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Figure 1. Schematic surface reconstruction of the exterior of the Colosseum

Abstract

This paper introduces a schematic representation for
architectural scenes together with robust algorithms for
reconstruction from sparse 3D point cloud data. The
schematic models architecture as a network of transport
curves, approximating a floorplan, with associated profile
curves, together comprising an interconnected set of swept
surfaces. The representation is extremely concise, com-
posed of a handful of planar curves, and easily interpretable
by humans. The approach also provides a principled mech-
anism for interpolating a dense surface, and enables filling
in holes in the data, by means of a pipeline that employs a
global optimization over all parameters. By incorporating
a displacement map on top of the schematic surface, it is
possible to recover fine details. Experiments show the abil-
ity to reconstruct extremely clean and simple models from
sparse structure-from-motion point clouds of complex ar-
chitectural scenes.

1. Introduction

Technology for depth sensing is becoming common-
place, with the advent of modern structure-from-motion
systems [11] and systems like Kinect [6]. Just by waving a
camera or depth sensor around a room, you can now capture
a wealth of 3D data. However, there is a huge difference be-
tween a cloud of 3D points and what an architect would call
a “model.” Architects prefer schematic representations such
as floor and profile plans, which factor the scene into a set
of planar lines and curves. The key property of schematics
is that they are concise and easy to understand, yet provide
an accurate and detailed representation of scene geometry.

This paper addresses the problem of converting sparse,
structure-from-motion point clouds into schematic rep-
resentations composed of planar curves. We focus
particularly on the case of architectural scenes, and employ
domain constraints that are tailored for this application.
Compared to most prior work on surface reconstruction,
our approach has the following advantages.

• Understandability: the representation is easily inter-
pretable by humans, as it looks and behaves like a sketch
(e.g., it can be easily edited).

• Simplification: Even complex 3D structures are repre-
sentable with a handful of curves; the representation is
highly compressed.

• Completion: the derived curves enable filling in holes
and interpolating a dense surface from a sparse point
cloud.

• Fidelity: by solving for a regularized height field on top
of the schematic representation, we show that it’s possi-
ble to recover the fine details present in the input.

Our schematic surface representation is composed of a
network of planar transport and profile curves. The trans-
port curve network captures the architectural notion of a
floor plan, as the curves are all parallel to the ground plane.
These curves can be grouped into one or more floor plans.
The profile curves capture how the surface is vertically ex-
truded, and allow for a wide range of both piecewise planar
and curved surface shapes. This representation builds on
classical work on swept surfaces and generalized cylinders
[3], specialized to capture architectural constraints and
generalized to enable modeling of complex scenes.

The main contribution of the paper is to introduce the
schematic surface representation and robust algorithms for
fitting this representation to sparse point could data. We



focus primarily on point clouds derived from structure-
from-motion (SfM) algorithms instead of Kinect or laser
scans, as the former is more challenging due to greater
sparsity and number of holes. However, we’ve tested the
same algorithms on stereo and laser scan data, and they
also work well on denser data.

The problem of fitting swept surfaces to point clouds has
a long history in the computer vision literature, going back
to Binford’s work in the 1970’s on reconstructing general-
ized cylinders from laser scans [3]. Almost all prior work
in this area, however, focused on simple objects captured in
a laboratory or other controlled environment, and models
consisting of a single primitive or a few parts [9, 10, 14]. In
contrast, we are the first to use collections of swept surfaces
to model complex, large-scale architectural scenes. To
scale to scenes of this complexity, we introduce a network
of interconnected transport and profile curves, together with
domain constraints (e.g., a ground plane). Our focus on
SfM data, which is comparatively sparse and incomplete,
also represents a departure from prior art (which focused
primarily on dense range data or photographs). Another
significant innovation is our use of 2D implicit functions
(based on merging signed distance functions [4, 5]) to com-
pute optimal, non-parametric representations of the profile
and transport curves. While implicit techniques are popular
for merging range scan data, they have not previously been
used in the context of swept surface reconstruction. We also
introduce a global optimization framework for refining the
transport and profile curves simultaneously given data-fit
and regularization terms subject to range constraints, using
a quadratic program. A final innovation is our use of
a displacement map on top of the swept surface, which
captures fine details of the original point cloud, and is
optimized using quadratic programming.

2. Schematic Surface Modeling
Our schematic representation is inspired by architectural

schematics, which are composed of horizontal and vertical
plan views of the scene. Each plan view is composed of a
set of inter-connected contours, delineating walls and other
architectural elements. We introduce a surface modeling
approach based on the same principles of describing scene
content by inter-connected horizontal and vertical contours.

We assume an architectural scene is generated by a
set of horizontal transport and vertical profile curves.
More specifically, transport curves lie in planes parallel
to the ground, while profile curves lie in planes that are
orthogonal to the ground. We also require the transport
curves to be simple and relatively low-curvature (but two
transport curves may meet at a sharp corner).

The scene consists of a network of swept surfaces,
each of which is generated by sweeping a profile curve
along its associated transport curve. Multiple profiles
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Figure 2. Swept surface representation. The transport curve t(u)
stays in a plane with normal bt, while the profile curves p(v) are
in coordinate systems located at t(u) and rotated to [Xp, Y p, Zp].

are also allowed to share a common transport curve, for
example, interleaving structures on building facades can
be modeled by alternating profiles. The fine details, that
are not captured by swept surfaces, are represented as
displacements from the base surface.

2.1. Swept Surface

In this paper, we use the term swept surface to refer to
the Planar Right Constant Generalized Cylinder [13]. Such
surfaces are generated by sweeping a constant planar pro-
file curve along a planar transport curve, with a constraint
such that the profile curve is orthogonal to the transport
curve directions. For example, a torus can be generated by
sweeping a small profile circle along a large profile circle.

Let t(u) be a transport curve with arc length (unit speed)
parameterization. The binormal bt of the transport curve
is the ground plane normal that all transport curves share
in architectural scenes. As illustrated in Figure 2, without
loss of generality, we define the planar profile curve p(v) in
plane X = 0 and require that p(v) goes through 0, and the
rotation applied to a profile curve is given by

R(u) = [t′(u), bt × t′(u), bt], (1)

where t′(u) provides the transport direction. The resulting
swept surface is defined as

S(u, v) = t(u) +R(u) p(v). (2)

This representation can express a large variety of shapes.
In particular, planes, extruded surfaces, and surfaces of
revolution are special cases of swept surfaces. The house-
like object in Figure 4 is also a single swept surface. To
handle more complex scenes, we extend the simple swept
surface model to allow multiple profiles to share a common
transport curve, which is parameterized as follows

S(u, v) = t(u) +R(u) pk(u)(v), (3)

where k(u) is the piecewise constant function that chooses
a profile curve pk(u) for each u.

Since architectural building are solid objects, we assume
our swept surfaces non-self-intersecting. For any point t(µ)
on the transport curve, its profile curve S(µ, v) must satisfy

||S(µ, v)−t(µ)|| ≤ ||S(µ, v)−t(u)|| for any u 6= µ. (4)
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Figure 3. The diagram of our method. Swept surfaces are initial-
ized by establishing transport and profile curves; The refinement
stage improves the schematic surfaces via global optimization.

As a result, only the partial profile curves that satisfy the
inequality are kept when profile curves intersect.

3. Swept Surface Reconstruction
As illustrated in Figure 3, our surface reconstruction

first finds the ground plane normal, and then extracts
multiple swept surfaces, of which the transport curves lie
in horizontal planes. This section will introduce the basic
reconstruction framework that initializes a set of swept
surfaces, which will be further optimized by our refinement
algorithm in Section 4. We encourage readers to watch our
illustration video at the project website [2].

3.1. Preprocessing and Plane Intersections

Let xi be an input 3D point, ni its normal direction,
c1i and c2i its two principal directions, and t′i its transport
direction. We estimate ni, c1i and c2i with PCA on the SfM
points within a distance threshold TR. TR is chosen such
that the first quartile of the number of neighboring points
across all inputs points is 100, which ensures for most
points that the estimation of point normal and principal
directions are robust to noise. The signed normal directions
are chosen to point toward the SfM cameras and are
globally consistent. To handle unknown sensor locations,
the consistent signs can be obtained by using, for instance,
the propagation method in [5].

Our curve reconstruction method employs the point
cloud intersection with two types of planes: 1) transport
planes: the planes perpendicular to the transport binormal,
and 2) profile planes: the planes through a surface point xi
and perpendicular to its transport direction t′i. The curves
on the two types of planes are the transport curves and
profile curves respectively. Given an input point cloud,
we call the point subsets on the planes transport slice and
profile slice accordingly. In practice, we keep the points
within a small distance threshold TR

8 for plane intersection,
and skip planes that have fewer than 20 points.

3.2. Finding Ground Plane Normal

The model of swept surface enables us to automatically
recover the transport binormal bt from input point data.

Rom and Medioni [10] prove that the principal directions
of a swept surface S(u, v) are R(u)p′(v) and transport
direction t′(u), where t′(u) ⊥ bt is always true. Hence the
transport direction t′i of each point xi corresponds to either
c1i or c2i. Since transport directions t′i lie in planes perpen-
dicular to the ground plane normal bt, every point should
have one principal direction perpendicular to bt. In practice,
bt should be perpendicular to one principal direction of the
largest subset of points. With a simple thresholding1 and
by using boolean values as 1 or 0, the desired direction is
defined by argmaxb

∑
i(c1i ⊥ b) ∨ (c2i ⊥ b).

We introduce two improvements to this simple binormal
selection strategy to deal with planar structures and ex-
truded surfaces. Planar structures (facades) have undefined
principal directions, for which the plane normal is one
of the many solutions in general. We suppress plane
normals by not counting a point xi for a candidate transport
binormal b if ni ‖ b. Another ambiguous case is a vertically
extruded surface (e.g. cylinder). The ground plane normal
and any direction parallel to the ground are equally good so-
lutions for general swept surfaces. However, in the context
of architectural scenes, we favor the direction of extrusion,
so we also count a point if its normal is perpendicular to
the binormal. The ground plane normal is given by

bt = argmax
b

∑
i

((c1i ⊥ b)∨(c2i ⊥ b)∨(ni ⊥ b))∧(ni ∦ b),

(5)
which we solve via RANSAC. Within the sampling loop,
we randomly choose two points i and j that satisfy ni ∦ nj ,
and propose four candidate directions c1i × c1j , c1i × c2j ,
c2i × c1j , and c2i × c2j , because bt is perpendicular to one
principal direction of each point.

Having solved the ground plane normal, the planar
transport direction for each point xi is given by

t′i =

{
bt×ni

|bt×ni| ni ∦ bt
Undefined otherwise,

because the transport directions are perpendicular to both
surface normals and transport binormal. The rotation
matrix of each point is defined as Ri = [t′i, bt × t′i, bt]. It is
not a problem to have some transport directions undefined,
and we find that such regions can be still reconstructed
from the profile planes defined by other points.

3.3. Choosing The Transport Curve Points

In order to define the transport curve and profile curve,
we first need to pick a transport plane. The choices of p(v)
and t(u) for a swept surface are not unique. Given any point
q on p(v), the same swept surface can also be generated by

1Two normalized vectors f1 and f2 are considered parallel if
|f1 · f2| > 0.99 or considered perpendicular if |f1 · f2| < 0.04
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Figure 4. Swept surface reconstruction with missing data and noise. (a) We generate a synthetic swept surface with a size of 300×200×260
and a mesh resolution of 2. (b) As input to our reconstruction, we corrupt the original surface by adding Gaussian noise (with standard
deviation of 1) to each dimension of the original points and cropping out a small part. (c) The blue points are the transport points, and the
four red curves are profile slice examples, which can be incomplete. The short line segments on the points indicate the transport directions.
(d) The profile points accumulated by transforming the profile slices to a common profile plane. (e) The signed distance fields of the
curves. (f) Our unoptimized reconstruction of the corrupted input is smooth and complete. Our reconstruction has a mean absolute error
of 0.18 and RMS error of 0.61 when compared to ground truth.

using pq(v) = p(v) − q and tq(u) = t(u) + R(u)q. As a
result, we are free to choose any transport plane to define
the transport curve for swept surface reconstruction.

For the sake of robustness, we choose the planes where
the points have minimal noise and minimal curvature. By
definition, the angle between bt and surface normal ni
stays constant on a transport curve, such that bt ·ni =
(0, 1, 0)T · p′(v), so we measure the noise level of a given
transport plane πt by the variance of the angles σ∠(πt) =
stddev{∠(bt, ni)|xi ∈ πt}. Low curvature points improve
stability and are thus more suitable for our reconstruction.
By projecting the point normals to the transport planes, we
can estimate the transport curve curvature κi for each point,
and we use σc(πt) = rms{κi |xi ∈ πt} to measure the
overall curvature of a transport plane. Finally, we define the
cost of choosing a plane πt by σc(πt) + σ∠(πt). We gen-
erate a list of transport planes with a small equal spacing of
TR

8 , remove the ones that have below-average point counts,
and choose the transport plane with the smallest cost.

To find the points that belong to a single transport curve,
we obtain a transport slice by intersecting the transport
plane with the input point cloud. One possible problem
is that the plane may contain multiple transport curves.
For example, the intersection with a torus generates one
inner circle and one outer circle. Therefore, we look for
maximum connected components from the transport slice
and process each component as the points of a single
transport curve. Here the connectivity is defined by using a
simple threshold. Each low-curvature point is connected to
another point in the same transport slice if they have similar
normals and are within a distance range2.

It is now possible to extract a transport curve from the
points of a connected component; however, a single slice is
often unreliable due to noise and missing data. Instead, we

2Specifically for a point xi with κi < 1
5TR

, we consider a point xj
connected to xi if ni ·nj > 0.95 and xj is within a rectangular range
|ni · (xi − xj)| < TR

4
and |t′i · (xi − xj)| < 8TR

use the transport curve points to define a set of profile slices,
robustly reconstruct their common profile curve, and fit
the transport curve afterwards by using all the profile slice
points. We will describe our reconstruction of profile curve
and transport curve in Section 3.4 and 3.5, respectively.

3.4. Reconstructing The Profile Curve

The transport curve points define a set of profile planes.
The profile slices on these planes share a common profile
curve, but have different locations and rotations. Not all the
points on a profile plane should be considered in the profile
slice. First, the point normals should be perpendicular to
the transport direction, so we verify this perpendicularity
to filter out the points that do not belong to profile curves.
Second, we filter the points according to the non-self-
intersection assumption, and keep the partial slice that is
close to each transport point. For example in Figure 4(c),
the profile slices are halves of the profile plane intersections.

We transform the profile slices to the canonical profile
plane for merging. Let πip be the profile slice of a transport
point xi. Any point xj on the profile slice can be trans-
formed back to the canonical profile plane coordinate yij by

yij = R−1i (xj − xi). (6)

Similarly the normal direction can be transformed to the
profile plane coordinate as

nij = R−1i nj . (7)

When yij and nij do not lie perfectly on the profile plane, we
take their 2D projections. Like the merging of laser scan
images [4], the merging of profile slices effectively handles
noise and missing data on single profile slices.

Similar to the 3D volumetric approaches [5], we recon-
struct the profile curve implicitly by computing a 2D signed
distance field. Each oriented point (yij , n

i
j) can be viewed

as a small curve pieceh, so its depth function is

dij(y) = (y − yij) ·nij . (8)



For convenience, we denote the distance along the tangent
direction as hij(y) = |(y − yij)× nij |. We define the signed
distance field as a weighted average of the individual depth
functions with the following Gaussian weighting function

wij(y) = exp
(
−
dij(y)

2

2σ2
1

−
hij(y)

2

2σ2
2

)
, (9)

which attenuates the weight of a point along depth direction
and tangent direction. Our signed distance field is

Dp(y) =
(∑
(i,j)

dij(y)w
i
j(y)

)
/
(∑
(i,j)

wij(y)
)
. (10)

The iso-curve is then extracted as a list of 2D vertices
by using the marching squares algorithm [8]. We choose
σ1 = 2TR

5 and σ2 = TR

5 . The grid resolution of the distance
field is chosen to be σ2, and each point has an extent of
8σ2. We use the same weighting function to compute a
smooth normal field Np(y) from nij , which we will use to
initialize normal directions in Section 4.1.

3.4.1 Clustering Profile Slices

It is common in real scenes for different profiles to share
a continuous transport curve. For example in Figure 5,
there are two slightly different shapes along the corridor.
Without accounting for the differences, we may end up
with doubled profile curves. We address this problem by
recovering multiple profile curves along a single transport
curve, via a simple clustering procedure.

We identify clusters of consistent profile slices and re-
cover a profile curve for each cluster as follows. We repeat-
edly pick a single profile slice as a seed to define a new clus-
ter. All the profile slices that match with the seed curve are
assigned to the cluster. Given a profile curve with distance
field Dp(y), we match a slice πp according an inlier ratio:

| {q | q ∈ πp, Dp(q) < σ1} | / |πp | (11)

with a threshold TS = 90%. The profile curve for the
cluster is then updated by using all the profile slices of the
cluster. New clusters are added until the overall inlier ratio
reaches a threshold TC = 90%. Our experiments produce
one or two profile curves for most transport curves.

The seed slice selection is based on a score that evaluates
the number of points covered by the single slice curve re-
construction. Given a set of 2D profile points R, we use the
functionW (R, y) =

∑
R w

i
j(y) to approximate the number

of points at y, and define the density score of a slice π as
Q(π,R) =

∑
y∈πW (R, y)/W (π, y), where the weight

1/W (π, y) avoids multiple counting of the same locations.
The slice with the highest score is chosen as the seed.

When multiple clusters of profile slices are detected, we
substitute Equation 3 for Equation 2 for the swept surface

(a) Image (b) Profile (c) Clusters (d) Unoptimized (e) Optimized

Figure 5. Swept surface refinement on one corridor of St Peter’s
Basilica. (b) The accumulated profile points. (c) The top-down
view of two profile slice clusters in red and blue, (d-e) The
unoptimized swept surface and the optimized swept surface.

reconstruction. The transport curve shared by multiple
profile curves maintains the connectivity between multiple
segments of surfaces.

3.5. Reconstructing The Transport Curve

The reconstructed profile curve allows us to robustly
recover the transport curve. Equation 2 can be rewritten
to obtain the transformation from surface to the transport
plane: t(u) = S(u, v) − R(u) p(v), where S(u, v) and
R(u) are the position and the rotation at each point, and
the profile curve p(v) is already reconstructed. Given a
point xj , we estimate the corresponding curve point pij on
p(v) by intersecting line (y− yij) ·Zp = 0 with the curve3.
Each point xj on profile slice πip is transformed to

zij = xj −Rj pij , (12)

where the rotation of Rj is used rather than Ri to take the
rotation of each point into account. The normal direction of
the transformed point on the transport plane can be defined
according to its transport direction as

t′j × bt. (13)

Consequently, the accumulated 3D points are transformed
to a set of oriented points in the transport plane.

To ensure that the transformations are consistent within
each profile slices, the above two transformations require
a sign correction by t′j ← sign(t′j · t′i)t′j for each xj ∈ πip.
One example of such a correction is the corridor in Figure 5,
where the transport directions on two sides are initially
opposite due to opposite normals. This is also why the
orientation is defined according to t′j instead of nj .

Similar to the reconstruction of profile curves, signed
distance field Dt(z) and normal field Nt(z) are constructed
from the accumulated points on the transport plane. The
transport curve is extracted as the iso-curves of Dt(z),
and Nt(z) gives a smoothed normal field. In the case
of multiple profile curves sharing the transport curve,

3This intersection is reliable only if the curve is not close to hor-
izontal, so we use only the subset of accumulated points that satisfy
∠(ni

j , Zp) > 30◦ for transport curve reconstruction.



we assign for each transport curve vertex the cluster that
produce the highest density, which is defined as the sum of
the Gaussian weight of each point at the vertex.

To deal with possible holes in the initial chosen transport
plane, we search for additional profile slices to complete
the missing part of the transport curve. Starting from the
set of accumulated 3D points, we examine the profile slices
of their neighboring points, which are now not limited to
the initial transport plane. Although these transport points
are not on the original transport plane, the reconstructed
profile curve allows us to transform the new profile slices to
the canonical profile plane coordinate and to the transport
plane. Next, we match the transformed profile slices with
the known profile curve by using the inlier ratio defined in
Equation 11, and keep the ones that match the profile curve
for transport curve reconstruction.

3.6. Network of Swept Surfaces

Given the recovered profile and transport curve, the mesh
of the swept surface is easily generated by placing a trans-
formed version of the profile curve at each transport curve
vertex. Given the generated full mesh, we first trim the
mesh by self-intersection according to Equation 4. Second,
we crop the upper/lower vertices of a mesh to define a verti-
cal boundary, so the surface does not extend to where there
are no input points. Along each profile curve on the mesh,
we start from the two ends of the curve, and keep trimming
the vertices until there are input points within distance TR

2 .
A collection of swept surfaces is produced by repeating

the single swept surface reconstruction on multiple con-
nected components and on multiple transport planes. When
one swept surface is extracted, the points within distance
TR to the surface are marked as covered, and excluded
from being used by other swept surfaces. When there are
multiple connected component on a transport plane, we
process them in the order of decreasing sizes. After pro-
cessing of one transport plane, we continue searching for
new transport planes to model as many points as possible.

The schematic representation of a scene is defined by the
network of swept surfaces, where the connectivity between
swept surfaces is defined according to the transport curves.
We find the transport planes that intersect most surfaces,
and use the transport curves on such planes to define a floor-
plan. Figure 6 shows two examples of computed floorplans.
Given a transport curve and one of its two ends, the closest
transport curve within a threshold 4TR gives a connected
neighbor surface. We modify the horizontal boundaries of
the meshes to be where neighbor surfaces intersect. Since
all swept surfaces share the same transport binormal, mesh
trimming is computed efficiently as curve intersections on
each plane. When two transport curves approximately form
a right corner, we extend the mesh along the transport di-
rections of end vertices and perform the same intersection.

Figure 6. The reconstructed floorplans of the Allen Center and the
Uris Library (see Figure 7 for their input points). The transport
curves are color-coded by the common transport planes.

4. Swept Surface Refinement
In this section, we optimize the swept surfaces to better

fit the data through two improvements. First, we introduce
a global optimization to jointly refine the profile and trans-
port curves based on data-fit and smoothness objectives.
Second, we introduce a displacement map on top of the
swept surface to recover fine-grained details.

4.1. Swept Surface Optimization

Up until this point, we have described a multi-stage pro-
cedure to reconstruct swept surfaces. We treat the result as
an initialization which we now refine by jointly optimizing
over the profile and transport curves to obtain an optimal
trade-off of data-fit quality with smoothness objectives. We
now introduce the set of objectives to optimize.

Let S(u, v) be the initially reconstructed swept surface,
and Sd (with pd(v) and td(u)) the optimized surface.
We refine the swept surface to fit the subset of 3D points
within distance TR. Let (ui, vi) be the closest mesh vertex
parameter for each xi, the data-fitting cost is defined by the
distances from the surface to its nearby 3D points:

Edata =
∑
|(xi − Sd(ui, vi)) ·Ns(ui, vi)|2,

where Ns(u, v) = R(u)Np(v) is the normal direction for
error estimation. Because the transport curve derivative di-
rections are sensitive to the small errors in curve positions,
we initially define R(u) = [Nt(u) × bt, Nt(u), bt] from
the smooth curve normal field, and then adopt R(u) =
[t′(u), bt × t′(u), bt] after the first optimization iteration.

Second, we expect the curve derivatives to be perpendic-
ular to the curve normal fields, so we define a tangent fitting
cost similar to the objective of Poisson reconstruction [7]

Etangent =
∑

(|p′d(v) ·Np(v)|2 + |t′d(u) ·Nt(u)|2).
Here the derivatives are estimated from the discretized
vertices with respect to constant speed parameterization.

Third, we optimize the smoothness of the swept surfaces
by penalizing the second order derivatives of the curves

Esmooth =
∑

(||p′′d(v)||2 + ||t′′d(u)||2).



In summary, the profile curve pd and transport curve td
are jointly optimized by minimizing the energy function

Esweep = Edata + λnEtangent + λsEsmooth. (14)

We parameterize the curves by using a displacement
variable on each curve vertex: pd(v) = p(v) + β(v)Np(v)
and td(u) = t(u) + ψ(u)Nt(u), where the displacements
are bounded in [−TR, TR]. This surface parameterization
has much fewer parameters compared to typical mesh
fitting, and thus enables efficient optimization. We approx-
imate each error term by a linear function of β and ψ, and
use Mosek [1] to solve the quadratic optimization. Note
that the optimization requires the constraint β(v0) = 0 for
the vertex p(v0) = (0, 0, 0) to pick a unique one out of the
family of solutions.

In each optimization iteration, we use the current curves
to obtain Ns(u, v), Nt(u) and Np(v), then find the optimal
displacement β(v) and ψ(u) to compute the optimized
swept surface. A post-processing step is done after the
optimization to remove any self-intersection in the curves.
Experiments show that the errors in the initial transport
curve may cause the optimization to get stuck in local
minima. To improve the convergence, we add auxiliary
variables r(u) = t′d(u), optimize only r(u) in the first pass
to smoothen the second order derivatives, and then jointly
optimize all parameters for subsequent iterations.

Sharp corners in the transport curve are common in
man-made scenes, but cause singularities in tangents and
normals. We therefore downweight the tangent fitting error
in areas where ∠(Nt(u), t′(u)) < 45◦ for transport curves
and where there is an alternation of profiles when multiple
profile curves share a common transport curve.

4.2. Displacement Map

To model the fine-scale geometric details, we introduce
a scalar displacement map on top of the swept surface
representation. The displaced swept surface is defined by

Sd(u, v) = S(u, v) + d(u, v) Ns(u, v), (15)

where d(u, v) is the displacement function. Similar to the
joint optimization of curves, we consider both the fitting of
input point data and the mesh smoothness

Edisp = Edata + λdEmesh. (16)

Given the optimized swept surface and its smooth normal
Ns, we penalize big jumps along the normal directions by

Emesh =
∑

(|Su ·Ns|2 + |Sv ·Ns|2), (17)

where Su and Sv are the two partial derivatives of the
displaced swept surface. Like the previous optimization,
we bound the displacements by [−TR, TR], and solve the
displacement map with Mosek quadratic optimization.

Figure of datasets 1 7(a) 7(b) 7(c)
# of SfM points 200K 514K 133K 689K

# of curve vertices 2K 3K 2K 7K
# of mesh vertices 141K 373K 97K 415K

Time on swept surfaces 3.0 12 1.2 10
Time on optimization 0.13 0.58 0.12 0.61

Time on displacements 0.38 1.6 0.25 1.2

Table 1. The statistics of our reconstruction and the timing of each
step in minutes. The experiments are conducted on a PC with
Intel Xeon X5680 3.33Ghz CPU and 12GB Ram.

5. Experiments and Discussions
We present schematic surface reconstructions on SfM

points of complex architectural scenes: the Colosseum in
Figure 1, St. Peter’s Basilica, the Allen Center, and the Uris
Library in Figure 7. Due to space constraints, we place
additional results and a comparison with Poisson surface
reconstruction at our project website [2].

We ran all experiments with the same settings. All 3D
scale parameters are proportional to TR, which is chosen au-
tomatically according to point density. The resolution of the
signed distance field σ2 = TR

5 is chosen such that a 10× 10
grid within the radius on a planar surface yields one point in
every cell. A uniforming 3D binning voxel grid with resolu-
tion TR is used for nearest point queries. The optimization
parameters are chosen experimentally for very smooth sur-
faces and then kept constant: λs = 100, λn = 16, λd = 4.

Experiments demonstrate the robustness of our method,
which consistently detects the correct ground normal,
produces clean curves and surfaces, and preserves details
via the displacement maps. Table 1 shows the conciseness
of our representation, which requires 2 orders of magnitude
fewer parameters compared to the original point cloud.

The point density in SfM models is often more than
sufficient to recover high quality schematics. Indeed, we’ve
found that a small fraction of SfM points (1% for the Colos-
seum, and 10% for the others) is sufficient for schematic
reconstruction (see our website [2] for details). Our method
also works reasonably well for dense MVS points, and a
choice of slightly larger TR can furthur improve the recon-
struction by downweighting the details in MVS points.

Our algorithm has been tailored specifically for common
architectural scenes. The single transport binormal and
the piecewise constant model may be over-simplified for
other type of scenes. While our approach works reasonably
well for some objects (e.g. cups, bottles), more complex
surfaces will break down into a collection of small pieces.

One limitation of our method is the uniformly applied
scale TR, which limits the processing of sparse regions.
SfM does not produce enough points for poorly textured
regions or places where the camera viewing angles are
too oblique (e.g. the side corridors in Figure 7(a)), for



(a) St Peter’s Basilica Reconstruction

(b) Allen Center Reconstruction

(c) Uris Library Reconstruction

Figure 7. Schematic surface reconstruction. The figures from left to right are input SfM points, schematic representation curves, swept sur-
faces, and swept surfaces with optimized displacements. The curves and swept surfaces are color-coded by the indices of the swept surfaces.

which our method produces holes. In the future, we
would like to explore multi-scale approaches, symmetries
or other high-level regularities to improve the accuracy
and completeness of the reconstruction. In addition, our
current choice of surface boundaries relies on the existence
of input points, but this can be disturbed by outliers and
missing data. In the future, we would like to explore more
architectural priors to regularize the boundaries.
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