
23

egg: Fast and Extensible Equality Saturation

MAX WILLSEY, University of Washington, Seattle, USA

CHANDRAKANA NANDI, University of Washington, Seattle, USA

YISU REMY WANG, University of Washington, Seattle, USA

OLIVER FLATT, University of Utah, Salt Lake City, USA

ZACHARY TATLOCK, University of Washington, Seattle, USA

PAVEL PANCHEKHA, University of Utah, Salt Lake City, USA

An e-graph efficiently represents a congruence relation over many expressions. Although they were originally

developed in the late 1970s for use in automated theorem provers, a more recent technique known as equality

saturation repurposes e-graphs to implement state-of-the-art, rewrite-driven compiler optimizations and

program synthesizers. However, e-graphs remain unspecialized for this newer use case. Equality satura-

tion workloads exhibit distinct characteristics and often require ad hoc e-graph extensions to incorporate

transformations beyond purely syntactic rewrites.

This work contributes two techniques that make e-graphs fast and extensible, specializing them to equality

saturation. A new amortized invariant restoration technique called rebuilding takes advantage of equality

saturation’s distinct workload, providing asymptotic speedups over current techniques in practice. A general

mechanism called e-class analyses integrates domain-specific analyses into the e-graph, reducing the need for

ad hoc manipulation.

We implemented these techniques in a new open-source library called egg. Our case studies on three

previously published applications of equality saturation highlight how egg’s performance and flexibility

enable state-of-the-art results across diverse domains.

CCS Concepts: • Theory of computation→ Equational logic and rewriting.

Additional Key Words and Phrases: e-graphs, equality saturation

ACM Reference Format:

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021.

egg: Fast and Extensible Equality Saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (January 2021),

29 pages. https://doi.org/10.1145/3434304

1 INTRODUCTION

Equality graphs (e-graphs) were originally developed to efficiently represent congruence relations
in automated theorem provers (ATPs). At a high level, e-graphs [Nelson 1980; Nieuwenhuis and
Oliveras 2005] extend union-find [Tarjan 1975] to compactly represent equivalence classes of
expressions while maintaining a key invariant: the equivalence relation is closed under congruence.1

Over the past decade, several projects have repurposed e-graphs to implement state-of-the-art,
rewrite-driven compiler optimizations and program synthesizers using a technique known as

1Intuitively, congruence simply means that 𝑎 ≡ 𝑏 implies 𝑓 (𝑎) ≡ 𝑓 (𝑏) .

Authors’ addresses: Max Willsey, University of Washington, Seattle, USA; Chandrakana Nandi, University of Washington,

Seattle, USA; Yisu Remy Wang, University of Washington, Seattle, USA; Oliver Flatt, University of Utah, Salt Lake City,

USA; Zachary Tatlock, University of Washington, Seattle, USA; Pavel Panchekha, University of Utah, Salt Lake City, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/1-ART23

https://doi.org/10.1145/3434304

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304

23:2 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

equality saturation [Joshi et al. 2002; Nandi et al. 2020; Panchekha et al. 2015; Premtoon et al. 2020;
Stepp et al. 2011; Tate et al. 2009; Wang et al. 2020]. Given an input program 𝑝 , equality saturation
constructs an e-graph 𝐸 that represents a large set of programs equivalent to 𝑝 , and then extracts
the łbestž program from 𝐸. The e-graph is grown by repeatedly applying pattern-based rewrites.
Critically, these rewrites only add information to the e-graph, eliminating the need for careful
ordering. Upon reaching a fixed point (saturation), 𝐸 will represent all equivalent ways to express
𝑝 with respect to the given rewrites. After saturation (or timeout), a final extraction procedure
analyzes 𝐸 and selects the optimal program according to a user-provided cost function.
Ideally, a user could simply provide a language grammar and rewrites, and equality saturation

would produce a effective optimizer. Two challenges block this ideal. First, maintaining congruence
can become expensive as 𝐸 grows. In part, this is because e-graphs from the conventional ATP
setting remain unspecialized to the distinct equality saturation workload. Second, many applications
critically depend on domain-specific analyses, but integrating them requires ad hoc extensions to
the e-graph. The lack of a general extension mechanism has forced researchers to re-implement
equality saturation from scratch several times [Panchekha et al. 2015; Tate et al. 2009; Wu et al.
2019]. These challenges limit equality saturation’s practicality.
Equality Saturation Workload. ATPs frequently query and modify e-graphs and additionally

require backtracking to undo modifications (e.g., in DPLL(T) [Davis and Putnam 1960]). These
requirements force conventional e-graph designs to maintain the congruence invariant after every
operation. In contrast, the equality saturation workload does not require backtracking and can be
factored into distinct phases of (1) querying the e-graph to simultaneously find all rewrite matches
and (2) modifying the e-graph to merge in equivalences for all matched terms.
We present a new amortized algorithm called rebuilding that defers e-graph invariant main-

tenance to equality saturation phase boundaries without compromising soundness. Empirically,
rebuilding provides asymptotic speedups over conventional approaches.
Domain-specific Analyses. Equality saturation is primarily driven by syntactic rewriting, but

many applications require additional interpreted reasoning to bring domain knowledge into the
e-graph. Past implementations have resorted to ad hoc e-graph manipulations to integrate what
would otherwise be simple program analyses like constant folding.

To flexibly incorporate such reasoning, we introduce a new, general mechanism called e-class

analyses. An e-class analysis annotates each e-class (an equivalence class of terms) with facts drawn
from a semilattice domain. As the e-graph grows, facts are introduced, propagated, and joined
to satisfy the e-class analysis invariant, which relates analysis facts to the terms represented in
the e-graph. Rewrites cooperate with e-class analyses by depending on analysis facts and adding
equivalences that in turn establish additional facts. Our case studies and examples (Sections 5 and
6) demonstrate e-class analyses like constant folding and free variable analysis which required
bespoke customization in previous equality saturation implementations.
egg. We implement rebuilding and e-class analyses in an open-source2 library called egg

(e-graphs good). egg specifically targets equality saturation, taking advantage of its workload
characteristics and supporting easy extension mechanisms to provide e-graphs specialized for
program synthesis and optimization. egg also addresses more prosaic challenges, e.g., parameteriz-
ing over user-defined languages, rewrites, and cost functions while still providing an optimized
implementation. Our case studies demonstrate how egg’s features constitute a general, reusable
e-graph library that can support equality saturation across diverse domains.

2web: https://egraphs-good.github.io, source: https://github.com/egraphs-good/egg, documentation: https://docs.rs/egg

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

https://egraphs-good.github.io
https://github.com/egraphs-good/egg
https://docs.rs/egg

egg: Fast and Extensible Equality Saturation 23:3

function symbols 𝑓 , 𝑔

e-class ids 𝑎, 𝑏 opaque identifiers

terms 𝑡 ::= 𝑓 | 𝑓 (𝑡1, . . . , 𝑡𝑚) 𝑚 ≥ 1

e-nodes 𝑛 ::= 𝑓 | 𝑓 (𝑎1, . . . , 𝑎𝑚) 𝑚 ≥ 1

e-classes 𝑐 ::= {𝑛1, . . . , 𝑛𝑚} 𝑚 ≥ 1

Fig. 1. Syntax and metavariables for the components of an e-graph. Function symbols may stand alone as
constant e-nodes and terms. An e-class id is an opaque identifier that can be compared for equality with =.

In summary, the contributions of this paper include:

• Rebuilding (Section 3), a technique that restores key correctness and performance invariants
only at select points in the equality saturation algorithm. Our evaluation demonstrates that
rebuilding is faster than existing techniques in practice.

• E-class analysis (Section 4), a technique for integrating domain-specific analyses that can-
not be expressed as purely syntactic rewrites. The e-class analysis invariant provides the
guarantees that enable cooperation between rewrites and analyses.

• A fast, extensible implementation of e-graphs in a library dubbed egg (Section 5).
• Case studies of real-world, published tools that use egg for deductive synthesis and program
optimization across domains such as floating point accuracy, linear algebra optimization, and
CAD program synthesis (Section 6). Where previous implementations existed, egg is orders
of magnitude faster and offers more features.

2 BACKGROUND

egg builds on e-graphs and equality saturation. This section describes those techniques and presents
the challenges that egg addresses.

2.1 E-Graphs

An e-graph is a data structure that stores a set of terms and a congruence relation over those terms.
Originally developed for and still used in the heart of theorem provers [De Moura and Bjùrner 2008;
Detlefs et al. 2005; Nelson 1980], e-graphs have also been used to power a program optimization
technique called equality saturation [Joshi et al. 2002; Nandi et al. 2020; Panchekha et al. 2015;
Premtoon et al. 2020; Stepp et al. 2011; Tate et al. 2009; Wang et al. 2020].

2.1.1 Definitions. Intuitively, an e-graph is a set of equivalence classes (e-classes). Each e-class is a
set of e-nodes representing equivalent terms from a given language, and an e-node is a function
symbol paired with a list of children e-classes. More precisely:

Definition 2.1 (Definition of an E-Graph). Given the definitions and syntax in Figure 1, an e-graph

is a tuple (𝑈 ,𝑀,𝐻) where:

• A union-find data structure [Tarjan 1975] 𝑈 stores an equivalence relation (denoted with
≡id) over e-class ids.

• The e-class map 𝑀 maps e-class ids to e-classes. All equivalent e-class ids map to the same
e-class, i.e., 𝑎 ≡id 𝑏 iff 𝑀 [𝑎] is the same set as 𝑀 [𝑏]. An e-class id 𝑎 is said to refer to the
e-class𝑀 [find(𝑎)].

• The hashcons3 𝐻 is a map from e-nodes to e-class ids.

3We use the term hashcons to evoke the memoization technique, since both avoid creating new duplicates of existing objects.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:4 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

Note that an e-class has an identity (its canonical e-class id), but an e-node does not.4 We use
e-class id 𝑎 and the e-class𝑀 [find(𝑎)] synonymously when clear from the context.

Definition 2.2 (Canonicalization). An e-graph’s union-find 𝑈 provides a find operation that
canonicalizes e-class ids such that find(𝑈 , 𝑎) = find(𝑈 ,𝑏) iff 𝑎 ≡id 𝑏. We omit the first argument
of find where clear from context.

• An e-class id 𝑎 is canonical iff find(𝑎) = 𝑎.
• An e-node 𝑛 is canonical iff 𝑛 = canonicalize(𝑛), where
canonicalize(𝑓 (𝑎1, 𝑎2, ...)) = 𝑓 (find(𝑎1), find(𝑎2), ...).

Definition 2.3 (Representation of Terms). An e-graph, e-class, or e-node is said to represent a term
𝑡 if 𝑡 can be łfoundž within it. Representation is defined recursively:

• An e-graph represents a term if any of its e-classes do.
• An e-class 𝑐 represents a term if any e-node 𝑛 ∈ 𝑐 does.
• An e-node 𝑓 (𝑎1, 𝑎2, ...) represents a term 𝑓 (𝑡1, 𝑡2, ...) if they have the same function symbol 𝑓
and e-class𝑀 [𝑎𝑖] represents term 𝑡𝑖 .

When each e-class is a singleton (containing only one e-node), an e-graph is essentially a term
graph with sharing. Figure 2a shows an e-graph that represents the expression (𝑎 × 2)/2.

Definition 2.4 (Equivalence). An e-graph defines three equivalence relations.

• Over e-class ids: 𝑎 ≡id 𝑏 iff find(𝑎) = find(𝑏).
• Over e-nodes: 𝑛1 ≡node 𝑛2 iff e-nodes 𝑛1, 𝑛2 are in the same e-class, i.e., ∃𝑎. 𝑛1, 𝑛2 ∈ 𝑀 [𝑎].
• Over terms: 𝑡1 ≡term 𝑡2 iff terms 𝑡1, 𝑡2 are represented in the same e-class.

We use ≡ without the subscript when the relation is clear from context.

Definition 2.5 (Congruence). For a given e-graph, let � denote a congruence relation over e-nodes
such that 𝑓 (𝑎1, 𝑎2, ...) � 𝑓 (𝑏1, 𝑏2, ...) iff 𝑎𝑖 ≡id 𝑏𝑖 . Let �

∗ denote the congruence closure of ≡node,
i.e., the smallest superset of ≡node that is also a superset of �. Note that there may be two e-nodes
such that 𝑛1 �

∗ 𝑛2 but 𝑛1 � 𝑛2 and 𝑛1 ̸≡node 𝑛2. The relation � only represents a single step of
congruence; more than one step may be required to compute the congruence closure.

2.1.2 E-Graph Invariants. The e-graphmust maintain invariants in order to correctly and efficiently
implement the operations given in Section 2.1.3. This section only defines the invariants, discussion
of how they are maintained is deferred to Section 3. These are collectively referred to as the e-graph
invariants.

Definition 2.6 (The Congruence Invariant). The equivalence relation over e-nodes must be closed
over congruence, i.e., (≡node) = (�∗). The e-graph must ensure that congruent e-nodes are in the
same e-class. Since identical e-nodes are trivially congruent, this implies that an e-node must be
uniquely contained in a single e-class.

Definition 2.7 (The Hashcons Invariant). The hashcons 𝐻 must map all canonical e-nodes to their
e-class ids. In other words:

e-node 𝑛 ∈ 𝑀 [𝑎] ⇐⇒ 𝐻 [canonicalize(𝑛)] = find(𝑎)

If the hashcons invariant holds, then a procedure lookup can quickly find which e-class (if any)
has an e-node congruent to a given e-node 𝑛: lookup(𝑛) = 𝐻 [canonicalize(𝑛)].

4Our definition of an e-graph reflects egg’s design and therefore differs with some other e-graph definitions and implemen-

tations. In particular, making e-classes but not e-nodes identifiable is unique to our definition.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:5

/

a

*

2

(a) Initial e-graph
contains (𝑎 × 2)/2.

/

a

*

2 1

<<

(b) After applying rewrite
𝑥 × 2 → 𝑥 ≪ 1.

/

a

*

2 1

<<

*

/

(c) After applying rewrite
(𝑥 × 𝑦)/𝑧 → 𝑥 × (𝑦/𝑧).

/

a

*

2 1

<<

*

/

(d) After applying rewrites
𝑥/𝑥 → 1 and 1 × 𝑥 → 𝑥 .

Fig. 2. An e-graph consists of e-classes (dashed boxes) containing equivalent e-nodes (solid boxes). Edges
connect e-nodes to their child e-classes. Additions and modifications are emphasized in black. Applying
rewrites to an e-graph adds new e-nodes and edges, but nothing is removed. Expressions added by rewrites
are merged with the matched e-class. In Figure 2d, the rewrites do not add any new nodes, only merge
e-classes. The resulting e-graph has a cycle, representing infinitely many expressions: 𝑎, 𝑎 × 1, 𝑎 × 1 × 1, and
so on.

2.1.3 Interface and Rewriting. E-graphs bear many similarities to the classic union-find data struc-
ture that they employ internally, and they inherit much of the terminology. E-graphs provide two
main low-level mutating operations:

• add takes an e-node 𝑛 and:
– if lookup(𝑛) = 𝑎, return 𝑎;
– if lookup(𝑛) = ∅, then set𝑀 [𝑎] = {𝑛} and return the id 𝑎.

• merge (sometimes called assert or union) takes two e-class ids 𝑎 and 𝑏, unions them in the
union-find𝑈 , and combines the e-classes by setting both𝑀 [𝑎] and𝑀 [𝑏] to𝑀 [𝑎] ∪𝑀 [𝑏].

Both of these operations must take additional steps to maintain the congruence invariant.
Invariant maintenance is discussed in Section 3.
E-graphs also offers operations for querying the data structure.

• find canonicalizes e-class ids using the union-find𝑈 as described in definition 2.1.
• ematch performs the e-matching [de Moura and Bjùrner 2007; Detlefs et al. 2005] procedure
for finding patterns in the e-graph. ematch takes a pattern term 𝑝 with variable placeholders
and returns a list of tuples (𝜎, 𝑐) where 𝜎 is a substitution of variables to e-class ids such that
𝑝 [𝜎] is represented in e-class 𝑐 .

These can be composed to perform rewriting over the e-graph. To apply a rewrite ℓ → 𝑟 to
an e-graph, ematch finds tuples (𝜎, 𝑐) where e-class 𝑐 represents ℓ [𝜎]. Then, for each tuple,
merge(𝑐, add(𝑟 [𝜎])) adds 𝑟 [𝜎] to the e-graph and unifies it with the matching e-class c.

Figure 2 shows an e-graph undergoing a series of rewrites. Note how the process is only additive;
the initial term (𝑎×2)/2 is still represented in the e-graph. Rewriting in an e-graph can also saturate,
meaning the e-graph has learned every possible equivalence derivable from the given rewrites. If
the user tried to apply 𝑥 ×𝑦 → 𝑦 × 𝑥 to an e-graph twice, the second time would add no additional
e-nodes and perform no new merges; the e-graph can detect this and stop applying that rule.

2.2 Equality Saturation

Term rewriting [Dershowitz 1993] is a time-tested approach for equational reasoning in program
optimization [Joshi et al. 2002; Tate et al. 2009], theorem proving [De Moura and Bjùrner 2008;
Detlefs et al. 2005], and program transformation [Andries et al. 1999]. In this setting, a tool repeatedly

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:6 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

InitializeInput
Term

Extract
E-graph Optimized

Term

Apply Rewrites

1 def equality_saturation(expr, rewrites):

2 egraph = initial_egraph(expr)

3

4 while not egraph.is_saturated_or_timeout():

5

6 for rw in rewrites:

7 for (subst, eclass) in egraph.ematch(rw.lhs):

8 eclass2 = egraph.add(rw.rhs.subst(subst))

9 egraph.merge(eclass, eclass2)

10

11 return egraph.extract_best()

Fig. 3. Box diagram and pseudocode for equality saturation. Traditionally, equality saturation maintains the
e-graph data structure invariants throughout the algorithm.

chooses one of a set of axiomatic rewrites, searches for matches of the left-hand pattern in the
given expression, and replaces matching instances with the substituted right-hand side.
Term rewriting is typically destructive and łforgetsž the matched left-hand side. Consider ap-

plying a simple strength reduction rewrite: (𝑎 × 2)/2 → (𝑎 ≪ 1)/2. The new term carries no
information about the initial term. Applying strength reduction at this point prevents us from
canceling out 2/2. In the compilers community, this classically tricky question of when to apply
which rewrite is called the phase ordering problem.

One solution to the phase ordering problem would simply apply all rewrites simultaneously,
keeping track of every expression seen. This eliminates the problem of choosing the right rule, but
a naive implementation would require space exponential in the number of given rewrites. Equality
saturation [Stepp et al. 2011; Tate et al. 2009] is a technique to do this rewriting efficiently using an
e-graph.
Figure 3 shows the equality saturation workflow. First, an initial e-graph is created from the

input term. The core of the algorithm runs a set of rewrite rules until the e-graph is saturated (or
a timeout is reached). Finally, a procedure called extraction selects the optimal represented term
according to some cost function. For simple cost functions, a bottom-up, greedy traversal of the
e-graph suffices to find the best term. Other extraction procedures have been explored for more
complex cost functions [Wang et al. 2020; Wu et al. 2019].

Equality saturation eliminates the tedious and often error-prone task of choosing when to apply
which rewrites, promising an appealingly simple workflow: state the relevant rewrites for the
language, create an initial e-graph from a given expression, fire the rules until saturation, and
finally extract the cheapest equivalent expression. Unfortunately, the technique remains ad hoc;
prospective equality saturation users must implement their own e-graphs customized to their
language, avoid performance pitfalls, and hack in the ability to do interpreted reasoning that is not
supported by purely syntactic rewrites. egg aims to address each aspect of these difficulties.

2.3 Equality Saturation and Theorem Proving

An equality saturation engine and a theorem prover each have capabilities that would be impractical
to replicate in the other. Automated theorem provers like satisfiability modulo theory (SMT) solvers
are general tools that, in addition to supporting satisfiability queries, incorporate sophisticated,
domain-specific solvers to allow interpreted reasoning within the supported theories. On the other
hand, equality saturation is specialized for optimization, and its extraction procedure directly
produces an optimal term with respect to a given cost function.
While SMT solvers are indeed the more general tool, equality saturation is not superseded by

SMT; the specialized approach can be much faster when the full generality of SMT is not needed. To

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:7

demonstrate this, we replicated a portion of the recent TASO paper [Jia et al. 2019], which optimizes
deep learning models. As part of the work, they must verify a set of synthesized equalities with
respect to a trusted set of universally quantified axioms. TASO uses Z3 [De Moura and Bjùrner
2008] to perform the verification even though most of Z3’s features (disjunctions, backtracking,
theories, etc.) were not required. An equality saturation engine can also be used for verifying these
equalities by adding the left and right sides of each equality to an e-graph, running the axioms
as rewrites, and then checking if both sides end up in the same e-class. Z3 takes 24.65 seconds
to perform the verification; egg performs the same task in 1.56 seconds (15× faster), or only 0.52
seconds (47× faster) when using egg’s batched evaluation (Section 5.3).

3 REBUILDING: A NEW TAKE ON E-GRAPH INVARIANT MAINTENANCE

Traditionally [Detlefs et al. 2005; Nelson 1980], e-graphs maintain their data structure invariants
after each operation. We separate this invariant restoration into a procedure called rebuilding. This
separation allows the client to choose when to enforce the e-graph invariants. Performing a rebuild
immediately after every operation replicates the traditional approach to invariant maintenance. In
contrast, rebuilding less frequently can amortize the cost of invariant maintenance, significantly
improving performance.
In this section, we first describe how e-graphs have traditionally maintained invariants (Sec-

tion 3.1). We then describe the rebuilding framework and how it captures a spectrum of invariant
maintenance approaches, including the traditional one (Section 3.2). Using this flexibility, we then
give a modified algorithm for equality saturation that enforces the e-graph invariants at only select
points (Section 3.3). We finally demonstrate that this new approach offers an asymptotic speedup
over traditional equality saturation (Section 3.4).

3.1 Upward Merging

Both mutating operations on the e-graph (add and merge, Section 2.1.3) can break the e-graph
invariants if not done carefully. E-graphs have traditionally used hashconsing and upward merging

to maintain the congruence invariant.
The add operation relies on the hashcons invariant (Definition 2.7) to quickly check whether the

e-node 𝑛 to be addedÐor one congruent to itÐis already present. Without this check, add would
create a new e-class with 𝑛 in it even if some 𝑛′

� 𝑛 was already in the e-graph, violating the
congruence invariant.
The merge operation e-classes can violate both e-graph invariants. If 𝑓 (𝑎, 𝑏) and 𝑓 (𝑎, 𝑐) reside

in two different e-classes 𝑥 and 𝑦, merging 𝑏 and 𝑐 should also merge 𝑥 and 𝑦 to maintain the
congruence invariant. This can propagate further, requiring additional merges.
E-graphs maintain a parent list for each e-class to maintain congruence. The parent list for

e-class 𝑐 holds all e-nodes that have 𝑐 as a child. When merging two e-classes, e-graphs inspect
these parent lists to find parents that are now congruent, recursively łupward mergingž them if
necessary.

The merge routine must also perform bookkeeping to preserve the hashcons invariant. In partic-
ular, merging two e-classes may change how parent e-nodes of those e-classes are canonicalized.
The merge operation must therefore remove, re-canonicalize, and replace those e-nodes in the
hashcons. In existing e-graph implementations [Panchekha et al. 2015] used for equality saturation,
maintaining the invariants while merging can take the vast majority of run time.

3.2 Rebuilding in Detail

Traditionally, invariant restoration is part of the merge operation itself. Rebuilding separates
these concerns, reducing merge’s obligations and allowing for amortized invariant maintenance.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:8 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

1 def add(enode):

2 enode = self.canonicalize(enode)

3 if enode in self.hashcons:

4 return self.hashcons[enode]

5 else:

6 eclass_id = self.new_singleton_eclass(enode)

7 for child in enode.children:

8 child.parents.add(enode, eclass_id)

9 self.hashcons[enode] = eclass_id

10 return eclass_id

11

12 def merge(id1, id2)

13 if self.find(id1) == self.find(id2):

14 return self.find(id1)

15 new_id = self.union_find.union(id1, id2)

16 # traditional egraph merge can be

17 # emulated by calling rebuild right after

18 # adding the eclass to the worklist

19 self.worklist.add(new_id)

20 return new_id

21

22 def canonicalize(enode)

23 new_ch = [self.find(e) for e in enode.children]

24 return mk_enode(enode.op, new_ch)

25

26 def find(eclass_id):

27 return self.union_find.find(eclass_id)

27 def rebuild():

28 while self.worklist.len() > 0:

29 # empty the worklist into a local variable

30 todo = take(self.worklist)

31 # canonicalize and deduplicate the eclass refs

32 # to save calls to repair

33 todo = { self.find(eclass) for eclass in todo }

34 for eclass in todo:

35 self.repair(eclass)

36

37 def repair(eclass):

38 # update the hashcons so it always points

39 # canonical enodes to canonical eclasses

40 for (p_node, p_eclass) in eclass.parents:

41 self.hashcons.remove(p_node)

42 p_node = self.canonicalize(p_node)

43 self.hashcons[p_node] = self.find(p_eclass)

44

45 # deduplicate the parents, noting that equal

46 # parents get merged and put on the worklist

47 new_parents = {}

48 for (p_node, p_eclass) in eclass.parents:

49 p_node = self.canonicalize(p_node)

50 if p_node in new_parents:

51 self.merge(p_eclass, new_parents[p_node])

52 new_parents[p_node] = self.find(p_eclass)

53 eclass.parents = new_parents

Fig. 4. Pseudocode for the add, merge, rebuild, and supporting methods. In each method, self refers to the
e-graph being modified.

In the rebuilding paradigm, merge maintains a worklist of e-class ids that need to be łupward
mergedž, i.e., e-classes whose parents are possibly congruent but not yet in the same e-class. The
rebuild operation processes this worklist, restoring the invariants of deduplication and congruence.
Rebuilding is similar to other approaches in how it restores congruence (see Related Work for
comparison to Downey et al. [1980]); but it uniquely allows the client to choose when to restore
invariants in the context of a larger algorithm like equality saturation.
Figure 4 shows pseudocode for the main e-graph operations and rebuilding. Note that add and

canonicalize are given for completeness, but they are unchanged from the traditional e-graph
implementation. The merge operation is similar, but it only adds the new e-class to the worklist
instead of immediately starting upward merging. Adding a call to rebuild right after the addition
to the worklist (Figure 4 line 19) would yield the traditional behavior of restoring the invariants
immediately.

The rebuildmethod essentially calls repair on the e-classes from the worklist until the worklist
is empty. Instead of directly manipulating the worklist, egg’s rebuild method first moves it into
a local variable and deduplicates e-classes up to equivalence. Processing the worklist may merge

e-classes, so breaking the worklist into chunks ensures that e-class ids made equivalent in the
previous chunk are deduplicated in the subsequent chunk.

The actual work of rebuild occurs in the repairmethod. repair examines an e-class 𝑐 and first
canonicalizes e-nodes in the hashcons that have 𝑐 as a child. Then it performs what is essentially
one łlayerž of upward merging: if any of the parent e-nodes have become congruent, then their
e-classes are merged and the result is added to the worklist.
Deduplicating the worklist, and thus reducing calls to repair, is at the heart of why deferring

rebuilding improves performance. Intuitively, the upward merging process of rebuilding traces

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:9

out a łpathž of congruence through the e-graph. When rebuilding happens immediately after
merge (and therefore frequently), these paths can substantially overlap. By deferring rebuilding,
the chunk-and-deduplicate approach can coalesce the overlapping parts of these paths, saving
what would have been redundant work. In our modified equality saturation algorithm (Section 3.3),
deferred rebuilding is responsible for a significant, asymptotic speedup (Section 3.4).

3.2.1 Examples of Rebuilding. Deferred rebuilding speeds up congruence maintenance by amortiz-
ing the work of maintaining the hashcons invariant. Consider the following terms in an e-graph:
𝑓1 (𝑥), ..., 𝑓𝑛 (𝑥), 𝑦1, ..., 𝑦𝑛 . Let theworkload be merge(𝑥,𝑦1), ..., merge(𝑥,𝑦𝑛). Eachmergemay change
the canonical representation of the 𝑓𝑖 (𝑥)s, so the traditional invariant maintenance strategy could
require 𝑂 (𝑛2) hashcons updates. With deferred rebuilding the merges happen before the hashcons
invariant is restored, requiring no more than 𝑂 (𝑛) hashcons updates.
Deferred rebuilding can also reduce the number of calls to repair. Consider the following 𝑤

terms in an e-graph, each nested under 𝑑 function symbols:

𝑓1 (𝑓2 (. . . 𝑓𝑑 (𝑥1))), . . . , 𝑓1 (𝑓2 (. . . 𝑓𝑑 (𝑥𝑤)))

Note that𝑤 corresponds the width of this group of terms, and 𝑑 to the depth. Let the workload be
𝑤 − 1 merges that merge all the 𝑥s together: for 𝑖 ∈ [2,𝑤], merge(𝑥1, 𝑥𝑖).

In the traditional upward merging paradigm where rebuild is called after every merge, each
merge(𝑥𝑖 , 𝑥 𝑗) will require 𝑂 (𝑑) calls to repair to maintain congruence, one for each layer of 𝑓𝑖s.
Over the whole workload, this requires 𝑂 (𝑤𝑑) calls to repair.

With deferred rebuilding, however, the𝑤 −1 merges can all take place before congruence must be
restored. Suppose the 𝑥s are all merged into an e-class 𝑐𝑥 When rebuild finally is called, the only
element in the deduplicated worklist is 𝑐𝑥 . Calling repair on 𝑐𝑥 will merge the e-classes of the 𝑓𝑑
e-nodes into an e-class 𝑐 𝑓𝑑 , adding the e-classes that contained those e-nodes back to the worklist.
When the worklist is again deduplicated, 𝑐 𝑓𝑑 will be the only element, and the process repeats.
Thus, the whole workload only incurs 𝑂 (𝑑) calls to repair, eliminating the factor corresponding
to the width of this group of terms. Figure 8 shows that the number calls to repair is correlated
with time spent doing congruence maintenance.

3.2.2 Proof of Congruence. Intuitively, rebuilding is a delay of the upward merging process, allow-
ing the user to choose when to restore the e-graph invariants. They are substantially similar in
structure, with a critical a difference in when the code is run. Below we offer a proof demonstrating
that rebuilding restores the e-graph congruence invariant.

Theorem 3.1. Rebuilding restores congruence and terminates.

Proof. Since rebuilding only merges congruent nodes, the congruence closure �∗ is fixed even
though ≡node changes. When (≡node) = (�∗), congruence is restored. Note that both ≡node and
�
∗ are finite. We therefore show that rebuilding causes ≡node to approach �∗. We define the set

of incongruent e-node pairs as 𝐼 = (�∗) \ (≡node); in other words, (𝑛1, 𝑛2) ∈ 𝐼 if 𝑛1 �
∗ 𝑛2 but

𝑛1 ̸≡node 𝑛2.
Due to the additive nature of equality saturation, ≡node only increases and therefore 𝐼 is non-

increasing. However, a call to repair inside the loop of rebuild does not necessarily shrink 𝐼 .
Some calls instead remove an element from the worklist but do not modify the e-graph at all.

Let the set𝑊 be the worklist of e-classes to be processed by repair; in Figure 4,𝑊 corresponds
to self.worklist plus the unprocessed portion of the todo local variable. We show that each
call to repair decreases the tuple (|𝐼 |, |𝑊 |) lexicographically until (|𝐼 |, |𝑊 |) = (0, 0), and thus
rebuilding terminates with (≡node) = (�∗).

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:10 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

1 def equality_saturation(expr, rewrites):

2 egraph = initial_egraph(expr)

3

4 while not egraph.is_saturated_or_timeout():

5

6

7 # reading and writing is mixed

8 for rw in rewrites:

9 for (subst, eclass) in egraph.ematch(rw.lhs):

10

11 # in traditional equality saturation,

12 # matches can be applied right away

13 # because invariants are always maintained

14 eclass2 = egraph.add(rw.rhs.subst(subst))

15 egraph.merge(eclass, eclass2)

16

17 # restore the invariants after each merge

18 egraph.rebuild()

19

20 return egraph.extract_best()

(a) Traditional equality saturation alternates be-
tween searching and applying rules, and the
e-graph maintains its invariants throughout.

1 def equality_saturation(expr, rewrites):

2 egraph = initial_egraph(expr)

3

4 while not egraph.is_saturated_or_timeout():

5 matches = []

6

7 # read-only phase, invariants are preserved

8 for rw in rewrites:

9 for (subst, eclass) in egraph.ematch(rw.lhs):

10 matches.append((rw, subst, eclass))

11

12 # write-only phase, temporarily break invariants

13 for (rw, subst, eclass) in matches:

14 eclass2 = egraph.add(rw.rhs.subst(subst))

15 egraph.merge(eclass, eclass2)

16

17 # restore the invariants once per iteration

18 egraph.rebuild()

19

20 return egraph.extract_best()

(b) egg splits equality saturation iterations into read
and write phases. The e-graph invariants are not
constantly maintained, but restored only at the end
of each iteration by the rebuildmethod (Section 3).

Fig. 5. Pseudocode for traditional and egg’s version of the equality saturation algorithm.

Given an e-class 𝑐 from𝑊 , repair examines 𝑐’s parents for congruent e-nodes that are not yet
in the same e-class:

• If at least one pair of 𝑐’s parents are congruent, rebuilding merges each pair (𝑝1, 𝑝2), which
adds to𝑊 but makes 𝐼 smaller by definition.

• If no such congruent pairs are found, do nothing. Then, |𝑊 | is decreased by 1 since 𝑐 came
from the worklist and repair did not add anything back.

Since (|𝐼 |, |𝑊 |) decreases lexicographically, |𝑊 | eventually reaches 0, so rebuild terminates.
Note that𝑊 contains precisely those e-classes that need to be łupward mergedž to check for
congruent parents. So, when𝑊 is empty, rebuild has effectively performed upward merging.
By Nelson [1980, Chapter 7], |𝐼 | = 0. Therefore, when rebuilding terminates, congruence is restored.

□

3.3 Rebuilding and Equality Saturation

Rebuilding offers the choice of when to enforce the e-graph invariants, potentially saving work if
deferred thanks to the deduplication of the worklist. The client is responsible for rebuilding at a
time that maximizes performance without limiting the application.
egg provides a modified equality saturation algorithm to take advantage of rebuilding. Figure 5

shows pseudocode for both traditional equality saturation and egg’s variant, which exhibits two
key differences:

(1) Each iteration is split into a read phase, which searches for all the rewrite matches, and a
write phase that applies those matches.5

5Although the original equality saturation paper [Tate et al. 2009] does not have separate reading and writing phases,

some e-graph implementations (like the one inside Z3 [De Moura and Bjùrner 2008]) do separate these phases as an

implementation detail. Ours is the first algorithm to take advantage of this by deferring invariant maintenance.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:11

(2) Rebuilding occurs only once per iteration, at the end.

egg’s separation of the read and write phases means that rewrites are truly unordered. In
traditional equality saturation, later rewrites in the given rewrite list are favored in the sense that
they can łseež the results of earlier rewrites in the same iteration. Therefore, the results depend on
the order of the rewrite list if saturation is not reached (which is common on large rewrite lists or
input expressions). egg’s equality saturation algorithm is invariant to the order of the rewrite list.

Separating the read and write phases also allows egg to safely defer rebuilding. If rebuilding were
deferred in the traditional equality saturation algorithm, rules later in the rewrite list would be
searched against an e-graph with broken invariants. Since congruence may not hold, there may be
missing equivalences, resulting in missing matches. These matches will be seen after the rebuild
during the next iteration (if another iteration occurs), but the false reporting could impact metrics
collection, rule scheduling,6 or saturation detection.

3.4 Evaluating Rebuilding

To demonstrate that deferred rebuilding provides faster congruence closure than traditional upward
merging, we modified egg to call rebuild immediately after every merge. This provides a one-to-
one comparison of deferred rebuilding against the traditional approach, isolated from the many
other factors that make egg efficient: overall design and algorithmic differences, programming
language performance, and other orthogonal performance improvements.
We ran egg’s test suite using both rebuild strategies, measuring the time spent on congruence

maintenance. Each test consists of one run of egg’s equality saturation algorithm to optimize a
given expression. Of the 32 total tests, 8 hit the iteration limit of 100 and the remainder saturated.
Note that both rebuilding strategies use egg’s phase-split equality saturation algorithm, and the
resulting e-graphs are identical in all cases. These experiments were performed on a 2020 Macbook
Pro with a 2 GHz quad-core Intel Core i5 processor and 16GB of memory.

Figure 6 shows our how rebuilding speeds up congruence maintenance. Overall, our experiments
show an aggregate 87.85× speedup on congruence closure and 20.96× speedup over the entire
equality saturation algorithm. Figure 7 shows this speedup is asymptotic; the multiplicative speedup
increases as problem gets larger.
egg’s test suite consists of two main applications: math, a small computer algebra system capable

of symbolic differentiation and integration; and lambda, a partial evaluator for the untyped lambda
calculus using explicit substitution to handle variable binding (shown in Section 5). Both are typical
egg applications primarily driven by syntactic rewrites, with a few key uses of egg’s more complex
features like e-class analyses and dynamic/conditional rewrites.
egg can be configured to capture various metrics about equality saturation as it runs, including

the time spent in the read phase (searching for matches), the write phase (applying matches), and
rebuilding. In Figure 6, congruence time is measured as the time spent applying matches plus
rebuilding. Other parts of the equality saturation algorithm (creating the initial e-graph, extracting
the final term) take negligible take compared to the equality saturation iterations.
Deferred rebuilding amortizes the examination of e-classes for congruence maintenance; dedu-

plicating the worklist reduces the number of calls to the repair. Figure 8 shows that time spent in
congruence is correlated with the number of calls to the repair methods.

The case study in Section 6.1 provides a further evaluation of rebuilding. Rebuilding (and other
egg features) have also been implemented in a Racket-based e-graph, demonstrating that rebuilding
is a conceptual advance that need not be tied to the egg implementation.

6An optimization introduced in Figure 5.2 that relies on an accurate count of how many times a rewrite was matched.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:12 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

0 200 400 600 800 1000 1200

Rebuilding every merge

0

200

400

600

800

1000

1200

R
eb
u
ild
in
g
on
ce

p
er

it
er
at
io
n

Congruence time (sec) - linear scale

10
−4

10
−2

10
0

10
2

Rebuilding every merge

10
−4

10
−2

10
0

10
2

R
eb
u
ild
in
g
on
ce

p
er

it
er
at
io
n

Congruence time (sec) - log scale

Fig. 6. Rebuilding once per iterationÐas opposed to after every mergeÐsignificantly speeds up congruence
maintenance. Both plots show the same data: one point for each of the 32 tests. The diagonal line is 𝑦 = 𝑥 ;
points below the line mean deferring rebuilding is faster. In aggregate over all tests (using geometric mean),
congruence is 87.85× faster, and equality saturation is 20.96× faster. The linear scale plot shows that deferred
rebuilding is significantly faster. The log scale plot suggests the speedup is greater than some constant
multiple; Figure 7 demonstrates this in greater detail.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Rewrites applied so far

0.3×

1×

3×

10×

30×

100×

300×

S
p
ee
d
u
p
(l
og

sc
al
e)

Fig. 7. As more rewrites are applied, deferring re-
building gives greater speedup. Each line represents
a single test: each equality saturation iteration plots
the cumulative rewrites applied so far against the
multiplicative speedup of deferring rebuilding; the
dot represents the end of that test. Both the test suite
as a whole (the dots) and individual tests (the lines)
demonstrate an asymptotic speedup that increases
with the problem size.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of calls to repair

10
−4

10
−2

10
0

10
2

T
im

e
sp
en
t
in

co
n
gr
u
en
ce

(s
ec
)

Rebuilding every merge

Rebuilding once per iteration

Fig. 8. The time spent in congruence maintenance
correlates with the number of calls to the repair

method. Spearman correlation yields 𝑟 = 0.98 with a
p-value of 3.6e-47, indicating that the two quantities
are indeed positively correlated.

4 EXTENDING E-GRAPHS WITH E-CLASS ANALYSES

As discussed so far, e-graphs and equality saturation provide an efficient way to implement a term
rewriting system. Rebuilding enhances that efficiency, but the approach remains designed for purely
syntactic rewrites. However, program analysis and optimization typically require more than just
syntactic information. Instead, transformations are computed based on the input terms and also
semantic facts about that input term, e.g., constant value, free variables, nullability, numerical sign,

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:13

size in memory, and so on. The łpurely syntacticž restriction has forced existing equality saturation
applications [Panchekha et al. 2015; Stepp et al. 2011; Tate et al. 2009] to resort to ad hoc passes over
the e-graph to implement analyses like constant folding. These ad hoc passes require manually
manipulating the e-graph, the complexity of which could prevent the implementation of more
sophisticated analyses.
We present a new technique called e-class analysis, which allows the concise expression of a

program analysis over the e-graph. An e-class analysis resembles abstract interpretation lifted to
the e-graph level, attaching analysis data from a semilattice to each e-class. The e-graph maintains
and propagates this data as e-classes get merged and new e-nodes are added. Analysis data can be
used directly to modify the e-graph, to inform how or if rewrites apply their right-hand sides, or to
determine the cost of terms during the extraction process.
E-class analyses provide a general mechanism to replace what previously required ad hoc

extensions that manually manipulate the e-graph. E-class analyses also fit within the equality
saturation workflow, so they can naturally cooperate with the equational reasoning provided by
rewrites. Moreover, an analysis lifted to the e-graph level automatically benefits from a sort of
łpartial-order reductionž for free: large numbers of similar programs may be analyzed for little
additional cost thanks to the e-graph’s compact representation.
This section provides a conceptual explanation of e-class analyses as well as dynamic and

conditional rewrites that can use the analysis data. The following sections will provide concrete
examples: Section 5 discusses the egg implementation and a complete example of a partial evaluator
for the lambda calculus; Section 6 discusses how three published projects have used egg and its
unique features (like e-class analyses).

4.1 E-Class Analyses

An e-class analysis defines a domain 𝐷 and associates a value 𝑑𝑐 ∈ 𝐷 to each e-class 𝑐 . The e-class
𝑐 contains the associated data 𝑑𝑐 , i.e., given an e-class 𝑐 , one can get 𝑑𝑐 easily, but not vice-versa.

The interface of an e-class analysis is as follows, where𝐺 refers to the e-graph, and 𝑛 and 𝑐 refer
to e-nodes and e-classes within 𝐺 :

make(𝑛) → 𝑑𝑐 When a new e-node 𝑛 is added to 𝐺 into a new, singleton e-class 𝑐 ,
construct a new value 𝑑𝑐 ∈ 𝐷 to be associated with 𝑛’s new e-class,
typically by accessing the associated data of 𝑛’s children.

join(𝑑𝑐1 , 𝑑𝑐2) → 𝑑𝑐 When e-classes 𝑐1, 𝑐2 are being merged into 𝑐 , join 𝑑𝑐1 , 𝑑𝑐2 into a new
value 𝑑𝑐 to be associated with the new e-class 𝑐 .

modify(𝑐) → 𝑐 ′ Optionally modify the e-class 𝑐 based on 𝑑𝑐 , typically by adding an
e-node to 𝑐 . Modify should be idempotent if no other changes occur
to the e-class, i.e., modify(modify(𝑐)) = modify(𝑐)

The domain 𝐷 together with the join operation should form a join-semilattice. The semilattice
perspective is useful for defining the analysis invariant (where ∧ is the join operation):

∀𝑐 ∈ 𝐺. 𝑑𝑐 =
∧

𝑛∈𝑐

make(𝑛) and modify(𝑐) = 𝑐

The first part of the analysis invariant states that the data associated with each e-class must be
the join of the make for every e-node in that e-class. Since 𝐷 is a join-semilattice, this means that
∀𝑐,∀𝑛 ∈ 𝑐, 𝑑𝑐 ≥ make(𝑛). The motivation for the second part is more subtle. Since the analysis can
modify an e-class through themodifymethod, the analysis invariant asserts that these modifications
are driven to a fixed point. When the analysis invariant holds, a client looking at the analysis data

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:14 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

1 def add(enode):

2 enode = self.canonicalize(enode)

3 if enode in self.hashcons:

4 return self.hashcons[enode]

5 else:

6 eclass = self.new_singleton_eclass(enode)

7 for child_eclass in enode.children:

8 child_eclass.parents.add(enode, eclass)

9 self.hashcons[enode] = eclass

10 eclass.data = analysis.make(enode)

11 analysis.modify(eclass)

12 return eclass

13

14 def merge(eclass1, eclass2)

15 union = self.union_find.union(eclass1, eclass2)

16 if not union.was_already_unioned:

17 d1, d2 = eclass1.data, eclass2.data

18 union.eclass.data = analysis.join(d1, d2)

19 self.worklist.add(union.eclass)

20 return union.eclass

21 def repair(eclass):

22 for (p_node, p_eclass) in eclass.parents:

23 self.hashcons.remove(p_node)

24 p_node = self.canonicalize(p_node)

25 self.hashcons[p_node] = self.find(p_eclass)

26

27 new_parents = {}

28 for (p_node, p_eclass) in eclass.parents:

29 p_node = self.canonicalize(p_node)

30 if p_node in new_parents:

31 self.union(p_eclass, new_parents[p_node])

32 new_parents[p_node] = self.find(p_eclass)

33 eclass.parents = new_parents

34

35 # any mutations modify makes to eclass

36 # will add to the worklist

37 analysis.modify(eclass)

38 for (p_node, p_eclass) in eclass.parents:

39 new_data = analysis.join(

40 p_eclass.data,

41 analysis.make(p_node))

42 if new_data != p_eclass.data:

43 p_eclass.data = new_data

44 self.worklist.add(p_eclass)

Fig. 9. The pseudocode for maintaining the e-class analysis invariant is largely similar to how rebuilding
maintains congruence closure (Section 3). Only lines 10ś11, 17ś18, and 37ś44 are added. Grayed out or
missing code is unchanged from Figure 4.

can be assured that the analysis is łstablež in the sense that recomputing make, join, and modify
will not modify the e-graph or any analysis data.

4.1.1 Maintaining the Analysis Invariant. We extend the rebuilding procedure from Section 3 to
restore the analysis invariant as well as the congruence invariant. Figure 9 shows the necessary
modifications to the rebuilding code from Figure 4.
Adding e-nodes and merging e-classes risk breaking the analysis invariant in different ways.

Adding e-nodes is the simpler case; lines 10ś11 restore the invariant for the newly created, singleton
e-class that holds the new e-node. When merging e-nodes, the first concern is maintaining the
semilattice portion of the analysis invariant. Since join forms a semilattice over the domain 𝐷 of
the analysis data, the order in which the joins occur does not matter. Therefore, line 18 suffices to
update the analysis data of the merged e-class.
Since make(𝑛) creates analysis data by looking at the data of 𝑛’s, children, merging e-classes

can violate the analysis invariant in the same way it can violate the congruence invariant. The
solution is to use the same worklist mechanism introduced in Section 3. Lines 37ś44 of the repair
method (which rebuild on each element of the worklist) re-make and merge the analysis data
of the parent of any recently merged e-classes. The new repair method also calls modify once,
which suffices due to its idempotence. In the pseudocode,modify is reframed as a mutating method
for clarity.
egg’s implementation of e-class analyses assumes that the analysis domain 𝐷 is indeed a semilat-

tice and that modify is idempotent. Without these properties, egg may fail to restore the analysis
invariant on rebuild, or it may not terminate.

4.1.2 Example: Constant Folding. The data produced by e-class analyses can be usefully consumed
by other components of an equality saturation system (see Section 4.2), but e-class analyses can

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:15

be useful on their own thanks to the modify hook. Typical modify hooks will either do nothing,
check some invariant about the e-classes being merged, or add an e-node to that e-class (using the
regular add and merge methods of the e-graph).
As mentioned above, other equality saturation implementations have implemented constant

folding as custom, ad hoc passes over the e-graph. We can formulate constant folding as an
e-class analysis that highlights the parallels with abstract interpretation. Let the domain 𝐷 =

Option<Constant>, and let the join operation be the łorž operation of the Option type:

match (a, b) {

(None, None) => None,

(Some(x), None) => Some(x),

(None, Some(y)) => Some(y),

(Some(x), Some(y)) => { assert!(x == y); Some(x) }

}

Note how join can also aid in debugging by checking properties about values that are unified in
the e-graph; in this case we assert that all terms represented in an e-class should have the same
constant value. Themake operation serves as the abstraction function, returning the constant value
of an e-node if it can be computed from the constant values associated with its children e-classes.
The modify operation serves as a concretization function in this setting. If 𝑑𝑐 is a constant value,
then modify(𝑐) would add 𝛾 (𝑑𝑐) = 𝑛 to 𝑐 , where 𝛾 concretizes the constant value into a childless
e-node.
Constant folding is an admittedly simple analysis, but one that did not formerly fit within the

equality saturation framework. E-class analyses support more complicated analyses in a general
way, as discussed in later sections on the egg implementation and case studies (Sections 5 and 6).

4.2 Conditional and Dynamic Rewrites

In equality saturation applications, most of the rewrites are purely syntactic. In some cases, addi-
tional data may be needed to determine if or how to perform the rewrite. For example, the rewrite
𝑥/𝑥 → 1 is only valid if 𝑥 ≠ 0. A more complex rewrite may need to compute the right-hand side
dynamically based on an analysis fact from the left-hand side.

The right-hand side of a rewrite can be generalized to a function apply that takes a substitution
and an e-class generated from e-matching the left-hand side, and produces a term to be added to
the e-graph and unified with the matched e-class. For a purely syntactic rewrite, the apply function
need not inspect the matched e-class in any way; it would simply apply the substitution to the
right-hand pattern to produce a new term.
E-class analyses greatly increase the utility of this generalized form of rewriting. The apply func-

tion can look at the analysis data for the matched e-class or any of the e-classes in the substitution
to determine if or how to construct the right-hand side term. These kinds of rewrites can broken
down further into two categories:

• Conditional rewrites like 𝑥/𝑥 → 1 that are purely syntactic but whose validity depends on
checking some analysis data;

• Dynamic rewrites that compute the right-hand side based on analysis data.

Conditional rewrites are a subset of the more general dynamic rewrites. Our egg implementation
supports both. The example in Section 5 and case studies in Section 6 heavily use generalized
rewrites, as it is typically the most convenient way to incorporate domain knowledge into the
equality saturation framework.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:16 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

4.3 Extraction

Equality saturation typically ends with an extraction phase that selects an optimal represented term
from an e-class according to some cost function. In many domains [Nandi et al. 2020; Panchekha
et al. 2015], AST size (sometimes weighted differently for different operators) suffices as a simple,
local cost function. We say a cost function 𝑘 is local when the cost of a term 𝑓 (𝑎1, ...) can be
computed from the function symbol 𝑓 and the costs of the children. With such cost functions,
extracting an optimal term can be efficiently done with a fixed-point traversal over the e-graph
that selects the minimum cost e-node from each e-class [Panchekha et al. 2015].

Extraction can be formulated as an e-class analysis when the cost function is local. The analysis
data is a tuple (𝑛, 𝑘 (𝑛)) where𝑛 is the cheapest e-node in that e-class and 𝑘 (𝑛) its cost. Themake(𝑛)
operation calculates the cost 𝑘 (𝑛) based on the analysis data (which contain the minimum costs) of
𝑛’s children. Themerge operation simply takes the tuple with lower cost. The semilattice portion of
the analysis invariant then guarantees that the analysis data will contain the lowest-cost e-node in
each class. Extract can then proceed recursively; if the analysis data for e-class 𝑐 gives 𝑓 (𝑐1, 𝑐2, ...) as
the optimal e-node, the optimal term represented in 𝑐 is extract(𝑐) = 𝑓 (extract(𝑐1), extract(𝑐2), ...).
This not only further demonstrates the generality of e-class analyses, but also provides the ability
to do extraction łon the flyž; conditional and dynamic rewrites can determine their behavior based
on the cheapest term in an e-class.
Extraction (whether done as a separate pass or an e-class analysis) can also benefit from the

analysis data. Typically, a local cost function can only look at the function symbol of the e-node 𝑛
and the costs of 𝑛’s children. When an e-class analysis is attached to the e-graph, however, a cost
function may observe the data associated with 𝑛’s e-class, as well as the data associated with 𝑛’s
children. This allows a cost function to depend on computed facts rather that just purely syntactic
information. In other words, the cost of an operator may differ based on its inputs. Section 6.2
provides a motivating case study wherein an e-class analysis computes the size and shape of tensors,
and this size information informs the cost function.

5 egg: EASY, EXTENSIBLE, AND EFFICIENT E-GRAPHS

We implemented the techniques of rebuilding and e-class analysis in egg, an easy-to-use, extensible,
and efficient e-graph library. To the best of our knowledge, egg is the first general-purpose, reusable
e-graph implementation. This has allowed focused effort on ease of use and optimization, knowing
that any benefits will be seen across use cases as opposed to a single, ad hoc instance.
This section details egg’s implementation and some of the various optimizations and tools it

provides to the user. We use an extended example of a partial evaluator for the lambda calculus7, for
which we provide the complete source code (which few changes for readability) in Figure 10 and
Figure 11. While contrived, this example is compact and familiar, and it highlights (1) how egg is
used and (2) some of its novel features like e-class analyses and dynamic rewrites. It demonstrates
how egg can tackle binding, a perennially tough problem for e-graphs, with a simple explicit
substitution approach powered by egg’s extensibility. Section 6 goes further, providing real-world
case studies of published projects that have depended on egg.

7E-graphs do not have any łbuilt-inž support for binding; for example, equality modulo alpha renaming is not free. The

explicit substitution provided in this section is is illustrative but rather high in performance cost. Better support for languages

with binding is important future work.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:17

egg is implemented in ~5000 lines of Rust,8 including code, tests, and documentation. egg is
open-source, well-documented, and distributed via Rust’s package management system.9 All of
egg’s components are generic over the user-provided language, analysis, and cost functions.

5.1 Ease of Use

egg’s ease of use comes primarily from its design as a library. By defining only a language and
some rewrite rules, a user can quickly start developing a synthesis or optimization tool. Using
egg as a Rust library, the user defines the language using the define_language! macro shown in
Figure 10, lines 1-22. Childless variants in the language may contain data of user-defined types,
and e-class analyses or dynamic rewrites may inspect this data.
The user provides rewrites as shown in Figure 10, lines 51-100. Each rewrite has a name, a

left-hand side, and a right-hand side. For purely syntactic rewrites, the right-hand is simply a
pattern. More complex rewrites can incorporate conditions or even dynamic right-hand sides, both
explained in the Section 5.2 and Figure 11.
Equality saturation workflows, regardless of the application domain, typically have a similar

structure: add expressions to an empty e-graph, run rewrites until saturation or timeout, and
extract the best equivalent expressions according to some cost function. This łouter loopž of
equality saturation involves a significant amount of error-prone boilerplate:

• Checking for saturation, timeouts, and e-graph size limits.
• Orchestrating the read-phase, write-phase, rebuild system (Figure 4) that makes egg fast.
• Recording performance data at each iteration.
• Potentially coordinating rule execution so that expansive rules like associativity do not
dominate the e-graph.

• Finally, extracting the best expression(s) according to a user-defined cost function.

egg provides these functionalities through its Runner and Extractor interfaces. Runners auto-
matically detect saturation, and can be configured to stop after a time, e-graph size, or iterations
limit. The equality saturation loop provided by egg calls rebuild, so users need not even know
about egg’s deferred invariant maintenance. Runners record various metrics about each iteration
automatically, and the user can hook into this to report relevant data. Extractors select the optimal
term from an e-graph given a user-defined, local cost function.10 The two can be combined as well;
users commonly record the łbest so farž expression by extracting in each iteration.
Figure 10 also shows egg’s test_fn! macro for easily creating tests (lines 27-50). These tests

create an e-graph with the given expression, run equality saturation using a Runner, and check to
make sure the right-hand pattern can be found in the same e-class as the initial expression.

5.2 Extensibility

For simple domains, defining a language and purely syntactic rewrites will suffice. However, our
partial evaluator requires interpreted reasoning, so we use some of egg’s more advanced features
like e-class analyses and dynamic rewrites. Importantly, egg supports these extensibility features
as a library: the user need not modify the e-graph or egg’s internals.
Figure 11 shows the remainder of the code for our lambda calculus partial evaluator. It uses

an e-class analysis (LambdaAnalysis) to track free variables and constants associated with each

8Rust is a high-level systems programming language. egg has been integrated into applications written in other programming

languages using both C FFI and serialization approaches.
9Source: https://github.com/mwillsey/egg. Documentation: https://docs.rs/egg. Package: https://crates.io/crates/egg.

This paper uses version 0.6 of egg.
10As mentioned in Section 4.3, extraction can be implemented as part of an e-class analysis. The separate Extractor feature

is still useful for ergonomic and performance reasons.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

https://github.com/mwillsey/egg
https://docs.rs/egg
https://crates.io/crates/egg

23:18 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

1 define_language! {

2 enum Lambda {

3 // enum variants have data or children (eclass Ids)

4 // [Id; N] is an array of N `Id`s

5

6 // base type operators

7 "+" = Add([Id; 2]), "=" = Eq([Id; 2]),

8 "if" = If([Id; 3]),

9

10 // functions and binding

11 "app" = App([Id; 2]), "lam" = Lambda([Id; 2]),

12 "let" = Let([Id; 3]), "fix" = Fix([Id; 2]),

13

14 // (var x) is a use of `x` as an expression

15 "var" = Use(Id),

16 // (subst a x b) substitutes a for (var x) in b

17 "subst" = Subst([Id; 3]),

18

19 // base types have no children, only data

20 Bool(bool), Num(i32), Symbol(String),

21 }

22 }

23

24 // example terms and what they simplify to

25 // pulled directly from the egg test suite

26

27 test_fn! { lambda_under, rules(),

28 "(lam x (+ 4 (app (lam y (var y)) 4)))"

29 => "(lam x 8))",

30 }

31

32 test_fn! { lambda_compose_many, rules(),

33 "(let compose (lam f (lam g (lam x

34 (app (var f)

35 (app (var g) (var x))))))

36 (let add1 (lam y (+ (var y) 1))

37 (app (app (var compose) (var add1))

38 (app (app (var compose) (var add1))

39 (app (app (var compose) (var add1))

40 (app (app (var compose) (var add1))

41 (var add1)))))))"

42 => "(lam ?x (+ (var ?x) 5))"

43 }

44

45 test_fn! { lambda_if_elim, rules(),

46 "(if (= (var a) (var b))

47 (+ (var a) (var a))

48 (+ (var a) (var b)))"

49 => "(+ (var a) (var b))"

50 }

51 // Returns a list of rewrite rules

52 fn rules() -> Vec<Rewrite<Lambda, LambdaAnalysis>> { vec![

53

54 // open term rules

55 rw!("if-true"; "(if true ?then ?else)" => "?then"),

56 rw!("if-false"; "(if false ?then ?else)" => "?else"),

57 rw!("if-elim"; "(if (= (var ?x) ?e) ?then ?else)" => "?else"

58 if ConditionEqual::parse("(let ?x ?e ?then)",

59 "(let ?x ?e ?else)")),

60 rw!("add-comm"; "(+ ?a ?b)" => "(+ ?b ?a)"),

61 rw!("add-assoc"; "(+ (+ ?a ?b) ?c)" => "(+ ?a (+ ?b ?c))"),

62 rw!("eq-comm"; "(= ?a ?b)" => "(= ?b ?a)"),

63

64 // substitution introduction

65 rw!("fix"; "(fix ?v ?e)" =>

66 "(let ?v (fix ?v ?e) ?e)"),

67 rw!("beta"; "(app (lam ?v ?body) ?e)" =>

68 "(let ?v ?e ?body)"),

69

70 // substitution propagation

71 rw!("let-app"; "(let ?v ?e (app ?a ?b))" =>

72 "(app (let ?v ?e ?a) (let ?v ?e ?b))"),

73 rw!("let-add"; "(let ?v ?e (+ ?a ?b))" =>

74 "(+ (let ?v ?e ?a) (let ?v ?e ?b))"),

75 rw!("let-eq"; "(let ?v ?e (= ?a ?b))" =>

76 "(= (let ?v ?e ?a) (let ?v ?e ?b))"),

77 rw!("let-if"; "(let ?v ?e (if ?cond ?then ?else))" =>

78 "(if (let ?v ?e ?cond)

79 (let ?v ?e ?then)

80 (let ?v ?e ?else))"),

81

82 // substitution elimination

83 rw!("let-const"; "(let ?v ?e ?c)" => "?c"

84 if is_const(var("?c"))),

85 rw!("let-var-same"; "(let ?v1 ?e (var ?v1))" => "?e"),

86 rw!("let-var-diff"; "(let ?v1 ?e (var ?v2))" => "(var ?v2)"

87 if is_not_same_var(var("?v1"), var("?v2"))),

88 rw!("let-lam-same"; "(let ?v1 ?e (lam ?v1 ?body))" =>

89 "(lam ?v1 ?body)"),

90 rw!("let-lam-diff"; "(let ?v1 ?e (lam ?v2 ?body))" =>

91 (CaptureAvoid {

92 fresh: var("?fresh"), v2: var("?v2"), e: var("?e"),

93 if_not_free: "(lam ?v2 (let ?v1 ?e ?body))"

94 .parse().unwrap(),

95 if_free: "(lam ?fresh (let ?v1 ?e

96 (let ?v2 (var ?fresh) ?body)))"

97 .parse().unwrap(),

98 })

99 if is_not_same_var(var("?v1"), var("?v2"))),

100]}

Fig. 10. egg is generic over user-defined languages; here we define a language and rewrite rules for a lambda
calculus partial evaluator. The provided define_language! macro (lines 1-22) allows the simple definition of
a language as a Rust enum, automatically deriving parsing and pretty printing. A value of type Lambda is an
e-node that holds either data that the user can inspect or some number of e-class children (e-class Ids).
Rewrite rules can also be defined succinctly (lines 51-100). Patterns are parsed as s-expressions: strings from
the define_language! invocation (ex: fix, =, +) and data from the variants (ex: false, 1) parse as operators
or terms; names prefixed by ł?ž parse as pattern variables.
Some of the rewrites made are conditional using the łleft => right if condž syntax. The if-elim rewrite
on line 57 uses egg’s provided ConditionEqual as a condition, only applying the right-hand side if the
e-graph can prove the two argument patterns equivalent. The final rewrite, let-lam-diff, is dynamic to
support capture avoidance; the right-hand side is a Rust value that implements the Applier trait instead of a
pattern. Figure 11 contains the supporting code for these rewrites.
We also show some of the tests (lines 27-50) from egg’s lambda test suite. The tests proceed by inserting the
term on the left-hand side, running egg’s equality saturation, and then checking to make sure the right-hand
pattern can be found in the same e-class as the initial term.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:19

1 type EGraph = egg::EGraph<Lambda, LambdaAnalysis>;

2 struct LambdaAnalysis;

3 struct FC {

4 free: HashSet<Id>, // our analysis data stores free vars

5 constant: Option<Lambda>, // and the constant value, if any

6 }

7

8 // helper function to make pattern meta-variables

9 fn var(s: &str) -> Var { s.parse().unwrap() }

10

11 impl Analysis<Lambda> for LambdaAnalysis {

12 type Data = FC; // attach an FC to each eclass

13 // merge implements semilattice join by joining into `to`

14 // returning true if the `to` data was modified

15 fn merge(&self, to: &mut FC, from: FC) -> bool {

16 let before_len = to.free.len();

17 // union the free variables

18 to.free.extend(from.free.iter().copied());

19 if to.constant.is_none() && from.constant.is_some() {

20 to.constant = from.constant;

21 true

22 } else {

23 before_len != to.free.len()

24 }

25 }

26

27 fn make(egraph: &EGraph, enode: &Lambda) -> FC {

28 let f = |i: &Id| egraph[*i].data.free.iter().copied();

29 let mut free = HashSet::default();

30 match enode {

31 Use(v) => { free.insert(*v); }

32 Let([v, a, b]) => {

33 free.extend(f(b)); free.remove(v); free.extend(f(a));

34 }

35 Lambda([v, b]) | Fix([v, b]) => {

36 free.extend(f(b)); free.remove(v);

37 }

38 _ => enode.for_each_child(

39 |c| free.extend(&egraph[c].data.free)),

40 }

41 FC { free: free, constant: eval(egraph, enode) }

42 }

43

44 fn modify(egraph: &mut EGraph, id: Id) {

45 if let Some(c) = egraph[id].data.constant.clone() {

46 let const_id = egraph.add(c);

47 egraph.union(id, const_id);

48 }

49 }

50 }

51 // evaluate an enode if the children have constants

52 // Rust's `?` extracts an Option, early returning if None

53 fn eval(eg: &EGraph, enode: &Lambda) -> Option<Lambda> {

54 let c = |i: &Id| eg[*i].data.constant.clone();

55 match enode {

56 Num(_) | Bool(_) => Some(enode.clone()),

57 Add([x, y]) => Some(Num(c(x)? + c(y)?)),

58 Eq([x, y]) => Some(Bool(c(x)? == c(y)?)),

59 _ => None,

60 }

61 }

62

63 // Functions of this type can be conditions for rewrites

64 trait ConditionFn = Fn(&mut EGraph, Id, &Subst) -> bool;

65

66 // The following two functions return closures of the

67 // correct signature to be used as conditions in Figure 10.

68 fn is_not_same_var(v1: Var, v2: Var) -> impl ConditionFn {

69 |eg, _, subst| eg.find(subst[v1]) != eg.find(subst[v2])

70 }

71 fn is_const(v: Var) -> impl ConditionFn {

72 // check the LambdaAnalysis data

73 |eg, _, subst| eg[subst[v]].data.constant.is_some()

74 }

75

76 struct CaptureAvoid {

77 fresh: Var, v2: Var, e: Var,

78 if_not_free: Pattern<Lambda>, if_free: Pattern<Lambda>,

79 }

80

81 impl Applier<Lambda, LambdaAnalysis> for CaptureAvoid {

82 // Given the egraph, the matching eclass id, and the

83 // substitution generated by the match, apply the rewrite

84 fn apply_one(&self, egraph: &mut EGraph,

85 id: Id, subst: &Subst) -> Vec<Id>

86 {

87 let (v2, e) = (subst[self.v2], subst[self.e]);

88 let v2_free_in_e = egraph[e].data.free.contains(&v2);

89 if v2_free_in_e {

90 let mut subst = subst.clone();

91 // make a fresh symbol using the eclass id

92 let sym = Lambda::Symbol(format!("_{}", id).into());

93 subst.insert(self.fresh, egraph.add(sym));

94 // apply the given pattern with the modified subst

95 self.if_free.apply_one(egraph, id, &subst)

96 } else {

97 self.if_not_free.apply_one(egraph, id, &subst)

98 }

99 }

100 }

Fig. 11. Our partial evaluator example highlights three important features egg provides for extensibility:
e-class analyses, conditional rewrites, and dynamic rewrites.
The LambdaAnalysis type, which implements the Analysis trait, represents the e-class analysis. Its asso-
ciated data (FC) stores the constant term from that e-class (if any) and an over-approximation of the free
variables used by terms in that e-class. The constant term is used to perform constant folding. The merge
operation implements the semilattice join, combining the free variable sets and taking a constant if one exists.
In make, the analysis computes the free variable sets based on the e-node and the free variables of its children;
the eval generates the new constants if possible. The modify hook of Analysis adds the constant to the
e-graph.
Some of the conditional rewrites in Figure 10 depend on conditions defined here. Any function with the
correct signature may serve as a condition.
The CaptureAvoid type implements the Applier trait, allowing it to serve as the right-hand side of a rewrite.
CaptureAvoid takes two patterns and some pattern variables. It checks the free variable set to determine if a
capture-avoiding substitution is required, applying the if_free pattern if so and the if_not_free pattern
otherwise.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:20 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

e-class. The implementation of the e-class analysis is in Lines 11-50. The e-class analysis invariant
guarantees that the analysis data contains an over-approximation of free variables from terms
represented in that e-class. The analysis also does constant folding (see the make and modify

methods). The let-lam-diff rewrite (Line 90, Figure 10) uses the CaptureAvoid (Lines 81-100,
Figure 11) dynamic right-hand side to do capture-avoiding substitution only when necessary based
on the free variable information. The conditional rewrites from Figure 10 depend on the conditions
is_not_same_var and is_var (Lines 68-74, Figure 11) to ensure correct substitution.
egg is extensible in other ways as well. As mentioned above, Extractors are parameterized by a

user-provided cost function. Runners are also extensible with user-provided rule schedulers that can
control the behavior of potentially troublesome rewrites. In typical equality saturation, each rewrite
is searched for and applied each iteration. This can cause certain rewrites, commonly associativity or
distributivity, to dominate others and make the search space less productive. Applied in moderation,
these rewrites can trigger other rewrites and find greatly improved expressions, but they can also
slow the search by exploding the e-graph exponentially in size. By default, egg uses the built-in
backoff scheduler that identifies rewrites that are matching in exponentially-growing locations and
temporarily bans them. We have observed that this greatly reduced run time (producing the same
results) in many settings. egg can also use a conventional every-rule-every-time scheduler, or the
user can supply their own.

5.3 Efficiency

egg’s novel rebuilding algorithm (Section 3) combined with systems programming best practices
makes e-graphsÐand the equality saturation use case in particularÐmore efficient than prior tools.
egg is implemented in Rust, giving the compiler freedom to specialize and inline user-written

code. This is especially important as egg’s generic nature leads to tight interaction between library
code (e.g., searching for rewrites) and user code (e.g., comparing operators). egg is designed from
the ground up to use cache-friendly, flat buffers with minimal indirection for most internal data
structures. This is in sharp contrast to traditional representations of e-graphs [Detlefs et al. 2005;
Nelson 1980] that contains many tree- and linked list-like data structures. egg additionally compiles
patterns to be executed by a small virtual machine [de Moura and Bjùrner 2007], as opposed to
recursively walking the tree-like representation of patterns.

Aside from deferred rebuilding, egg’s equality saturation algorithm leads to implementation-level
performance enhancements. Searching for rewrite matches, which is the bulk of running time, can
be parallelized thanks to the phase separation. Either the rules or e-classes could be searched in
parallel. Furthermore, the once-per-iteration frequency of rebuilding allows egg to establish other
performance-enhancing invariants that hold during the read-only search phase. For example, egg
sorts e-nodes within each e-class to enable binary search, and also maintains a cache mapping
function symbols to e-classes that contain e-nodes with that function symbol.
Many of egg’s extensibility features can also be used to improve performance. As mentioned

above, rule scheduling can lead to great performance improvement in the face of łexpansivež rules
that would otherwise dominate the search space. The Runner interface also supports user hooks
that can stop the equality saturation after some arbitrary condition. This can be useful when using
equality saturation to prove terms equal; once they are unified, there is no point in continuing.
egg’s Runners also support batch simplification, where multiple terms can be added to the initial
e-graph before running equality saturation. If the terms are substantially similar, both rewriting
and any e-class analyses will benefit from the e-graph’s inherent structural deduplication. The case
study in Section 6.1 uses batch simplification to achieve a large speedup with simplifying similar
expressions.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:21

6 CASE STUDIES

This section relates three independently-developed, published projects from diverse domains that
incorporated egg as an easy-to-use, high-performance e-graph implementation. In all three cases,
the developers had first rolled their own e-graph implementations. egg allowed them to delete
code, gain performance, and in some cases dramatically broaden the project’s scope thanks to
egg’s speed and flexibility. In addition to gaining performance, all three projects use egg’s novel
extensibility features like e-class analyses and dynamic/conditional rewrites.

6.1 Herbie: Improving Floating Point Accuracy

Herbie automatically improves accuracy for floating-point expressions, using random sampling to
measure error, a set of rewrite rules for generating program variants, and algorithms that prune
and combine program variants to achieve minimal error. Herbie received PLDI 2015’s Distinguished
Paper award [Panchekha et al. 2015] and has been continuously developed since then, sporting
hundreds of Github stars, hundreds of downloads, and thousands of users on its online version.
Herbie uses e-graphs for algebraic simplification of mathematical expressions, which is especially
important for avoiding floating-point errors introduced by cancellation, function inverses, and
redundant computation.

Until our case study, Herbie used a custom e-graph implementation written in Racket (Herbie’s
implementation language) that closely followed traditional e-graph implementations.With timeouts
disabled, e-graph-based simplification consumed the vast majority of Herbie’s run time. As a fix,
Herbie sharply limits the simplification process, placing a size limit on the e-graph itself and a
time limit on the whole procedure. When the timeout is exceeded, simplification fails altogether.
Furthermore, the Herbie authors knew of several features that they believed would improve Herbie’s
output but could not be implemented because they required more calls to simplification and would
thus introduce unacceptable slowdowns. Taken together, slow simplification reduced Herbie’s
performance, completeness, and efficacy.

We implemented a egg simplification backend for Herbie. The egg backend is over 3000× faster
thanHerbie’s initial simplifier and is now used by default as of Herbie 1.4. Herbie has also backported
some of egg’s features like batch simplification and rebuilding to its e-graph implementation (which
is still usable, just not the default), demonstrating the portability of egg’s conceptual improvements.

6.1.1 Implementation. Herbie is implemented in Racket while egg is in Rust; the egg simplification
backend is thus implemented as a Rust library that provides a C-level API for Herbie to access via
foreign-function interface (FFI). The Rust library defines the Herbie expression grammar (with
named constants, numeric constants, variables, and operations) as well as the e-class analysis
necessary to do constant folding. The library is implemented in under 500 lines of Rust.

Herbie’s set of rewrite rules is not fixed; users can select which rewrites to use using command-
line flags. Herbie serializes the rewrites to strings, and the egg backend parses and instantiates
them on the Rust side.

Herbie separates exact and inexact program constants: exact operations on exact constants (such
as the addition of two rational numbers) are evaluated and added to the e-graph, while operations
on inexact constants or that yield inexact outputs are not. We thus split numeric constants in the
Rust-side grammar between exact rational numbers and inexact constants, which are described
by an opaque identifier, and transformed Racket-side expressions into this form before serializing
them and passing them to the Rust driver. To evaluate operations on exact constants, we used
the constant folding e-class analysis to track the łexact valuež of each e-class.11 Every time an

11Herbie’s rewrite rules guarantee that different exact values can never become equal; the semilattice join checks this

invariant on the Rust side.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:22 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

initial Racket
implementation

+ batching + rebuilding egg
10

0

10
1

10
2

10
3

10
4

M
in
u
te
s
sp
en
t
in

si
m
p
lifi
ca
ti
on

5022.0
(98.1

49.4
(68.7

22.4
(48.8

1.4
(4.8

Fig. 12. Herbie sped up its expression simplification phase by adopting egg-inspired features like batched
simplification and rebuilding into its Racket-based e-graph implementation. Herbie also supports using egg
itself for additional speedup. Note that the y-axis is log-scale.

operation e-node is added to the egg e-graph, we check whether all arguments to that operation
have exact value (using the analysis data), and if so do rational number arithmetic to evaluate it.
The e-class analysis is cleaner than the corresponding code in Herbie’s implementation, which is a
built-in pass over the entire e-graph.

6.1.2 Results. Our egg simplification backend is a drop-in replacement to the existing Herbie
simplifier, making it easy to compare speed and results. We compare using Herbie’s standard test
suite of roughly 500 benchmarks, with timeouts disabled. Figure 12 shows the results. The egg
simplification backend is over 3000× faster than Herbie’s initial simplifier. This speedup eliminated
Herbie’s largest bottleneck: the initial implementation dominated Herbie’s total run time at 98.1%,
backporting egg improvements into Herbie cuts that to about half the total run time, and egg

simplification takes under 5% of the total run time. Practically, the run time of Herbie’s initial
implementation was smaller, since timeouts cause tests failures when simplification takes too long.
Therefore, the speedup also improved Herbie’s completeness, as simplification now never times
out.

Since incorporating egg into Herbie, the Herbie developers have backported some of egg’s key
performance improvements into the Racket e-graph implementation. First, batch simplification gives
a large speedup because Herbie simplifies many similar expressions. When done simultaneously in
one equality saturation, the e-graph’s structural sharing can massively deduplicate work. Second,
deferring rebuilding (as discussed in Section 3) gives a further 2.2× speedup. As demonstrated in
Figure 7, rebuilding offers an asymptotic speedup, so Herbie’s improved implementation (and the
egg backend as well) will scale better as the search size grows.

6.2 Spores: Optimizing Linear Algebra

Spores [Wang et al. 2020] is an optimizer for machine learning programs. It translates linear algebra
(LA) expressions to relational algebra (RA), performs rewrites, and finally translates the result
back to linear algebra. Each rewrite is built up from simple identities in relational algebra like the
associativity of join. These relational identities express more fine-grained equality than textbook
linear algebra identities, allowing Spores to discover novel optimizations not found by traditional
optimizers based on LA identities. Spores performs holistic optimization, taking into account the

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:23

𝐴 ⊕ (𝐵 ⊕ 𝐶) = ⊕(𝐴, 𝐵,𝐶) (⊕ is assoc. & comm.) (1)

𝐴 ⊗ (𝐵 ⊗ 𝐶) = ⊗(𝐴, 𝐵,𝐶) (⊗ is assoc. & comm.) (2)

𝐴 ⊗ (𝐵 ⊕ 𝐶) = 𝐴 ⊗ 𝐵 ⊕ 𝐴 ⊗ 𝐶 (⊗ distributes over ⊕) (3)
∑︁

𝑖

(𝐴 ⊕ 𝐵) =
∑︁

𝑖

𝐴 ⊕
∑︁

𝑖

𝐵 (4)

∑︁

𝑖

∑︁

𝑗

𝐴 =

∑︁

𝑖, 𝑗

𝐴 (5)

𝐴 ⊗
∑︁

𝑖

𝐵 =

∑︁

𝑖

(𝐴 ⊗ 𝐵) (requires 𝑖 ∉ 𝐴) (6)

∑︁

𝑖

𝐴 = 𝐴 ⊗ dimension(𝑖) (requires 𝑖 ∉ 𝐴) (7)

Fig. 13. RA equality rules 𝑅𝐸𝑄 .

complex interactions among factors like sparsity, common subexpressions, and fusible operators
and their impact on execution time.

6.2.1 Implementation. Spores is implemented entirely in Rust using egg. egg empowers Spores
to orchestrate the complex interactions described above elegantly and effortlessly. Spores works
in three steps: first, it translates the input LA expression to RA; second, it optimizes the RA
expression by equality saturation; finally, it translates the optimized RA expression back to LA.
Since the translation between LA and RA is straightforward, we focus the discussion on the
equality saturation step in RA. Spores represents a relation as a function from tuples to real
numbers: 𝐴 : (𝑎1, 𝑎2, ..., 𝑎𝑛) → R. This is similar to the index notation in linear algebra, where
a matrix A can be viewed as a function 𝜆𝑖, 𝑗 .𝐴𝑖 𝑗 . A tuple is identified with a named record, e.g.
(1, 2) = {𝑎1 : 1, 𝑎2 : 2} = {𝑎2 : 2, 𝑎1 : 1}, so that order in a tuple doesn’t matter. There are just three
operations on relations: join, union and aggregate. Join (⊗) takes two relations and returns their
natural join, multiplying the associated real number for joined tuples:

𝐴 ⊗ 𝐵 = 𝜆𝑎 ∪ 𝑏.𝐴(𝑎) × 𝐵(𝑏)

Here 𝑎 is the set of field names for the records in 𝐴. In RA terminology, 𝑎 is the schema of 𝐴. Union
(⊕) is a join in disguise: it also performs natural join on its two arguments, but adds the associated
real instead of multiplying it:

𝐴 ⊕ 𝐵 = 𝜆𝑎 ∪ 𝑏.𝐴(𝑎) + 𝐵(𝑏)

Finally, aggregate (Σ) sums its argument along a given dimension. It coincides precisely with the
łsigma notationž in mathematics:

∑︁

𝑎𝑖

𝐴 = 𝜆𝑎 − 𝑎𝑖 .
∑︁

𝑎𝑖

𝐴(𝑎)

The RA identities, presented in Figure 13, are also simple and intuitive. The notation 𝑖 ∉ 𝐴

means 𝑖 is not in the schema of 𝐴, and 𝑑𝑖𝑚(𝑖) is the size of dimension 𝑖 (e.g. length of rows in a
matrix). In Equation 6, when 𝑖 ∈ 𝐴, we first rename every 𝑖 to a fresh variable 𝑖 ′ in 𝐵, which gives
us: 𝐴 ⊗

∑
𝑖 𝐵 =

∑
𝑖′ (𝐴 ⊗ 𝐵 [𝑖 → 𝑖 ′]). In addition to these equalities, Spores also supports replacing

expressions with fused operators. For example, (𝑋 −𝑈𝑉)2 can be replaced by 𝑠𝑞𝑙𝑜𝑠𝑠 (𝑋,𝑈 ,𝑉) which
streams values from 𝑋,𝑈 ,𝑉 and computes the result without creating intermediate matrices. Each
of these fused operators is encoded with a simple identity in egg.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:24 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

(Diff

 (Translate (70 15 2)

 (Scale (140 30 4)

 (Translate (-0.5 -0.5 -0.5)

 (Cuboid (1 1 1)))))

 (Union

 (Translate (6 15 2)

 (Scale (6 5.196 4)

 (Translate (0 0 0)

 (Scale (0.5 0.577 1)

 (HexPrism (1 1))))))

 (Translate (125 15 2)

 (Scale (20 17.32 4)

 (Translate (0 0 0)

 (Scale (0.5 0.577 1)

 (HexPrism (1 1)))))))

 (Translate (102 15 2)

 (Scale (18 15.588 4)

 (Translate (0 0 0)

 (Scale (0.5 0.577 1)

 (HexPrism (1 1)))))))

 (Translate (81 15 2)

 (Scale (16 13.856 4)

…

 ~ 50 LOC, CSG

 facet normal 0 0 0

 outer loop

 vertex 9 15 0

 vertex 7.5 17.5964 4

 vertex 7.5 17.5964 0

 endloop

 endfacet

 facet normal 0 0 0

 outer loop

 vertex 7.5 17.5964 4

 vertex 9 15 0

 vertex 9 15 4

 endloop

 endfacet

 facet normal 0 0 0

 outer loop

 vertex 4.5 17.5964 0

 vertex 7.5 17.5964 4

 vertex 4.5 17.5964 4

 endloop

 endfacet

…

 ~1600 LOC, Mesh

(Difference

 (Cuboid [140, 30, 4])

 (Fold Union

 (Tabulate (8)

 (Translate [+ 10 + 6, 15, 2]

 (Cylinder [+ 3, 4])))))

i

i
2

i

i

(Difference

 (Cuboid [140, 30, 4])

 (Fold Union

 (Tabulate (4)

 (Translate [+ 38 + 6, 15, 2]

 (HexPrism [+ 3, 4])))))

i

i
2

i

i

(Difference

 (Cuboid [140, 30, 4])

 (Fold Union

 (Tabulate (10)

 (Translate [+ 10 + 6, 15, 2]

 (HexPrism [(+ 3) / 2, 4])))))

i

i
2

i

i

edits

6 LOC, Caddy

(Difference

 (Cuboid [140, 30, 4])

 (Fold Union

 (Tabulate (i 8)

 (Translate [+ 10 + 6, 15, 2]

 (HexPrism [+ 3, 4])))))

i
2

i

i

m
e
s
h

 d
e
c
o

m
p

ile
r

(Difference

 (Cuboid [140, 30, 4])

 (Fold Union

 (Tabulate (6)

 (Translate [20 + 20, 15, 2]

 (Rotate [0, 0, 45]

 (Cuboid [12, 12, 4]))))))

i

i

i

Szalinski

Core

Caddy
E-graph Caddy

Solvers &

Rewrites 3
D

 P
rin

t

Fig. 14. (Figure from Nandi et. al. [Nandi et al. 2020]) Existing mesh decompilers turn triangle meshes into flat,
computational solid geometry (CSG) expressions. Szalinski [Nandi et al. 2020] takes in these CSG expressions
in a format called Core Caddy, and it synthesizes smaller, structured programs in language called Caddy that
is enriched with functional-style features. This can ease customization by simplifying edits: small, mostly local
changes yield usefully different models. The photo shows the 3D printed hex wrench holder after customizing
hole sizes. Szalinski is powered by egg’s extensible equality saturation, relying on its high performance,
e-class analyses, and dynamic rewrites.

Note that Equation 6 requires a way to store the schema of every expression during optimization.
Spores uses an e-class analysis to annotate e-classes with the appropriate schema. It also leverages
the e-class analysis for cost estimation, using a conservative cost model that overapproximates.
As a result, equivalent expressions may have different cost estimates. The merge operation on
the analysis data takes the lower cost, incrementally improving the cost estimate. Finally, Spores’
e-class analysis also performs constant folding. As a whole, the e-class analysis is a composition of
three smaller analyses in a similar style to the composition of lattices in abstract interpretation.

6.2.2 Results. Spores is integrated into Apache SystemML [Boehm 2019] in a prototype, where it
is able to derive all of 84 hand-written rules and heuristics for sum-product optimization. It also
discovered novel rewrites that contribute to 1.2× to 5× speedup in end-to-end experiments. With
greedy extraction, all compilations completed within a second.

6.3 Szalinski: Decompiling CAD into Structured Programs

Several tools have emerged that reverse engineer high level Computer Aided Design (CAD) models
from polygon meshes and voxels [Du et al. 2018; Ellis et al. 2018; Nandi et al. 2018; Sharma et al.
2017; Tian et al. 2019]. The output of these tools are constructive solid geometry (CSG) programs.
A CSG program is comprised of 3D solids like cubes, spheres, cylinders, affine transformations like
scale, translate, rotate (which take a 3D vector and a CSG expression as arguments), and binary
operators like union, intersection, and difference that combine CSG expressions. For repetitive
models like a gear, CSG programs can be too long and therefore difficult to comprehend. A recent
tool, Szalinski [Nandi et al. 2020], extracts the inherent structure in the CSG outputs of mesh
decompilation tools by automatically inferring maps and folds (Figure 14). Szalinski accomplished
this using egg’s extensible equality saturation system, allowing it to:

• Discover structure using loop rerolling rules. This allows Szalinski to infer functional patterns
like Fold, Map2, Repeat and Tabulate from flat CSG inputs.

• Identify equivalence among CAD terms that are expressed as different expressions by mesh
decompilers. Szalinski accomplishes this by using CAD identities. An example of one such
CAD identity in Szalinski is 𝑒 ↔ rotate [0 0 0] 𝑒 . This implies that any CAD expression 𝑒 is

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:25

(a) Five cubes in a line.

(Union

(Translate (0 0 0) Cube)

(Translate (2 0 0) Cube)

(Translate (4 0 0) Cube)

(Translate (6 0 0) Cube)

(Translate (8 0 0) Cube))

(b) Flat CSG input to Szalinski.

(Fold Union

(Tabulate (i 5)

(Translate

((* 2 i) 0 0)

Cube)))

(c) Output captures the repetition.

Fig. 15. Szalinski integrates solvers into egg’s equality saturation as a dynamic rewrite. The solver-backed
rewrites can transform repetitive lists into Tabulate expressions that capture the repetitive structure.

equivalent to a CAD expression that applies a rotation by zero degrees about x, y, and z axes
to 𝑒 .

• Use external solvers to speculatively add potentially profitable expressions to the e-graph.
Mesh decompilers often generate CSG expressions that order and/or group list elements in
non-intuitive ways. To recover structure from such expressions, a tool like Szalinski must be
able to reorder and regroup lists that expose any latent structure.

6.3.1 Implementation. Even though CAD is different from traditional languages targeted by pro-
gramming language techniques, egg supports Szalinski’s CAD language in a straightforward
manner. Szalinski uses purely syntactic rewrites to express CAD identities and some loop rerolling
rules (like inferring a Fold from a list of CAD expressions). Critically, however, Szalinski relies on
egg’s dynamic rewrites and e-class analysis to infer functions for lists.
Consider the flat CSG program in Figure 15b. A structure finding rewrite first rewrites the flat

list of Unions to:

(Fold Union (Map2 Translate [(0 0 0) (2 0 0) ...] (Repeat Cube 5)))

The list of vectors is stored as Cons elements (sugared above for brevity). Szalinski uses an e-class
analysis to track the accumulated lists in a similar style to constant folding. Then, a dynamic
rewrite uses an arithmetic solver to rewrite the concrete list of 3D vectors in the analysis data to
(Tabulate (i 5) (* 2 i)). A final set of syntactic rewrites can hoist the Tabulate, yielding the
result on the right of Figure 15. Thanks to the set of syntactic CAD rewrites, this structure finding
even works in the face of CAD identities. For example, the original program may omit the no-op
Translate (0 0 0), even though it is necessary to see repetitive structure.

In many cases, the repetitive structure of input CSG expression is further obfuscated because
subexpressions may appear in arbitrary order. For these inputs, the arithmetic solvers must first
reorder the expressions to find a closed form like a Tabulate as shown in Figure 15. However,
reordering a list does not preserve equivalence, so adding it to the e-class of the concrete list would
be unsound. Szalinski therefore introduces inverse transformations, a novel technique that allows
solvers to speculatively reorder and regroup list elements to find a closed form. The solvers annotate
the potentially profitable expression with the permutation or grouping that led to the successful
discovery of the closed form. Later in the rewriting process, syntactic rewrites eliminate the inverse
transformations when possible (e.g., reordering lists under a Fold Union can be eliminated). egg
supported this novel technique without modification.

6.3.2 Results. Szalinski’s initial protoype used a custom e-graph written in OCaml. Anecdotally,
switching to egg removed most of the code, eliminated bugs, facilitated the key contributions of
solver-backed rewrites and inverse transformations, and made the tool about 1000× faster. egg’s

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

23:26 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

performance allowed a shift from running on small, hand-picked examples to a comprehensive
evaluation on over 2000 real-world models from a 3D model sharing forum [Nandi et al. 2020].

7 RELATED WORK

Term Rewriting. Term rewriting [Dershowitz and Jouannaud 1990] has been used widely to
facilitate equational reasoning for program optimizations [Boyle et al. 1996; van den Brand et al.
2002; Visser et al. 1998]. A term rewriting system applies a database of semantics preserving rewrites
or axioms to an input expression to get a new expression, which may, according to some cost
function, be more profitable compared to the input. Rewrites are typically symbolic and have a left
hand side and a right hand side. To apply a rewrite to an expression, a rewrite system implements
pattern matchingÐif the left hand side of a rewrite rule matches with the input expression, the
system computes a substitution which is then applied to the right-hand side of the rewrite rule.
Upon applying a rewrite rule, a rewrite system typically replaces the old expression by the new
expression. This can lead to the phase ordering problemÐ it makes it impossible to apply a rewrite
to the old expression in the future which could have led to a more optimal result.

E-graphs and E-matching. E-graph were originally proposed several decades ago as an efficient
data structure for maintaining congruence closure [Kozen 1977; Nelson 1980; Nelson and Oppen
1980]. E-graphs continue to be a critical component in successful SMT solvers where they are
used for combining satisfiability theories by sharing equality information [De Moura and Bjùrner
2008]. A key difference between past implementations of e-graphs and egg’s e-graph is our novel
rebuilding algorithm that maintains invariants only at certain critical points (Section 3). This makes
egg more efficient for the purpose of equality saturation. egg implements the pattern compilation
strategy introduced by de Moura et al. [de Moura and Bjùrner 2007] that is used in state of the art
theorem provers [De Moura and Bjùrner 2008]. Some provers [De Moura and Bjùrner 2008; Detlefs
et al. 2005] propose optimizations like mod-time, pattern-element and inverted-path-index to find
new terms and relevant patterns for matching, and avoid redundant matches. So far, we have found
egg to be faster than several prior e-graph implementations even without these optimizations.
They are, however, compatible with egg’s design and could be explored in the future. Another key
difference is egg’s powerful e-class analysis abstraction and flexible interface. They empower the
programmer to easily leverage e-graphs for problems involving complex semantic reasoning.

Congruence Closure. Our rebuilding algorithm is similar to the congruence closure algorithm
presented by Downey et al. [1980]. The contribution of rebuilding is not how it restores the e-graph
invariants but when; it gives the client the ability to specialize invariant restoration to a particular
workload like equality saturation. Their algorithm also features a worklist of merges to be processed
further, but it is offline, i.e., the algorithm processes a given set of equalities and outputs the set
of equalities closed over congruence. Rebuilding is adapted to the online e-graph (and equality
saturation) setting, where rewrites frequently examine the current set of equalities and assert
new ones. Rebuilding additionally propagates e-class analysis facts (Section 4.1). Despite these
differences, the core algorithms algorithms are similar enough that theoretical results on offline
performance characteristics [Downey et al. 1980] apply to both. We do not provide theoretical
analysis of rebuilding for the online setting; it is likely highly workload dependent.

Superoptimization and Equality Saturation. The Denali [Joshi et al. 2002] superoptimizer first
demonstrated how to use e-graphs for optimized code generation as an alternative to hand-
optimized machine code and prior exhaustive approaches [Massalin 1987], both of which were less
scalable. The inputs to Denali are programs in a C-like language from which it produces assembly
programs. Denali supported three types of rewritesÐarithmetic, architectural, and program-specific.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

egg: Fast and Extensible Equality Saturation 23:27

After applying these rewrites till saturation, it used architectural description of the hardware to
generate constraints that were solved using a SAT solver to output a near-optimal program. While
Denali’s approach was a significant improvement over prior work, it was intended to be used on
straight line code only and therefore, did not apply to large real programs.

Equality saturation [Stepp et al. 2011; Tate et al. 2009] developed a compiler optimization phase
that works for complex language constructs like loops and conditionals. The first equality saturation
paper used an intermediate representation called Program Expression Graphs (PEGs) to encode
loops and conditionals. PEGs have specialized nodes that can represent infinite sequences, which
allows them to represent loops. It uses a global profitability heuristic for extraction which is
implemented using a pseudo-boolean solver. Recently, [Premtoon et al. 2020] uses PEGs for code
search. egg can support PEGs as a user-defined language, and thus their technique could be ported.

8 CONCLUSION

We presented two new techniques, rebuilding and e-class analysis, that make equality saturation
fast and extensible enough for a new family of applications. Rebuilding is a new way to amortize the
cost of maintaining the e-graph’s data structure invariants, specializing the e-graph to the equality
saturation workload. E-class analysis is a general framework allowing for interpreted reasoning
beyond what purely syntactic rewrites can provide.
We implemented both of these techniques in egg, a reusable, extensible, and efficient e-graph

library. egg is generic over the user-defined language, which allowed focused effort on optimization
and efficiency while obviating the need for ad hoc e-graph implementations and manipulations.
Our case studies show that equality saturation can now scale further and be used more flexibly than
before; egg provided new functionality and large speedups. We believe that these contributions
position equality saturation as a powerful toolkit for program synthesis and optimization.

ACKNOWLEDGMENTS

Thanks to our anonymous paper and artifact reviewers for their feedback. Special thanks to our
shepherd Simon Peyton Jones, Leonardo de Moura, and many members of the PLSE group. This
work was supported in part by the Applications Driving Architectures (ADA) Research Center, a
JUMP Center co-sponsored by SRC and DARPA, as well as the National Science Foundation under
Grant Nos. 1813166 and 1749570.

REFERENCES

Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-Jörg Kreowski, Sabine Kuske, Detlef Plump, Andy

Schürr, and Gabriele Taentzer. 1999. Graph Transformation for Specification and Programming. Sci. Comput. Program.

34, 1 (April 1999), 1ś54. https://doi.org/10.1016/S0167-6423(98)00023-9

Matthias Boehm. 2019. Apache SystemML. Encyclopedia of Big Data Technologies (2019), 81ś86. https://doi.org/10.1007/978-

3-319-77525-8_187

James M. Boyle, Terence J. Harmer, and Victor L. Winter. 1996. The TAMPR Program Transformation System: Simplifying

the Development of Numerical Software. In Modern Software Tools for Scientific Computing, SciTools 1996, Oslo, Norway,

September 16-18, 1996, Erlend Arge, Are Magnus Bruaset, and Hans Petter Langtangen (Eds.). Birkhäuser, 353ś372.

https://doi.org/10.1007/978-1-4612-1986-6_17

Martin Davis and Hilary Putnam. 1960. A Computing Procedure for Quantification Theory. J. ACM 7, 3 (July 1960), 201ś215.

https://doi.org/10.1145/321033.321034

Leonardo de Moura and Nikolaj Bjùrner. 2007. Efficient E-Matching for SMT Solvers. In Automated Deduction ś CADE-21,

Frank Pfenning (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 183ś198.

Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,

Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337ś340. http://dl.acm.org/citation.cfm?id=1792734.

1792766

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

https://uwplse.org
https://doi.org/10.1016/S0167-6423(98)00023-9
https://doi.org/10.1007/978-3-319-77525-8_187
https://doi.org/10.1007/978-3-319-77525-8_187
https://doi.org/10.1007/978-1-4612-1986-6_17
https://doi.org/10.1145/321033.321034
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766

23:28 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha

Nachum Dershowitz. 1993. A taste of rewrite systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 199ś228. https:

//doi.org/10.1007/3-540-56883-2_11

NachumDershowitz and Jean-Pierre Jouannaud. 1990. Rewrite Systems. InHandbook of Theoretical Computer Science, Volume

B: Formal Models and Semantics, Jan van Leeuwen (Ed.). Elsevier and MIT Press, 243ś320. https://doi.org/10.1016/b978-

0-444-88074-1.50011-1

David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: A Theorem Prover for Program Checking. J. ACM 52, 3

(May 2005), 365ś473. https://doi.org/10.1145/1066100.1066102

Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. 1980. Variations on the Common Subexpression Problem. J. ACM 27,

4 (Oct. 1980), 758ś771. https://doi.org/10.1145/322217.322228

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and

Wojciech Matusik. 2018. InverseCSG: automatic conversion of 3D models to CSG trees. 1ś16. https://doi.org/10.1145/

3272127.3275006

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B. Tenenbaum. 2018. Learning to Infer Graphics Programs

from Hand-Drawn Images. In Neural Information Processing Systems (NIPS).

Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: optimizing deep

learning computation with automatic generation of graph substitutions. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles. 47ś62.

Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A Goal-directed Superoptimizer. SIGPLAN Not. 37, 5 (May 2002),

304ś314. https://doi.org/10.1145/543552.512566

Dexter Kozen. 1977. Complexity of Finitely Presented Algebras. In Proceedings of the Ninth Annual ACM Symposium on

Theory of Computing (Boulder, Colorado, USA) (STOC ’77). Association for Computing Machinery, New York, NY, USA,

164ś177. https://doi.org/10.1145/800105.803406

Henry Massalin. 1987. Superoptimizer: A Look at the Smallest Program. In Proceedings of the Second International Conference

on Architectual Support for Programming Languages and Operating Systems (Palo Alto, California, USA) (ASPLOS II). IEEE

Computer Society Press, Washington, DC, USA, 122ś126. https://doi.org/10.1145/36206.36194

Chandrakana Nandi, James R. Wilcox, Pavel Panchekha, Taylor Blau, Dan Grossman, and Zachary Tatlock. 2018. Functional

Programming for Compiling and Decompiling Computer-aided Design. Proc. ACM Program. Lang. 2, ICFP, Article 99

(July 2018), 31 pages. https://doi.org/10.1145/3236794

Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova, Dan Grossman, and Zachary Tatlock.

2020. Synthesizing Structured CAD Models with Equality Saturation and Inverse Transformations. In Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020).

Association for Computing Machinery, New York, NY, USA, 31ś44. https://doi.org/10.1145/3385412.3386012

Charles Gregory Nelson. 1980. Techniques for Program Verification. Ph.D. Dissertation. Stanford, CA, USA. AAI8011683.

Greg Nelson and Derek C. Oppen. 1980. Fast Decision Procedures Based on Congruence Closure. J. ACM 27, 2 (April 1980),

356ś364. https://doi.org/10.1145/322186.322198

Robert Nieuwenhuis and Albert Oliveras. 2005. Proof-Producing Congruence Closure. In Proceedings of the 16th International

Conference on Term Rewriting and Applications (Nara, Japan) (RTA’05). Springer-Verlag, Berlin, Heidelberg, 453ś468.

https://doi.org/10.1007/978-3-540-32033-3_33

Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015. Automatically Improving Accuracy for

Floating Point Expressions. SIGPLAN Not. 50, 6 (June 2015), 1ś11. https://doi.org/10.1145/2813885.2737959

Varot Premtoon, James Koppel, and Armando Solar-Lezama. 2020. Semantic Code Search via Equational Reasoning. In

Proceedings of the 41st ACM SIGPLANConference on Programming Language Design and Implementation (London, UK) (PLDI

2020). Association for Computing Machinery, New York, NY, USA, 1066ś1082. https://doi.org/10.1145/3385412.3386001

Rust. [n.d.]. Rust programming language. https://www.rust-lang.org/

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. 2017. CSGNet: Neural Shape Parser

for Constructive Solid Geometry. CoRR abs/1712.08290 (2017). arXiv:1712.08290 http://arxiv.org/abs/1712.08290

Michael Stepp, Ross Tate, and Sorin Lerner. 2011. Equality-Based Translation Validator for LLVM. In Computer Aided

Verification, Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 737ś742.

Robert Endre Tarjan. 1975. Efficiency of a Good But Not Linear Set Union Algorithm. J. ACM 22, 2 (April 1975), 215ś225.

https://doi.org/10.1145/321879.321884

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: A New Approach to Optimization.

In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Savannah,

GA, USA) (POPL ’09). ACM, New York, NY, USA, 264ś276. https://doi.org/10.1145/1480881.1480915

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu.

2019. Learning to Infer and Execute 3D Shape Programs. In International Conference on Learning Representations.

https://openreview.net/forum?id=rylNH20qFQ

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

https://doi.org/10.1007/3-540-56883-2_11
https://doi.org/10.1007/3-540-56883-2_11
https://doi.org/10.1016/b978-0-444-88074-1.50011-1
https://doi.org/10.1016/b978-0-444-88074-1.50011-1
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/322217.322228
https://doi.org/10.1145/3272127.3275006
https://doi.org/10.1145/3272127.3275006
https://doi.org/10.1145/543552.512566
https://doi.org/10.1145/800105.803406
https://doi.org/10.1145/36206.36194
https://doi.org/10.1145/3236794
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/322186.322198
https://doi.org/10.1007/978-3-540-32033-3_33
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/3385412.3386001
https://www.rust-lang.org/
https://arxiv.org/abs/1712.08290
http://arxiv.org/abs/1712.08290
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/1480881.1480915
https://openreview.net/forum?id=rylNH20qFQ

egg: Fast and Extensible Equality Saturation 23:29

Mark van den Brand, Jan Heering, Paul Klint, and Pieter A. Olivier. 2002. Compiling language definitions: the ASF+SDF

compiler. ACM Trans. Program. Lang. Syst. 24, 4 (2002), 334ś368. https://doi.org/10.1145/567097.567099

Eelco Visser, Zine-El-Abidine Benaissa, and Andrew P. Tolmach. 1998. Building Program Optimizers with Rewriting

Strategies. In Proceedings of the third ACM SIGPLAN International Conference on Functional Programming (ICFP ’98),

Baltimore, Maryland, USA, September 27-29, 1998, Matthias Felleisen, Paul Hudak, and Christian Queinnec (Eds.). ACM,

13ś26. https://doi.org/10.1145/289423.289425

Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan Suciu. 2020. SPORES: Sum-Product Optimization

via Relational Equality Saturation for Large Scale Linear Algebra. Proceedings of the VLDB Endowment (2020).

Chenming Wu, Haisen Zhao, Chandrakana Nandi, Jeffrey I. Lipton, Zachary Tatlock, and Adriana Schulz. 2019. Carpentry

Compiler. ACM Transactions on Graphics 38, 6 (2019), Article No. 195. presented at SIGGRAPH Asia 2019.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 23. Publication date: January 2021.

https://doi.org/10.1145/567097.567099
https://doi.org/10.1145/289423.289425

	Abstract
	1 Introduction
	2 Background
	2.1 E-Graphs
	2.2 Equality Saturation
	2.3 Equality Saturation and Theorem Proving

	3 Rebuilding: A New Take on E-graph Invariant Maintenance
	3.1 Upward Merging
	3.2 Rebuilding in Detail
	3.3 Rebuilding and Equality Saturation
	3.4 Evaluating Rebuilding

	4 Extending E-graphs with E-class Analyses
	4.1 E-Class Analyses
	4.2 Conditional and Dynamic Rewrites
	4.3 Extraction

	5 egg: Easy, Extensible, and Efficient E-graphs
	5.1 Ease of Use
	5.2 Extensibility
	5.3 Efficiency

	6 Case Studies
	6.1 Herbie: Improving Floating Point Accuracy
	6.2 Spores: Optimizing Linear Algebra
	6.3 Szalinski: Decompiling CAD into Structured Programs

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

