There’s Something About Bayes:
Effective Probabilistic Programming for the Rest of Us

James Bornholt

Todd Mytkowicz

Kathryn S. McKinley

Microsoft Research

Bayes’ rule is a fundamental and general mechanism that com-
poses hypotheses and data, which is arguably the purpose of many
computer programs, and yet few programming languages or libraries
incorporate Bayes’ rule as an abstraction. Bayes’ rule has several
benefits. (1) It provides a formalism for programs to express com-
position of data from multiple sources to improve the program’s
accuracy, e.g., combining GPS sensor data with road network map
data. (2) It provides a technique for programs to implement per-
sonalization, by composing the original model with user history or
preferences. (3) It expresses the potential for programs to reconsider
decisions or speculate about a decision before all the data is avail-
able. This position paper explores the challenges involved in making
Bayes’ rule a programming language operator in general purpose
languages. We focus on average developers, who do not have deep
knowledge of statistics or machine learning, and on efficiency, since
developers find it challenging to reason about the hard-to-predict,
potentially unbounded runtime costs of existing implementations of
Bayes’ rule in inference algorithms.

Uncertainty in Today’s Programs

Many modern applications compute with uncertain data from sen-
sors, machine learning algorithms, and other sources. Uncertainty
complicates reasoning about a program’s behavior, but ignoring
uncertainty can cause the program to exhibit strange, unpredictable
and difficult-to-reproduce bugs. The machine learning community
has evolved techniques for programming with uncertainty using
probabilistic programming languages, in which program variables
are random variables and program statements induce a probabilistic
graphical model, queried with backward inference. Since machine
learning experts design these languages, they are unsurprisingly
highly effective for easing the workload of machine learning ex-
perts, and so include a way to express Bayesian inference queries
that are equivalent to applying Bayes’ rule. Outside the world of
machine learning, however, developers increasingly face uncertainty
in their own programs, whether from approximation for energy ef-
ficiency, deliberately created for differential privacy, or inherent in
scientific models or sensor data. It is time for the machine learn-
ing gurus to share their secrets and for the programming language
community to listen.

Recent work has made progress on bringing probabilistic rea-
soning to mainstream programming languages without significantly
burdening developers. Sankaranarayanan et al. provide static anal-
ysis techniques for probabilistic programs, helping developers to
reason about the extent to which uncertainty affects their computa-
tions [5]. Similarly, Sampson et al. provide probabilistic assertions
and a verification tool to help developers reason about the proba-
bilistic properties that their programs generate at runtime [4]. At the
language level, Bornholt et al. introduce Uncertain<T>, an abstrac-
tion that encapsulates uncertain data and provides an intuitive and
accessible semantics for developers to reason under uncertainty [1].
They show the potential for Bayes’ rule to improve the accuracy of
programs, but do not implement it as a general purpose mechanism.

What this recent work lacks is a general abstraction for Bayes’
rule, with which developers compose data from multiple sources to
produce more accurate and more compelling results. Bayes’ rule tells
us the probability of a hypothesis H given evidence E is Pr[H|E] o
Pr[E|H]Pr[H]. To incorporate evidence E into a hypothesis H, we
multiply a prior Pr[H] with a likelihood model Pr[E|H]. At the
programming language level, this suggests a Bayes operator § as a
multiplication of distributions, such that Pr[P£Q] = Pr[P] Pr[Q] (note
that this operation, multiplying two probabilities, is distinct from
multiplying two random variables). Bayes’ rule is a fundamental
part of any probabilistic formalism for programs. Our position is
that the Bayes operator should therefore be a central abstraction for
future programming languages, as programmers increasingly face
the challenge of computing with uncertain data.

The Power of the Bayes Operator

Composition. The Bayes operator encourages developers to spec-
ify their own prior understanding of different possibilities for their
data through composition. For example, the developer of an in-car
navigation application may specify a road network as a prior distri-
bution (i.e., a hypothesis) for the user’s location. Since the developer
knows this system will be installed in cars, the application can
exploit the knowledge that the car is likely to be on a road. The
developer would use the Bayes operator f to combine this prior
knowledge with GPS evidence to determine the user’s location:

Uncertain<GeoCoordinate> map = GPS.GetRoadMap ("Sydney");
Uncertain<GeoCoordinate> loc = GPS.GetLocation();

Uncertain<GeoCoordinate> new_loc = loc # map;
This formulation delivers more accurate location data than the GPS
alone. Of course, the beauty of Bayes’ rule is that strong GPS
evidence can still override the prior knowledge, without requiring
developers to resort to ad-hoc heuristics.

Personalization. The Bayes operator also enables personalization
by providing a framework to incorporate historical data into future
predictions. For example, the accuracy of smartphone GPS can be
improved by noting that humans are creatures of habit. We tend to
revisit places we have visited before. Exploiting this observation
means learning a user’s location history and applying it via the Bayes
operator to future GPS fixes. We could do this learning automatically
with machine learning algorithms, but a richer technique is to
identify key places in a user’s life (home, work, etc.):

void GPS.AddFavoriteLocation (GeoCoordinate place) {
Uncertain<GeoCoordinate> map = GPS.location_history;
// increment the probability for this place
map.addToDistribution (place);

}

Uncertain<GeoCoordinate> GPS.LocationWithHistory () {
Uncertain<GeoCoordinate> loc = GPS.GetLocation();
return loc # GPS.location_history;

}
The system could identify the user’s favorite locations from a
combination of history and map data (e.g., the user frequently visits
a location that the map shows is a gym), calendar data (the user has



frequent meetings in building 99), and explicit user input. Of course,
because a user is also quite likely to be visiting a new location, the
prior distribution does not assign zero probabilities to non-favorite
locations, so GPS evidence can still outweigh historical data.

Speculation. Finally, the Bayes operator also helps developers
write code which can automatically reconsider decisions in light
of new evidence. By preserving a Bayesian network model of
computation [1, 4], new data incorporated into a model may prompt
a program to reconsider which branch it took at a conditional
expression. For example, a gesture recognizer may revise its initial
decision about the gesture the user is performing based on where
the gesture ends. Being able to reconsider decisions also enables
programs to speculate about decisions. For example, a program that
uses InterPoll [2] to make decisions using crowd-sourced survey
data can speculate about the answer to a conditional based on few
samples, even if those samples are not sufficient for the desired
statistical significance. The program can continue executing while
further samples are gathered, reducing the latency of the program if
the speculation is correct. If the speculation is incorrect, the program
can reconsider its decision and make the other choice.

Concretely, we envision a speculative conditional construct s_i £
as demonstrated in the following program, which processes a user’s
touch input and decides which button was pressed and thus which
web page to load:

Uncertain<bool> HitTest (Uncertain<Pixel> touch,
TouchTarget target) {
return new Uncertain<bool> (

() => target.Contains (touch.Sample()) );
}

void OnTouch (Uncertain<Pixel> touch) {
WebPage page;
s_if (HitTest (touch, PageOneButton)) {
page = fetchPage (PageOneURL) ;
s_wait;
} s_elseif (HitTest (touch, PageTwoButton)) {
page = fetchPage (PageTwoURL) ;
s_wait;
} s_else {
return; // no target was hit
;resentPage(page);
}
The s_if construct tells the runtime that it can speculate on the
result of the conditional expression to decide which branch to enter.
The semantics of the conditional expression itself are as provided
by Uncertain<T>, so ask whether the hit test is more likely than
not to be true. However, the runtime is now allowed to speculate, by
observing only a few samples from the hit test and using them to
choose a branch while continuing the sampling in the background.
If later samples indicate the conclusion was wrong (for example,
the user drags their finger off the button during the gesture), the
runtime aborts the branch and tries the s_e1seif condition. But if
the speculation was correct, the program began loading the right web
page before the gesture was complete, reducing the visible latency.
The s_wait keyword tells the runtime that it must pause here until
it finalizes the conclusion it speculated on, so that the program does
not continue until the speculation is validated or disproven. We
believe this construct could be implemented as a compiler pass, and
the control flow achieved through the use of exceptions and try/catch
blocks in a host language such as Java or C#.

Now Make It Fast

The Bayes operator is difficult to implement in a system that
represents distributions by random sampling (which most do),
because there is no obvious way to compute the probabilities Pr[P]
and Pr[Q] that need to be multiplied. In particular, a completely
general implementation requires expensive backward inference

algorithms—those very same algorithms the machine learning
community use in their probabilistic programming languages, and
which require statistics expertise and acceptance of potentially-
unbounded runtime costs to use. Despite this difficulty, random
sampling is a desirable representation for a number of reasons
surrounding expressiveness and efficiency [1, 3].

To overcome this problem, the programming language commu-
nity must find ways to specialize the Bayes operator to cases that
are efficient and useful in average programs. For example, applying
the Bayes operator to two Bernoulli operands requires only taking
the conjunction of a sample from each operand, and so imposes
practically no overhead. We think many of these simpler cases will
be useful in practice.

To tackle the efficiency of the Bayes operator, we suggest a set of
performance optimizations that operate on a program’s probabilistic
semantics, rather than its concrete one. Recent work demonstrates
how to lift a program from its concrete semantics to a probabilistic
one and optimize it [4]. This work extends ideas such as constant
folding to probabilistic models to reduce an expression subtree to a
single node when the optimizer statically knows the distribution of
the result. Implementing such an optimization requires the compiler
to understand rules of statistics, similar to the rules compilers already
understand about common patterns in programs. We suggest these
same ideas will help when making the Bayes operator efficient.

A Call to Action

The benefits of a Bayes operator are clear. Programs written using
the operator are more accurate than those without, and developers
can use the operator to introduce new, more compelling features
to their programs. Only recently has the programming language
community been able to put elements of probabilistic programming
within the reach of the non-expert developer. We will continue to
develop new examples showing the power of correctly reasoning
about uncertain data using these elements. The burden now lies on
the community to deliver the abstractions and optimizations neces-
sary for non-expert developers to reason usefully and efficiently in
this way. If we rise to this challenge, programs that reason about
probabilistic data will be easier to write, more accurate, and more
effective.

References

[1] J. Bornholt, T. Mytkowicz, and K. S. McKinley. Uncertain<T>: A
First-order Type for Uncertain Data. In ASPLOS 2014.

[2] B. Livshits and T. Mytkowicz. InterPoll: Crowd-Sourced Internet Polls
(Done Right). Technical Report MSR-TR-2014-3, Microsoft Research.

[3] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based on
sampling functions. In POPL 2005.

[4] A.Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Grossman,
and L. Ceze. Expressing and verifying probabilistic assertions. In PLDI
2014. To appear.

[5] S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for
probabilistic programs: Inferring whole program properties from finitely
many paths. In PLDI 2013.



