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ABSTRACT
In traditional speech recognition using Hidden Markov Models

(HMMs), each state represents an acoustic portion of a phoneme.
We explore the concept of an articulator based HMM, where each
state represents a particular articulatory configuration [Erler
1996]. In this paper, we present a novel articulatory feature map-
ping and a new technique for model initialization. In addition, we
use diphone modeling which allows context dependent training of
transition probabilities. Our goal is to confirm that articulatory
knowledge can assist speech recognition. We demonstrate this by
showing that our mapping of articulatory configurations to pho-
nemes performs better than random mappings. Furthermore, we
demonstrate the practicality of the model by showing that, in
combination with a standard model, a 12-22% relative word error
rate decrease occurs relative to the standard model alone.

1. INTRODUCTION
Hidden Markov Models (HMMs) are a popular approach

for speech recognition. Commonly, a left-to-right Markov
chain topology is used, where each phoneme is represented
by a sequence of states (typically three) [Young 1996].
This “acoustic”-based model for speech recognition does
not explicitly incorporate any knowledge of the source that
produced the speech.

In contrast, we know that speech is formed by a human
vocal tract, consisting of a number of articulators which
shape and modify the sound in complex ways. We also
know that this system of articulators is limited by physical
constraints. This knowledge could allow us to construct a
more realistic model of speech that might improve speech
recognition. Such a model could have many advantages
such as being better able to predict co-articulation effects,
since they are due to physical limitations and energy-
saving shortcuts in articulator movement [Hardcastle
1999]. Also, because articulatory configurations are shared
across multiple phonetic conditions, the HAMM may need
less training data.

The rest of the paper is as follows: Section 2 presents the
model in detail and compares it with other work in the area
of articulatory modeling. Section 3 describes how the
model is initialized and trained, and Section 4 presents
experimental results.

2. THE MODEL
The Hidden-Articulator Markov Model (HAMM) is

based on the articulatory feature model presented in [Erler
1996]. In a HAMM, each articulator, a, can be in one of
Ma positions. An articulatory configuration is an N-
element vector C={c1,c2,…,cN}, where ca is an integer
0≤ca<Ma and N is the number of articulators in the model.

A HAMM is simply an HMM in which each state repre-
sents an articulatory configuration.  The state transition
matrix is governed by dynamic constraints on articulator
motion. Therefore, this model makes the assumption that
the probability distribution of articulatory features is de-
termined by the previous articulatory configuration, and is
independent of any earlier configuration.

There are many potential advantages of a HAMM over
the traditional HMM for speech recognition. The HAMM
allows asynchrony between various articulators, which
might more accurately model the production of speech
[Deng 1994]. Also, the HAMM has prior knowledge about
speech production, incorporated via its state space, transi-
tion matrices, and phoneme to articulator mappings. By
using a representation that has a physical basis, it is easier
to incorporate other knowledge such as co-articulation
effects.

There has been much interest in incorporating articula-
tory knowledge into speech recognition. Work by Gupta
and Schroeter [Gupta 1993] discusses the analysis-by-
synthesis approach, which attempts to estimate the pa-
rameters of the Coker [Coker 1976] model, which is based
on articulatory features. The analysis-by-synthesis work is
often targeted toward speech compression, where the qual-
ity of the synthesis is more important than the accuracy of
the estimated parameters.

A discussion of the inverse mapping problem, the map-
ping of acoustic features to articulatory configurations, can
be found in [Bailly 1992]. One well-known difficulty with
the inverse mapping problem is that many different articu-
latory configurations can produce a given sound; this is
commonly referred to as the “many-to-one” problem.

In [Kirchhoff 1998] Kirchhoff demonstrates a system
which uses artificial neural networks to estimate articula-
tory from acoustic features. When used in combination
with an acoustic based HMM, the system achieves a lower
word error rate in both clean and noisy speech.



The HAMM can be cast as a factorial HMM [Saul 1999],
with additional dependencies existing between separate
Markov chains. Factorial HMMs have been applied to
speech recognition [Logan 1998] but without the use of an
articulatory feature space. We chose to implement the
HAMM by constructing a constrained state space which is
the Cartesian product of the components, as this allows us
to use standard HMM algorithms for training and testing.

Phoneme Mapping
A word is a sequence of articulator targets. In mapping

words to articulator configurations, we make the simplify-
ing assumption that words can be modeled as a sequence
of phonemes, each of which is mapped to a sequence of
one or more articulatory configurations.

We used Edwards [Edwards 1997] as a guide to phonet-
ics and speech production. Using this guide, we devised an
articulatory feature space which is described by eight fea-
tures (see Figure 1). For example, in our model we have
quantized the separation of the lips into four possible posi-
tions, ranging from “closed” to “wide apart”.

Each phoneme’s articulatory characteristics were manu-
ally examined to determine the best mapping into our ar-
ticulatory feature space. This mapping is given in the Ap-
pendix.

For some phonemes, an articulator may be in several
possible locations. Phonemes are mapped into a vector of
feature ranges; each feature can be in any of the values
specified by the range. For example, when pronouncing the
phoneme /h/, we allow a lip separation of either “apart” or
“wide apart”, but do not allow the lips to be “closed” or
“slightly apart”.

Some phonemes require a specification of articulator
motion rather than static positioning.  This occurs with the
stops (/t/, /b/, etc..) and diphthongs (such as the “i” in
“bite”).  In these cases, a phoneme is produced by the
movement from one articulatory state to another. Thus, we
allow phonemes to be mapped to a sequence of articulatory
configurations.

Static Constraints
We’ve also added static constraints, which limit the pos-

sible articulatory configurations:

(1) If the lips are widely separated then don't allow
rounded or wide lip width.

(2) If the lips are closed then don't allow rounded or wide
lip width.

(3) If the jaw is lowered, don't allow the lips to be closed
or almost closed.

(4) If the tongue tip is near or is touching the alveolar
ridge, then the tongue body must be mid-high or high,
and the tongue body cannot be back or slightly back.

(5) If the velic aperture is open then voicing must be on.
(6) If the velic aperture is open then tongue cannot be

forward or slightly forward.
(7) The velic aperture may only be open in a given ar-

ticulatory configuration X if there is a transition di-
rectly from X to a nasal phoneme articulatory configu-
ration.

Some of these constraints, such as (1), (3), and (4), are
physical constraints, imposed by the limitations of the ar-
ticulation system. Other constraints, such as (2), disallow
states that are physically possible but would not normally
be used while speaking naturally in American English.
This set of static constraints reduces the number of states
in the HAMM from what would be 25,600 to 6,676.

Dynamic Constraints
We impose dynamic constraints on the model to prevent

physically impossible articulatory movement. We only
allow the model to contain a transition from state C to state
D if ∀a: -1 ≤ da-ca ≤ 1, which imposes a continuity and
maximum velocity constraint on the articulators.

Furthermore, we constrain the model so that the only al-
lowable states, C, between any two target phoneme vec-
tors, P and Q, are those which satisfy:

∀a: min({pa, qa}) ≤ ca ≤ max({pa,qa})
1

To construct a diphone, we list the sequence of articula-
tory targets from the first target of the first phoneme to the
last target of the second phoneme (see Figure 2a). The
                                                       

1 Recall, pa or qa may be a set of values, see the section on pho-
neme mapping.
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Figure 1: Articulatory feature space.



states between the targets are filled in and allowable tran-
sitions are added. For example, suppose N=2 and we are
constructing a graph from phoneme P={ [3 2] → [1 1] } to
Q={ [0 2] }. Then the resulting graph (assuming none of
these states are removed by static constraints) is shown in
Figure 2b.

Notice how the HAMM allows for asynchrony, whereby
one articulator may move with or without other articulators
moving, thus more accurately representing speech produc-
tion. In addition, many different diphones may contain the
same intermediate articulatory state, leading to a large
amount of state sharing between diphones.

3. TRAINING
In this work, a HAMM is trained using the Baum-Welch

algorithm. An HMM is constructed for each diphone using
the above static and dynamic constraints. Words are con-
structed by concatenating diphone models. For instance,
the model for the word “meatball” is the concatenation of
the diphone models /m/-/i/, /i/-/t/, /t/-/b/, /b/-/a/, /a/-/l/. This
allows the training to learn transition probabilities on a
diphone level.

To reduce the model size, we removed states during
training which had very low state occupation probabilities.
After training, the number of parameters in the HAMM
was reduced from 2 million to 591 thousand.

Initial Model Construction
Training requires an initial model, which is iteratively

improved until it converges to a local optimum. The qual-
ity of the initial model can have a large effect on the per-
formance of the trained model, and on its convergence.
The states (articulatory configurations) in our model fall

into two categories: (1) states which correspond to a pho-
neme, and (2) all other allowable states.

We use segmental k-means to determine an initial setting
for the Gaussian parameters for states which fall into cate-
gory (1) above. Each category (2) state is initialized by a
weighted interpolation of the category (1) states. The
weighting is given by the inverse Euclidean distance be-
tween the state being initialized, and the states from which
we are interpolating (see Figure 3). We desire the parame-
ters for the state being initialized to represent the probabil-
ity distribution given by the following equation, where S is
the set of all possible category (1) states, and wi are in-
versely proportional to the Euclidean distance in our N-
dimensional discrete articulatory feature space (where N=8
in our case):

The mean and variance of the above distribution is given
by:

For category (2) states, we use a diagonal Gaussian with
these means and variances. In the multi-component case,
we do the same, using a random assignment of components
from the states being interpolated to the component being
initialized.

4. EXPERIMENTS AND RESULTS
Speech recognition results were obtained using

PHONEBOOK, a large-vocabulary, phonetically-rich, iso-
lated-word, telephone-speech database [Pitrelli 1995]. All
data is represented using 12 MFCCs plus c0 and deltas re-
sulting in a 26 element feature vector sampled every 10ms.
In the HAMM, each state uses a mixture of two diagonal
covariance Gaussians.

Additionally, we define two models, 3state and 4state,
which are standard left to right, diagonal Gaussian HMMs
with 3 and 4 states per phoneme and with 16 and 24 mix-
tures per state respectively.

The training, development,  and test sets are as defined in
[Dupont 1997]. Test words do not occur in the training
vocabulary, so test word
models are constructed
using diphones learned
during training. Training
was considered complete
when  the log-likelihood
difference between suc-
cessive iterations fell
below 0.2%.
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Figure 3: Sample state initialization. The shaded circle is a
state being initialized. It is interpolated from states which are
mapped to directly by a phoneme. The width of the arrow rep-
resents the weight given to each factor in the interpolation,
which is proportional to the inverse Euclidean distance between
them.
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Figure 2a: (upper) A diphone model is a sequence of articulator
configuration targets, with asynchronous articulatory movement
in between.
Figure 2b: (lower) Example HMM transition graph for a di-
phone.



Comparison with Random
To verify that the HAMM uses the articulatory knowl-

edge to its advantage, we compare its performance to that
of a HAMM with no articulatory knowledge. To construct
such a model, we use a random mapping of phonemes to
articulatory features. To ensure a fair comparison, we use
the same feature space, static, and dynamic constraints that
were introduced in Section 2.

There are two ways to produce a random mapping. The
first, referred to as arbitrary, simply selects a random
value within the given feature range for all features across
all phonemes. The second, referred to as permutation, ran-
domly rearranges the original mapping. In other words,
each phoneme is mapped in the same way as some ran-
domly selected phoneme in the original mapping without
duplication. Table 3 demonstrates the difference between
the random mappings.

The arbitrary mapping is “more” random since it is
drawing from a uniformly distributed state space. The
permutation method produces a mapping that is still fairly
random, yet retains the same distribution over features as
the original mapping. For instance, in the original map-
ping, the velic aperature is open for only three phonemes.
In a permutation mapping, this would still be the case,
while in an arbitrary mapping, it would be open for ap-
proximately half of the phonemes.

Table 1 shows the results of this experiment on the test
set. The arbitrary and permutation mappings both result in
significantly worse (p < 0.01 using two-tailed z-test) word
error rates than the original mapping. Furthermore, the
arbitrary mapping requires significantly more parameters2.
From these results, we conclude that the articulatory
knowledge is indeed contributing to the performance of the
HAMM.

Model Combination
The HAMM performs worse than the 3state and 4state

models (see Table 2). We hypothesize that since it is based
on articulatory knowledge, the HAMM makes different
mistakes than the standard models, and thus a combination
of them will result in improved performance.

There are a variety of techniques for combining models.
One simple way is by a weighted sum of the models’ log-
likelihoods. The weighting of each model represents the
prior confidence in its accuracy. If the model errors are
independent, this will result in a higher accuracy [Bishop
1995].

In Table 2 we show the results of performing model
combination. We give the 4state model likelihoods a
weight of 5.0 when combined with the HAMM (HAMM
weight is 1), and give them a weight of 1.0 when combined
with the 3state model; these are the optimal weights based
on the development set.

As can be seen from the table, the HAMM performs sig-
nificantly worse than the 4state model, but the combina-
tion of the two performs significantly better (12-22% rela-
tive decrease in WER versus 4state alone). Also note that
combining the 3state model with the 4state model has
                                                       

2  The arbitrary model begins with more parameters as well. In
the arbitrary mapping, the beginning and ending phones of a di-
phone are more likely to contain different values for each feature
since the entropy of each feature is higher than in the original or
permuted mappings. This results in larger diphone models. Many
of these states, however, were not removed by the state elimina-
tion algorithm, implying that they were being used by the model.

Lex. Size 75 150 300 600 params
original 3.23% 4.67% 6.69% 9.03% 522k
arbitrary 3.72 ± 0.08% 5.18 ± 0.06% 7.19 ± 0.20% 9.81 ± 0.22% 661k ± 10k

permutation 4.76 ± 0.24% 6.77 ± 0.40% 9.11 ± 0.43% 12.35 ± 0.35% 462k ± 13k

Table 1: Word Error Rate comparison of original phone mapping versus random mappings for various
lexicon sizes. Random model results are given as mean ± standard error (we tested 5 arbitrary models and 2
permutation models). The original mapping is significantly better than either of the random mappings.

Lexicon Size 75 150 300 600 params
HAMM 3.23% 4.67% 6.69% 9.03% 522k
3state 1.88% 2.91% 4.20% 6.14% 105k
4state 1.45% 2.79% 4.04% 5.76% 203k
4state+3state 1.42% 2.49% 3.71% 5.46% 308k
4state+HAMM 1.27% 2.18% 3.29% 4.56% 725k

Table 2: Word Error Rate comparison showing the advantage of combining models. The best combination is the
standard 4state HMM with the HAMM.

Normal Permutation Arbitrary
Phone Jaw Nasal Jaw Nasal Jaw Nasal

a 0 1 1 0 0 0
b 2 0 0 1 1 1
c 1 0 0 0 2 1
d 0 0 2 0 1 0

Table 3: Sample phoneme mapping, highlighting the differ-
ence between permutation and arbitrary random mappings.
Permutation is a reordering of the rows, while arbitrary is
purely random. Notice how the permutation mapping retains
the distribution of values for a given feature.



much less effect on the WER. This demonstrates the use-
fulness of an articulator-based model, in that it tends to
make different mistakes than the standard acoustic models
and thus can have practical use when used in combination
with them.

Viterbi Path Through The Articulatory State Space
A Viterbi path decoding using our HAMM results in an

estimation of articulatory feature values for an utterance. In
Figure 5, we show a comparison of the spectrogram and
the HAMM’s automatically estimated articulatory features
for the word “accumulation”.

It is difficult to quantitatively compare the two figures.
One feature which is easy to see in the spectrogram is
voicing (feature 8), which seems to align very well with
the HAMM’s voicing feature. Another positive item to
note is that the states evolve somewhat asynchronously,
which is what we expect to find if the HAMM is indeed
modeling the articulator movements [Deng 1994].

5. FUTURE WORK
We would like to extend this work by adding more ar-

ticulatory knowledge, with rules for phoneme modification
that arise as a result of physical limitations and shortcuts in
speech production, as was done in [Erler 1996] (for exam-
ple, vowel nasalization). Such rules may help speech rec-
ognition systems in the presence of strong coarticulation,
such as in conversational speech.

We would also like to examine the possibility that
HAMMs are more noise-robust than standard HMMs. We
hypothesize that by having an articulatory basis, the
HAMM is more attuned to the speech-like information
contained in the utterance and thus is better equipped to
ignore noise [Richardson 2000].

Finally, we believe that many aspects of the HAMM,
such as model initialization, articulatory feature mapping,
and constraints on articulator dynamics, could be improved
by using a corpus which contains both speech and the ar-
ticulator trajectories which produced the speech. One such
corpus is under development by A. Wrench [Wrench
2000].

6. CONCLUSIONS
In this paper, we have introduced the hidden-articulator

Markov model (HAMM) and have implemented it using
HMMs. It does not perform as well as conventional
HMMs, but we have demonstrated that the HAMM does
indeed use articulator knowledge to its advantage. Fur-
thermore, when combined with a traditional model, it
achieves an overall WER reduction of 12-22% relative to
the traditional model WER. These results demonstrate that
a HAMM can have practical use in modern speech recog-
nition systems.
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APPENDIX
Below is the mapping from phonemes to articulatory

configurations. Note that some phonemes have multiple
values for a given feature, such as the tongue tip position

in phoneme /R/. Some phonemes also are defined as a se-
quence of configurations, such as the phoneme /p/, which
is formed by bringing the lips together (lip separation=0,
“closed”) to temporarily stop the flow of air, and then
separating them (lip separation=2, “apart”).

phonem
e

sa
m

ple
w

ord

ja
w

lip
separation

lip w
idth

tongue body
(ba

ck/fw
d.)

tongue body
(low

/high)

tongue tip

ve
lic a

pe
r.

voice
d

i bEAt 0 1 2 4 3 0 0 1
I bI t 3 2 2 4 2 0 0 1
e bAI t 1 2 2 4 1 0 0 1
E bEt 3 2 2 4 1 0 0 1
@ bAt 3 3 1 3 0 0 0 1
a bOb 3 2 2 2 0 0 0 1
c bOUGHt 3 2 0 1-2 3 0 0 1
o bOAt 3 2 0 1 1 0 0 1
^ bUt 2 2 2 2 1 0 0 1
u bOOt 1 1 0 0 3 0 0 1
U bOOk 1 2 1 0 3 0 0 1
Y bI te

onset 3 2 2 3 0 0 0 1
offset 1-2 2 2 4 3 0 0 1

O bOY
onset 2 2 0 1 0-1 0-1 0 1
offset 0-1 2 1-2 4 3 1 0 1

W bOUt
onset 3 2 2 3 0 0 0 1
offset 1-2 2 0 0 3 0 0 1

R bIRd 2 2 0 2-3 2 0-1 0 1
x sofA 2 2 2 2 1 0 0 1
X buttER 2 2 1 2 2 0-1 0 1
l Let 1 2 2 3 2 4 0 1
w Wet 1 2 0 0 3 1 0 1
r Red 1 2 1 2 2 3 0 1
y Yet 1 2 2 4 3 3 0 1
n Neat 1 1 2 2 3 4 1 1
m Meet 1 0 2 2 1 1 1 1
G siNG 1 2 2 0 3 1 1 1
h Heat 2 2-3 2 2 1 1 0 0

phonem
e

sa
m

ple
w

ord

ja
w

lip
separation

lip w
idth

tongue body
(ba

ck/fw
d.)

tongue body
(low

/high)

tongue tip

ve
lic a

pe
r.

voice
d

s See 1 2 1-2 3 2-3 0-1 0 0
S She 2 2 1-2 3 3 0 0 0
f Fee 2 0 2 2 1 1 0 0
T Thigh 2 2 2 4 2 2 0 0
z Zoo 1 2 1-2 3 3 0-1 0 1
Z meaSure 2 2 1-2 3 3 0 0 1
v Van 2 0 2 2 1 1 0 1
D Thy 2 2 2 4 0 2 0 1
p Pea

setup 1 0 2 2 1 1 0 0
release 1 2 2 2 1 1 0 0

t Tea
setup 1 1 2 4 3 4 0 0

release 1 2 2 4 2 3 0 0
k Key

setup 1 2 2 0 3 1 0 0
release 1 2 2 0 2 1 0 0

b Bee
setup 1 0 2 2 1 1 0 1

release 1 2 2 2 1 1 0 1
d Day

setup 1 1 2 4 3 4 0 1
release 1 2 2 4 2 3 0 1

g Geese
setup 1 2 2 0 3 1 0 1

release 1 2 2 0 2 1 0 1
C ChurCH

start 2 2 1-2 4 3 4 0 0
end 1 2 2 3 3 0 0 0

J JuDGe
start 2 2 1-2 4 3 4 0 1
end 1 2 2 3 3 0 0 1


