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1. structured candidate space (S, <)
a countable set § of sketches

atotalorder<on$

A fragmentation of the candidate
space, and an ordering on those

fragments.

Implemented as a
generator that returns the
next sketch in the space

2. cost function (k)

3. gradient function (g)

S =setofall SSA programs

def f(x): S:
ri = ??op(??{x})
return r1

def f(X): Sz

ri = ??op(??{x})
r2 = ??op(??{x,r]})
return r2

def f(x): Ss3
ri = 7?0 (??x3)
r2 ??op(??{x,r1})
r3 ??op(??{x,ﬂ,rZ})
return r3
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1. structured candidate space (S, <)
a countable set § of sketches S =setofall SSA programs

atotalorder<on 8§ Semantic m
redundancy in the
search space. / 52 \

. S3 \

Structure constraints \

eliminate some overlap S3  (SSA programs of length 3)

between sketches

def f(x):

Fliminate dead-code ri = 2?0 (?%x3)

redundancy: assert that ro = ?2200(??x.r3)
Semantics each rj is read r3s = 2200(??2x.r1.r23)

return rs
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Cost functions rank candidate programs

1. structured candidate space (S, <)
S =setofall SSA programs

/Sl\
)

2. cost function (k)

K:L->R /[ =i
assigns a numeric cost to each / 5 \

program in the language £

Cost functions can be based
on both syntax and semantics
(dynamic behavior)

KIP)=] forPeSes§

The number of variables
defined in P

3. gradient function (g)
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Gradient functions provide cost structure

1. structured candidate space (S, <)
2. cost function (k)
3. gradient function (g)

oc:R->2%
g(c) is the set of sketches in § that
may contain a solution P with k(P) <c¢

The gradient function - Always sound for g to

overapproximates the  returnall of 8 if a tighter
behaviorofkon & bound is unavailable.

g(c) always being finite is
sufficient (not necessary)

to guarantee termination.

S =setofall SSA programs

KIP)=] forPeSes§
o(c)={SieS|i<c}
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Global search an optimal solution.
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Synapse implementation

(8, 5,K, 8

Implemented in Rosette, a
solver-aided extension of
Racket

Global search

L ocal CEGIS searches can
share counterexamples

Local Local Local

search search  *  search Local searches can time out,

which weakens optimality
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Evaluation questions

s Synapse a practical approach to solving different kinds of

synthesis problems?
Approximate computing, array programs

Can Synapse reason about complex cost functions?

In the paper:
. Parallel speedup
» Optimizations (structure constraints, sharing)
« More kinds of problems
« More complex cost functions
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Synapse solves previously-intractable problems

Parrot benchmarks from approximate computing [Esmaelizadeh et al., 2012]

Find the most efficient approximate program within an error bound

10000 =

1000 =
100 =

All intractable to
Sketch and Stoke

Solving time (secs)

fft—cos
fft—sin
kmeans
sobel-x
sobel-y

inversek2j-
inversek2j-
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Synapse solves standard benchmarks optimally

Array Search benchmarks from the syntax-guided synthesis (SyGu$S)
competition [Aluretal, 2015]

arraysearch-n: find program that searches lists of length n

10000 =
%)
@)
© 1000 -
o Synapse: 349 bytes
& .
= 100 - SyGuS: 7.1 MB
a0
(-
=
T IIIIII

arraysearch-2
arraysearch-3
arraysearch—4
arraysearch-5
arraysearch-6
arraysearch=7
arraysearch-8
arraysearch-9
arraysearch—-10
arraysearch-11
arraysearch-12
arraysearch-13
arraysearch-14
arraysearch—-15
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Synapse reasons about complex costs

Classification error executes
K(P) = Z |P(x;) — yi| - the program for each point in
i the training set



Metasketches
Design and structure

Synapse

A metasketch solver

Results
Better solutions, faster



Metasketches
Design and structure

Synapse

A metasketch solver

Results
Better solutions, faster

synapse.uwplse.org



