
Synthesizing Memory Models
from Framework Sketches 
 and Litmus Tests
James Bornholt 
Emina Torlak University of Washington

Memory consistency models define memory
reordering behaviors on mul>processors

Memory consistency models define memory
reordering behaviors on mul>processors

…correctness of
my compiler…

Compiler
writers!

Memory consistency models define memory
reordering behaviors on mul>processors

…correctness of
my compiler…

Compiler
writers!

…rules to verify
against…

Verifica@on
tools🤖

Memory consistency models define memory
reordering behaviors on mul>processors

…correctness of
my compiler…

Compiler
writers!

…rules to verify
against…

Verifica@on
tools🤖

…possible low-
level behaviors…

Kernel/library
developers#

Memory consistency models define memory
reordering behaviors on mul>processors

Litmus tests  
and prose

…correctness of
my compiler…

Compiler
writers!

…rules to verify
against…

Verifica@on
tools🤖

…possible low-
level behaviors…

Kernel/library
developers#

Memory consistency models define memory
reordering behaviors on mul>processors

Litmus tests  
and prose

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒

Formal 
specifica@ons

…correctness of
my compiler…

Compiler
writers!

…rules to verify
against…

Verifica@on
tools🤖

…possible low-
level behaviors…

Kernel/library
developers#

Memory consistency models define memory
reordering behaviors on mul>processors

Litmus tests  
and prose

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒

Formal 
specifica@ons

…correctness of
my compiler…

Compiler
writers!

…rules to verify
against…

Verifica@on
tools🤖

…possible low-
level behaviors…

Kernel/library
developers#

x86 [Sewell et al, CACM’10]

PowerPC [Alglave et al, CAV’10, etc]

ARM [Flur et al, POPL’16]

Litmus tests Formal 
specifica@ons

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒

MemSynth

Litmus tests Formal 
specifica@ons

Synthesize specifica>ons
∀

∃ ∈
∧

∨

∩
∪⊂

⋈⇒

MemSynth

Litmus tests Formal 
specifica@ons

Synthesize specifica>ons

Framework sketch

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒

MemSynth

Litmus tests Formal 
specifica@ons

Synthesize specifica>ons

Detect ambigui>es

Framework sketch

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒

MemSynth

Litmus tests   Formal 
specifica@ons

Framework sketch

Synthesize specifica>ons

Detect ambigui>es

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒

MemSynth

MemSynth

Synthesize specifica>ons

Detect ambigui>es

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒

MemSynth

Framework sketches
define a class of memory models

Synthesize specifica>ons

Detect ambigui>es

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒

MemSynth

Framework sketches
define a class of memory models

MemSynth engine
verifica@on, equivalence, synthesis, ambiguity

Synthesize specifica>ons

Detect ambigui>es

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒

MemSynth

Framework sketches
define a class of memory models

MemSynth engine
verifica@on, equivalence, synthesis, ambiguity

Results
synthesize real-world memory model specs

Synthesize specifica>ons

Detect ambigui>es

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒

Memory models and
framework sketches

Litmus tests illustrate memory model behavior
Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Litmus tests illustrate memory model behavior
Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Sequen>al consistency: no

Litmus tests illustrate memory model behavior
Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Sequen>al consistency: no

x86: yes!

Litmus tests illustrate memory model behavior
Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Sequen>al consistency: no

x86: yes!

A memory model M is a set of constraints that define the
possible execu@ons (outcomes) of a program.

Litmus tests illustrate memory model behavior
Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Sequen>al consistency: no

x86: yes!

A memory model M is a set of constraints that define the
possible execu@ons (outcomes) of a program.

Memory model M allows litmus test T if there exists an
execu@on that sa@sfies M’s constraints.

Litmus tests illustrate memory model behavior
Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Sequen>al consistency: no

x86: yes!

A memory model M is a set of constraints that define the
possible execu@ons (outcomes) of a program.

Me
Memory model
M allows test T:

∃ E. M(T,E)

Memory models, formally
Common formaliza@ons based on rela>onal logic

Example for sequen>al consistency:

no ^(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

Memory model
M allows test T:

∃ E. M(T,E)

Memory models, formally
Common formaliza@ons based on rela>onal logic

Example for sequen>al consistency:

no ^(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

Memory model
M allows test T:

∃ E. M(T,E)

Binary rela@ons over
program instruc@ons

happens-before order

Memory models, formally
Common formaliza@ons based on rela>onal logic

Example for sequen>al consistency:

no ^(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

Memory model
M allows test T:

∃ E. M(T,E)

Binary rela@ons over
program instruc@ons

happens-before order is acyclic

Memory models, formally
Common formaliza@ons based on rela>onal logic

Example for sequen>al consistency:

no ^(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

Memory model
M allows test T:

∃ E. M(T,E)

Binary rela@ons over
program instruc@ons

happens-before order is acyclic

Memory models, formally
Common formaliza@ons based on rela>onal logic

Example for sequen>al consistency:

no ^(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

From program syntax

Memory model
M allows test T:

∃ E. M(T,E)

Binary rela@ons over
program instruc@ons

happens-before order is acyclic

Memory models, formally
Common formaliza@ons based on rela>onal logic

Example for sequen>al consistency:

no ^(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

From program syntax

Memory model
M allows test T:

∃ E. M(T,E)

Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Binary rela@ons over
program instruc@ons

happens-before order is acyclic

Memory models, formally
Common formaliza@ons based on rela>onal logic

Example for sequen>al consistency:

no ^(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

po = {(,), (,)}3 421

Program order:

From program syntax

Memory model
M allows test T:

∃ E. M(T,E)

Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Binary rela@ons over
program instruc@ons

happens-before order is acyclic

Memory models, formally
Common formaliza@ons based on rela>onal logic

Example for sequen>al consistency:

no ^(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

po = {(,), (,)}3 421

Program order:

From program syntax

Part of execu@on; implicitly
existen@ally quan@fied

Memory model
M allows test T:

∃ E. M(T,E)

Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Binary rela@ons over
program instruc@ons

no ^(ws + fr + po + rf + fences) & iden

Framework sketches
A framework sketch defines the search space for
synthesizing a memory model M by including holes in
constraints

no ^(ws + fr + po + rf + fences) & iden

Framework sketches
A framework sketch defines the search space for
synthesizing a memory model M by including holes in
constraints

Expression holes
for a synthesizer
to complete

?? ?? ??

no ^(ws + fr + po + rf + fences) & iden

Framework sketches
A framework sketch defines the search space for
synthesizing a memory model M by including holes in
constraints

Expression holes
for a synthesizer
to complete

Framework sketches are the key design tool for synthesizing
memory model specifica@ons — they define the “interes@ng”
candidate models

?? ?? ??

Memory model frameworks

no ^(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

?? ?? ??

Memory model frameworks

no ^(ws + fr + ppo + grf + fences) & iden

[Alglave et al, CAV’10]

Preserved program
order (same-thread
reorderings)

Global reads
from (inter-
thread order)

Fence cumula>vity
(for Power, ARM,
etc)

Memory model frameworks

no ^(ws + fr + ppo + grf + fences) & iden

[Alglave et al, CAV’10]

Sequen>al
consistency

Preserved program
order (same-thread
reorderings)

Global reads
from (inter-
thread order)

Fence cumula>vity
(for Power, ARM,
etc)

po rf ∅

Memory model frameworks

no ^(ws + fr + ppo + grf + fences) & iden

[Alglave et al, CAV’10]

Sequen>al
consistency

Preserved program
order (same-thread
reorderings)

Global reads
from (inter-
thread order)

Fence cumula>vity
(for Power, ARM,
etc)

po rf ∅

Total store
order (x86)

po - (Wr→Rd) rf & SameThd ∅

Memory model frameworks are common

Global @me
rela@onal model

[Alglave et al, CAV’10]

Axioma@c “must-
not-reorder”

func@ons
[Mador-Haim et al,

DAC’11]

Exexcutable
distributed

consistency models
[Yang et al, IPDPS’04]

…

Ocelot: rela>onal logic with holes
A rela>onal logic DSL with synthesis support

no ^(ws + fr + ppo + grf + fences) & iden?? ?? ??

Expression holes
for a synthesizer
to complete

Built on the Roseoe solver-aided language [Torlak & Bodik, PLDI’14]

Available as a Racket package: raco pkg install ocelot

Ocelot: rela>onal logic with holes
A rela>onal logic DSL with synthesis support

no ^(ws + fr + ppo + grf + fences) & iden?? ?? ??

Expression holes
for a synthesizer
to complete

Comple@ons are expressions in
rela@onal logic with chosen
operators, terminals, and depth.

Built on the Roseoe solver-aided language [Torlak & Bodik, PLDI’14]

Available as a Racket package: raco pkg install ocelot

Ocelot: rela>onal logic with holes
A rela>onal logic DSL with synthesis support

no ^(ws + fr + ppo + grf + fences) & iden?? ?? ??

Expression holes
for a synthesizer
to complete

Comple@ons are expressions in
rela@onal logic with chosen
operators, terminals, and depth.

Built on the Roseoe solver-aided language [Torlak & Bodik, PLDI’14]

operators = {+, &}

terminals = {po, ws}

depth = 1

Available as a Racket package: raco pkg install ocelot

Ocelot: rela>onal logic with holes
A rela>onal logic DSL with synthesis support

no ^(ws + fr + ppo + grf + fences) & iden?? ?? ??

Expression holes
for a synthesizer
to complete

Comple@ons are expressions in
rela@onal logic with chosen
operators, terminals, and depth.

Built on the Roseoe solver-aided language [Torlak & Bodik, PLDI’14]

operators = {+, &}

terminals = {po, ws}

depth = 1

po
ws

po + ws
po & ws

Available as a Racket package: raco pkg install ocelot

Queries
‣ Verifica@on
‣ Equivalence
‣ Synthesis
‣ Ambiguity

Verifica>on and equivalence
Memory model
M allows test T:

∃ E. M(T,E)
Common queries for automated memory model
reasoning tools

Herd [Alglave et al, CAV’10]; MemAlloy [Wickerson et al, POPL’17]; etc.

Verifica>on and equivalence
Memory model
M allows test T:

∃ E. M(T,E)
Common queries for automated memory model
reasoning tools

Herd [Alglave et al, CAV’10]; MemAlloy [Wickerson et al, POPL’17]; etc.

Litmus test

Memory model
VERIFY

SAT
or
UNSAT

Verifica>on and equivalence
Memory model
M allows test T:

∃ E. M(T,E)
Common queries for automated memory model
reasoning tools

Herd [Alglave et al, CAV’10]; MemAlloy [Wickerson et al, POPL’17]; etc.

Litmus test

Memory model
VERIFY

SAT
or
UNSAT

Reduces to SAT (since
litmus tests are loop-free)

Verifica>on and equivalence
Memory model
M allows test T:

∃ E. M(T,E)
Common queries for automated memory model
reasoning tools

Herd [Alglave et al, CAV’10]; MemAlloy [Wickerson et al, POPL’17]; etc.

Litmus test

Memory model
VERIFY

SAT
or
UNSAT

EQUIV
Litmus test
or
UNSATMemory model MB

Memory model MA

Reduces to SAT (since
litmus tests are loop-free)

Verifica>on and equivalence
Memory model
M allows test T:

∃ E. M(T,E)
Common queries for automated memory model
reasoning tools

Herd [Alglave et al, CAV’10]; MemAlloy [Wickerson et al, POPL’17]; etc.

Litmus test

Memory model
VERIFY

SAT
or
UNSAT

EQUIV
Litmus test
or
UNSATMemory model MB

Memory model MA

Reduces to SAT (since
litmus tests are loop-free)

UNSAT = bounded equivalence
(“equivalent up to tests of size k”)

Synthesis
Find a memory model consistent with a set
of litmus tests

Memory modelSYNTH

Framework sketch

Allowed litmus tests

Forbidden litmus tests

Synthesis
Find a memory model consistent with a set
of litmus tests

SYNTH

Framework sketch

Synthesis
Find a memory model consistent with a set
of litmus tests

SYNTH

Framework sketchx86

Synthesis
Find a memory model consistent with a set
of litmus tests

SYNTH

Framework sketch

53

2 allowed tests

1 2 4 6 7 8 9 10

8 forbidden tests

x86

Synthesis
Find a memory model consistent with a set
of litmus tests

SYNTH

Framework sketch

53

2 allowed tests

1 2 4 6 7 8 9 10

8 forbidden tests

Total store order

x86

Synthesis
Find a memory model consistent with a set
of litmus tests Memory model

M allows test T:
∃ E. M(T,E)

Allowed litmus tests

Forbidden litmus tests

Framework sketch
M

T+

T-
Memory model

Synthesis
Find a memory model consistent with a set
of litmus tests Memory model

M allows test T:
∃ E. M(T,E)

Allowed litmus tests

Forbidden litmus tests

Framework sketch
M

T+

T-

∃ E. M(T,E)⋀
T∈T+

Memory model

Synthesis
Find a memory model consistent with a set
of litmus tests Memory model

M allows test T:
∃ E. M(T,E)

Allowed litmus tests

Forbidden litmus tests

Framework sketch
M

T+

T-

∃ E. M(T,E)⋀
T∈T+

∀ E. ¬M(T,E)⋀
T∈T-

Memory model

Synthesis
Find a memory model consistent with a set
of litmus tests Memory model

M allows test T:
∃ E. M(T,E)

Allowed litmus tests

Forbidden litmus tests

Framework sketch
M

T+

T-

∃ E. M(T,E)⋀
T∈T+

∀ E. ¬M(T,E)⋀
T∈T-

Memory model

Solved incrementally, like
counterexample-guided
induc@ve synthesis (CEGIS)

Ambiguity
Find a dis@nguishing litmus test that exposes an
ambiguity in a model

AMBIG

Key idea: axer synthesis, is
there a different memory
model that explains the tests?

Ambiguity
Find a dis@nguishing litmus test that exposes an
ambiguity in a model

AMBIG

Allowed litmus tests

Forbidden litmus tests

Key idea: axer synthesis, is
there a different memory
model that explains the tests?

Ambiguity
Find a dis@nguishing litmus test that exposes an
ambiguity in a model

AMBIG

Allowed litmus tests

Forbidden litmus tests

Key idea: axer synthesis, is
there a different memory
model that explains the tests?

Memory model MA

Ambiguity
Find a dis@nguishing litmus test that exposes an
ambiguity in a model

AMBIG

Framework sketch

Allowed litmus tests

Forbidden litmus tests

Key idea: axer synthesis, is
there a different memory
model that explains the tests?

Memory model MA

Ambiguity
Find a dis@nguishing litmus test that exposes an
ambiguity in a model

AMBIG

Framework sketch

Allowed litmus tests

Forbidden litmus tests

Key idea: axer synthesis, is
there a different memory
model that explains the tests?

Memory model MA
Litmus test

Memory model MB

Ambiguity
Find a dis@nguishing litmus test that exposes an
ambiguity in a model

AMBIG

Framework sketch

Allowed litmus tests

Forbidden litmus tests

Key idea: axer synthesis, is
there a different memory
model that explains the tests?

Memory model MA
Litmus test

Memory model MB

The new memory model
must be seman>cally
different from the input:
MA and MB must disagree
about a new test T

Similar to oracle-guided
synthesis [Jha et al, ICSE’10]

Ambiguity
Find a dis@nguishing litmus test that exposes an
ambiguity in a model

AMBIG

Total store order (x86)

✓
Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Ambiguity
Find a dis@nguishing litmus test that exposes an
ambiguity in a model

AMBIG

Total store order (x86)

✓

Is there another seman>cally
different memory model that
also allows this test?Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Ambiguity
Find a dis@nguishing litmus test that exposes an
ambiguity in a model

AMBIG

Total store order (x86)

Par@al store order (SPARC)
✓

Is there another seman>cally
different memory model that
also allows this test?Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Ambiguity
Find a dis@nguishing litmus test that exposes an
ambiguity in a model

AMBIG

Total store order (x86)

Par@al store order (SPARC)

✓ PSO
 ✗ TSO

✓

Is there another seman>cally
different memory model that
also allows this test?Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0? Thread 1 Thread 2

X = 11

Y = 12

r1 = Y3

r2 = X4

Can r1 = 1 ∧ r2 = 0?

The Synthesis-Ambiguity Cycle

53

1 2 4

Litmus tests

The Synthesis-Ambiguity Cycle

53

1 2 4

Litmus tests

Documenta@on

🎲🎲
Random/systema@c 

genera@on

%& Architects

The Synthesis-Ambiguity Cycle

53

1 2 4

Litmus tests

The Synthesis-Ambiguity Cycle

53

1 2 4

Litmus tests Memory model 
specifica>on

SYNTH

The Synthesis-Ambiguity Cycle

53

1 2 4

Litmus tests Memory model 
specifica>on

SYNTH

AMBIG

6

The Synthesis-Ambiguity Cycle

53

1 2 4

Litmus tests Memory model 
specifica>on

SYNTH

AMBIG
Unique memory model

(within framework sketch)

6

Results

Synthesizing exis>ng memory models

PowerPC

x86

Synthesizing exis>ng memory models

PowerPC

x86

768 tests
[Alglave et al, CAV’10]

10 tests

Synthesis

Synthesizing exis>ng memory models

PowerPC

x86

768 tests
[Alglave et al, CAV’10]

10 tests

✓ 12 seconds

✓ 2 seconds

Search space: 21406

Search space: 2624

Synthesis

Synthesizing exis>ng memory models

PowerPC

x86

768 tests
[Alglave et al, CAV’10]

10 tests

✓ 12 seconds

✓ 2 seconds

Not equivalent to
published model!

Search space: 21406

Search space: 2624

Synthesis

Synthesizing exis>ng memory models

PowerPC

x86

768 tests
[Alglave et al, CAV’10]

10 tests

✓ 12 seconds

✓ 2 seconds

Not equivalent to
TSO!

Not equivalent to
published model!

Search space: 21406

Search space: 2624

Synthesis

Synthesizing exis>ng memory models

PowerPC

x86

768 tests
[Alglave et al, CAV’10]

10 tests

✓ 12 seconds

✓ 2 seconds

Not equivalent to
TSO!

9 new tests

4 new tests

Ambiguity

Not equivalent to
published model!

Search space: 21406

Search space: 2624

sync, lwsync, etc.

mfence, xchg

Other results
Implemented another framework sketch [Mador-Haim et al, DAC’11]

Found typo in paper; couldn’t fix by hand, but synthesized repair

Other results
Implemented another framework sketch [Mador-Haim et al, DAC’11]

Found typo in paper; couldn’t fix by hand, but synthesized repair

Order of magnitude faster than the Alloy general-purpose
rela>onal solver for verifica@on and equivalence

Ocelot offers finer-grained control over rela@onal constraints

Other results
Implemented another framework sketch [Mador-Haim et al, DAC’11]

Found typo in paper; couldn’t fix by hand, but synthesized repair

Order of magnitude faster than the Alloy general-purpose
rela>onal solver for verifica@on and equivalence

Ocelot offers finer-grained control over rela@onal constraints

Comparable performance to exis@ng custom memory model
tool for verifica@on (Herd [Alglave et al, CAV’10])

∀
∃ ∈

∧

∨

∩
∪⊂

⋈⇒MemSynth

Framework sketches
define a class of memory models

MemSynth engine
verifica@on, equivalence, synthesis, ambiguity

Results
synthesize real-world memory model specs

memsynth.uwplse.org

http://memsynth.uwplse.org

