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x86 [Sewell et al, CACM’10]

PowerPC [Alglave et al, CAV’10, etc]

ARM [Flur et al, POPL’16]
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Memory models, formally
Common formaliza@ons based on rela>onal logic 

Example for sequen>al consistency:

no ^(ws + fr + po + rf + fences) & iden

[Alglave et al, CAV’10]

po = {(   ,   ), (   ,   )}3 421

Program order:

From program syntax

Part of execu@on; implicitly 
existen@ally quan@fied

Memory model 
M allows test T: 

∃ E. M(T,E)

Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0?

Binary rela@ons over 
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Framework sketches
A framework sketch defines the search space for 
synthesizing a memory model M by including holes in 
constraints

Expression holes 
for a synthesizer 
to complete

Framework sketches are the key design tool for synthesizing 
memory model specifica@ons — they define the “interes@ng” 
candidate models

?? ?? ??
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Memory model frameworks

no ^(ws + fr + ppo + grf + fences) & iden

[Alglave et al, CAV’10]

Sequen>al 
consistency

Preserved program 
order (same-thread 
reorderings)

Global reads 
from (inter-
thread order)

Fence cumula>vity 
(for Power, ARM, 
etc)

po rf ∅

Total store 
order (x86)

po - (Wr→Rd) rf & SameThd ∅



Memory model frameworks are common

Global @me 
rela@onal model 

[Alglave et al, CAV’10]

Axioma@c “must-
not-reorder” 

func@ons 
[Mador-Haim et al, 

DAC’11]

Exexcutable 
distributed 

consistency models 
[Yang et al, IPDPS’04]

…
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Ocelot: rela>onal logic with holes
A rela>onal logic DSL with synthesis support

no ^(ws + fr + ppo + grf + fences) & iden?? ?? ??

Expression holes 
for a synthesizer 
to complete

Comple@ons are expressions in 
rela@onal logic with chosen 
operators, terminals, and depth.

Built on the Roseoe solver-aided language [Torlak & Bodik, PLDI’14]

operators = {+, &}

terminals = {po, ws}

depth = 1

po 
ws 

po + ws 
po & ws

Available as a Racket package: raco pkg install ocelot
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Memory model 
M allows test T: 

∃ E. M(T,E)
Common queries for automated memory model 
reasoning tools

Herd [Alglave et al, CAV’10]; MemAlloy [Wickerson et al, POPL’17]; etc.

Litmus test

Memory model
VERIFY

SAT 
or 
UNSAT

EQUIV
Litmus test 
or 
UNSATMemory model MB

Memory model MA

Reduces to SAT (since 
litmus tests are loop-free)

UNSAT = bounded equivalence 
(“equivalent up to tests of size k”)
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Synthesis
Find a memory model consistent with a set 
of litmus tests Memory model 

M allows test T: 
∃ E. M(T,E)

Allowed litmus tests

Forbidden litmus tests

Framework sketch
M

T+

T-

∃ E. M(T,E)⋀
T∈T+

∀ E. ¬M(T,E)⋀
T∈T-

Memory model

Solved incrementally, like 
counterexample-guided 
induc@ve synthesis (CEGIS)



Ambiguity
Find a dis@nguishing litmus test that exposes an 
ambiguity in a model

AMBIG

Key idea: axer synthesis, is 
there a different memory 
model that explains the tests?



Ambiguity
Find a dis@nguishing litmus test that exposes an 
ambiguity in a model

AMBIG

Allowed litmus tests

Forbidden litmus tests

Key idea: axer synthesis, is 
there a different memory 
model that explains the tests?



Ambiguity
Find a dis@nguishing litmus test that exposes an 
ambiguity in a model

AMBIG

Allowed litmus tests

Forbidden litmus tests

Key idea: axer synthesis, is 
there a different memory 
model that explains the tests?

Memory model MA



Ambiguity
Find a dis@nguishing litmus test that exposes an 
ambiguity in a model

AMBIG

Framework sketch

Allowed litmus tests

Forbidden litmus tests

Key idea: axer synthesis, is 
there a different memory 
model that explains the tests?

Memory model MA



Ambiguity
Find a dis@nguishing litmus test that exposes an 
ambiguity in a model

AMBIG

Framework sketch

Allowed litmus tests

Forbidden litmus tests

Key idea: axer synthesis, is 
there a different memory 
model that explains the tests?

Memory model MA
Litmus test

Memory model MB



Ambiguity
Find a dis@nguishing litmus test that exposes an 
ambiguity in a model

AMBIG

Framework sketch

Allowed litmus tests

Forbidden litmus tests

Key idea: axer synthesis, is 
there a different memory 
model that explains the tests?

Memory model MA
Litmus test

Memory model MB

The new memory model 
must be seman>cally 
different from the input: 
MA and MB must disagree 
about a new test T

Similar to oracle-guided 
synthesis [Jha et al, ICSE’10]
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Ambiguity
Find a dis@nguishing litmus test that exposes an 
ambiguity in a model

AMBIG

Total store order (x86)

Par@al store order (SPARC)

✓ PSO 
 ✗ TSO

✓

Is there another seman>cally 
different memory model that 
also allows this test?Thread 1 Thread 2

X = 11

r1 = Y2

Y = 13

r2 = X4

Can r1 = 0 ∧ r2 = 0? Thread 1 Thread 2

X = 11

Y = 12

r1 = Y3

r2 = X4

Can r1 = 1 ∧ r2 = 0?
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The Synthesis-Ambiguity Cycle

53

1 2 4

Litmus tests Memory model 
specifica>on

SYNTH

AMBIG
Unique memory model 

(within framework sketch)

6
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Synthesis

Synthesizing exis>ng memory models

PowerPC

x86

768 tests
[Alglave et al, CAV’10]

10 tests

✓ 12 seconds

✓ 2 seconds

Not equivalent to 
TSO!

9 new tests

4 new tests

Ambiguity

Not equivalent to 
published model!

Search space: 21406

Search space: 2624

sync, lwsync, etc.

mfence, xchg
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Other results
Implemented another framework sketch [Mador-Haim et al, DAC’11] 

Found typo in paper; couldn’t fix by hand, but synthesized repair

Order of magnitude faster than the Alloy general-purpose 
rela>onal solver for verifica@on and equivalence 

Ocelot offers finer-grained control over rela@onal constraints

Comparable performance to exis@ng custom memory model 
tool for verifica@on (Herd [Alglave et al, CAV’10])
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Framework sketches 
define a class of memory models

MemSynth engine 
verifica@on, equivalence, synthesis, ambiguity

Results 
synthesize real-world memory model specs

memsynth.uwplse.org

http://memsynth.uwplse.org

