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ABSTRACT 
We report on our experience integrating a three-week 

introduction to multithreading in a required data structures 

course for second-year computer science majors.  We emphasize 

a distinction between parallelism and concurrency that teaches 

students to use extra processors effectively and enforce mutual 

exclusion correctly.  The material fits naturally in the data 

structures course by having the same mix of algorithms, 

programming, and asymptotic analysis as the conventional, 

single-threaded part of the course. 

Our department has used this unit for 1.5 years and will do so 

indefinitely.  We report feedback from students, multiple 

instructors for the course, and students in a later course that uses 

threads.  We developed a full set of course materials that have 

been adapted for use by instructors in various courses at five 

other institutions so far. 

Categories and Subject Descriptors 

K.3.2 [Computers and Education]: Computer and Information 

Science Education – computer science education, curriculum 

General Terms 

Algorithms, Experimentation 

Keywords 

Parallelism, Concurrency, Data Structures, Fork-Join, Mutual 

Exclusion, Undergraduate Curriculum 

1. INTRODUCTION 
 

As multiprocessors become increasingly common across the 

computing landscape, there is widespread interest in expanding 

coverage of threads, parallelism, concurrency, synchronization, 

etc. in undergraduate computer science curricula.  However, as 

described in a recent exploration of the subject [3], there is not 

yet consensus on where in the curriculum to introduce these 

topics and what fundamental concepts are most important.  In 

the near term, many institutions may find it equally unrealistic to, 

on the one hand, modify many courses so that multithreading 

pervades the curriculum or, on the other hand, add an entire 

required course.  Instead, our approach has been to use part of a 

required lower-level course, roughly three weeks, to introduce 

topics like threads in such a way that various advanced courses, 

such as computer architecture, operating systems, databases, 

algorithms, graphics, and many others, can rely on them. 

This paper reports on our successful experience introducing 

parallelism and concurrency into our department’s required data 

structures course.  Since Spring 2010, five instructors, ourselves 

included, have taught the course, with a range of background in 

parallelism from none to moderate and teaching experience from 

graduate student to senior faculty.  Success requires no more 

experience than what is already needed to teach data structures – if 

you can learn topics like B-Trees and Dijkstra’s Shortest-Path 

Algorithm well enough to teach them, then you can learn everything 

in our unit.  All our materials are freely available and have already 

been adapted by instructors at five other institutions.   

The central pedagogic theme is a clear distinction between 

parallelism − using extra computational resources to solve a 

problem faster − and concurrency − correctly and efficiently 

managing access to shared resources.  We start with parallelism and 

divide-and-conquer fork-join algorithms before introducing the 

more difficult concurrency topics such as race conditions and 

deadlock.  Just like in the rest of the data structures course, the 

material covers programming constructs and pragmatics (in Java, 

though language choice is not crucial), algorithms, asymptotic 

complexity, and constant-factor overheads. We emphasize 

fundamental problems like computing a reduction (e.g., a sum) over 

an array in parallel or ensuring an API enforces mutual exclusion.  

Given only three weeks, we focus on shared-memory programming, 

leaving message passing and distributed programming for more 

advanced elective courses. 

Our goals in sharing our experience are to: 

 Convince others that a data structures course is a very natural 

place in a computer science curriculum to make room for a 

general introduction to parallelism and concurrency.  The 

topics rely on and reinforce core ideas already in the course. 

 Elucidate parallelism versus concurrency as a core theme. 

 Encourage adoption of our materials, including reading notes, 

slides, sample homework and exam questions, and a 

programming project. 

 Share mostly-positive feedback from students, instructors, and 

students in a later course (namely operating systems). 
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With these goals, the rest of the paper largely describes the 

course-unit content and motivation (Section 3) after a brief 

primer on our larger curriculum context (Section 2).  We then 

discuss why data structures is a great fit for the material (Section 

4).  Section 5 shares feedback from various stakeholders: 

students, instructors, and those who have adapted the materials 

at other institutions.  Section 6 discusses related work.  Section 

7 describes the freely available materials and concludes. 

The materials described in this paper are actively maintained at 

[10].  

2. CURRICULUM CONTEXT 
To put our three-week curriculum unit in context, this section 

briefly describes our other low-level courses in general and the 

data structures course in particular.  However, the unit should fit 

well somewhere in most computer science curricula.  

Our university is on a ten-week quarter system, with most 

computer science courses (including data structures) having 

three 50-minute lectures and one 50-minute recitation section 

per week.  The data structures course ranges in size from 30 – 

100 students and is a pre-requisite for most advanced courses.  It 

comes after a two-quarter introductory programming sequence 

and a discrete structures course (boolean and first-order logic, 

induction, finite-state machines, sets and relations, 

undecidability, etc.).  Other low-level courses, not pre-requisites 

for data structures, cover lower levels of abstraction (C, 

assembly, binary); hardware design; probability, statistics and P 

vs. NP; programming languages; and software design and 

implementation. 

The data structures course is fairly conventional, building on the 

initial coverage of stacks, queues, and binary search trees in the 

introductory courses.  The course covers asymptotic complexity, 

priority queues, balanced search trees (AVL trees, B-Trees), 

hashing, sorting, graphs, and graph algorithms.  To make room 

for multithreading, we reduced coverage of amortization and 

removed more obscure priority-queue implementations, disjoint-

sets (union/find), and network flow, some of which will move to 

an advanced elective algorithms course.  The course has (Java) 

programming and paper-and-pencil homework exercises.  The 

parallelism and concurrency unit comes late in the course. 

3. CONTENT AND MOTIVATION 
This section describes the core concepts covered by our 

materials.  The unit includes 8-10 hours of instruction, two 

homework assignments, and a programming project.   

3.1 Introduction to Multithreading 
To introduce the unit, we identify the key assumption made in 

prior courses that is false and that we will remove: one thing 

happens at a time (sequential execution).  Given multiple 

threads of execution, we can cover three main questions: 

 What are some programming techniques for creating and 

controlling threads and letting them communicate? 

 How can parallel algorithms run faster (asymptotically 

and/or in practice) than sequential algorithms? 

 How must software be written differently so that multiple 

threads can access the same resources without error? 

The second question above is about parallelism, using multiple 

computational resources effectively.   A canonical example is using 

P processors to sum n numbers in time O(n/P + log n).  The third 

question is about concurrency, correctly and efficiently managing 

access to shared resources.  A canonical example is a dictionary 

(e.g., a hash table) that allows lookup operations from multiple 

threads simultaneously but ensures that insert operations occur only 

while all simultaneous operations wait.  This distinction pervades 

the entire unit, and all issues of concurrency (the more difficult 

topic) are delayed until the second half after students are more 

comfortable with threads and parallel algorithms. 

After introducing the basic notions of parallelism and concurrency, 

we then cover the shared-memory model: each thread has its own 

call-stack and control flow, but heap objects are potentially shared 

(though it is good style to share very few).  Communication occurs 

when threads have references to the same memory, one writes, and 

another reads.  Students have little trouble grasping this model.  

Correctness always requires coordination.  For the parallelism 

portion, the only coordination (i.e., synchronization) primitive we 

use is join: one thread waits unless/until another thread terminates.  

We briefly mention other models (message-passing, dataflow, data 

parallelism), but, due to time constraints and a less natural fit in the 

course, do not revisit them. 

3.2 Basic Fork-Join Parallelism 
Shared-memory basics are all one needs to discuss our canonical 

example of how to use P threads (imagine P=4) to sum an array.  A 

natural pseudocode algorithm is roughly: 

int sum(int[] arr, int P) { 

 int[] answers = new int[P]; 

 int len = arr.length; 

 for(int i=0; i < P; i++)  

   create a thread to sum from  

   arr[i*len/P] to arr[(i+1)*len/P]  

   sequentially; put result in answers[i] 

 wait by joining on each of the P threads     

 return the sum of the P values in answers 

} 

 

Implementing this solution in a language like Java requires some 

more code such as creating Thread objects and storing them in an 

array so that the waiting step can iteratively join on each thread, but 

the pseudocode is enough to demonstrate three key points: 

 Interthread communication occurs using variables arr (read 

by the helper threads) and answers (written by the helper 

threads). 

 The waiting step is essential coordination for reading the 

correct answers.  Conversely, if we join on each thread 

(waiting for it to finish) right after creating it, then we get  the 

correct answer, but the threads never run in parallel. 

 If P processors are available, we can expect the algorithm to 

run approximately P times faster than a sequential algorithm, 

but there is some overhead from using threads. 

More interestingly, we then argue that this style of parallel 

programming has serious weaknesses that we can fix via divide-

and-conquer recursion, an approach we use for the rest of the 

parallelism section.  These weaknesses include: 

 The approach assumes we know how many processors are 

available, but we often do not.  Other threads may already be 

running or the operating system may be using processors for 



other programs.  If P is set to 4 but only 3 processors are 

available, this algorithm will likely run 1.5x slower than if 

P is set to 3.  The number of processors available might 

even change while the algorithm is running. 

 Though unlikely with a simple operation like sum, different 

subproblems might take different amounts of time (a load 

imbalance) and we will end up waiting for the slow portion 

while other processors sit idle. 

The elegant-if-counterintuitive solution to these problems is to 

use recursion to create many more threads than processors, 

relying on the underlying scheduler to assign the threads to 

processors as they become available.  In pseudocode: 

int sum(int[] arr) { 

  return sumRange(arr,0,arr.length); 

} 

int sumRange(int[] arr, int lo, int hi) { 

  if(hi-lo < CUTOFF) //e.g., CUTOFF=500 

    sum range sequentially and return it 

  int mid = (hi+lo)/2; 

  create thread to compute   

      sumRange(arr,mid,hi) and store answer 

  int leftAns = sumRange(arr,lo,mid); 

  join on thread created above 

  return leftAns + answer from other thread 

} 
 

This algorithm creates an implicit tree of recursive calls. Each 

node has two children where one child is a new thread.  So after 

n levels of recursion, we have 2n threads.  We analyze this style 

of algorithm in Section 3.3. 

While there are some programming details for using this style in 

Java (we spend a recitation section on them), they are less 

burdensome than most threaded programming.  However, one 

should not use Java’s built-in threads for this style of algorithm; 

they were not engineered for many threads doing small pieces of 

work.  Instead, Java’s ForkJoin Framework [8] was created 

exactly for this scenario and provides an asymptotically optimal 

expected-time guarantee (see Section 3.3). 

The Java ForkJoin Framework is in the standard library of Java 

7 (package java.util.concurrent) and is available for download 

for Java 6.  Our materials give detailed stand-alone instructions 

for using the library, which is important because students using 

our materials need only a few methods from three classes 

whereas the full framework supports sophisticated industrial-

strength use.  No special hardware is needed, though having at 

least 4 cores makes parts of the project more meaningful.  

Many other languages have similar frameworks (based on the 

pioneering work of Cilk [2]), including Intel’s Cilk+ and Thread 

Building Blocks for C++ [6] and Microsoft’s Task Parallel 

Library [9] for C#.  In the near future, we hope to partner with 

instructors using languages other than Java to produce adapted 

versions of the materials.  Such adaptation should be entirely 

straightforward because we use only basic features. 

3.3 Analyzing Parallel Programs 
Learning to use asymptotic complexity to analyze the efficiency 

of algorithms is a key component of our data structures course 

and parallelism should be treated analogously.  Fortunately, the 

fork-join style makes this easy. 

We analyze a parallel algorithm in terms of work and span.  Work 

is the time it would take one processor to complete the task, and 

span is the time it would take an infinite number of processors.  

Span is not infinitesimal because computational dependencies must 

be respected and it takes O(1) time to create a thread.  We can 

define a conceptual directed acyclic graph of the computation where 

each node is O(1) unit of work and each edge indicates a 

dependency where the source must complete before the destination 

can begin.  Then work is the total number of nodes and span is the 

longest path in the graph.  Analyzing our recursive array-sum 

algorithm for an array of size n reveals it has O(n) work and  

O(log n) span. 

But how is that useful when we have P processors and P is neither 

one nor infinite?  Using techniques best left to an advanced course, 

the fork-join framework implementation provides an expected-time 

guarantee of O(work/P + span).  We do teach why this guarantee is 

within a constant factor of optimal: ignoring caching effects, P 

processors cannot do more than P times better than one processor 

nor can they do better than an infinite number of processors. 

Switching to a sequential algorithm when the recursive problem 

size drops below a cutoff such as 500 is a key practical technique 

that does not change the asymptotic complexity.  In terms of the 

computational DAG, the array-sum algorithm produces a binary 

tree of threads and this cut-off trims out the bottom nine layers of 

the DAG, i.e., almost all the threads, with the span still logarithmic 

in the array size. 

Finally, we study Amdahl’s Law, which analyzes a program’s 

speed-up as you add more processors under the basic assumptions 

that (1) part of the program parallelizes perfectly (O(1) span) and 

(2) the rest gets no benefit from more processors (inherently 

sequential).  Amdahl’s Law is three lines of simple algebra, but its 

negative ramifications (e.g., to get 100x speed-up from 256 

processors, you must be able to parallelize more than 99% of a 

program’s execution) are best appreciated by having students plot 

some curves that it implies. 

3.4 More Parallel Algorithms 
The array-sum example in Section 3.2 is an example of a reduction, 

which means a single result is produced from a collection using an 

associative (but not necessarily commutative) operator.   Many 

computations are reductions, such as finding the maximum or 

finding the left-most (or right-most) element satisfying a property.  

One could program a reduction pattern once and for all by taking in 

a function object or closure for the associative operation, but we 

believe students benefit from first writing several reductions 

manually.  

Even simpler than reductions are maps, in which a new collection is 

produced by applying an operation independently to each element 

of an input collection.  Maps and reductions are the workhorses of 

parallel programming, so we emphasize them.  Tying back into a 

discussion of data structures, we also note that arrays and balanced 

trees are more suitable for parallelization than ordinary linked lists. 

But stopping here leaves the misimpression that what can be 

parallelized is only what is “obvious” when, in fact, just as non-

obvious data structures can provide exponential speed-ups in 

sequential code, non-obvious parallelization techniques can provide 

exponential parallelism.   

The core “fancy” algorithm we choose to discuss is for parallel 

prefix-sum [7].  The prefix-sum problem is to take an int[] in 



and produce an int[] out where out[i] is the sum of 

in[0]..in[i].  An O(n) sequential solution is suitable for a 

CS1 exam since out[i]=in[i]+out[i-1]. A surprising 

parallel version with O(n) work and O(log n) span works with 

two passes over the data, with the first building a clever 

intermediate data structure. 

The prefix-sum algorithm in turn can be used as the key trick in 

implementing a parallel pack operation, in which we create an 

array out that has no empty spaces and contains exactly those 

elements of an array in satisfying some property (e.g., “greater 

than x”).  Finding the elements is a trivial map operation; 

packing them into an array without spaces in parallel is not. 

Lastly, parallel pack is the key algorithm we need for a parallel 

version of quicksort that has O(n log n) work and O(log2 n) 

span, which requires parallelizing quicksort’s partitioning step.  

These “fancy” algorithms show that parallelism is not always 

obvious and that a key technique in algorithm design (sequential 

or parallel!) is to use known algorithms as subroutines.  Our 

reading notes and lecture slides explain the algorithms in detail.  

We believe these algorithms are as elegant as any sequential 

material that may need to be excised to make room, and they 

take at most one lecture.   

3.5 Concurrency, Mutual Exclusion, Locks 
We then completely shift focus to concurrent access of shared 

data structures and the need for mutual exclusion, noting that the 

parallelism portion used algorithms where threads never tried to 

access the same data simultaneously.  The concurrency portion 

of the material takes slightly more time than parallelism, but we 

describe it in less depth in this paper due to space constraints 

and since our approach is more conventional.  We focus on 

using locks in general and Java’s synchronized statement in 

particular to define critical sections that are the right size: 

neither too small for correctness nor too large to provide 

efficient concurrent access. 

We focus on two distinct programming errors that are often 

muddled because both are called, “race conditions.” Data races 

occur when two threads read/write or write/write the same object 

field without being ordered by synchronization.  For reasons 

discussed at the end of the unit, data races are, except for expert 

use, always wrong in any program even if they seem right [1].  

But preventing data races is not enough.  Bad interleavings, also 

known as higher-level races, result from critical sections that are 

misplaced or too small for preserving application behavior.  

What is “bad” depends on the program.  For example, if a stack 

peek operation is implemented in terms of a synchronized pop 

followed by a separately synchronized push, there are no data 

races but other threads may still see an illegal intermediate state 

of the stack.  Having students identify bad interleavings and the 

errors that result is a rich source of homework problems. We use 

concurrent access to data structures as examples throughout this 

section. 

3.6 Concurrency Programming Guidelines 
Locks are notoriously difficult to use correctly, so teaching what 

locks are and why they are needed is setting up students to 

repeat all the common mistakes.  We advocate teaching students 

guidelines for sticking to known-to-work concurrency idioms.  

Frankly, this material is a bit dry and students may not be ready 

to appreciate it, but we hope they will be able to refer back to it 

when using locks after the course.  Our guidelines are not novel 

(see, for example, Chapter 1 of [5]), but students need to know 

about them.  They include ideas like: share among threads as few 

objects as possible, mutate as few objects as possible (cf. functional 

programming), have a consistent locking protocol, and start with 

coarse-grained locking and then identify where thread contention 

occurs. 

3.7 Remaining Concurrency Topics 
Using locks to enforce mutual exclusion and avoid both data races 

and bad interleavings is the core skill we impart, but four remaining 

topics complete our introduction to concurrency: 

 Deadlock and techniques for avoiding it 

 Readers/writer locks to allow simultaneous read-only access 

 Passive waiting for a condition to change and the canonical 

example of using condition variables to implement a buffer. 

(Warning: condition variables are surprisingly difficult to use 

correctly, but some notion of passive waiting is important.) 

 Memory-model basics: programs with data races cannot be 

reasoned about in terms of possible interleavings [1]  

3.8 Cross-Cutting Themes on Coverage 
The list of topics in our three-week unit is carefully designed to 

cover only some of the basics “every computer scientist should 

know” from a particular perspective: 

 It separates parallelism and concurrency, while emphasizing 

the similarities and differences by teaching them adjacently.  In 

the real world, one often must deal with parallelism and 

concurrency together, but pedagogy is often best when it 

separates concepts that are combined and confused in practice.  

Parallelism is easier, so we do it first. 

 It focuses entirely on the programmer’s view: We use threads, 

locks, and fork-join.  We do not implement them.   

 We leave to other courses all issues related to scheduling. 

 We do not cover distributed computing issues, notably latency 

and fault tolerance. 

This focus gives a common foundation on which diverse advanced 

courses (O/S, distributed programming, networks, databases, 

graphics, computer architecture, etc.) can build, and it gives 

students the background to understand non-sequential programs 

(e.g., at summer internships). 

4. THE DATA STRUCTURES FIT 
Perhaps our most surprising conclusion is that the data structures 

course is a great fit for introducing parallelism and concurrency, 

since this is not (at least yet) common practice. Hopefully the 

previous section demonstrates our belief that our curriculum unit 

fits in data structures just as well as the graph algorithms unit, the 

sorting unit, etc.  In this section, we briefly give a high-level view 

of why this fit works so well and then describe specific topic-level 

synergies with other course units. 

At a high level, the data structures course teaches students to (1)  

reason asymptotically in terms of abstract models, (2) appreciate the 

interplay between theory and practice (connecting algorithms to 

code and analysis to execution time), (3) use well-known 

conceptual building blocks they would be unlikely to reinvent (e.g., 

trees with guaranteed balance) and that can be exponentially (in the 

technical sense) better than naïve approaches, and (4) to separate 



data structure interface from implementation and to appreciate 

that narrower interfaces can allow more flexible 

implementations.  Our parallel and concurrency topics reinforce 

all these outcomes: (1) work, span, and Amdahl’s Law are 

asymptotic ideas, (2) homework assignments consider both 

algorithms and coding details, (3) non-obvious algorithms 

provide exponential parallel speedup, and, (4) thread-safe APIs 

demand an even more careful consideration of interfaces and 

how operations may interfere with each other.  In short, an 

introduction to threads benefits from the same mix of 

algorithms, programming models, implementation, and 

theoretical analysis that is often unique to the data structures 

course. 

On a more detailed level, there are many nice connections with 

conventional topics from sequential data structures; we give a 

few examples.  Students have just learned divide-and-conquer 

sequential algorithms and how to reason asymptotically, so 

divide-and-conquer parallel algorithms reinforce the same 

concepts.  Constant-factor issues are perfectly analogous: A 

particularly nice connection is showing how in practice 

sequential quicksort implementations switch to an O(n2) sort for 

small n, exactly like parallel algorithms switch to sequential 

variants below a cutoff.  Using a DAG to define work and span 

demonstrates another application of graphs.  For concurrency, 

data structures like queues and hash tables provide most of the 

canonical examples for bad interleavings.  Revisiting previous 

data structure abstractions and considering thread safety is fun 

and timely. A bounded buffer is a queue that blocks instead of 

raising exceptions when it is empty or full.  Hash tables that are 

rarely changed can motivate readers/writer locks. 

5. FEEDBACK FROM STAKEHOLDERS 
As of fall 2011, the course has been taught six times so far at 

UW by five different instructors.  Over 250 students at UW have 

taken the course since Spring 2010.  In addition, instructors at 

five other universities have adapted these materials for their use.  

We have not performed a broad evaluation or formal learning 

outcomes assessment, but we can report on our current 

experience based on feedback from students and instructors. 

5.1 Students 
Students taking the course were all Computer Science or 

Computer Engineering majors.  The course was a required 

course, and a prerequisite for many other courses.   

Student interest – Overall, students seemed to enjoy the 

parallelism and concurrency material.  In Winter 2011, during 

the last week of the quarter, students were given an in-class free 

response survey to gauge their impressions of the course 

material (N=84, out of 94 enrolled).  Responses were coded to 

identify how often parallelism and concurrency topics were 

mentioned. For comparison, the number of occurrences of data 

structures and other topics are also listed (some students 

mentioned multiple items in their response).  In response to 

“What is the most important thing you learned in this course?” 

29 students (35%) mentioned parallelism and concurrency 

topics, 57 students (68%) mentioned data structures topics, and 

15 students mentioned other overarching topics like “Big-O” or 

“Everything”.  When asked “What is the most interesting thing 

you learned in this course?”, 57 students (68%) listed 

parallelism and concurrency topics.  Complete data for this one-

time survey appears in Table 1.  Overall, it seems that students 

consider parallelism and concurrency a substantial and interesting 

part of the course, on par with other core concepts like data 

structures and asymptotic complexity. 

Table 1. Number of student responses mentioning various topics 

in response to the questions “What was the most [X] thing you 

learned in this course?” (N=84) 

X 

Parallelism/ 

Concurrency 

Data 

Structures 
Other 

No 

Answer 

Important 29 (35%) 57 (68%) 15 (18%) 0 

Interesting 57 (68%) 34 (40%) 2 ( 2%) 0 

Surprising 40 (48%) 33 (39%) 13 (15%) 1 

Fun 26 (31%) 41 (49%) 19 (23%) 1 

 

Student learning - As one data point on how well students learned 

the new material, we examined the final exam scores of students in 

Spring 2010 and Winter 2011.  In Spring 2010 (N=32), the first 

quarter the course was offered, students performed slightly better on 

the data structures questions (85%) than on the parallelism and 

concurrency questions (77%).  In Winter 2011 (N=94) their 

performance on both types of questions was comparable (87%).  In 

both quarters, students performed slightly better on the parallelism 

questions than on the concurrency questions.  Although this is only 

one data point, it concurs with the general feeling of instructors that 

students were able to learn the material and that the concurrency 

material was more challenging for students than the parallelism 

material.  

5.2 Instructors 
One of the authors developed the course materials and taught the 

course for the first time in Spring 2010.  For the next four quarters, 

four different instructors (three faculty members, one graduate 

student) taught the course.  These other instructors had experience 

teaching data structures, but all were unfamiliar with most or all of 

the parallelism and concurrency material prior to preparing for the 

course.  All instructors indicated that their teaching evaluations 

were similar to those they normally received in other courses.  

Usefulness of provided materials - All four instructors used the 

provided slides and reading notes and found them to be an 

important resource for students.  Instructors used a combination of 

the provided written homework problems and made up their own.  

One instructor felt that the provided project (see Section 7) was too 

large and trimmed it down.  Another instructor created his own 

project.   

Course pace and structure - Multiple instructors found that 

teaching the concurrency programming guidelines content (Section 

3.6) was unexciting.  One instructor planned to de-emphasize this 

and the advanced concurrency material (Section 3.7) in the future, 

partially because he felt pressed for time.  In the context of 10-week 

quarters, some instructors felt that the material was somewhat 

rushed, which can lead to a more superficial coverage of some 

advanced data structures topics.  The instructors felt concurrency 

material was more challenging for students than parallelism, though 

both were important. 

5.3 Students in Later Courses 
One reason to teach parallelism and concurrency in an early and 

required course is so that later courses can assume and build on that 



material.  We are just starting to see students in upper level 

courses who have taken a version of the data structures course 

containing the parallelism and concurrency unit.  In Spring 

2011, out of 38 students enrolled in operating systems, 20 of 

them had seen concurrency in the data structures course.  As a 

preliminary effort to gauge the impact of teaching parallelism 

and concurrency early, in the last week of Spring quarter 2011, 

we conducted a voluntary web survey of students enrolled in 

operating systems.  Nine of those 20 students responded to our 

survey.  When asked if they felt that their experience with 

parallelism and concurrency in data structures helped them in 

operating systems, 4 of the 9 viewed the previous material as “1-

Indispensible!”, 4 viewed it as “2-Fairly useful”, and 1 student 

did not answer (none listed it as “3-A little useful” or “4-Not 

very useful”).  Student views on the usefulness of previous 

coverage of specific concurrency topics (those most relevant to 

operating systems) are shown in Table 2.   

Table 2.  Student responses to “For each of the following 

topics, did seeing the material in data structures help your 

understanding of material in operating systems?” (N = 9) 

Topics 

Incredibly 

useful 

Fairly 

useful 

A little 

useful 

Not 

very 

useful 

I do not 

remember 

seeing this  

Threads 3 4 1 1 0 

Race conditions 

/ data races 
6 2 0 0 1 

Mutual exclusion 

/ locks 
4 4 0 0 1 

Deadlock 3 3 2 0 1 

5.4 Instructors at Other Institutions 
In the last year, faculty at five other institutions have adapted 

our materials for their use.  The materials were  used/adapted for 

CS2 courses and as introductory materials for advanced 

parallelism/concurrency courses (course links are at [10]). All 

five instructors found the materials useful and when recently 

polled informed us that they will use the materials again.   

6. RELATED WORK 
A 2010 ITiCSE working group explored the issue of integrating 

parallelism into computer science curricula in great detail, 

providing a range of references on potential content and 

approaches that have been tried [3].  Our approach to fork-join 

parallelism based on recursive algorithms and work/span has 

been long advocated by parallel-programming leaders such as 

Charles Leisersen and Guy Blelloch.  Cormen et al. [4] offers a 

more advanced and high-level take on fork-join parallelism (but 

no mutual exclusion). Similarly, our approach to concurrency 

and mutual exclusion is by no means new.  What we have added 

is a self-contained pedagogy for teaching parallelism and 

concurrency adjacently and as a natural fit in a lower-level data 

structures course.  

7. OBTAINING THE MATERIALS 
All our materials have been separated from the particulars of our 

data structures course, and we actively maintain them (fixing errors, 

improving explanations, etc.) [10].  All materials are open and free, 

and we have posted all the sources so others can develop their own 

extracts or extensions.  We have developed:  

 Written reading notes for students (and instructors!) that cover 

all the material, about 65 pages in total.  Some other 

institutions have used these as-is in lieu of a textbook while 

others have developed a subset to match their needs better. 

 Lecture slides (PowerPoint), paper-and-pencil homework 

exercises, and sample exam questions 

 A programming project using parallelism to (at least in theory) 

more quickly process real U.S. census data.  A simple GUI 

(provided) makes the program fun to explore. 

Based on our positive experiences using these materials in our data 

structures course over the past 1.5 years, we encourage others to 

consider adapting them to their own context. 
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