Optimizing Synthesis
with Metasketches

James Bornholt

Emina Torlak

Dan Grossman %NAPSE
| uis Ceze pa

University of Washington /

Program
synthesis

Program
synthesis

Specification

Program

Specification Program

synthesis

Program

Specification Program

synthesis
f(z) =4x

Program

Specification Program

synthesis

flz) =4z X+X+X+X

Specification

f(x) = 4x

Data Structyres
[PLDI'15]

e —

T

Program
synthesis

cnd-user Progre

mm'\r\g
KPOPELH

Program

X+X+X+X

Cache Protoco|s
[PLDI'13]

Specification

Data Structyres
[PLDI'15]

e —

T

Program
synthesis

 programming

d-use
Er\ KPOP\JLH

e

Often looking for an
optimal solution, not just
any correct program

Program

Cache Protoco|s
[PLDI'13]

Specification

Data Structyres
[PLDI'15]

—

T

Program
synthesis

BroWSe! Layout
XPPOPPlSX

—

End-user programming
KPOP\JLH

,/

Often looking for an
optimal solution, not just
any correct program

Program

There are many programs,
so tools must control
search strategy

Cache Protocols
[PLDI’13

T —

T

p\\aUOn
\PLD V' 14)

Specification

OData Structures
[PLDI15]

L ——

Program
synthesis

Browser Layout
(pPoPP'13]

//
/

End-user ProgramminG
UDOP_ 11)
P

—

Often looking for an
optimal solution, not just
any correct program

Program

There are many programs,
so tools must control
search strategy

OCache Protocols

[PLDI 13]

\

Program

Specification Program

synthesis

Metasketches

Program

Specification Program

synthesis

A framework that makes

Metasketches search strategy and optimality
part of the problem definition

Program

Specification Program

synthesis

Metasketches
Design and structure

Metasketches
Design and structure

Synapse

A metasketch solver

Metasketches
Design and structure

Synapse

A metasketch solver

Results
Better solutions, faster

~—— <> Background
Syntax-guided synthesis
Metasketches

Synapse

Results

Syntax-guided synthesis

Program

Specification Program

synthesis

Syntax-guided synthesis

Program

Specification Program

synthesis

Sketch

Syntax-guided synthesis

Specification

Program
synthesis

Sketch

def f(x):
return Expr

Expr := x | ?? | Expr op Expr
op =+ | * | -] > | <«
?? := integer constant

Program

Syntax-guided synthesis: guess, check, learn

def f(x):
return Expr

Expr := x | ?? | Expr op Expr
op =+ | * | - | >> | <«
?? := integer constant

Syntax-guided synthesis: guess, check, learn

def f(x):
return Expr

Expr := x | ?? | Expr op Expr

op =+ | * | - | >> | <«
?? := integer constant

Syntax

Syntax-guided synthesis: guess, check, learn

Counterexample-guided inductive synthesis [Solar-Lezama et al, 2006

Semantics Syntax

Syntax-guided synthesis: guess, check, learn

Counterexample-guided inductive synthesis [Solar-Lezama et al, 2006

f(x) = 4x

Semantics Syntax

Syntax-guided synthesis: guess, check, learn

Counterexample-guided inductive synthesis [Solar-Lezama et al, 2006

f(x) = 4x

Semantics Syntax

Syntax-guided synthesis: guess, check, learn

Counterexample-guided inductive synthesis [Solar-Lezama et al, 2006

-y

f(x) = 4x

Semantics Syntax

Syntax-guided synthesis: guess, check, learn

Counterexample-guided inductive synthesis [Solar-Lezama et al, 2006

f(x) = 4x

Semantics Syntax

Syntax-guided synthesis: guess, check, learn

Counterexample-guided inductive synthesis [Solar-Lezama et al, 2006

f(x) = 4x

Semantics Syntax

Syntax-guided synthesis: guess, check, learn

Counterexample-guided inductive synthesis [Solar-Lezama et al, 2006

X+X+X+X

Semantics Syntax

Syntax-guided synthesis: guess, check, learn

Counterexample-guided inductive synthesis [Solar-Lezama et al, 2006

1. Search order is critical

X+X+X+X

Syntax

Syntax-guided synthesis: guess, check, learn

Counterexample-guided inductive synthesis [Solar-Lezama et al, 2006

1. Search order is critical
2. Desire optimal solutions

X+X+X+X

Syntax

Syntax-guided synthesis: guess, check, learn

Counterexample-guided inductive synthesis [Solar-Lezama et al, 2006

1. Search order is critical X << 2
2. Desire optimal solutions /
X+X+X+X

Syntax

~—— <> Background
Syntax-guided synthesis
Metasketches

Synapse

Results

Background
Metasketches
Design and structure

Synapse

Results

Metasketches express structure and strategy

1. Search order is critical
2. Desire optimal solutions

Syntax

Metasketches express structure and strategy

1. Search order is critical
2. Desire optimal solutions

A metasketch contains:

1. structured candidate space (S, <)

S4

S1

S3

S6

S5

S2
ST

Syntax

Metasketches express structure and strategy

1. Search order is critical
2. Desire optimal solutions

A metasketch contains:

1. structured candidate space (S, <)

2. cost function (k)

S4

S3

S6 <5

S2
ST,

Syntax

Metasketches express structure and strategy

1. Search order is critical
2. Desire optimal solutions

A metasketch contains:

1. structured candidate space (S, <)
2. cost function (k)

3. gradient function (g)

S4

S3

S6 <5

S2
5

Syntax

Metasketches express structure and strategy

1. Search order is critical
2. Desire optimal solutions

A metasketch contains:

1. structured candidate space (S, <)
2. cost function (k)

3. gradient function (g)

S4

S3

S6 <5

S2
5

Syntax

Metasketches express structure and strategy

1. Search order is critical
2. Desire optimal solutions

A metasketch contains:

1. structured candidate space (S, <)
2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. Search order is critical
2. Desire optimal solutions

A metasketch contains:

1. structured candidate space (S, <)
2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. Search order is critical
2. Desire optimal solutions

A metasketch contains:

1. structured candidate space (S, <)
2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. Search order is critical
2. Desire optimal solutions

A metasketch contains:

1. structured candidate space (S, <)
2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

A fragmentation of the candidate
space, and an ordering on those
fragments.

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)
S =setofall SSA programs

A fragmentation of the candidate
space, and an ordering on those
fragments.

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

A fragmentation of the candidate § =setofall SSA programs
space, and an ordering on those 31

fragments. /\
[N\
[T s\

54

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set § of sketches S =setofall SSA programs
atotalorder<on$

m
A fragmentation of the candidate / S2 \
space, and an ordering on those
fragments. / S3 x

54

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set § of sketches S =setofall SSA programs
atotalorder<on$

m

A fragmentation of the candidate / S2 \
space, and an ordering on those
fragments. / S3 X
S3 (SSA programs of length 3) S4
def f(x):

r = ??op(??{x})

ro = 220p(??x,r13)

rs = ?26p(??2¢x,r1,r23)

return rs

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set § of sketches S =setofall SSA programs
atotalorder<on$

m
A fragmentation of the candidate / S2 \
space, and an ordering on those
fragments. / S3 X
S3 (SSA programs of length 3) S4
+ - < if ...

def f(x):

r = ??op(??{x})

rz = ?220p(??¢x,r1})

rs = ?220p(??0x,r1,r23)

return r;

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set § of sketches S =setofall SSA programs
atotalorder<on$

m
A fragmentation of the candidate / S2 \
space, and an ordering on those
fragments. / 53 X
S3 (SSA programs of length 3) S4
+ - < if ...

def f(x):

ri = 220p(??¢x3) Vars&constants

rz = ?20p(??¢x,r13)

N3 = ??op(??{x,ﬁ,l”z})

return rj;

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set § of sketches S =setofall SSA programs
atotalorder<on$

m

A fragmentation of the candidate / S2 \
space, and an ordering on those
fragments. / S3 X
S3 (SSA programs of length 3) S4
def f(x):

r = ??op(??{x})

ro = 220p(??x,r13)

rs = ?26p(??2¢x,r1,r23)

return rs

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set § of sketches § =setofall SSA programs
a total order<on § Ordering expresses m
high-level search
A fragmentation of the candidate strategy. / S2 \
space, and an ordering on those
fragments. / S3 X
S3 (SSA programs of length 3) S4
def f(x):
M = ??op(??{x})
2 = ??op(??{x,m})
3 = ??op(??{x,m,rz})
return rj;

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)
a countable set § of sketches S =setofall SSA programs

atotalorder<on$§ Ordering expresses m
high-level search <
A fragmentation of the candidate strategy. / S2 \

space, and an ordering on those <
fragments. Here, < expresses / S3 x
iterative deepening. <
S3 (SSA programs of length 3) S4
def f(x): <
rv = ??op(??{x})
r2 = 220p(??(x,r13) S5
rs = ?20p(??2¢x,r1,r23)
return rs =i

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)
a countable set § of sketches

atotalorder<on$

A fragmentation of the candidate
space, and an ordering on those

fragments.

Implemented as a
generator that returns the
next sketch in the space

2. cost function (k)

3. gradient function (g)

S =setofall SSA programs

def f(x): S:
ri = ??op(??{x})
return r1

def f(X): Sz

ri = ??op(??{x})
r2 = ??op(??{x,r]})
return r2

def f(x): Ss3
ri = 7?0 (??x3)
r2 ??op(??{x,r1})
r3 ??op(??{x,ﬂ,rZ})
return r3

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set § of sketches S =setofall SSA programs

atotalorder<on$ S

///82\\

54

Semantics

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set § of sketches S =setofall SSA programs

atotalorder<on$ S

///sz\\x

54

Semantics

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set § of sketches S =setofall SSA programs

atotalorder<on$ S

IR
// : \x
(= ;

[53]

Semantics

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set § of sketches S =setofall SSA programs
atotalorder<on$ Serrelie

Sl
redundancy in the

search space. / S2 \

‘ [Tm
(=7 .

[53]

Semantics

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)

a countable set 8§ of sketches

atotalorder<son§ Sermantic

redundancy in the
search space.

@ Structure constraints
eliminate some overlap

[Ss] between sketches

Semantics

2. cost function (k)

3. gradient function (g)

S =setofall SSA programs

[

S1

>\

[

s\

54

Metasketches express structure and strategy

1. structured candidate space (S, <)
a countable set § of sketches S =setofall SSA programs

atotalorder<on 8§ Semantic m
redundancy in the
search space. / 52 \

| [Ts
@ Structure constraints \
eliminate some overlap S;

(SSA programs of length 3)

[Ss] between sketches
def f(x):
r = ??op(??{x})
| r2 = 20p(2200,m)
Semantics r3 = 220p(?2x,r1,r23)
return rs

2. cost function (k)

3. gradient function (g)

Metasketches express structure and strategy

1. structured candidate space (S, <)
a countable set § of sketches S =setofall SSA programs

atotalorder<on 8§ Semantic m
redundancy in the
search space. / 52 \

. S3 \

Structure constraints \

eliminate some overlap S3 (SSA programs of length 3)

between sketches

def f(x):

Fliminate dead-code ri = 2?0 (?%x3)

redundancy: assert that ro = ?2200(??x.r3)
Semantics each rj is read r3s = 2200(??2x.r1.r23)

return rs

2. cost function (k)

3. gradient function (g)

Cost functions rank candidate programs

1. structured candidate space (S, <)

i S =setofall SSA
2. cost function (k) >etora programs

Sl
. L->R /s_\
assigns a numeric cost to each / S2 \

program in the language £ / = x

3. gradient function (g)

Cost functions rank candidate programs

1. structured candidate space (S, <)

i S =setofall SSA
2. cost function (k) >etora programs

Sl
. L->R /g\
assigns a numeric cost to each / S2 \

- <
program in the language £ / 3 X
<
Cost functions can be based
on both syntax and semantics >4
(dynamic behavior) <
S5

3. gradient function (g)

Cost functions rank candidate programs

1. structured candidate space (S, <)
S =setofall SSA programs

/Sl\
)

2. cost function (k)

K:L->R /[=i
assigns a numeric cost to each / 5 \

program in the language £

Cost functions can be based
on both syntax and semantics
(dynamic behavior)

KIP)=] forPeSes§

The number of variables
defined in P

3. gradient function (g)

Gradient functions provide cost structure

1. structured candidate space (S, <)
S =setofall SSA programs

2. cost function (k) P

3. gradient function (g) [2
[&
oc:R->2% \

g(c) is the set of sketches in § that
may contain a solution P with k(P) <c¢

KIP)=] forPeSes§

Gradient functions provide cost structure

1. structured candidate space (S, <)
S =setofall SSA programs

2. cost function (k) P

3. gradient function (g) [2
[&
oc:R->2% \

o(c) is the set of sketches in § that
may contain a solution P with k(P) <c¢

The gradient function
overapproximates the

behaviorofkon § K(/D) =] forPeSe§

Gradient functions provide cost structure

1. structured candidate space (S, <)
S =setofall SSA programs

2. cost function (k) P

3. gradient function (g) [2
[&
oc:R->2% \

o(c) is the set of sketches in § that
may contain a solution P with k(P) <c¢

The gradient function
overapproximates the .
behavior of kon § K(P)=i forPeSes

oc)={SieS|i<c}

Gradient functions provide cost structure

1. structured candidate space (S, <)

' S =setofall SSA
2. cost function (k) SELOT 3 programs

3. gradient function (g)

oc:R->2%
g(c) is the set of sketches in § that
may contain a solution P with k(P) <c¢

The gradient function
overapproximates the
behaviorofkon 8§

KIP)=] forPeSes§
oc)={SieS|i<c}

Gradient functions provide cost structure

1. structured candidate space (S, <)
2. cost function (k)
3. gradient function (g)

oc:R->2%
g(c) is the set of sketches in § that
may contain a solution P with k(P) <c¢

The gradient function - Always sound for g to

overapproximates the returnall of 8 if a tighter
behaviorofkon & bound is unavailable.

S =setofall SSA programs

KIP)=] forPeSes§
oc)={SieS|i<c}

Gradient functions provide cost structure

1. structured candidate space (S, <)
2. cost function (k)
3. gradient function (g)

oc:R->2%
g(c) is the set of sketches in § that
may contain a solution P with k(P) <c¢

The gradient function - Always sound for g to

overapproximates the returnall of 8 if a tighter
behaviorofkon & bound is unavailable.

g(c) always being finite is
sufficient (not necessary)

to guarantee termination.

S =setofall SSA programs

KIP)=] forPeSes§
o(c)={SieS|i<c}

Metasketches
Design and structure

S =setofall SSA programs

1. structured candidate space (S, <) PN
[&

2. cost function (k)

3. gradient function (g)

KIP)=] forPeSes§
o(c)={SieS|i<c]

Background
Metasketches
Design and structure

Synapse

Results

Background

Metasketches

Synapse

A metasketch solver

Results

Solving with two cooperative searches

Local
search

8, 5,K, 8

Coordinates the search

for an optimal solution,

offloading work to parallel
— local searches

Global search

Local
search

Local
search

Solving with two cooperative searches

8,<,K, 8

Coordinates the search
for an optimal solution,

Global search offloading work to parallel
— local searches

Local Local Local
search search search

An incremental form of
CEGIS that can accept
new information from the
global search

Solving with two cooperative searches

8, 5,K, 8

Global search Q
Local Local Local
search search search

Solving with two cooperative searches

8, 5,K, 8

Global search

Local Local Local
search search search

Solving with two cooperative searches

8, 5,K, 8

Global search

Local Local Local
UNSAT
search search search

Solving with two cooperative searches

8, 5,K, 8

Global search

UNSAT

Local Local Local
search search search

< ¢ A

Solving with two cooperative searches

8, 5,K, 8

Global search
Local Local Local
search search search

@‘ =

Solving with two cooperative searches

8, 5,K, 8

Global search

Local Local Local
search search search

<D a

. SAT (P)

Solving with two cooperative searches

8, 5,K, 8

Global search
‘."" SAT (P)

Local Local Local
search search search

@‘ =

Solving with two cooperative searches

8, 5,K, 8

Global search

Solving with two cooperative searches

8, 5,K, 8

Global search

Y
Local Local Local
search search search

Prune local search
— spaces using k(P

Solving with two cooperative searches

8, 5,K, 8

Global search

Prune local search
— spaces using k(P)

Solving with two cooperative searches

8, 5,K, 8

Global search

Prune global search
space using g(k(P))

k(P K(P) K(P)
Y
Local Local Local
search search search

Prune local search
— spaces using k(P)

Solving with two cooperative searches

8, 5,K, 8

Global search

Prune global search
space using g(k(P))

k(P K(P) K(P)
Y
Local Local Local
search search search

Prune local search
— spaces using k(P)

Solving with two cooperative searches

8, 5,K, 8

Continues until all
search spaces
exhausted, yielding

—

Global search an optimal solution.

Prune global search
space using g(k(P))

k(P K(P) K(P)
Y
Local Local Local
search search search

Prune local search
~ spaces using k(P)

Synapse implementation

(8, 5,K, 8

Implemented in Rosette, a
Global search solver-aided extension of
Racket

Local Local Local
search search search

Synapse implementation

(8, 5,K, 8

Implemented in Rosette, a
solver-aided extension of
Racket

Global search

L ocal CEGIS searches can
share counterexamples

Local Local Local
search search search

Synapse implementation

(8, 5,K, 8

Implemented in Rosette, a
solver-aided extension of
Racket

Global search

L ocal CEGIS searches can
share counterexamples

Local Local Local

search search * search Local searches can time out,

which weakens optimality

Background

Metasketches

Synapse

A metasketch solver

Results

~—— < Background
Syntax-guided synthesis

Metasketches
Design and structure

M Synapse

A metasketch solver

Results
Retter solutions, faster

Evaluation questions

s Synapse a practical approach to solving different kinds of

synthesis problems?
Approximate computing, array programs

Evaluation questions

s Synapse a practical approach to solving different kinds of

synthesis problems?
Approximate computing, array programs

Can Synapse reason about complex cost functions?

Evaluation questions

s Synapse a practical approach to solving different kinds of

synthesis problems?
Approximate computing, array programs

Can Synapse reason about complex cost functions?

In the paper:
. Parallel speedup
» Optimizations (structure constraints, sharing)
« More kinds of problems
« More complex cost functions

Synapse solves previously-intractable problems

Parrot benchmarks from approximate computing [Esmaelizadeh et al., 2012]

Find the most efficient approximate program within an error bound

Synapse solves previously-intractable problems

Parrot benchmarks from approximate computing [Esmaelizadeh et al., 2012]

Find the most efficient approximate program within an error bound

Solving time (secs)

'''''
']
Lo X X 9 5 5

|
&= 0]] & @) @)
n n ~ wn wn

@] v
> >
= =

2
2

))

Synapse solves previously-intractable problems

Parrot benchmarks from approximate computing [Esmaelizadeh et al., 2012]

Find the most efficient approximate program within an error bound

10000 =

1000 =
100 =

All intractable to
Sketch and Stoke

Solving time (secs)

fft—cos
fft—sin
kmeans
sobel-x
sobel-y

inversek2j-
inversek2j-

Synapse solves standard benchmarks optimally

Array Search benchmarks from the syntax-guided synthesis (SyGu$S)
competition [Aluretal, 2015]

arraysearch-n: find program that searches lists of length n

Synapse solves standard benchmarks optimally

Array Search benchmarks from the syntax-guided synthesis (SyGu$S)
competition [Aluretal, 2015]

arraysearch-n: find program that searches lists of length n

10000 =

1000 =

100 =
lO“II|II|II||I|‘I\‘|||||

Solving time (secs)

[@\ o < Ln O N~ O (@)} O — @\ o <t LO
| | | | | | | | — — — — — —
_C e e e e e e e | | | | | |
o O O O o O O o - — e e e e
© © © © © © © © o o et o et o
3 3 ¢ ¢ %8 8 8 8 5 5 5 5 % ¢
c 2 % %2 3 5 5 5 02 0% 8 8 3 &
c £ g £ £ 2 £ € B 7 & & & B
qV) © © © O © © V) — — — - f- -
© © © © © ©

Synapse solves standard benchmarks optimally

Array Search benchmarks from the syntax-guided synthesis (SyGu$S)
competition [Aluretal, 2015]

arraysearch-n: find program that searches lists of length n

10000 =
%)
@)
© 1000 -
o Synapse: 349 bytes
& .
= 100 - SyGuS: 7.1 MB
a0
(-
=
T IIIIII

arraysearch-2
arraysearch-3
arraysearch—4
arraysearch-5
arraysearch-6
arraysearch=7
arraysearch-8
arraysearch-9
arraysearch—-10
arraysearch-11
arraysearch-12
arraysearch-13
arraysearch-14
arraysearch—-15

Is this a cat?

Synapse reasons about complex costs

Synapse reasons about complex costs

Classification error executes
K(P) = Z |P(x;) — yi| - the program for each point in
i the training set

Metasketches
Design and structure

Synapse

A metasketch solver

Results
Better solutions, faster

Metasketches
Design and structure

Synapse

A metasketch solver

Results
Better solutions, faster

synapse.uwplse.org

