, D.J., Minsker, B., Liu, Y., Myers, J.: End-to-End Cyberinfrastructure
for Real-Time Environmental Decision Support. In: IEEE eScience (2008).

[6] JackBe. http://www.jackbe.com.
[7] Jhingran, A.: Enterprise Information Mashups: Integrating Information,

Simply. In: 32nd International Conference on Very Large Data Bases (2006).
[8] The Kepler Project. http://kepler-project.org.
[9] Marini, L., Kooper, R., Bajcsy, P., Myers, J.D.: Publishing Active Work-

flows to Problem-Focused Web Spaces. In: IEEE eScience (2008).
[10] The Matplotlib Library. http://matplotlib.sourceforge.net.
[11] Mint.com. http://mint.com.
[12] Microsoft Popfly. http://www.popfly.com.
[13] Collaborative Research on Oregon Ocean Salmon project (ProjectCROOS).

http://projectcroos.com.
[14] Silva, C., VisTrail, personal communication (2008).
[15] SnapTweet. http://snaptweet.com/.
[16] The Taverna Project. http://taverna.sourceforge.net.
[17] TurboTax. http://turbotax.intuit.com.
[18] The VisTrails Project. http://www.vistrails.org.
[19] Santos, E., Freire, J., Silva, C.: Using Workflow Medleys to Stream-

line Exploratory Tasks. http://www.research.ibm.com/gvss/2007/
presentations/emanuele_ibm_gvss2007.pdf.

[20] Yahoo Pipes. http://pipes.yahoo.com/pipes.
[21] Zhang, Y.L., Baptista, A.M.: SELFE: A semi-implicit Eulerian-Lagrangian

finite-element model for cross-scale ocean circulation. Ocean Modelling 21,
3-4, 71–96 (2008).

