
Hyperkernel: Push-Button Verification of an OS Kernel
Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,

James Bornholt, Emina Torlak, and Xi Wang

University of Washington

{lukenels,helgi,kaiyuanz,dgj16,bornholt,emina,xi}@cs.washington.edu

ABSTRACT
This paper describes an approach to designing, implement-

ing, and formally verifying the functional correctness of an

OS kernel, named Hyperkernel, with a high degree of proof

automation and low proof burden. We base the design of Hy-

perkernel’s interface on xv6, a Unix-like teaching operating

system. Hyperkernel introduces three key ideas to achieve

proof automation: it finitizes the kernel interface to avoid

unbounded loops or recursion; it separates kernel and user

address spaces to simplify reasoning about virtual memory;

and it performs verification at the LLVM intermediate repre-

sentation level to avoid modeling complicated C semantics.

We have verified the implementation of Hyperkernel with

the Z3 SMT solver, checking a total of 50 system calls and

other trap handlers. Experience shows that Hyperkernel can

avoid bugs similar to those found in xv6, and that the verifica-

tion of Hyperkernel can be achieved with a low proof burden.

ACM Reference Format:
Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan John-

son, James Bornholt, Emina Torlak, andXiWang. 2017. Hyperkernel:

Push-Button Verification of an OS Kernel. In SOSP ’17: ACM SIGOPS
26th Symposium on Operating Systems Principles. ACM, New York,

NY, USA, 18 pages. https://doi.org/10.1145/3132747.3132748

1 INTRODUCTION
The OS kernel is one of the most critical components of a

computer system, as it provides essential abstractions and ser-

vices to user applications. For instance, the kernel enforces

isolation between processes, allowing multiple applications

to safely share resources such as CPU and memory. Con-

sequently, bugs in the kernel have serious implications for

correctness and security, from causing incorrect behavior in

individual applications to allowing malicious applications to

compromise the entire system [12, 14, 50, 55].

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5085-3/17/10.

https://doi.org/10.1145/3132747.3132748

Previous research has applied formal verification to elimi-

nate entire classes of bugs within OS kernels, by constructing

a machine-checkable proof that the behavior of an imple-

mentation adheres to its specification [25, 34, 69]. But these

impressive achievements come with a non-trivial cost. For

example, the functional correctness proof of the seL4 kernel

took roughly 11 person years for 10,000 lines of C code [35].

This paper explores a push-button approach to building a

provably correct OS kernel with a low proof burden. We take

as a starting point the xv6 teaching operating system [17], a

modern re-implementation of the Unix V6 for x86. Rather

than using interactive theorem provers such as Isabelle [54]

or Coq [16] to manually write proofs, we have redesigned

the xv6 kernel interface to make it amenable to automated

reasoning using satisfiability modulo theories (SMT) solvers.

The resulting kernel, referred to as the Hyperkernel in this

paper, is formally verified using the Z3 SMT solver [19].

A key challenge in verifying Hyperkernel is one of inter-

face design, which needs to strike a balance between usability

and proof automation. On one hand, the kernel maintains a

rich set of data structures and invariants tomanage processes,

virtual memory, and devices, among other resources. As a re-

sult, the Hyperkernel interface needs to support specification

and verification of high-level properties (e.g., process isola-

tion) that provide a basis for reasoning about the correctness

of user applications. On the other hand, this interface must

also be implementable in a way that enables fully automated

verification of such properties with an SMT solver.

A second challenge arises from virtual memory manage-

ment in kernel code. Figure 1 shows a typical address space

layout on x86: both the kernel and user space reside in the

same virtual address space, with the kernel taking the up-

per half and leaving the lower half to user space [46]. The

kernel virtual memory is usually not an injective mapping—

writing to one kernel memory address can change the value

at another address, as two virtual addresses may both map

to the same physical address. Therefore, reasoning about

kernel data structures requires reasoning about the virtual-

to-physical mapping. This reasoning task is further compli-

cated by the fact that kernel code can change the virtual-to-

physical mapping during execution. Proving properties about

kernel code is particularly difficult in such a setting [37, 38].

https://doi.org/10.1145/3132747.3132748
https://doi.org/10.1145/3132747.3132748

SOSP ’17, October 28, 2017, Shanghai, China L. Nelson et al.

0

2
64

kernel text

kernel text

direct mapping

user

kernel

virtual memory physical memory

Figure 1: A simplifiedmemory layout of Linux on x86-
64: the kernel and user space are mapped to the up-
per half and lower half of the virtual address space,
respectively. The ABI recommends the kernel text to
be mapped to the top 2 GiB, as required by the kernel
code model [52]; the kernel also has a direct mapping
of all physical memory.

A final challenge is that Hyperkernel, like many other

OS kernels, is written in C, a programming language that

is known to complicate formal reasoning [26, 39, 53]. It is

notably difficult to accurately model the C semantics and

reason about C programs due to low-level operations such

as pointer arithmetic and memory access. In addition, the C

standard is intentionally underspecified, allowing compilers

to exploit undefined behavior in order to produce efficient

code [41, 67]. Such subtleties have led some researchers to

conclude that “there is no C program for which the standard

can guarantee that it will not crash” [40].

Hyperkernel addresses these challenges with three ideas.

First, its kernel interface is designed to be finite: all of the
handlers for system calls, exceptions, and interrupts (collec-

tively referred to as trap handlers in this paper) are free of

unbounded loops and recursion, making it possible to encode

and verify them using SMT. Second, Hyperkernel runs in

a separate address space from user space, using an identity

mapping for the kernel; this simplifies reasoning about ker-

nel code. To efficiently realize this separation, Hyperkernel

makes use of x86 virtualization support provided by Intel VT-

x andAMD-V: the kernel and user processes run in root (host)

and non-root (guest) modes, respectively, using separate page

tables. Third, Hyperkernel performs verification at the level

of the LLVM intermediate representation (IR) [42], which has

much simpler semantics than C while remaining sufficiently

high-level to avoid reasoning about machine details.

The kernel interface of Hyperkernel consists of 50 trap

handlers, providing support for processes, virtual memory,

file descriptors, devices, inter-process communication, and

scheduling. We have verified the correctness of this interface

declarative

specification
P

state-machine

specification

Si−1 Si Si+1

implementation Ii−1 Ii Ii+1

Figure 2: An overview of Hyperkernel verification. Si
and Ii denote states of the corresponding layers; solid
arrows denote state transitions. P denotes a crosscut-
ting property that holds during every state transition.

in two steps, as shown in Figure 2. First, we have devel-

oped a specification of trap handlers in a state-machine style,
describing the intended behavior of the implementation. Sec-

ond, to improve the confidence in the correctness of the

state-machine specification, we have further developed a

higher-level specification in a declarative style. The declara-
tive specification describes “end-to-end” crosscutting prop-

erties that the state-machine specification must satisfy [60],

such as “a process can write to pages only owned by itself.”

Such properties are more intuitive and easier to review. Us-

ing the Z3 SMT solver, verification finishes within about

15 minutes on an 8-core machine.

The current prototype of Hyperkernel runs on a unipro-

cessor system; verifying multiprocessor support is beyond

the scope of this paper. We choose not to verify the kernel

initialization and glue code (e.g., assembly for register save

and restore), instead relying on a set of custom checkers to

improve confidence in their correctness.

To demonstrate the usability of the kernel interface, we

have ported xv6 user programs to Hyperkernel, including

utilities and a shell. We have also ported the xv6 journaling

file system and the lwIP networking stack, both running as

user-space processes. We have developed several applica-

tions, including a Linux binary emulator and a web server

that can host the Git repository of this paper.

In summary, this paper makes two main contributions: a

push-button approach to building a verified OS kernel, and a

kernel interface design amenable to SMT solving. The careful

design of the kernel interface is key to achieving a high de-

gree of proof automation—naïvely applying the Hyperkernel

approach to verifying an existing kernel is unlikely to scale.

We chose xv6 as a starting point as it provides classic Unix

abstractions, with the final Hyperkernel interface, which is

amenable to automated verification, resembling an exoker-

nel [23, 33]. We hope that our experience can provide inspira-

tion for designing other “push-button verifiable” interfaces.

Hyperkernel: Push-Button Verification of an OS Kernel SOSP ’17, October 28, 2017, Shanghai, China

The rest of this paper is organized as follows. §2 gives

an overview of the verification process. §3 presents formal

definitions and verification details. §4 describes the design

and implementation of Hyperkernel and user-space libraries.

§5 discusses checkers as extensions to our verifier. §6 reports

on verification and runtime performance of Hyperkernel. §7

relates Hyperkernel to prior work. §8 concludes.

2 OVERVIEW
This section illustrates the Hyperkernel development work-

flow by walking through the design, specification, and veri-

fication of one system call.

As shown in Figure 3, to specify the desired behavior of

a system call, programmers write two forms of specifica-

tions: a detailed, state-machine specification for functional

correctness, and a higher-level, declarative specification that

is more intuitive for manual review. Both specifications are

expressed in Python, which we choose due to its simple

syntax and user-friendly interface to the Z3 SMT solver. Pro-

grammers implement a system call in C. The verifier reduces

both specifications (in Python) and the implementation (in

LLVM IR compiled from C) into an SMT query, and invokes

Z3 to perform verification. The verified code is linked with

unverified (trusted) code to produce the final kernel image.

An advantage of using an SMT solver is its ability to pro-

duce a test case if verification fails, which we find useful

for pinpointing and fixing bugs. For instance, if there is any

bug in the C code, the verifier generates a concrete test case,

including the kernel state and system call arguments, to de-

scribe how to trigger the bug. Similarly, the verifier shows

the violation if there is any inconsistency between the two

forms of specifications.

We make the following two assumptions in this section.

First, the kernel runs on a uniprocessor system with inter-

rupts disabled. Every system call is therefore atomic and runs

to completion. Second, the kernel is in a separate address

space from user space, using an identity mapping for virtual

memory. These assumptions are explained in detail in §3.

2.1 Finite interfaces
We base the Hyperkernel interface on existing specifications

(such as POSIX), making adjustments where necessary to

aid push-button verification. In particular, we make adjust-

ments to keep the kernel interface finite, by ensuring that

the semantics of every trap handler is expressible as a set

of traces of bounded length. To make verification scalable,

these bounds should be small constants that are indepen-

dent of system parameters (e.g., the maximum number of

file descriptors or pages).

To illustrate the design of finite interfaces, we show how

to finitize the POSIX specification of the dup system call

declarative

specification

state-machine

specification
verifier

proof or

test case

trap handler

& invariant

LLVM C

front-end

LLVM IR

kernel initialization

& glue code

LLVM

compiler

kernel

image

Python

C & assembly

Figure 3: The Hyperkernel development flow. Rectan-
gular boxes denote source, intermediate, and output
files; rounded boxes denote compilers and verifiers.
Shaded boxes denote files written by programmers.

for inclusion in Hyperkernel. In a classic Unix design, each

process maintains a file descriptor (FD) table, with each slot

in this table referring to an entry in a system-wide file ta-
ble. Figure 4 shows two example FD tables, for processes i
and j, along with a system-wide file table. The slot FD 0 in

process i’s table refers to the file table entry 0, and both pro-

cess i’s FD 1 and process j’s FD 0 refer to the same file table

entry 4. To correctly manage resources, the file table main-

tains a reference counter for each entry: entry 4’s counter is

2 as it is referred to by two FDs.

The POSIX semantics of dup(oldfd) is to create “a copy of

the file descriptor oldfd, using the lowest-numbered unused

file descriptor for the new descriptor” [47]. For example,

invoking dup(0) in process j would return FD 1 referring

to file table entry 4, and increment that entry’s reference

counter to 3.

We consider the POSIX semantics of the dup interface as

non-finite. To see why, observe that the lowest-FD semantics,

although rarely needed in practice [15], requires the kernel

implementation to check that every slot lower than the new

chosen FD is already occupied. As a result, allocating the

lowest FD requires a trace that grows with the size of the

FD table—i.e., trace length cannot be bounded by a small

constant that is independent of system parameters. This lack

of a small finite bound means that the verification time of

dup would increase with the size of the FD table.

Hyperkernel finitizes dup by changing the POSIX interface

to dup(oldfd, newfd), which requires user space to choose

a new FD number. To implement this interface, the kernel

simply checks whether a given newfd is unused. Such a check

requires a small, constant number of operations, irrespective

of the size of the FD table. This number puts an upper bound

on the length of any trace that a call to dup(oldfd, newfd)

can generate; the interface is therefore finite, enabling scal-

able verification.

SOSP ’17, October 28, 2017, Shanghai, China L. Nelson et al.

process i’s
FD table

process j’s
FD table

file table

0 1 0 1

0 1 2 3 4 5 6

file

0

file

4

· · · file

4

· · ·

refcnt

1

refcnt

2

· · ·

Figure 4: Per-process file descriptor (FD) tables and the
system-wide file table.

We emphasize two benefits of a finite interface. First, al-

though it is possible to verify the POSIX dup using SMT if the

FD table is small (by simply checking all possible table sizes),

this would not scale for resources with large parameters (e.g.,

pages). Therefore, we apply the finite-interface design to all

of Hyperkernel’s trap handlers. Second, our definition of

finite interfaces does not bound the size of kernel state—only

trace length. The kernel state can thus include arbitrarily

many file descriptors or pages, as long as each trap handler

accesses only a constant number of them, independent of

the size of the state.

2.2 Specifications
Given a finite interface, the programmer describes the de-

sired behavior of the kernel by providing a state-machine
specification. This specification consists of two parts: a defini-

tion of abstract kernel state, and a definition of trap handlers

(e.g., system calls) in terms of abstract state transitions. In

addition to a state-machine specification, the programmer

can optionally provide a declarative specification of the high-

level properties that the state-machine specification should

satisfy. The Hyperkernel verifier will check that these high-

level properties are indeed satisfied, helping increase the

programmer’s confidence in the correctness of the state-

machine specification. This section develops both forms of

specification for the finite dup interface.

Abstract kernel state. Programmers define the abstract ker-

nel state using fixed-width integers and maps, as follows:

class AbstractKernelState(object):

current = PidT()

proc_fd_table = Map((PidT, FdT), FileT)

proc_nr_fds = RefcntMap(PidT, SizeT)

file_nr_fds = RefcntMap(FileT, SizeT)

...

This snippet defines four components of the abstract state:

• current is the current running process’s identifier (PID);

• proc_fd_table represents per-process FD tables, map-

ping a PID and an FD to a file;

• proc_nr_fdsmaps a PID to the number of FDs used by

that process; and

• file_nr_fds maps a file to the number of FDs (across

all processes) that refer to that file.

The types PidT, FdT, FileT, and SizeT correspond to SMT

fixed-width integers (i.e., bit-vectors). The Map constructor

creates an uninterpreted function [20], which maps one or

more domain types to a range type. RefcntMap is a special

map for reference counting.

State-transition specification. The specification of most sys-

tem calls, including dup, follows a common pattern: it val-

idates system call arguments and transitions the kernel to

the next state if validation passes, returning zero as the re-

sult; otherwise, the system call returns an error code and the

kernel state does not change. Each system call specification

provides a validation condition and the new state, as follows:

def spec_dup(state, oldfd, newfd):

state is an instance of AbstractKernelState

pid = state.current

validation condition for system call arguments

valid = And(

oldfd is in [0, NR_FDS)

oldfd >= 0, oldfd < NR_FDS,

oldfd refers to an open file

state.proc_fd_table(pid, oldfd) < NR_FILES,

newfd is in [0, NR_FDS)

newfd >= 0, newfd < NR_FDS,

newfd does not refer to an open file

state.proc_fd_table(pid, newfd) >= NR_FILES,

)

make the new state based on the current state

new_state = state.copy()

f = state.proc_fd_table(pid, oldfd)

newfd refers to the same file as oldfd

new_state.proc_fd_table[pid, newfd] = f

bump the FD counter for the current process

new_state.proc_nr_fds(pid).inc(newfd)

bump the counter in the file table

new_state.file_nr_fds(f).inc(pid, newfd)

return valid, new_state

The specification of dup takes as input the current abstract

kernel state and its arguments (oldfd and newfd). Given these

inputs, it returns a validation condition and the new state to

which the kernel will transition if the validation condition is

true. And is a built-in logical operator; NR_FDS and NR_FILES

are the size limits of the FD table and the file table, respec-

tively; and inc bumps a reference counter by one, taking a

parameter to specify the newly referenced resource (used to

formulate reference counting; see §3.3). For simplicity, we

do not model error codes here.

Hyperkernel: Push-Button Verification of an OS Kernel SOSP ’17, October 28, 2017, Shanghai, China

Declarative specification. The state-machine specification

of dup is abstract: it does not have any undefined behavior

as in C, or impose implementation details like data layout in

memory. But it still requires extra care; for example, the pro-

grammer needs to correctly modify reference counters in the

file table when specifying dup. To improve confidence in its

correctness, we also develop a higher-level declarative speci-

fication [60] to better capture programmer intuition about

kernel behavior, in the form of a conjunction of crosscutting

properties that hold across all trap handlers.

Consider a high-level correctness property for reference

counting in the file table: if a file’s reference count is zero,

there must be no FD referring to the file. Programmers can

specify this property as follows:

ForAll([f, pid, fd], Implies(file_nr_fds(f) == 0,

proc_fd_table(pid, fd) != f))

Here, ForAll and Implies are built-in logical operators. Every

trap handler, including dup, should maintain this property.

More generally, every trap handler should maintain that

each file f ’s reference count is equal to the total number of

per-process FDs that refer to f :

file_nr_fds(f) = |{(pid, fd) | proc_fd_table(pid, fd) = f }|

We provide a library to simplify the task of expressing such

reference counting properties, further explained in §3.3.

This declarative specification captures the intent of the

programmer, ensuring that the state-machine specification—

and therefore the implementation—satisfies desirable cross-

cutting properties. For reference counting, even if both the

state-machine specification and the implementation failed

to correctly update a reference counter, the declarative spec-

ification would expose the bug. §6.1 describes one such bug.

2.3 Implementation
The C implementation of dup(oldfd, newfd) in Hyperkernel

closely resembles that in xv6 [17] and Unix V6 [48]. The key

difference is that rather than searching for an unused FD,

the code simply checks whether a given newfd is unused.

Briefly, the Hyperkernel implementation of dup uses the

following data structures:

• a global integer current, representing the current PID;

• a global array procs[NR_PROCS] of struct proc objects,

representing at most NR_PROCS processes;

• each struct proc contains an array ofile[NR_FDS]map-

ping file descriptors to files; and

• a global array files[NR_FILES] representing the file

table, mapping files to struct file objects.

The implementation copies the file referred to by oldfd (i.e.,

procs[current].ofile[oldfd]) into the unused newfd (i.e.,

procs[current].ofile[newfd]), and increments the corre-

sponding reference counters. It also checks the values of

oldfd and newfd to avoid buffer overflows, as they are sup-

plied by user space and used to index into the ofile array.

We omit the full code here due to space limitation.

Unlike previous kernel verification projects [34], we have

fewer restrictions on the use of C, as the verification will be

performed at the LLVM IR level. For instance, programmers

are allowed to use goto or fall-through switch statements.

See §3 for details.

Representation invariant. The kernel explicitly checks the

validity of values from user space (such as system call ar-

guments), as they are untrusted. But the validity of values

within the kernel is often implicitly assumed. For example,

consider the global variable current, which holds the PID of

the current running process. The implementation of the dup

system call uses current to index into the array procs. To

check (rather than assume) that this access does not cause

a buffer overflow, the Hyperkernel programmer has two

options: a dynamic check or a static check.

The dynamic check involves inserting the following test

into dup (and every other system call that uses current):

if (current > 0 && current < NR_PROCS) { ... }

The downside is that this checkwill always evaluate to true at

run time if the kernel is correctly implemented, unnecessarily

bloating the kernel and wasting CPU cycles.

The static check performs such tests at verification time.

To do so, programmerswrite the same range check of current,

but in a special check_rep_invariant() function, which de-

scribes the representation invariant of kernel data structures.
The verifier will try to prove that every trap handler main-

tains the representation invariant.

2.4 Verification
The verification of Hyperkernel proves two main theorems:

Theorem 1 (Refinement). The kernel implementation is
a refinement of the state-machine specification.

Theorem 2 (Crosscutting). The state-machine specifica-
tion satisfies the declarative specification.

Proving Theorem 1 requires programmers to write an

equivalence function (in Python) to establish the correspon-

dence between the kernel data structures in LLVM IR (com-

piled from C) and the abstract kernel state. This function

takes the form of a conjunction of constraints that relate

variables in the implementation to their counterparts in the

abstract state. For example, consider the following equiva-

lence constraint:

llvm_global('@current') == state.current

On the left-hand side, llvm_global is a helper function that

looks up a symbol current in the LLVM IR (@ indicates a

global symbol in LLVM), which refers to the current PID in

SOSP ’17, October 28, 2017, Shanghai, China L. Nelson et al.

the implementation; on the right-hand side, state.current

refers to the current PID in the abstract state, as defined in

§2.2. Other pairs of variables are similarly constrained.

Using the equivalence function, the verifier proves Theo-

rem 1 as follows: it translates both the state-machine specifi-

cation (written in Python) and the implementation (in LLVM

IR) into SMT, and checks whether they move in lock-step

for every state transition. The theorem employs a standard

definition of refinement (see §3): assuming that both start

in equivalent states and the representation invariant holds,

prove that they transition to equivalent states and the repre-

sentation invariant still holds.

To prove Theorem 2, that the state-machine specifica-

tion satisfies the declarative specification (both written in

Python), the verifier translates both into SMT and checks that

the declarative specification holds after each state transition

assuming that it held beforehand.

Test generation. The verifier can find the following classes

of bugs if it fails to prove the two theorems:

• bugs in the implementation (undefined behavior or

violation of the state-machine specification), and

• bugs in the state-machine specification (violation of

the declarative specification).

In these cases the verifier attempts to produce a concrete test

case from the Z3 counterexample to help debugging.

For example, if the programmer forgot to validate the

system call parameter oldfd in dup, the verifier would output

a stack trace along with a concrete oldfd value that causes

an out-of-bounds access in the FD table.

As another example, if the programmer forgot to incre-

ment the reference counter in the file table in the dup im-

plementation, the verifier would highlight the clause being

violated in the state-machine specification, along with the

following (simplified) explanation:

kernel state:

[oldfd = 1, newfd = 0, current = 32,

proc_fd_table = [(32, 1) -> 1, else -> -1]

file_nr_fds = [1 -> 1, else -> 0],

@files->struct.file::refcnt = [1 -> 1, else -> 0]

...]

before (assumption):

ForAll([f],

@files->struct.file::refcnt(f) == file_nr_fds(f))

after (fail to prove):

ForAll([f]

@files->struct.file::refcnt(f) == If(

f == proc_fd_table(current, oldfd),

file_nr_fds(f) + 1,

file_nr_fds(f)))

This output says that a bug can be triggered by invoking

dupfd(1, 0) within the process of PID 32. The kernel state

before the system call is the following: PID 32 is the current

running process; its FD 1 points to file 1 (with reference

counter 1); other FDs and file table entries are empty. The

two ForAll statements highlight the offending states before

and after the system call, respectively. Before the call, the

specification and implementation states are equivalent. Af-

ter the system call, the counter in the specification is cor-

rectly updated (i.e., file 1’s counter is incremented by one

in file_nr_fds); however, the counter remains unchanged

in the implementation (i.e., @files->struct.file::refcnt),

which breaks the equivalence function and so the proof fails.

Theorems. The two theorems hold if Z3 cannot find any

counterexamples. In particular, Theorem 1 guarantees that

the verified part of the kernel implementation is free of low-

level bugs, such as buffer overflow, division by zero, and

null-pointer dereference. It further guarantees functional

correctness—that each system call implementation satisfies

the state-machine specification.

Theorem 2 guarantees that the state-machine specification

is correct with respect to the declarative specification. For

example, the declarative specification in §2.2 requires that

file table reference counters are consistently incremented

and decremented in the state-machine specification.

Note that the theorems do not guarantee the correctness

of kernel initialization and glue code, or the resulting kernel

binary. §5 will introduce separate checkers for the unverified

parts of the implementation.

2.5 Summary
Using the dup system call, we have illustrated how to design

a finite interface, write a state-machine specification and a

higher-level declarative specification, implement it in C, and

verify the correctness in Hyperkernel. The proof effort is low

thanks to the use of Z3 and the kernel interface design. For

dup, the proof effort consists mainly of writing the specifi-

cations, one representation invariant on current (or adding

dynamic checks instead), and the equivalence function.

The trusted computing base (TCB) includes the specifi-

cations, the theorems (including the equivalence function),

kernel initialization and glue code, the verifier, and the de-

pendent verification toolchain (i.e., Z3, Python, and LLVM).

The C frontend to LLVM (including the LLVM IR optimizer)

is not trusted. Hyperkernel also assumes the correctness of

hardware, such as CPU, memory, and IOMMU.

3 THE VERIFIER
To prove Hyperkernel’s two correctness theorems, the veri-

fier encodes kernel properties in SMT for automated verifi-

cation. To make verification scalable, the verifier restricts its

Hyperkernel: Push-Button Verification of an OS Kernel SOSP ’17, October 28, 2017, Shanghai, China

user-kernel interface

. . .process process

trap handler

kernel

user

Figure 5: State transitions in Hyperkernel. At each
step process execution may either stay in user space
or trap into the kernel due to system calls, exceptions,
or interrupts. Each trap handler in the kernel runs to
completion with interrupt disabled.

use of SMT to an effectively decidable fragment of first-order

logic. This section describes how we use this restriction to

guide the design of the formalization.

We first present our model of the kernel behavior as a state

machine (§3.1), followed by the details of the verification

process. In particular, to verify the C implementation against

the state-machine specification, the verifier translates the

semantics of the LLVM IR into an SMT expression (§3.2). To

check the state-machine specification against the declarative

specification (e.g., the correctness of reference counters), it

encodes crosscutting properties in a way that is amenable to

SMT solving (§3.3).

3.1 Modeling kernel behavior
The verifier follows a standard way of modeling a kernel’s

execution as a state machine [36]. As shown in Figure 5, a

state transition can occur in response to either trap handling

or user-space execution (without trapping into the kernel).

By design, the execution of a trap handler in Hyperkernel is

atomic: it traps from user space into the kernel due to system

calls, exceptions, or interrupts, runs to completion, and re-

turns to user space. This atomicity simplifies verification by

ruling out interleaved execution, allowing the verifier to rea-

son about each trap handler in its entirety and independently.

As mentioned earlier, Hyperkernel runs on a uniprocessor

system. However, even in this setting, ensuring the atomic

execution of trap handlers requires Hyperkernel to sidestep

concurrency issues that arise from I/O devices, namely, in-

terrupts and direct memory access (DMA), as follows.

First, the kernel executes trap handlers with interrupts

disabled, postponing interrupts until the execution returns

to user space (which will trap back into the kernel). By doing

so, each trap handler runs to completion in the kernel.

Second, since devices may asynchronously modify mem-

ory through DMA, the kernel isolates their effects by restrict-

ing DMA to a dedicated memory region (referred to as DMA
pages); this isolation is implemented through mechanisms

such as Intel’s VT-d Protected Memory Regions [29] and

AMD’s Device Exclusion Vector [4] configured at boot time.

In addition, the kernel conservatively considers DMA pages

volatile (see §3.2), where memory reads return arbitrary val-

ues. In doing so, a DMA write that occurs during kernel

execution is effectively equivalent to a no-op with respect to

the kernel state, removing the need to explicitly model DMA.

With this model, we now define kernel correctness in

terms of state-machine refinement. Formally, we denote each

state transition (e.g., trap handling) by a transition function f
that maps the current state s and input x (e.g., system call

arguments) to the next state f (s,x). Let fspec and fimpl be

the transition functions for the specification and implemen-

tation of the same state transition, respectively. Let I be
the representation invariant of the implementation (§2.3).

Let sspec ∼ simpl denote that specification state sspec and

implementation state simpl are equivalent according to the

programmer-defined equivalence function (§2.4). We write

sspec ∼I simpl as a shorthand for I (simpl)∧(sspec ∼ simpl), which

states that the representation invariant holds in the imple-

mentation and both states are equivalent. With this notation,

we define refinement as follows:

Definition 1 (Specification-Implementation Refine-

ment). The kernel implementation is a refinement of the state-
machine specification if the following holds for each pair of
state transition functions fspec and fimpl:

∀sspec, simpl,x . sspec ∼I simpl ⇒ fspec(sspec,x) ∼I fimpl(simpl,x)

To prove kernel correctness (Theorem 1), the verifier com-

putes the SMT encoding of fspec and fimpl for each transition

function f , as well as the representation invariant I (which is
the same for all state transitions). The verifier then asks Z3 to

prove the validity of the formula in Definition 1 by showing

its negation to be unsatisfiable. The verifier computes fspec by
evaluating the state-machine specification written in Python.

To compute fimpl and I , it performs exhaustive (all-paths)

symbolic execution over the LLVM IR of kernel code. If Z3

finds the query unsatisfiable, verification succeeds. Other-

wise, if Z3 returns a counterexample, the verifier constructs

a test case (§2.4).

Proving crosscutting properties (Theorem 2) is simpler.

Since a declarative specification defines a predicate P over

the abstract kernel state, the verifier checks whether P holds

during each transition of the state-machine specification.

More formally:

Definition 2 (State-Machine Specification Correct-

ness). The state-machine specification satisfies the declarative
specification P if the following holds for every state transition
fspec starting from state sspec with input x :

∀sspec,x . P(sspec) ⇒ P(fspec(sspec,x))

SOSP ’17, October 28, 2017, Shanghai, China L. Nelson et al.

To prove a crosscutting property P , the verifier computes

the SMT encoding of P and fspec from the respective specifi-

cations (both in Python), and invokes Z3 on the negation of

the formula in Definition 2. As before, verification succeeds

if Z3 finds this query unsatisfiable.

Note that the verifier assumes the correctness of kernel

initialization, leaving the validation to a boot checker (see §5).

Specifically, for Theorem 1, it assumes the initial state of the

implementation satisfies the representation invariant I ; for
Theorem 2, it assumes the initial state of the state-machine

specification satisfies the predicate P .

3.2 Reasoning about LLVM IR
LLVM IR is a code representation that has been widely used

for building compilers and bug-finding tools (e.g., KLEE [11]).

We choose it as our verification target for two reasons. One,

its semantics is simple compared to C and exhibits fewer un-

defined behaviors. Two, compared to x86 assembly, it retains

high-level information, such as types, and does not include

machine-specific details like the stack pointer.

To construct an SMT expression for each trap handler,

the verifier performs symbolic execution over its LLVM IR.

Specifically, the symbolic execution uses the self-finitization
strategy [65]: it simply unrolls all the loops and exhaustively

traverses every code branch. In doing so, the verifier assumes

that the implementation of every trap handler is finite. If not,

symbolic execution diverges and verification fails.

The symbolic execution consists of two steps: it emits

checks to preclude any undefined behavior in the LLVM IR,

and maps LLVM IR into SMT, as detailed next.

Precluding undefined behavior. The verifier must prove

that each trap handler is free of undefined behavior. There

are three types of undefined behavior in LLVM IR: immediate

undefined behavior, undefined values, and poison values [49].

The verifier handles each case conservatively, as follows:

• Immediate undefined behavior indicates errors, such

as division by zero. The verifier emits a side check to

ensure the responsible conditions do not occur (e.g.,

divisors must be non-zero).

• Undefined values are a form of deferred undefined be-

havior, representing arbitrary bits (e.g., from uninitial-

ized memory reads). The verifier represents undefined

values with fresh symbolic variables, which may take

any concrete value.

• Poison values are like undefined values, but trigger im-

mediate undefined behavior if they reach side-effecting

operations. They were introduced to enable certain op-

timizations, but are known to have subtle semantics;

there are ongoing discussions in the LLVM community

on removing them (e.g., see Lee et al. [43]). The verifier

takes a simple approach: it guards LLVM instructions

that may produce poison values with conditions that

avoid poison, effectively treating them as immediate

undefined behavior.

Encoding LLVM IR in SMT. With undefined behavior pre-

cluded, it is straightforward for the verifier to map LLVM

types and instructions to SMT. For instance, an n-bit LLVM
integer maps to an n-bit SMT bit-vector; LLVM’s add instruc-

tion maps to SMT’s bit-vector addition; and regular mem-

ory accesses map to uninterpreted function operations [20].

Volatile memory accesses (e.g., DMA pages and memory-

mapped device registers), however, require special care: the

verifier conservatively maps a volatile read to a fresh sym-

bolic variable that may take any concrete value.

The verifier also allows programmers to provide an ab-

stract model in SMT for inline assembly code. This model

is trusted and not verified. Hyperkernel currently uses this

support for modeling TLB flush instructions.

The verifier supports a substantial subset of LLVM IR. It

does not support exceptions, integer-to-pointer conversions,

floating point types, or vector types (e.g., for SSE instruc-

tions), as they are not used by Hyperkernel.

3.3 Encoding crosscutting properties
To achieve scalable verification, the verifier restricts the use

of SMT to an effectively decidable fragment of first-order

logic. The emitted encoding from both LLVM IR and the

state-machine specification consists largely of quantifier-free

formulas in decidable theories (i.e., bit-vectors and equality

with uninterpreted functions).

The exception to this encoding discipline is the use of

quantifiers in the high-level, declarative specification. In

particular, we use quantifiers to specify properties about two

common resource management patterns in Unix-like kernels:

that a resource is exclusively owned by one object, and that

a shared resource is consistently reference-counted. While

such quantified formulas are decidable, encoding them in

SMT requires caution—naïve encodings can easily cause the

solver to enumerate the search space and fail to terminate

within a reasonable amount of time. We next describe SMT

encodings that scale well in practice.

Specifying exclusive ownership. Exclusive ownership prop-

erties are common in kernel resourcemanagement. For exam-

ple, each process has its own separate address space, and so

the page table root of a process must be exclusively owned by

a single process. In general, such properties can be expressed

in the following form:

∀o,o′ ∈ O. own(o) = own(o′) ⇒ o = o′

Here, O is a set of kernel objects (e..g, processes) that can

refer to resources such as pages, and own is a function that

maps an object to a resource (e.g., the page frame number

Hyperkernel: Push-Button Verification of an OS Kernel SOSP ’17, October 28, 2017, Shanghai, China

of the page table root of a process). This encoding, however,

does not work well in practice.

For effective verification, we reformulate the naïve encod-

ing in a standard way [20] by observing that the own function
must be injective due to exclusive ownership. In particular,

there exists an inverse function owned-by such that:

∀o ∈ O. owned-by(own(o)) = o

The verifier provides a library using this encoding: it asks

programmers to provide the inverse function, which usu-

ally already exists in the state-machine specification (e.g., a

map from a page to its owner process), hiding the rest of the

encoding details from programmers.

Specifying reference-counted shared ownership. Reference-
counted shared ownership is a more general resource man-

agement pattern. For example, two processes may refer to

the same file through their FDs. The corresponding crosscut-

ting property (described in §2.2) is that the reference count

of a file must equal the number of per-process FDs that refer

to this file. As another example, the number of children of a

process p must equal the number of processes that designate

p as their parent.

In general, such properties require the reference count of

a shared kernel resource (e.g., a file) to equal the size of the

set of kernel objects (e.g., per-process FDs) that refer to it.

Formally, verifying such a property involves checking the

validity of the formula:

∀r . refcnt(r) = |{o ∈ O | own(o) = r }|

Here, refcnt is a function that maps a resource r to its ref-

erence count; O is the set of kernel objects that can hold

references to such resources; and own maps an object o in O
to the resource it refers to.

We encode the above property for scalable verification by

observing that if an object r has reference count refcnt(r),
there must be a way to permute the elements of O such that

exactly the first refcnt(r) objects in O refer to r .
In particular, the verifier encodes the reference counting

property in two parts. First, for each resource r , a permuta-

tion π orders the objects of O so that only the first refcnt(r)
objects refer to the resource r :

∀r . ∀0 ≤ i < |O |.

own(π (r , i)) = r ⇒ i < refcnt(r) ∧

own(π (r , i)) , r ⇒ i ≥ refcnt(r)

Second, π must be a valid permutation (i.e., a bijection), so

there exists an inverse function π−1
such that:

∀r . [∀0 ≤ i < |O |. π−1(r ,π (r , i)) = i
]
∧[∀o ∈ O. π (r ,π−1(r ,o)) = o

]
A library hides these details from programmers (see §2.2).

4 THE HYPERKERNEL
This section describes how to apply the finite-interface de-

sign and make Hyperkernel amenable to automated verifica-

tion. We start with an overview of the design rationale (§4.1),

followed by common patterns of finitizing the kernel inter-

face (§4.2). The interface allows us to implement user-space

libraries to support file systems and networking (§4.3). We

end this section with a discussion of limitations (§4.4).

4.1 Design overview
To make the kernel interface finite, Hyperkernel combines

OS design ideas from three main sources—Dune [8], exoker-

nels [23, 33], and seL4 [34, 35]—as follows.

Processes through hardware virtualization. Unlike conven-
tional Unix-like kernels, Hyperkernel provides the abstrac-

tion of a process using Intel VT-x and AMD-V virtualization

support. The kernel runs as a host and user processes runs

as guests (in ring 0), similarly to Dune [8]. Trap handlers are

implemented as VM-exit handlers, in response to hypercalls

(to implement system calls), preemption timer expiration,

exceptions, and interrupts.

This approach has two advantages. First, it allows the

kernel and user space to have separate page tables; the kernel

simply uses an identity mapping for its own address space.

Compared to previous address space designs (e.g., seL4 [34,

37]), this design sidesteps the need to reason about virtual-to-

physical mapping for kernel code, simplifying verification.

Second, the use of virtualization safely exposes the inter-

rupt descriptor table (IDT) to user processes. This allows

the CPU to deliver exceptions (e.g., general protection or

page fault) directly to user space, removing the kernel from

most exception handling paths. In addition to performance

benefits [8, 64], this design reduces the amount of kernel

code that needs verification—Hyperkernel handles VM-exits

due to “triple faults” from processes only, leaving the rest of

exception handling to user space.

Explicit resource management. Similarly to exokernels [23],

Hyperkernel requires user space to explicitly make resource

allocation decisions. For instance, a system call for page

allocation requires user space to provide a page number. The

kernel simply checks whether the given resource is free,

rather than searching for a free one itself.

This approach has two advantages. First, it avoids loops in

the kernel and so makes verification scalable. Second, it can

be implemented using array-based data structures, which

the verifier can easily translate into SMT; it avoids reasoning

about linked data structures (e.g., lists and trees), which are

not well supported by solvers.

On the other hand, reclaiming resources often requires

a loop, such as freeing all pages from a zombie process. To

SOSP ’17, October 28, 2017, Shanghai, China L. Nelson et al.

boot

memory

process

table

file

table

. . .
page

metadata
RAM pages DMA pages PCI pages

Figure 6: Memory layout in Hyperkernel: boot memory is used only during kernel initialization; shaded regions
are accessible only by the CPU; and crosshatched regions are accessible by both the CPU and I/O devices.

keep the kernel interface finite, Hyperkernel safely pushes

such loops to user space. For example, Hyperkernel provides

a system call for user space to explicitly reclaim a page. In do-

ing so, the kernel reclaims only a finite number of resources

within each system call, avoiding long-running kernel op-

erations altogether [22]. Note that the reclamation system

call allows any process to reclaim a page from a zombie pro-

cess, without the need for a special user process to perform

garbage collection.

Typed pages. Figure 6 depicts the memory layout of Hy-

perkernel. It contains three categories of memory regions:

• Boot memory is used during kernel initialization only

(e.g., for the kernel’s identity-mapping page table) and

freezes after booting.

• The main chunk of memory is used to keep kernel

metadata for resources (e.g., processes, files, and pages),

as well as “RAM pages” holding kernel and user data.

• There are two volatile memory regions: DMA pages,

which restrict DMA (§3.1); and PCI pages (i.e., the “PCI

hole”), which are mapped to device registers.

“RAM pages” are typed similarly to seL4: user processes re-

type pages through system calls, for instance, turning a free

page into a page-table page, a page frame, or a stack. The

kernel uses page metadata to track the type and ownership

of each page and decide whether to allow such system calls.

4.2 Designing finite interfaces
We have designed Hyperkernel’s system call interface fol-

lowing the rationale in §4.1. In particular, using xv6 and

POSIX as our basis, we have made the Hyperkernel interface

finite and amenable to push-button verification. This design

leads to several common patterns described below. We also

show how these patterns help ensure desired crosscutting

properties, verified as part of the declarative specification.

Enforcing resource lifetime through reference counters. As
mentioned earlier, the kernel provides system calls for user

space to explicitly reclaim resources, such as processes, file

descriptors, and pages. To avoid resource leaks, the kernel

needs to carefully enforce their lifetime. For example, before

it reaps a zombie process and reclaims its PID, the kernel

needs to ensure that all the open file descriptors and pages

associated with this process have been reclaimed, and that

all its child processes have been re-parented (e.g., to init).

To do so, Hyperkernel reuses much of xv6’s process struc-

ture and augments it with a set of reference counters to

track its resource usage, such as the number of FDs, pages,

and children. Reaping a process succeeds only if all of its

reference counters are already zero.

As an example, recall that in §3.3 we have verified the cor-

rectness of the reference counter of the number of children:

Property 1. For any process p, the value of its reference
counter nr_children in the process structure must equal the
number of processes with p as its parent.

We use this property to ensure that user space must have

re-parented all the children of a process before reaping the

process, by proving the following:

Property 2. If a process p is marked as free, no process
designates p as its parent.

We have verified similar properties for other resources

that can be owned by a process. Such properties ensures that

the kernel does not leak resources when it reaps a process.

Enforcing fine-grained protection. Some POSIX system calls

have complex semantics. One example is fork and exec for

process creation: fork needs to search for a free PID and free

pages, duplicate resources (e.g., pages and file descriptors),

and add the child process to the scheduler; exec needs to dis-

card the current page table, read an ELF executable file from

disk, and load it into memory. It is non-trivial to formally

specify the behavior of these complex system calls let alone

verify their implementations.

Instead, Hyperkernel provides a primitive system call for

process creation in an exokernel fashion [33]. It creates a

minimal process structure with three pages (i.e., the virtual

machine control structure, the page table root, and the stack),

leaving much of the work (e.g., resource duplication and ELF

loading) to user-space libraries. This approach does not guar-

antee, for instance, that an ELF executable file is correctly

loaded, though bugs in user-space libraries will be confined

to that process.

This primitive system call is easier to specify, implement,

and verify. As in exokernels, it still guarantees isolation. For

example, we have proved the following in §3.3:

Property 3. The page of the page table root of a process p
is exclusively owned by p.

Hyperkernel: Push-Button Verification of an OS Kernel SOSP ’17, October 28, 2017, Shanghai, China

Similarly, Hyperkernel exposes fine-grained virtual mem-

ory management. In particular, it provides page-table alloca-

tion through four primitive system calls: starting from the

page table root, each system call retypes a free page and

extends the page table to the next level. Memory allocation

operations such as mmap and brk are implemented by user-

space libraries using these system calls. This design is similar

to seL4 and Barrelfish [7], but using page metadata rather

than capabilities. The system calls follow xv6’s semantics,

where processes do not share pages. We have proved the

following:

Property 4. Each writable entry in a page-table page of
processp must refer to a next-level page exclusively owned byp.

Combining Properties 3 and 4, we have constructed an ab-

stract model of page walking to prove the following memory

isolation property:

Property 5. Given any virtual address in process p, if the
virtual address maps to a writable page through a four-level
page walk, that page must be exclusively owned by p, and its
type must be a page frame.

This property ensures that a process can modify only its

own pages, and that it cannot bypass isolation by directly

modifying pages of critical types (e.g., page-table pages). We

have proved similar properties for readable page-table entries

and virtual addresses. In addition, Hyperkernel provides fine-

grained system calls for managing IOMMU page tables, with

similar isolation properties (omitted for brevity). §6.1 will

describe bugs caught by these isolation properties.

Validating linked data structures. As mentioned earlier,

Hyperkernel uses arrays to keep metadata. For instance, for

page allocation the kernel checks whether a user-supplied

page is free using an array for the page metadata; user space

can implement its own data structures to find a free page effi-

ciently. However, this technique does not preclude the use of

linked data structures in the kernel. Currently, Hyperkernel

maintains two linked lists: a free list of pages and a ready

list of processes. They are not necessary for functionality,

but can help simplify user-space implementations.

Take the free list as an example. The kernel embeds a

linked list of free pages in the page metadata (mapped as

read-only to user space). This free list serves as suggestions

to user processes: they may choose to allocate free pages

from this list or to implement their own bookkeeping mecha-

nism. For the kernel, the correctness of page allocation is not

affected by the use of the free list, as the kernel still validates

a user-supplied page as before—if the page is not free, page

allocation fails. This approach thus adds negligible work to

the verifier, as it does not need to verify the full functional

correctness of these lists.

4.3 User-space libraries
Bootstrapping. Like xv6, Hyperkernel loads and executes

a special init process after booting. Unlike xv6, init has

access to the IDT and sets up user-level exception handling.

Another notable difference is that instead of using syscall,

user space uses hypercall (e.g., vmcall) instructions to invoke

the kernel. We have implemented a libc that is source com-

patible with xv6, which helps in porting xv6 user programs.

File system. We have ported the xv6 journaling file sys-

tem to run on top of Hyperkernel as a dedicated file server

process. The file system can be configured to run either as

an in-memory file system or with an NVM Express disk, the

driver for which uses IOMMU system calls provided by the

kernel. While the file system is not verified, we hope to incor-

porate recent efforts in file system verification [3, 13, 62, 63]

in the future.

Network. We have implemented a user-space driver for

the E1000 network card (through IOMMU system calls) and

ported lwIP [21] to run as a dedicated network server. We

have implemented a simple HTTP server and client, capable

of serving the git repository that hosts this paper.

Linux user emulation. We have implemented an emulator

to execute unmodified, statically linked Linux binaries. Since

the user space is running as ring 0, the emulator simply inter-

cepts syscall instructions and mimics the behavior of Linux

system calls, similar to Dune [8]. The current implementa-

tion is incomplete, though it can run programs such as gzip,

sha1sum, Z3, and the benchmarks we use in §6.4.

4.4 Limitations
The use of hardware virtualization in Hyperkernel simplifies

verification by separating kernel and user address spaces, and

by pushing exception handling into user space. This design

choice does not come for free: the (trusted) initialization code

is substantially larger and more complex, and the overhead

of hypercalls is higher compared to syscall instructions, as

we evaluate in §6.4.

Hyperkernel’s data structures are designed for efficient

verification with SMT solvers. The kernel relies on arrays,

since the verifier can translate them into uninterpreted func-

tions for efficient reasoning. It uses linked data structures

through validation, such as the free list of pages and the

ready list of processes. Though this design is safe, the veri-

fier does not guarantee that the free list contains all the free

pages, or that the scheduler is free of starvation. Incorporat-

ing recent progress in automated verification of linked data

structures may help with such properties [57, 71].

Hyperkernel requires a finite interface. Many POSIX sys-

tem calls (e.g., fork, exec, and mmap) are non-finite, as they

perform a number of operations. As another example, the

SOSP ’17, October 28, 2017, Shanghai, China L. Nelson et al.

seL4 interface, in particular revoking capabilities, is also

non-finite, as it involves potentially unbounded loops over

recursive data structures [22]. Verifying these interfaces re-

quires more expressive logics and is difficult using SMT.

The Hyperkernel verifier works on LLVM IR. Its correct-

ness guarantees therefore do not extend to the C code or

the final binary. For example, the verifier will miss unde-

fined behavior bugs in the C code if they do not manifest as

undefined behavior in the LLVM IR (e.g., if the C frontend

employs a specific interpretation of undefined behavior).

Finally, Hyperkernel inherits some limitations from xv6. It

does not support threads, copy-on-write fork, shared pages,

or Unix permissions. Unlike xv6, Hyperkernel runs on a

uniprocessor system and does not provide multicore support.

Exploring finite-interface designs to support these features

is left to future work.

5 CHECKERS
The Hyperkernel theorems provide correctness guarantees

for trap handlers. However, they do not cover kernel ini-

tialization or glue code. Verifying these components would

require constructing a machine-level specification for x86

(including hardware virtualization), which is particularly

challenging due to its complexity. We therefore resort to

testing and analysis for these cases, as detailed next.

Boot checker. Theorem 1 guarantees that the representa-

tion invariant (e.g., current is always a valid PID) holds after

each trap handler if it held beforehand. However, it does not

guarantee that the invariant holds initially.

Recall that the verifier asks programmers to write the rep-

resentation invariant in C in a special check_rep_invariant

function (§2.2). To check that the representation invariant

holds initially, we modify the kernel implementation to sim-

ply call this function before it starts the first user process

init; the kernel panics if the check fails.

Similarly, Theorem 2 guarantees that the predicate P holds

after each transition in the state-machine specification if it

held beforehand. But it does not guarantee that P is not

vacuous—P may never hold in any state. To preclude such a

bug in the declarative specification, we show P is not vacuous

by constructing an initial state and checking that it satisfies P .

Stack checker. LLVM IR does not model machine details

such as the stack. Therefore, the verification of Hyperkernel,

which is at the LLVM IR level, does not preclude run-time fail-

ures due to stack overflow.We implement a static checker for

the x86 assembly generated by the LLVM backend; it builds a

call graph and conservatively estimates the maximum stack

space used by trap handlers. Running the checker shows that

they all execute within the kernel stack size (4 KiB).

Link checker. The verifier assumes that symbols in the

LLVM IR do not overlap. We implement a static checker to

ensure that the linker maintains this property in the final

kernel image. The checker reads the memory address and

size of each symbol from the kernel image and checks that

all the symbols reside in disjoint memory regions.

6 EXPERIENCE
This section reports on our experience in developing Hyper-

kernel, as well as its verification and run-time performance.

6.1 Bug discussion
To understand how effective the verifier and checkers are in

preventing bugs in Hyperkernel, we examine the git commit

log of xv6 from January 2016 to July 2017. Even though

xv6 is a fairly mature and widely used teaching OS, during

this time period the authors have found and fixed a total

of ten bugs in the xv6 kernel. We manually analyze these

bugs and determine whether they can occur in Hyperkernel.

We exclude two lock-related bugs as they do not apply to

Hyperkernel. Figure 7 shows the eight remaining bugs. In

summary:

• Five bugs cannot occur in Hyperkernel: four would be

caught by the verifier as they would trigger undefined

behavior or violate functional correctness; and one

buffer overflow bug would be caught either by the

verifier or the boot checker.

• Three bugs are in xv6’s exec system call for ELF load-

ing; Hyperkernel implements ELF loading in user space,

and thus similar bugs can happen there, but will not

harm the kernel.

During the development of Hyperkernel, the verifier iden-

tified several bugs in our C code. Examples included incor-

rect assertions that could crash the kernel and missing sanity

checks on system call arguments. The declarative specifi-

cation also uncovered three interesting bugs in the state-

machine specification, as described below.

The first bug was due to inconsistencies in the file table. To

decide the availability of a slot in the file table, some system

calls checkedwhether the reference countwas zero (Figure 4),

while others checked whether the file type was a special

value (FD_NONE); in some cases both fields were not updated

consistently. Both the state-machine specification and the

implementation had the same bug. It was caught by the refer-

ence counting property (§2.2) in the declarative specification.

The other two bugs were caused by incorrect lifetime man-

agement in the IOMMU system calls. Hyperkernel exposes

system calls to manage two IOMMU data structures: a device

table that maps a device to the root of an IOMMU page table,

and an IOMMU page table for address translation. To avoid

Hyperkernel: Push-Button Verification of an OS Kernel SOSP ’17, October 28, 2017, Shanghai, China

Commit Description Preventable?

8d1f9963 incorrect pointer verifier

2a675089 bounds checking verifier

ffe44492 memory leak verifier

aff0c8d5 incorrect I/O privilege verifier

ae15515d buffer overflow verifier/boot checker

5625ae49 integer overflow in exec G#
e916d668 signedness error in exec G#
67a7f959 alignedness error in exec G#

Figure 7: Bugs found and fixed in xv6 in the past year
and whether they can be prevented in Hyperkernel:
 means the bug can be prevented through the verifier
or checkers; andG#means the bug can be prevented in
the kernel but can happen in user space.

dangling references, the kernel must invalidate a device-

table entry before reclaiming pages of the IOMMU page table

referenced by the entry. Initially, both the state-machine

specification and the implementation failed to enforce this

requirement, violating the isolation property (§4.2) in the

declarative specification: an IOMMU page walk must end at

a page frame (i.e., it cannot resolve to a free page). A similar

bug was found in the system call for invalidating entries in

the interrupt remapping table.

Our experience with the declarative specification suggests

that it is particularly useful for exposing corner cases in the

design of the kernel interface. We share some of Reid’s ob-

servations [60]: high-level declarative specifications capture

properties across many parts of the system, which are often

difficult for humans to keep track of. They are also more intu-

itive for expressing the design intent and easier to translate

into natural language for understanding.

6.2 Development effort
Figure 8 shows the size of the Hyperkernel codebase. The

development effort took several researchers about a year. We

spent most of this time experimenting with different system

designs and verification techniques, as detailed next.

System designs. The project went through three major re-

visions. We wrote the initial kernel implementation in the

Rust programming language. Our hope was that the memory-

safety guarantee provided by the language would simplify

the verification of kernel code. We decided to abandon this

plan for two reasons. One, Rust’s ownership model posed

difficulties, because our kernel is single-threaded but has

many entry points, each of which must establish ownership

of any memory it uses [45]. Two, it was challenging to for-

malize the semantics of Rust due to the complexity of its type

system—see recent efforts by Jung et al. [32] and Reed [59].

Component Lines Languages

kernel implementation 7,419 C, assembly

representation invariant 197 C

state-machine specification 804 Python

declarative specification 263 Python

user-space implementation 10,025 C, assembly

verifier 2,878 C++, Python

Figure 8: Lines of code for each component.

Our second implementation was in C, with a more tradi-

tional OS design on x86-64: the kernel resided at the top half

of the virtual address space. As mentioned earlier, this de-

sign complicated reasoning about kernel code—every kernel

pointer dereference needed to be mapped to the correspond-

ing physical address. We started to look for architectural sup-

port that would simplify reasoning about virtual memory;

ideally, it would allow us to run the kernel with an identity

mapping, in a separate address space from user code.

Hyperkernel is our third attempt. We started with xv6,

borrowing the idea of processes as guests from Dune [8],

and tailoring it for verification. For instance, Dune uses the

Extended Page Tables (EPT) and allows user space to directly

control its own %CR3. Hyperkernel disallows the EPT due to

its unnecessary complexity and address translation overhead,

instead providing system calls for page-table management.

With the ideas described in §4, we were able to finish the

verification with a low proof burden.

Verification and debugging. As illustrated in §2, verifying

a new system call in Hyperkernel (after implementing it in

C) requires three steps: write a state-machine specification

(in Python); relate data structures in LLVM IR to the abstract

kernel state in the equivalence function (in Python); and add

checks in the representation invariant if needed (in C).

Our initial development time was spent mostly on the first

step. During that process, we developed high-level libraries

for encoding common crosscutting properties (§3.3) and for

mapping data structures in LLVM IR to abstract state. With

these components in place, and assuming no changes to the

declarative specification, one of the authors can verify a new

system call implementation within an hour.

As it is unlikely to write bug-free code on the first try, we

found that counterexamples produced by Z3 are useful for

debugging during development. At first, the generated test

case was often too big for manual inspection, as it contained

the entire kernel state (e.g., the process table, the file table, as

well as FDs and page tables). We then added support in the

verifier for minimizing the state and highlighting offending

predicates that were violated.

SOSP ’17, October 28, 2017, Shanghai, China L. Nelson et al.

Jan 2016 May 2016 Oct 2016 Feb 2017 Jul 2017

14

16

18

20

22

24
4.5.0

Figure 9: Verification time in minutes with Z3 com-
mits over time. The dashed lines represent Z3 releases.

In our experience, Z3 was usually able to generate coun-

terexamples for implementation bugs that violated Theo-

rem 1. However, for violations of Theorem 2 (e.g., bugs in

the state-machine specification), Z3 sometimes failed to do

so if the size of the counterexample was too big. We worked

around this issue by temporarily lowering system parame-

ters for debugging (e.g., limiting the maximum number of

processes or pages to a small value). This reduction helps Z3

construct small counterexamples, and also makes it easier

to understand the bug. As hypothesized by Jackson [30], we

found these “small counterexamples” sufficient for finding

and fixing bugs in Hyperkernel.

SMT encodings. Hyperkernel benefits from the use of SMT

solvers for verification. However, SMT is no silver bullet:

naïve encodings can easily overwhelm the solver, and given

a non-finite interface, there may not be efficient SMT encod-

ings. At present, there is no general recipe for developing

interfaces or encodings that are amenable to effective SMT

solving. We hope that more work in this direction can help

future projects achieve scalable and stable verification.

Based on lessons learned from the Yggdrasil file system

verification project [63], we designed the kernel to be event

driven with fine-grained event handlers (i.e., trap handlers).

This design simplifies verification as it avoids reasoning

about interleaved execution of handlers; it also limits the size

of SMT expressions generated from symbolic execution. In

addition, Hyperkernel restricts the use of quantifiers to a few

high-level properties in the declarative specification (§3.3).

Compared to other SMT-based verification projects like Iron-

clad [28] and IronFleet [27], this practice favors proof au-

tomation and verification scalability. The trade-off is that it

requires more care in interface design and encodings, and

it limits the types of properties that can be verified (§4.4).

6.3 Verification performance
Using Z3 4.5.0, verifying the twomain Hyperkernel theorems

takes about 15 minutes on an eight-core Intel Core i7-7700K

processor. On a single core it takes a total of roughly 45 min-

utes: 12 and 33 minutes for verifying Theorems 1 and 2,

respectively.

To understand the stability of this result, we also verified

Hyperkernel using the first Z3 git commit in each month

since January 2016. None of these versions found a counterex-

ample to correctness. Figure 9 shows the verification time

for these commits; the performance is mostly stable, with oc-

casional spikes due to Z3 regressions and heuristic changes.

The Hyperkernel verification uses fixed values of some

important constants (e.g., the maximum number of pages),

derived from xv6. To check the robustness of the verification

to changes in these parameters, we tried verifying Hyperk-

ernel with different values to ensure that they did not cause

substantial increases in verification time. In particular, we

increased the maximum number of pages (the largest value

among the parameters) by 2×, 4×, and 100×; and did not ob-

serve a noticeable increase in verification time. This result

suggests that the finite-interface design described in §2.1 and

the SMT encodings described in §3.3 are effective, as verifica-

tion performance does not depend on the size of kernel state.

6.4 Run-time performance
To evaluate the run-time performance of Hyperkernel, we

adopt benchmarks from Dune [8], excluding those that do

not apply to Hyperkernel (e.g., ptrace). Figure 10 compares

Hyperkernel run-time performance (in cycles) to Linux (4.8.0)

on four benchmarks. The Hyp-Linux results run the unmod-

ified Linux benchmark binary on Hyperkernel using the

Linux emulation layer (§4.3), while the Hyperkernel results

are from a ported version of the benchmark. All results are

from an Intel Core i7-7700K processor.

The syscall benchmark measures a simple system call—

sys_nop on Hyperkernel, and gettid (which performs min-

imal work) on Linux and Hyp-Linux. The 5× overhead on

Hyperkernel is due to the overhead of making a hypercall,

as measured in §6.5. Hyp-Linux’s emulation layer services

system calls within the same process, rather than with a

hypercall, and so its performance is close to Linux.

The fault benchmark measures the cycles to invoke a user-

space page fault handler after a fault. Hyperkernel outper-

forms Linux because faults can be delivered directly to user

space, thanks to virtualization support; the Linux kernel

must first catch the fault and then upcall to user space.

The appel1 and appel2 benchmarks, described by Appel

and Li [5], measure memory management performance with

repeated (un)protection and faulting accesses to protected

pages. Hyperkernel outperforms Linux here for the same

reason as the earlier fault benchmark.

These results are consistent with the comparison between

Dune and Linux [8]: for the worst-case scenarios, the use

Hyperkernel: Push-Button Verification of an OS Kernel SOSP ’17, October 28, 2017, Shanghai, China

Benchmark Linux Hyperkernel Hyp-Linux

syscall 125 490 136

fault 2,917 615 722

appel1 637,562 459,522 519,235

appel2 623,062 452,611 482,596

Figure 10: Cycle counts of benchmarks running on
Linux, Hyperkernel, and Hyp-Linux (the Linux emu-
lation layer for Hyperkernel).

of hypercalls incurs a 5× overhead compared to syscall;

on the other hand, depending on the workload, application

performance may also benefit from virtualization (e.g., fast

user-level exceptions).

The current user-space file system and network stack (§4.3)

is a placeholder for demonstrating the usability of the ker-

nel interface. We hope to incorporate high-performance

stacks [9, 56] in the future.

6.5 Reflections on hardware support
Hyperkernel’s use of virtualization simplifies verification,

but replaces system calls with hypercalls. To understand the

hardware trend of syscall and hypercall instructions, we

measured the round-trip latency on recent x86 microarchi-

tectures. The results are shown in Figure 11: the “syscall”

column measures the cost of a syscall/sysret pair, and the

“hypercall” column measures the cost of a vmcall/vmresume

pair (or vmmcall/vmrun on AMD).

Our observation is that while hypercalls on x86 are slower

by approximately an order of magnitude due to the switch

between root and non-root modes, their performance has

significantly improved over recent years [1]. For non-x86

architectures like ARM, the system call and hypercall in-

structions have similar performance [18], and so exploring

Hyperkernel on ARM would be attractive future work [31].

7 RELATEDWORK
Verified OS kernels. OS kernel verification has long been

a research objective. Early efforts in this direction include

UCLA Secure Unix [66], PSOS [24], and KIT [10]; see Klein

et al. [34] for an overview.

The seL4 verified kernel demonstrated, for the first time,

the feasibility of constructing a machine-checkable formal

proof of functional correctness for a general-purpose ker-

nel [34, 35]. Hyperkernel’s design is inspired in several places

by seL4, as discussed in §4.1. In contrast to seL4, however,

we aimed to keep Hyperkernel’s design as close to a classic

Unix-like kernel as possible, while enabling automated veri-

fication with SMT solvers. In support of this goal, we made

the Hyperkernel interface finite, avoiding unbounded loops,

recursion, or complex data structures.

Model Microarchitecture Syscall Hypercall

Intel
Xeon X5550 Nehalem (2009) 72 961

Xeon E5-1620 Sandy Bridge (2011) 72 765

Core i7-3770 Ivy Bridge (2012) 74 760

Xeon E5-1650 v3 Haswell (2013) 74 540

Core i5-6600K Skylake (2015) 79 568

Core i7-7700K Kaby Lake (2016) 69 497

AMD
Ryzen 7 1700 Zen (2017) 64 697

Figure 11: Cycle counts of syscalls and hypercalls on
x86 processors; each result averages 50 million trials.

Ironclad establishes end-to-end security properties from

the application layer down to kernel assembly [28]. Ironclad

builds on the Verve type-safe kernel [69], and uses the Dafny

verifier [44], which is built on Z3, to help automate proofs.

Similarly, ExpressOS [51] verifies security properties of a

kernel using Dafny. As discussed in §6.2, Hyperkernel fo-

cuses on system designs for minimizing verification efforts

and restricts its use of Z3 for better proof automation. Hy-

perkernel also verifies at the LLVM IR layer (trusting the

LLVM backend as a result) rather than Verve’s assembly.

Examples of recent progress in verifying concurrent OS
kernels include CertiKOS with multicore support [25] and

Xu et al.’s framework for reasoning about interrupts in the

µC/OS-II kernel [68]. Both projects use the Coq interactive

theorem prover [16] to construct proofs, taking 2 and 5.5

person-years, respectively. The Hyperkernel verifier does

not reason about multicore or interrupts in the kernel. Inves-

tigating automated reasoning for concurrent kernels would

be a promising direction.

Co-designing systems with proof automation. As discussed
in §6.2, Hyperkernel builds on the lessons learned from Yg-

gdrasil [63], a toolkit for writing file systems and verifying

them with the Z3 SMT solver. Yggdrasil defines file system

correctness as crash refinement: possible disk states after a

crash are a subset of those allowed by the specification. In

contrast, Hyperkernel need not model crashes, but needs to

reason about reference counting (§3.3). Moreover, Yggdrasil

file systems are implemented and verified in Python; Hyper-

kernel is written in C and verified as LLVM IR, removing the

dependency on the Python runtime from the final binary.

Reflex automates the verification of event-driven systems

in Coq [61], by carefully restricting both the expressiveness

of the implementation language and the class of properties

to be verified. Hyperkernel and Reflex share some design

principles, such as avoiding unbounded loops. But thanks to

SOSP ’17, October 28, 2017, Shanghai, China L. Nelson et al.

its use of SMT solvers for verification, Hyperkernel can prove

a richer class of properties, at the cost of an enlarged TCB.

OS design. Hyperkernel borrows ideas from Dune [8], in

which each process is virtualized and so has more direct

control over hardware features such as interrupt vectors [8].

This allows Hyperkernel to use a separate identity mapping

for the kernel address space, avoiding the need to reason

about virtual-to-physical mapping. Hyperkernel also draws

inspiration from Exokernel [23], which offers low-level hard-

ware access to applications for extensibility. As discussed in

§4.1, this design enables finite interfaces and thus efficient

SMT-based verification.

LLVM verification. Several projects have developed formal

semantics of LLVM IR. For example, the Vellvm project [72]

formalizes LLVM IR in Coq; Alive [49] formalizes LLVM IR to

verify the correctness of compiler optimizations; SMACK [58]

translates LLVM IR to the Boogie verification language [6];

KLEE [11] and UFO [2] translate LLVM IR to SMT for verifica-

tion; and Vigor uses a modified KLEE as part of its toolchain

to verify a network address translator [70].

The Hyperkernel verifier also translates LLVM IR to SMT

to prove Theorem 1 (§3.2). Compared to other approaches,

Hyperkernel’s verifier unrolls all loops and recursion to sim-

plify automated reasoning, requiring programmers to ensure

kernel code is self-finitizing [65]. The verifier also uses a

simple memory model tailored for kernel verification, trans-

lating memory accesses to uninterpreted functions.

8 CONCLUSION
Hyperkernel is an OS kernel formally verified with a high

degree of proof automation and low proof burden. It achieves

push-button verification by finitizing kernel interfaces, using

hardware virtualization to simplify reasoning about virtual

memory, andworking at the LLVM IR level to avoidmodeling

C semantics. Our experience shows that Hyperkernel can pre-

vent a large class of bugs, including those previously found in

the xv6 kernel. We believe that Hyperkernel offers a promis-

ing direction for future design of verified kernels and other

low-level software, by co-designing the system with proof

automation. All of Hyperkernel’s source code is publicly

available at http://locore.cs.washington.edu/hyperkernel/.

ACKNOWLEDGMENTS
We thank Tom Anderson, Anish Athalye, Jon Howell, the

anonymous reviewers, and our shepherd, Gernot Heiser, for

their feedback. We also thank Alex Kirchhoff for the initial

implementation of IOMMU support, John Regehr for discus-

sions on undefined behavior in LLVM IR, and Marc Zyngier

for answering our questions about ARM. This work was sup-

ported in part by DARPA under contract FA8750-16-2-0032.

REFERENCES
[1] Ole Agesen, Jim Mattson, Radu Rugina, and Jeffrey Sheldon. 2012.

Software Techniques for Avoiding Hardware Virtualization Exits. In

Proceedings of the 2012 USENIX Annual Technical Conference. Boston,
MA, 373–385.

[2] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. 2012.

UFO: A Framework for Abstraction- and Interpolation-Based Software

Verification. In Proceedings of the 24th International Conference on
Computer Aided Verification (CAV). Berkeley, CA, 672–678.

[3] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter

Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,

Thomas Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin

Klein, and Gernot Heiser. 2016. Cogent: Verifying High-Assurance

File System Implementations. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). Atlanta, GA, 175–188.

[4] AMD. 2017. AMD64 Architecture Programmer’s Manual Volume 2:
System Programming. Rev. 3.28.

[5] Andrew W. Appel and Kai Li. 1991. Virtual Memory Primitives for

User Programs. In Proceedings of the 4th International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS). Santa Clara, CA, 96–107.

[6] Mike Barnett and K. Rustan M. Leino. 2005. Weakest-Precondition

of Unstructured Programs. In Proceedings of the 6th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering (PASTE). Lisbon, Portugal, 82–87.

[7] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris,

Rebecca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and

Akhilesh Singhania. 2009. The Multikernel: A new OS architecture for

scalable multicore systems. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP). Big Sky, MT, 29–44.

[8] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-

ières, and Christos Kozyrakis. 2012. Dune: Safe User-level Access

to Privileged CPU Features. In Proceedings of the 10th Symposium on
Operating Systems Design and Implementation (OSDI). Hollywood, CA,
335–348.

[9] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos

Kozyrakis, and Edouard Bugnion. 2014. IX: A Protected Dataplane Op-

erating System for High Throughput and Low Latency. In Proceedings
of the 11th Symposium on Operating Systems Design and Implementa-
tion (OSDI). Broomfield, CO, 49–65.

[10] William R. Bevier. 1989. Kit: A Study in Operating System Verification.

IEEE Transactions on Software Engineering 15, 11 (Nov. 1989), 1382–

1396.

[11] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-

sisted and Automatic Generation of High-Coverage Tests for Complex

Systems Programs. In Proceedings of the 8th Symposium on Operating
Systems Design and Implementation (OSDI). San Diego, CA, 209–224.

[12] Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zel-

dovich, and M. Frans Kaashoek. 2011. Linux kernel vulnerabilities:

State-of-the-art defenses and open problems. In Proceedings of the 2nd
Asia-Pacific Workshop on Systems. Shanghai, China. 5 pages.

[13] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans

Kaashoek, and Nickolai Zeldovich. 2015. Using Crash Hoare Logic

for Certifying the FSCQ File System. In Proceedings of the 25th ACM
Symposium on Operating Systems Principles (SOSP). Monterey, CA,

18–37.

[14] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson

Engler. 2001. An Empirical Study of Operating Systems Errors. In

Proceedings of the 18th ACM Symposium on Operating Systems Princi-
ples (SOSP). Chateau Lake Louise, Banff, Canada, 73–88.

http://locore.cs.washington.edu/hyperkernel/

Hyperkernel: Push-Button Verification of an OS Kernel SOSP ’17, October 28, 2017, Shanghai, China

[15] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert T.

Morris, and Eddie Kohler. 2013. The Scalable Commutativity Rule:

Designing Scalable Software for Multicore Processors. In Proceedings
of the 24th ACM Symposium on Operating Systems Principles (SOSP).
Farmington, PA, 1–17.

[16] Coq development team. 2017. The Coq Proof Assistant Reference Manual,
Version 8.6.1. INRIA. http://coq.inria.fr/distrib/current/refman/.

[17] Russ Cox, M. Frans Kaashoek, and Robert T. Morris. 2016. Xv6, a

simple Unix-like teaching operating system. http://pdos.csail.mit.edu/

6.828/xv6.

[18] Christoffer Dall and Jason Nieh. 2014. KVM/ARM: The Design and

Implementation of the Linux ARM Hypervisor. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Salt Lake City, UT, 333–
347.

[19] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS).
Budapest, Hungary, 337–340.

[20] Leonardo de Moura and Nikolaj Bjørner. 2011. Z3 - a Tutorial.

[21] Adam Dunkels. 2001. Design and Implementation of the lwIP TCP/IP

Stack. Swedish Institute of Computer Science.

[22] Kevin Elphinstone and Gernot Heiser. 2013. From L3 to seL4: What

Have We Learnt in 20 Years of L4 Microkernels?. In Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP). Farm-

ington, PA, 133–150.

[23] Dawson R. Engler, M. Frans Kaashoek, and James W. O’Toole. 1995.

Exokernel: An Operating System Architecture for Application-Level

Resource Management. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP). Copper Mountain, CO, 251–266.

[24] R. J. Feiertag, K. N. Levitt, and L. Robinson. 1977. Proving multilevel

security of a system design. In Proceedings of the 6th ACM Symposium
on Operating Systems Principles (SOSP). West Lafayette, IN, 57–65.

[25] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung

Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An Ex-

tensible Architecture for Building Certified Concurrent OS Kernels. In

Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI). Savannah, GA, 653–669.

[26] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. 2015. Defining

the Undefinedness of C. In Proceedings of the 2015 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI).
Portland, OR, 336–345.

[27] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan

Parno, Michael L. Roberts, Srinath Setty, and Brian Zill. 2015. Iron-

Fleet: Proving Practical Distributed Systems Correct. In Proceedings
of the 25th ACM Symposium on Operating Systems Principles (SOSP).
Monterey, CA, 1–17.

[28] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan

Parno, Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-

End Security via Automated Full-System Verification. In Proceedings
of the 11th Symposium on Operating Systems Design and Implementa-
tion (OSDI). Broomfield, CO, 165–181.

[29] Intel. 2016. Intel Virtualization Technology for Directed I/O: Architecture
Specification. Rev. 2.4.

[30] Daniel Jackson. 2012. Software Abstractions: Logic, Language, and
Analysis. MIT Press.

[31] Dylan Johnson. 2017. Porting Hyperkernel to the ARM Architecture.
Technical Report UW-CSE-17-08-02. University of Washington.

[32] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

2017. RustBelt: Securing the Foundations of the Rust Programming

Language. In Proceedings of the 6th ACM SIGPLANWorkshop on Higher-
Order Programming. Oxford, United Kingdom.

[33] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M.

Briceño, Russell Hunt, David Mazières, Thomas Pinckney, Robert

Grimm, John Jannotti, and Kenneth Mackenzie. 1997. Application

Performance and Flexibility on Exokernel Systems. In Proceedings
of the 16th ACM Symposium on Operating Systems Principles (SOSP).
Saint-Malo, France, 52–65.

[34] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,

Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Compre-

hensive formal verification of an OS microkernel. ACM Transactions
on Computer Systems 32, 1 (Feb. 2014), 2:1–70.

[35] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,

David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,

Michael Norrish, Rafal Kolanski, Thomas Sewell, Harvey Tuch, and

Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel. In

Proceedings of the 22nd ACM Symposium on Operating Systems Princi-
ples (SOSP). Big Sky, MT, 207–220.

[36] Gerwin Klein, Thomas Sewell, and SimonWinwood. 2010. Refinement

in the Formal Verification of the seL4 Microkernel. In Design and
Verification of Microprocessor Systems for High-Assurance Applications.
Springer, 323–339.

[37] Rafal Kolanski. 2011. Verification of Programs in Virtual Memory Using
Separation Logic. Ph.D. Dissertation. University of New South Wales.

[38] Rafal Kolanski and Gerwin Klein. 2009. Types, Maps and Separation

Logic. In Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics (TPHOLs). Munich, Germany, 276–292.

[39] Robbert Krebbers. 2015. The C standard formalized in Coq. Ph.D.

Dissertation. Radboud University Nijmegen.

[40] Robbert Krebbers and Freek Wiedijk. 2012. Subtleties of the ANSI/ISO
C standard. Document N1637. ISO/IEC JTC1/SC22/WG14.

[41] Chris Lattner. 2011. What Every C Programmer Should Know About

Undefined Behavior. http://blog.llvm.org/2011/05/what-every-c-

programmer-should-know.html.

[42] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-

work for Lifelong Program Analysis & Transformation. In Proceedings
of the 2004 International Symposium on Code Generation and Optimiza-
tion (CGO). Palo Alto, CA, 75–86.

[43] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy

Das, David Majnemer, John Regehr, and Nuno P. Lopes. 2017. Tam-

ing Undefined Behavior in LLVM. In Proceedings of the 2017 ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI). Barcelona, Spain, 633–647.

[44] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier

for Functional Correctness. In Proceedings of the 16th International
Conference on Logic for Programming, Artificial Intelligence and Rea-
soning (LPAR). Dakar, Senegal, 348–370.

[45] Amit Levy, Michael P Andersen, Bradford Campbell, David Culler,

Prabal Dutta, Branden Ghena, Philip Levis, and Pat Pannuto. 2015.

Ownership is Theft: Experiences Building an Embedded OS in Rust.

In Proceedings of the 8th Workshop on Programming Languages and
Operating Systems. Monterey, CA, 21–26.

[46] Henry M. Levy and Peter H. Lipman. 1982. Virtual Memory Man-

agement in the VAX/VMS Operating System. Computer 15, 3 (March

1982), 35–41.

[47] Linux Programmer’s Manual 2016. dup, dup2, dup3 - duplicate a file

descriptor. http://man7.org/linux/man-pages/man2/dup.2.html.

[48] John Lions. 1996. Lions’ Commentary on Unix (6th ed.). Peer-to-Peer

Communications.

[49] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John

Regehr. 2015. Provably Correct Peephole Optimizations with Alive.

In Proceedings of the 2015 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). Portland, OR, 22–32.

http://coq.inria.fr/distrib/current/refman/
http://pdos.csail.mit.edu/6.828/xv6
http://pdos.csail.mit.edu/6.828/xv6
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
http://man7.org/linux/man-pages/man2/dup.2.html

SOSP ’17, October 28, 2017, Shanghai, China L. Nelson et al.

[50] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau,

and Shan Lu. 2014. A Study of Linux File System Evolution. ACM
Transactions on Storage 10, 1 (Jan. 2014), 31–44.

[51] Haohui Mai, Edgar Pek, Hui Xue, Samuel T. King, and P. Madhusudan.

2013. Verifying Security Invariants in ExpressOS. In Proceedings of the
18th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Houston, TX, 293–304.

[52] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. 2014.

System VApplication Binary Interface: AMD64 Architecture Processor

Supplement, Draft Version 0.99.7.

[53] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nien-

huis, David Chisnall, Robert N.M. Watson, and Peter Sewell. 2016. Into

the Depths of C: Elaborating the De Facto Standards. In Proceedings of
the 2016 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). Santa Barbara, CA, 1–15.

[54] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2016. Is-
abelle/HOL: A Proof Assistant for Higher-Order Logic. Springer-Verlag.

[55] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia L.

Lawall, and Gilles Muller. 2011. Faults in Linux: Ten Years Later. In

Proceedings of the 16th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). Newport
Beach, CA, 305–318.

[56] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind

Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis:

The Operating System is the Control Plane. In Proceedings of the 11th
Symposium on Operating Systems Design and Implementation (OSDI).
Broomfield, CO, 1–16.

[57] Xiaokang Qiu, Pranav Garg, Andrei Ştefănescu, and P. Madhusudan.

2013. Natural Proofs for Structure, Data, and Separation. In Proceedings
of the 2013 ACM SIGPLANConference on Programming Language Design
and Implementation (PLDI). Seattle, WA, 16–19.

[58] Zvonimir Rakamarić and Michael Emmi. 2014. SMACK: Decoupling

Source Language Details from Verifier Implementations. In Proceed-
ings of the 26th International Conference on Computer Aided Verifica-
tion (CAV). Vienna, Austria, 106–113.

[59] Eric Reed. 2015. Patina: A Formalization of the Rust Programming Lan-
guage. Technical Report UW-CSE-15-03-02. University ofWashington.

[60] Alastair Reid. 2017. Who Guards the Guards? Formal Validation of the

ARM v8-M Architecture Specification. In Proceedings of the 2017 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA). Vancouver, Canada,
88:1–24.

[61] Daniel Ricketts, Valentin Robert, Dongseok Jang, Zachary Tatlock, and

Sorin Lerner. 2014. Automating Formal Proofs for Reactive Systems.

In Proceedings of the 2014 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI). Edinburgh, UK, 452–462.

[62] Gerhard Schellhorn, Gidon Ernst, Jorg Pfähler, Dominik Haneberg,

and Wolfgang Reif. 2014. Development of a Verified Flash File System.

In Proceedings of the ABZ Conference. Toulouse, France, 9–24.
[63] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.

2016. Push-Button Verification of File Systems via Crash Refinement.

In Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI). Savannah, GA, 1–16.

[64] Chandramohan A. Thekkath and Henry M. Levy. 1994. Hardware and

Software Support for Efficient ExceptionHandling. In Proceedings of the
6th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). San Jose, CA, 110–119.

[65] Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic

Virtual Machine for Solver-Aided Host Languages. In Proceedings of
the 2014 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI). Edinburgh, UK, 530–541.

[66] Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. 1980. Spec-

ification and Verification of the UCLA Unix Security Kernel. Commun.
ACM 23, 2 (Feb. 1980), 118–131.

[67] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-

Lezama. 2013. Towards Optimization-Safe Systems: Analyzing the

Impact of Undefined Behavior. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP). Farmington, PA, 260–275.

[68] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and

Zhaohui Li. 2016. A Practical Verification Framework for Preemp-

tive OS Kernels. In Proceedings of the 28th International Conference on
Computer Aided Verification (CAV). Toronto, Canada, 59–79.

[69] Jean Yang and Chris Hawblitzel. 2010. Safe to the Last Instruction:

Automated Verification of a Type-Safe Operating System. In Proceed-
ings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI). Toronto, Canada, 99–110.

[70] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki,

and George Candea. 2017. A Formally Verified NAT. In Proceedings of
the 2017 ACM SIGCOMM Conference. Los Angeles, CA, 141–154.

[71] Karen Zee, Viktor Kuncak, and Martin C. Rinard. 2008. Full Func-

tional Verification of Linked Data Structures. In Proceedings of the
2008 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). Tucson, AZ, 349–361.

[72] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve

Zdancewic. 2012. Formalizing the LLVM Intermediate Representation

for Verified Program Transformations. In Proceedings of the 39th ACM
Symposium on Principles of Programming Languages (POPL). Philadel-
phia, PA, 427–440.

	Abstract
	1 Introduction
	2 Overview
	2.1 Finite interfaces
	2.2 Specifications
	2.3 Implementation
	2.4 Verification
	2.5 Summary

	3 The verifier
	3.1 Modeling kernel behavior
	3.2 Reasoning about LLVM IR
	3.3 Encoding crosscutting properties

	4 The Hyperkernel
	4.1 Design overview
	4.2 Designing finite interfaces
	4.3 User-space libraries
	4.4 Limitations

	5 Checkers
	6 Experience
	6.1 Bug discussion
	6.2 Development effort
	6.3 Verification performance
	6.4 Run-time performance
	6.5 Reflections on hardware support

	7 Related work
	8 Conclusion
	References

