
Introducing Parallelism and Concurrency in the

Data Structures Course

Dan Grossman Ruth E. Anderson
Dept. of Computer Science & Engineering

University of Washington
Seattle, WA, USA

djg@cs.washington.edu rea@cs.washington.edu

ABSTRACT
We report on our experience integrating a three-week

introduction to multithreading in a required data structures

course for second-year computer science majors. We emphasize

a distinction between parallelism and concurrency that teaches

students to use extra processors effectively and enforce mutual

exclusion correctly. The material fits naturally in the data

structures course by having the same mix of algorithms,

programming, and asymptotic analysis as the conventional,

single-threaded part of the course.

Our department has used this unit for 1.5 years and will do so

indefinitely. We report feedback from students, multiple

instructors for the course, and students in a later course that uses

threads. We developed a full set of course materials that have

been adapted for use by instructors in various courses at five

other institutions so far.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information

Science Education – computer science education, curriculum

General Terms

Algorithms, Experimentation

Keywords

Parallelism, Concurrency, Data Structures, Fork-Join, Mutual

Exclusion, Undergraduate Curriculum

1. INTRODUCTION

As multiprocessors become increasingly common across the

computing landscape, there is widespread interest in expanding

coverage of threads, parallelism, concurrency, synchronization,

etc. in undergraduate computer science curricula. However, as

described in a recent exploration of the subject [3], there is not

yet consensus on where in the curriculum to introduce these

topics and what fundamental concepts are most important. In

the near term, many institutions may find it equally unrealistic to,

on the one hand, modify many courses so that multithreading

pervades the curriculum or, on the other hand, add an entire

required course. Instead, our approach has been to use part of a

required lower-level course, roughly three weeks, to introduce

topics like threads in such a way that various advanced courses,

such as computer architecture, operating systems, databases,

algorithms, graphics, and many others, can rely on them.

This paper reports on our successful experience introducing

parallelism and concurrency into our department’s required data

structures course. Since Spring 2010, five instructors, ourselves

included, have taught the course, with a range of background in

parallelism from none to moderate and teaching experience from

graduate student to senior faculty. Success requires no more

experience than what is already needed to teach data structures – if

you can learn topics like B-Trees and Dijkstra’s Shortest-Path

Algorithm well enough to teach them, then you can learn everything

in our unit. All our materials are freely available and have already

been adapted by instructors at five other institutions.

The central pedagogic theme is a clear distinction between

parallelism − using extra computational resources to solve a

problem faster − and concurrency − correctly and efficiently

managing access to shared resources. We start with parallelism and

divide-and-conquer fork-join algorithms before introducing the

more difficult concurrency topics such as race conditions and

deadlock. Just like in the rest of the data structures course, the

material covers programming constructs and pragmatics (in Java,

though language choice is not crucial), algorithms, asymptotic

complexity, and constant-factor overheads. We emphasize

fundamental problems like computing a reduction (e.g., a sum) over

an array in parallel or ensuring an API enforces mutual exclusion.

Given only three weeks, we focus on shared-memory programming,

leaving message passing and distributed programming for more

advanced elective courses.

Our goals in sharing our experience are to:

 Convince others that a data structures course is a very natural

place in a computer science curriculum to make room for a

general introduction to parallelism and concurrency. The

topics rely on and reinforce core ideas already in the course.

 Elucidate parallelism versus concurrency as a core theme.

 Encourage adoption of our materials, including reading notes,

slides, sample homework and exam questions, and a

programming project.

 Share mostly-positive feedback from students, instructors, and

students in a later course (namely operating systems).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

SIGCSE’12, February 29–March 3, 2012, Raleigh, North Carolina, USA.

Copyright 2012 ACM 978-1-4503-1098-7/12/02...$10.00.

With these goals, the rest of the paper largely describes the

course-unit content and motivation (Section 3) after a brief

primer on our larger curriculum context (Section 2). We then

discuss why data structures is a great fit for the material (Section

4). Section 5 shares feedback from various stakeholders:

students, instructors, and those who have adapted the materials

at other institutions. Section 6 discusses related work. Section

7 describes the freely available materials and concludes.

The materials described in this paper are actively maintained at

[10].

2. CURRICULUM CONTEXT
To put our three-week curriculum unit in context, this section

briefly describes our other low-level courses in general and the

data structures course in particular. However, the unit should fit

well somewhere in most computer science curricula.

Our university is on a ten-week quarter system, with most

computer science courses (including data structures) having

three 50-minute lectures and one 50-minute recitation section

per week. The data structures course ranges in size from 30 –

100 students and is a pre-requisite for most advanced courses. It

comes after a two-quarter introductory programming sequence

and a discrete structures course (boolean and first-order logic,

induction, finite-state machines, sets and relations,

undecidability, etc.). Other low-level courses, not pre-requisites

for data structures, cover lower levels of abstraction (C,

assembly, binary); hardware design; probability, statistics and P

vs. NP; programming languages; and software design and

implementation.

The data structures course is fairly conventional, building on the

initial coverage of stacks, queues, and binary search trees in the

introductory courses. The course covers asymptotic complexity,

priority queues, balanced search trees (AVL trees, B-Trees),

hashing, sorting, graphs, and graph algorithms. To make room

for multithreading, we reduced coverage of amortization and

removed more obscure priority-queue implementations, disjoint-

sets (union/find), and network flow, some of which will move to

an advanced elective algorithms course. The course has (Java)

programming and paper-and-pencil homework exercises. The

parallelism and concurrency unit comes late in the course.

3. CONTENT AND MOTIVATION
This section describes the core concepts covered by our

materials. The unit includes 8-10 hours of instruction, two

homework assignments, and a programming project.

3.1 Introduction to Multithreading
To introduce the unit, we identify the key assumption made in

prior courses that is false and that we will remove: one thing

happens at a time (sequential execution). Given multiple

threads of execution, we can cover three main questions:

 What are some programming techniques for creating and

controlling threads and letting them communicate?

 How can parallel algorithms run faster (asymptotically

and/or in practice) than sequential algorithms?

 How must software be written differently so that multiple

threads can access the same resources without error?

The second question above is about parallelism, using multiple

computational resources effectively. A canonical example is using

P processors to sum n numbers in time O(n/P + log n). The third

question is about concurrency, correctly and efficiently managing

access to shared resources. A canonical example is a dictionary

(e.g., a hash table) that allows lookup operations from multiple

threads simultaneously but ensures that insert operations occur only

while all simultaneous operations wait. This distinction pervades

the entire unit, and all issues of concurrency (the more difficult

topic) are delayed until the second half after students are more

comfortable with threads and parallel algorithms.

After introducing the basic notions of parallelism and concurrency,

we then cover the shared-memory model: each thread has its own

call-stack and control flow, but heap objects are potentially shared

(though it is good style to share very few). Communication occurs

when threads have references to the same memory, one writes, and

another reads. Students have little trouble grasping this model.

Correctness always requires coordination. For the parallelism

portion, the only coordination (i.e., synchronization) primitive we

use is join: one thread waits unless/until another thread terminates.

We briefly mention other models (message-passing, dataflow, data

parallelism), but, due to time constraints and a less natural fit in the

course, do not revisit them.

3.2 Basic Fork-Join Parallelism
Shared-memory basics are all one needs to discuss our canonical

example of how to use P threads (imagine P=4) to sum an array. A

natural pseudocode algorithm is roughly:

int sum(int[] arr, int P) {

 int[] answers = new int[P];

 int len = arr.length;

 for(int i=0; i < P; i++)

 create a thread to sum from

 arr[i*len/P] to arr[(i+1)*len/P]

 sequentially; put result in answers[i]

 wait by joining on each of the P threads

 return the sum of the P values in answers

}

Implementing this solution in a language like Java requires some

more code such as creating Thread objects and storing them in an

array so that the waiting step can iteratively join on each thread, but

the pseudocode is enough to demonstrate three key points:

 Interthread communication occurs using variables arr (read

by the helper threads) and answers (written by the helper

threads).

 The waiting step is essential coordination for reading the

correct answers. Conversely, if we join on each thread

(waiting for it to finish) right after creating it, then we get the

correct answer, but the threads never run in parallel.

 If P processors are available, we can expect the algorithm to

run approximately P times faster than a sequential algorithm,

but there is some overhead from using threads.

More interestingly, we then argue that this style of parallel

programming has serious weaknesses that we can fix via divide-

and-conquer recursion, an approach we use for the rest of the

parallelism section. These weaknesses include:

 The approach assumes we know how many processors are

available, but we often do not. Other threads may already be

running or the operating system may be using processors for

other programs. If P is set to 4 but only 3 processors are

available, this algorithm will likely run 1.5x slower than if

P is set to 3. The number of processors available might

even change while the algorithm is running.

 Though unlikely with a simple operation like sum, different

subproblems might take different amounts of time (a load

imbalance) and we will end up waiting for the slow portion

while other processors sit idle.

The elegant-if-counterintuitive solution to these problems is to

use recursion to create many more threads than processors,

relying on the underlying scheduler to assign the threads to

processors as they become available. In pseudocode:

int sum(int[] arr) {

 return sumRange(arr,0,arr.length);

}

int sumRange(int[] arr, int lo, int hi) {

 if(hi-lo < CUTOFF) //e.g., CUTOFF=500

 sum range sequentially and return it

 int mid = (hi+lo)/2;

 create thread to compute

 sumRange(arr,mid,hi) and store answer

 int leftAns = sumRange(arr,lo,mid);

 join on thread created above

 return leftAns + answer from other thread

}

This algorithm creates an implicit tree of recursive calls. Each

node has two children where one child is a new thread. So after

n levels of recursion, we have 2n threads. We analyze this style

of algorithm in Section 3.3.

While there are some programming details for using this style in

Java (we spend a recitation section on them), they are less

burdensome than most threaded programming. However, one

should not use Java’s built-in threads for this style of algorithm;

they were not engineered for many threads doing small pieces of

work. Instead, Java’s ForkJoin Framework [8] was created

exactly for this scenario and provides an asymptotically optimal

expected-time guarantee (see Section 3.3).

The Java ForkJoin Framework is in the standard library of Java

7 (package java.util.concurrent) and is available for download

for Java 6. Our materials give detailed stand-alone instructions

for using the library, which is important because students using

our materials need only a few methods from three classes

whereas the full framework supports sophisticated industrial-

strength use. No special hardware is needed, though having at

least 4 cores makes parts of the project more meaningful.

Many other languages have similar frameworks (based on the

pioneering work of Cilk [2]), including Intel’s Cilk+ and Thread

Building Blocks for C++ [6] and Microsoft’s Task Parallel

Library [9] for C#. In the near future, we hope to partner with

instructors using languages other than Java to produce adapted

versions of the materials. Such adaptation should be entirely

straightforward because we use only basic features.

3.3 Analyzing Parallel Programs
Learning to use asymptotic complexity to analyze the efficiency

of algorithms is a key component of our data structures course

and parallelism should be treated analogously. Fortunately, the

fork-join style makes this easy.

We analyze a parallel algorithm in terms of work and span. Work

is the time it would take one processor to complete the task, and

span is the time it would take an infinite number of processors.

Span is not infinitesimal because computational dependencies must

be respected and it takes O(1) time to create a thread. We can

define a conceptual directed acyclic graph of the computation where

each node is O(1) unit of work and each edge indicates a

dependency where the source must complete before the destination

can begin. Then work is the total number of nodes and span is the

longest path in the graph. Analyzing our recursive array-sum

algorithm for an array of size n reveals it has O(n) work and

O(log n) span.

But how is that useful when we have P processors and P is neither

one nor infinite? Using techniques best left to an advanced course,

the fork-join framework implementation provides an expected-time

guarantee of O(work/P + span). We do teach why this guarantee is

within a constant factor of optimal: ignoring caching effects, P

processors cannot do more than P times better than one processor

nor can they do better than an infinite number of processors.

Switching to a sequential algorithm when the recursive problem

size drops below a cutoff such as 500 is a key practical technique

that does not change the asymptotic complexity. In terms of the

computational DAG, the array-sum algorithm produces a binary

tree of threads and this cut-off trims out the bottom nine layers of

the DAG, i.e., almost all the threads, with the span still logarithmic

in the array size.

Finally, we study Amdahl’s Law, which analyzes a program’s

speed-up as you add more processors under the basic assumptions

that (1) part of the program parallelizes perfectly (O(1) span) and

(2) the rest gets no benefit from more processors (inherently

sequential). Amdahl’s Law is three lines of simple algebra, but its

negative ramifications (e.g., to get 100x speed-up from 256

processors, you must be able to parallelize more than 99% of a

program’s execution) are best appreciated by having students plot

some curves that it implies.

3.4 More Parallel Algorithms
The array-sum example in Section 3.2 is an example of a reduction,

which means a single result is produced from a collection using an

associative (but not necessarily commutative) operator. Many

computations are reductions, such as finding the maximum or

finding the left-most (or right-most) element satisfying a property.

One could program a reduction pattern once and for all by taking in

a function object or closure for the associative operation, but we

believe students benefit from first writing several reductions

manually.

Even simpler than reductions are maps, in which a new collection is

produced by applying an operation independently to each element

of an input collection. Maps and reductions are the workhorses of

parallel programming, so we emphasize them. Tying back into a

discussion of data structures, we also note that arrays and balanced

trees are more suitable for parallelization than ordinary linked lists.

But stopping here leaves the misimpression that what can be

parallelized is only what is “obvious” when, in fact, just as non-

obvious data structures can provide exponential speed-ups in

sequential code, non-obvious parallelization techniques can provide

exponential parallelism.

The core “fancy” algorithm we choose to discuss is for parallel

prefix-sum [7]. The prefix-sum problem is to take an int[] in

and produce an int[] out where out[i] is the sum of

in[0]..in[i]. An O(n) sequential solution is suitable for a

CS1 exam since out[i]=in[i]+out[i-1]. A surprising

parallel version with O(n) work and O(log n) span works with

two passes over the data, with the first building a clever

intermediate data structure.

The prefix-sum algorithm in turn can be used as the key trick in

implementing a parallel pack operation, in which we create an

array out that has no empty spaces and contains exactly those

elements of an array in satisfying some property (e.g., “greater

than x”). Finding the elements is a trivial map operation;

packing them into an array without spaces in parallel is not.

Lastly, parallel pack is the key algorithm we need for a parallel

version of quicksort that has O(n log n) work and O(log2 n)

span, which requires parallelizing quicksort’s partitioning step.

These “fancy” algorithms show that parallelism is not always

obvious and that a key technique in algorithm design (sequential

or parallel!) is to use known algorithms as subroutines. Our

reading notes and lecture slides explain the algorithms in detail.

We believe these algorithms are as elegant as any sequential

material that may need to be excised to make room, and they

take at most one lecture.

3.5 Concurrency, Mutual Exclusion, Locks
We then completely shift focus to concurrent access of shared

data structures and the need for mutual exclusion, noting that the

parallelism portion used algorithms where threads never tried to

access the same data simultaneously. The concurrency portion

of the material takes slightly more time than parallelism, but we

describe it in less depth in this paper due to space constraints

and since our approach is more conventional. We focus on

using locks in general and Java’s synchronized statement in

particular to define critical sections that are the right size:

neither too small for correctness nor too large to provide

efficient concurrent access.

We focus on two distinct programming errors that are often

muddled because both are called, “race conditions.” Data races

occur when two threads read/write or write/write the same object

field without being ordered by synchronization. For reasons

discussed at the end of the unit, data races are, except for expert

use, always wrong in any program even if they seem right [1].

But preventing data races is not enough. Bad interleavings, also

known as higher-level races, result from critical sections that are

misplaced or too small for preserving application behavior.

What is “bad” depends on the program. For example, if a stack

peek operation is implemented in terms of a synchronized pop

followed by a separately synchronized push, there are no data

races but other threads may still see an illegal intermediate state

of the stack. Having students identify bad interleavings and the

errors that result is a rich source of homework problems. We use

concurrent access to data structures as examples throughout this

section.

3.6 Concurrency Programming Guidelines
Locks are notoriously difficult to use correctly, so teaching what

locks are and why they are needed is setting up students to

repeat all the common mistakes. We advocate teaching students

guidelines for sticking to known-to-work concurrency idioms.

Frankly, this material is a bit dry and students may not be ready

to appreciate it, but we hope they will be able to refer back to it

when using locks after the course. Our guidelines are not novel

(see, for example, Chapter 1 of [5]), but students need to know

about them. They include ideas like: share among threads as few

objects as possible, mutate as few objects as possible (cf. functional

programming), have a consistent locking protocol, and start with

coarse-grained locking and then identify where thread contention

occurs.

3.7 Remaining Concurrency Topics
Using locks to enforce mutual exclusion and avoid both data races

and bad interleavings is the core skill we impart, but four remaining

topics complete our introduction to concurrency:

 Deadlock and techniques for avoiding it

 Readers/writer locks to allow simultaneous read-only access

 Passive waiting for a condition to change and the canonical

example of using condition variables to implement a buffer.

(Warning: condition variables are surprisingly difficult to use

correctly, but some notion of passive waiting is important.)

 Memory-model basics: programs with data races cannot be

reasoned about in terms of possible interleavings [1]

3.8 Cross-Cutting Themes on Coverage
The list of topics in our three-week unit is carefully designed to

cover only some of the basics “every computer scientist should

know” from a particular perspective:

 It separates parallelism and concurrency, while emphasizing

the similarities and differences by teaching them adjacently. In

the real world, one often must deal with parallelism and

concurrency together, but pedagogy is often best when it

separates concepts that are combined and confused in practice.

Parallelism is easier, so we do it first.

 It focuses entirely on the programmer’s view: We use threads,

locks, and fork-join. We do not implement them.

 We leave to other courses all issues related to scheduling.

 We do not cover distributed computing issues, notably latency

and fault tolerance.

This focus gives a common foundation on which diverse advanced

courses (O/S, distributed programming, networks, databases,

graphics, computer architecture, etc.) can build, and it gives

students the background to understand non-sequential programs

(e.g., at summer internships).

4. THE DATA STRUCTURES FIT
Perhaps our most surprising conclusion is that the data structures

course is a great fit for introducing parallelism and concurrency,

since this is not (at least yet) common practice. Hopefully the

previous section demonstrates our belief that our curriculum unit

fits in data structures just as well as the graph algorithms unit, the

sorting unit, etc. In this section, we briefly give a high-level view

of why this fit works so well and then describe specific topic-level

synergies with other course units.

At a high level, the data structures course teaches students to (1)

reason asymptotically in terms of abstract models, (2) appreciate the

interplay between theory and practice (connecting algorithms to

code and analysis to execution time), (3) use well-known

conceptual building blocks they would be unlikely to reinvent (e.g.,

trees with guaranteed balance) and that can be exponentially (in the

technical sense) better than naïve approaches, and (4) to separate

data structure interface from implementation and to appreciate

that narrower interfaces can allow more flexible

implementations. Our parallel and concurrency topics reinforce

all these outcomes: (1) work, span, and Amdahl’s Law are

asymptotic ideas, (2) homework assignments consider both

algorithms and coding details, (3) non-obvious algorithms

provide exponential parallel speedup, and, (4) thread-safe APIs

demand an even more careful consideration of interfaces and

how operations may interfere with each other. In short, an

introduction to threads benefits from the same mix of

algorithms, programming models, implementation, and

theoretical analysis that is often unique to the data structures

course.

On a more detailed level, there are many nice connections with

conventional topics from sequential data structures; we give a

few examples. Students have just learned divide-and-conquer

sequential algorithms and how to reason asymptotically, so

divide-and-conquer parallel algorithms reinforce the same

concepts. Constant-factor issues are perfectly analogous: A

particularly nice connection is showing how in practice

sequential quicksort implementations switch to an O(n2) sort for

small n, exactly like parallel algorithms switch to sequential

variants below a cutoff. Using a DAG to define work and span

demonstrates another application of graphs. For concurrency,

data structures like queues and hash tables provide most of the

canonical examples for bad interleavings. Revisiting previous

data structure abstractions and considering thread safety is fun

and timely. A bounded buffer is a queue that blocks instead of

raising exceptions when it is empty or full. Hash tables that are

rarely changed can motivate readers/writer locks.

5. FEEDBACK FROM STAKEHOLDERS
As of fall 2011, the course has been taught six times so far at

UW by five different instructors. Over 250 students at UW have

taken the course since Spring 2010. In addition, instructors at

five other universities have adapted these materials for their use.

We have not performed a broad evaluation or formal learning

outcomes assessment, but we can report on our current

experience based on feedback from students and instructors.

5.1 Students
Students taking the course were all Computer Science or

Computer Engineering majors. The course was a required

course, and a prerequisite for many other courses.

Student interest – Overall, students seemed to enjoy the

parallelism and concurrency material. In Winter 2011, during

the last week of the quarter, students were given an in-class free

response survey to gauge their impressions of the course

material (N=84, out of 94 enrolled). Responses were coded to

identify how often parallelism and concurrency topics were

mentioned. For comparison, the number of occurrences of data

structures and other topics are also listed (some students

mentioned multiple items in their response). In response to

“What is the most important thing you learned in this course?”

29 students (35%) mentioned parallelism and concurrency

topics, 57 students (68%) mentioned data structures topics, and

15 students mentioned other overarching topics like “Big-O” or

“Everything”. When asked “What is the most interesting thing

you learned in this course?”, 57 students (68%) listed

parallelism and concurrency topics. Complete data for this one-

time survey appears in Table 1. Overall, it seems that students

consider parallelism and concurrency a substantial and interesting

part of the course, on par with other core concepts like data

structures and asymptotic complexity.

Table 1. Number of student responses mentioning various topics

in response to the questions “What was the most [X] thing you

learned in this course?” (N=84)

X

Parallelism/

Concurrency

Data

Structures
Other

No

Answer

Important 29 (35%) 57 (68%) 15 (18%) 0

Interesting 57 (68%) 34 (40%) 2 (2%) 0

Surprising 40 (48%) 33 (39%) 13 (15%) 1

Fun 26 (31%) 41 (49%) 19 (23%) 1

Student learning - As one data point on how well students learned

the new material, we examined the final exam scores of students in

Spring 2010 and Winter 2011. In Spring 2010 (N=32), the first

quarter the course was offered, students performed slightly better on

the data structures questions (85%) than on the parallelism and

concurrency questions (77%). In Winter 2011 (N=94) their

performance on both types of questions was comparable (87%). In

both quarters, students performed slightly better on the parallelism

questions than on the concurrency questions. Although this is only

one data point, it concurs with the general feeling of instructors that

students were able to learn the material and that the concurrency

material was more challenging for students than the parallelism

material.

5.2 Instructors
One of the authors developed the course materials and taught the

course for the first time in Spring 2010. For the next four quarters,

four different instructors (three faculty members, one graduate

student) taught the course. These other instructors had experience

teaching data structures, but all were unfamiliar with most or all of

the parallelism and concurrency material prior to preparing for the

course. All instructors indicated that their teaching evaluations

were similar to those they normally received in other courses.

Usefulness of provided materials - All four instructors used the

provided slides and reading notes and found them to be an

important resource for students. Instructors used a combination of

the provided written homework problems and made up their own.

One instructor felt that the provided project (see Section 7) was too

large and trimmed it down. Another instructor created his own

project.

Course pace and structure - Multiple instructors found that

teaching the concurrency programming guidelines content (Section

3.6) was unexciting. One instructor planned to de-emphasize this

and the advanced concurrency material (Section 3.7) in the future,

partially because he felt pressed for time. In the context of 10-week

quarters, some instructors felt that the material was somewhat

rushed, which can lead to a more superficial coverage of some

advanced data structures topics. The instructors felt concurrency

material was more challenging for students than parallelism, though

both were important.

5.3 Students in Later Courses
One reason to teach parallelism and concurrency in an early and

required course is so that later courses can assume and build on that

material. We are just starting to see students in upper level

courses who have taken a version of the data structures course

containing the parallelism and concurrency unit. In Spring

2011, out of 38 students enrolled in operating systems, 20 of

them had seen concurrency in the data structures course. As a

preliminary effort to gauge the impact of teaching parallelism

and concurrency early, in the last week of Spring quarter 2011,

we conducted a voluntary web survey of students enrolled in

operating systems. Nine of those 20 students responded to our

survey. When asked if they felt that their experience with

parallelism and concurrency in data structures helped them in

operating systems, 4 of the 9 viewed the previous material as “1-

Indispensible!”, 4 viewed it as “2-Fairly useful”, and 1 student

did not answer (none listed it as “3-A little useful” or “4-Not

very useful”). Student views on the usefulness of previous

coverage of specific concurrency topics (those most relevant to

operating systems) are shown in Table 2.

Table 2. Student responses to “For each of the following

topics, did seeing the material in data structures help your

understanding of material in operating systems?” (N = 9)

Topics

Incredibly

useful

Fairly

useful

A little

useful

Not

very

useful

I do not

remember

seeing this

Threads 3 4 1 1 0

Race conditions

/ data races
6 2 0 0 1

Mutual exclusion

/ locks
4 4 0 0 1

Deadlock 3 3 2 0 1

5.4 Instructors at Other Institutions
In the last year, faculty at five other institutions have adapted

our materials for their use. The materials were used/adapted for

CS2 courses and as introductory materials for advanced

parallelism/concurrency courses (course links are at [10]). All

five instructors found the materials useful and when recently

polled informed us that they will use the materials again.

6. RELATED WORK
A 2010 ITiCSE working group explored the issue of integrating

parallelism into computer science curricula in great detail,

providing a range of references on potential content and

approaches that have been tried [3]. Our approach to fork-join

parallelism based on recursive algorithms and work/span has

been long advocated by parallel-programming leaders such as

Charles Leisersen and Guy Blelloch. Cormen et al. [4] offers a

more advanced and high-level take on fork-join parallelism (but

no mutual exclusion). Similarly, our approach to concurrency

and mutual exclusion is by no means new. What we have added

is a self-contained pedagogy for teaching parallelism and

concurrency adjacently and as a natural fit in a lower-level data

structures course.

7. OBTAINING THE MATERIALS
All our materials have been separated from the particulars of our

data structures course, and we actively maintain them (fixing errors,

improving explanations, etc.) [10]. All materials are open and free,

and we have posted all the sources so others can develop their own

extracts or extensions. We have developed:

 Written reading notes for students (and instructors!) that cover

all the material, about 65 pages in total. Some other

institutions have used these as-is in lieu of a textbook while

others have developed a subset to match their needs better.

 Lecture slides (PowerPoint), paper-and-pencil homework

exercises, and sample exam questions

 A programming project using parallelism to (at least in theory)

more quickly process real U.S. census data. A simple GUI

(provided) makes the program fun to explore.

Based on our positive experiences using these materials in our data

structures course over the past 1.5 years, we encourage others to

consider adapting them to their own context.

8. REFERENCES
[1] Adve, S. V. & Boehm, H-J. 2010. Memory models: a case for

rethinking parallel languages and hardware. Communications

of the. ACM 53, 8 (August 2010), 90-101.

[2] Blumofe, R. D., Joerg, C.F., Kuszmaul, B. C., Leiserson, C.

E., Randall, K. H., & Zhou, Y. 1995. Cilk: an efficient

multithreaded runtime system. In ACM SIGPLAN Symposium

on principles and practice of parallel programming, 207-216.

See also: http://software.intel.com/en-us/articles/intel-cilk-

plus/

[3] Brown, R., Shoop, E., Adams, J., Clifton, C., Gardner, M.,

Haupt, M., & Hinsbeeck, P. 2010. Strategies for preparing

computer science students for the multicore world. In Proc. of

the 2010 ITiCSE working group reports, 97-115.

[4] Cormen, T., Leiserson, C., Rivest, R. & Stein, C. 2009.

Introduction to Algorithms, 3rd Edition, The MIT Press.

[5] Goetz, B. & Peierls, T. et al. 2006. Java Concurrency in

Practice. Addison Wesley.

[6] Intel Threading Building Blocks,

http://threadingbuildingblocks.org/

[7] Ladner, R. E.; Fischer, M. J. 1980. Parallel prefix

computation. Journal of the ACM 27, 4 (October 1980), 831–

838.

[8] Lea, D. 2000. A Java fork/join framework. In Proc.of the ACM

2000 conference on Java Grande, 36-43. See also:

http://g.oswego.edu/dl/concurrency-interest/

[9] Leijen, D., Schulte, W., & Burckhardt, S. 2009. The design of

a task parallel library. In ACM SIGPLAN conference on object

oriented programming systems languages and applications,

227-242. See also: http://msdn.microsoft.com/en-

us/library/dd460717.aspx

[10] Current version of the materials: http://

www.cs.washington.edu/homes/djg/teachingMaterials

http://threadingbuildingblocks.org/

