Correctness and Security for Home Automation

Chandrakana Nandi
Research Advisor: Michael Ernst
Computer Science & Engineering, University of Washington
email: cnandi@cs.washington.edu

1 Problem and Motivation
Home automation is gaining popularity as one of
the most notable applications of Internet of Things.
Smart homes involve numerous gadgets and sensors
which communicate and act autonomously. One ma-
jor challenge for smart homes is ensuring their cor-
rectness and security. What if the controller of one
device incorrectly sends commands to another de-
vice? What if personal information about the owner
is sent to the cloud without permission or proper
anonymization? Our goal is to develop a framework
to formalize and verify the correctness and security
properties for smart homes.

2 Background

Some recent work has discussed possible security
loopholes in smart homes [4, 5, 7] and some early
solutions have been proposed with limited expres-
siveness [3] or dynamic enforcements [2]. The prob-
lem with dynamic solutions is that if a loophole is
encountered during execution, the service has to be
stopped which is not convenient. Our approach has
greater expressiveness and is static, providing com-
pile time guarantees that the smart home satisfies
the correctness and security policies.

3 Approach

To the best of our knowledge, there has not been
any work so far on formal reasoning about the cor-
rectness and security of home automation systems.
In our approach, we formalize a set of policies for
the smart home. Our goal is to implement tech-
niques to verify these policies for Google’s Android
based framework, Brillo [6]. In this work, we pro-
pose the formalism. We consider that a smart home
has several autonomous smart appliances which can
talk to each other. There is no central hub connect-
ing the devices, instead communication happens di-
rectly between the devices. The owner of the house
can send commands to the devices through his/her
smart phone if needed. We assume that messages
from the phone to an appliance cannot be spoofed
and no one outside the house can listen to the mes-
sages. A device executes an action based on the val-
ues of sensor variables on which it depends. For ex-
ample, the front door opens or closes depending on

the inputs from a camera outside the house, the loca-
tion of the owner and the distance of the owner from
the door. We want to ensure that no device executes
an action unless the conditions are satisfied. We call
such a policy a dependency policy. Another policy of
interest is about controlling rights: what devices are
allowed to control a particular device? This policy
is called control policy. The third type of policy is
for ensuring that sensitive data is not leaked to the
outside world and is called information flow policy.

3.1 Dependency Policy

Let D denote a smart device and A denote an action
that it executes, based on the values of the sensors
it relies on. There are two possible situations: con-
ditions that may trigger the device to act and condi-
tions that must trigger the device to act. If D must
execute A when some condition C holds, then it is
represented as C' = D M A. This means that if
C is true, D absolutely must execute A. The other
possibility is that D may execute A when some con-
ditions C holds. This is represented as D m A = C.
This means that D may not execute A, but if it does,
the condition C must be true. The structure of the
dependency policy is:

<sensor_variable := state >T= DM A (1)

D m A =< sensor_variable := state > (2)

3.2 Control policy

An appliance should not be controllable by any ar-
bitrary appliance. However, some appliances may
have the permission to send some information to
other appliances. For example, a thermostat can
control the heater and the cooler and can connect
to the owner’s phone to find out the location of the
owner: if the owner is coming home, it turns on/off
the heater or the cooler to regulate the room tem-
perature. The door controller controls the main door
depending on the owner’s location, but cannot con-
nect to the owner’s phone due to lack of support
for WiFi. It thus obtains the owner’s location from
the thermostat using some weaker communication
protocol. We want to ensure that the thermostat
does not send open/close messages to the door in-
stead of sending the owner’s location. To verify this

property, we model the entire home as a finite state
machine and check if there is an “illegal” transition
label due to unauthorized commands. Figure 1 il-
lustrates this concept. The format of the label is
sender_receiver_command.

thermostat_heater_off

thermostat_heater_on

thermostat_cooler_off

owner's
cooler ol off location

thermostat_cooler_on

I

doorcontroller

doorcontroller_door_close

doorcontroller_door_open

thermostat_door_open

Figure 1: Finite state machine of a smart subsys-
tem: the red arrow is an “illegal” transition label
indicating a command from an unauthorized sender

3.3 Information flow policy
We verify the information flow policy using type
checking. If d is some data that an appliance gath-
ers from the owner, we annotate it as sensitive or
non_sensitive. Let Ly denote a list of all the des-
tinations to which d may be sent. Then the policy
states that if d is not sensitive, then it may be sent to
any of the allowed destinations. If it is sensitive, then
before sending it anywhere, it should pass through
the user’s scrutiny. The user may either decide not
to send it anywhere or to anonymize it before send-
ing it to some destinations that seem fit. This is
represented using an ordered pair, the first element
of which describes the action to be performed, and
the second element is a list of destinations allowed.
The ordered pairs can be of two types,
o (keep_secret, []): if d has to be kept secret,
then the list of destinations will be an empty
list.

e (anonymize, [Di,Ds,...,D,1): first d is
anonymized and then it may be sent to one

or more of these m (> 1) destinations where
{Dl,DQ, 7l)m} - Ld.

To summarize,
o d.type = sensitive A USER_DECISION

(keep_secret, []) = d.destination = ||

o d.type = sensitive A USER_DECISION =
(anonymize, Dy, Da, ..., Dp]) =
d.is_anonymized = true N
d.destination € [D1, Da, ...

s Do

o d.type = non_sensitive = d.destination € Lq

4 Contributions

We have used the above policies to formalize a home
automation system which has more than 10 appli-
ances. Here we provide some examples for the de-
pendency and information flow policies. Figure 1 in
section 3.2 illustrates an example of the control pol-

icy.

e Dependency policy: The main door of the
house must open if it is currently closed and
the owner is within 5 feet from the door outside
of it and the camera feedback indicates that
the person is indeed the owner. Note that the
door does not open when there is someone near
it inside the house, waiting to go out.

(D = “MAIN_DOOR”) N (CURRENT_STATE
= “closed”) N (OWNER_LOCATION = “outside”
ANOWNER_DISTANCE < “5 feet” A
CAMERA_FEEDBACK = 1) =

(D = “MAIN_DOOR”) M (A = “open”)

The Laundry machine may start when the
machine is full, the doors are closed and the
machine is not running already.

(D = “LAUNDRY _MACHINE”) m (A = “start”) =
(IS_.FULL = true) A (IS.DOOR_CLOSED = true) A
(CURRENT_STATE = “paused” V
CURRENT_STATE = “off”)

e Information flow policy: Consider a smart
scale [1] which can remember and track the
owner’s weight. The owner may not want this
information to be sent to any website by the ap-
pliance. Hence the type for the weight would
be sensitive and the user’s decision will most
likely be (keep_secret, []).

5 Conclusions and future work

We proposed a technique to define and formalize cor-
rectness, security and privacy for smart homes. The
next step is to implement a framework that allows
us to verify these policies.

References

[1] Smart Weigh, 2015 (accessed November 29,
2015). http://www.smartweighscales.com/.

2]

Jalal Al-Muhtadi, Manish Anand, M Dennis
Mickunas, and Roy Campbell. Secure smart
homes using jini and uiuc sesame. In Com-
puter Security Applications, 2000. ACSAC’00.
16th Annual Conference, pages 77-85. IEEE,
2000.

Mario Ballano Barcena and Candid Wueest. In-
security in the internet of things. 2015.

Tamara Denning, Tadayoshi Kohno, and
Henry M. Levy. Computer security and the
modern home. Commun. ACM, 56(1):94-103,
January 2013.

Nitsh Dhanjani. Abusing the internet of things:
Blackouts, freakouts and stakeouts.

Google. Brillo, 2015 (accessed November
28, 2015). https://developers.google.com/
brillo/7hl=en.

Blase Ur, Jaeyeon Jung, and Stuart Schechter.
The current state of access control for smart de-
vices in homes. In Workshop on Home Usable
Privacy and Security (HUPS). HUPS 2014, July
2013.

