
High-Level Small-Step Operational Semantics for Transactions

Katherine F. Moore Dan Grossman
University of Washington

{kfm, djg}@cs.washington.edu

Abstract
Software transactions have received significant attention as a way to
simplify shared-memory concurrent programming, but insufficient
focus has been given to the precise meaning of software transac-
tions or their interaction with other language features. This work
begins to rectify that situation by presenting a family of formal lan-
guages that model a wide variety of behaviors for software trans-
actions. These languages abstract away implementation details of
transactional memory, providing high-level definitions suitable for
programming languages. We use small-step semantics in order to
represent explicitly the interleaved execution of threads that is nec-
essary to investigate pertinent issues.

We demonstrate the value of our core approach to modeling
transactions by investigating two issues in depth. First, we consider
parallel nesting, in which parallelism and transactions can nest ar-
bitrarily. Second, we present multiple models for weak isolation, in
which nontransactional code can violate the isolation of a transac-
tion. For both, type-and-effect systems let us soundly and statically
restrict what computation can occur inside or outside a transaction.
We prove some key language-equivalence theorems to confirm that
under sufficient static restrictions, in particular that each mutable
memory location is used outside transactions or inside transactions
(but not both), no program can determine whether the language im-
plementation uses weak isolation or strong isolation.

Categories and Subject DescriptorsD.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.1
[Programming Languages]: Formal Definitions and Theory—
Semantics; D.3.3 [Programming Languages]: Language Con-
structs and Features—Concurrent programming structures; F.3.2
[Logics and Meaning of Programs]: Semantics of Programming
Languages—Operational semantics

General Terms Languages

1. Introduction
1.1 The Need For Semantics

Widespread availability of multicore architectures has incited ur-
gent interest in programming-language features that make it easier
to write correct and efficient parallel programs. Software transac-
tions are particularly appealing for shared-memory programming
because they let programmers declare that an entire computation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’08, January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

should happen “all at once” with respect to other parallel compu-
tations. A construct likeatomic (e) meanse should evaluate as
a transaction, which provides a mutual-exclusion mechanism that
avoids many of the pitfalls of locks and condition variables. It dele-
gates to the language implementation the task of preserving the “all
at once” illusion while striving to preserve parallelism among non-
conflicting computations. Much recent work has investigated effi-
cient implementation techniques (Harris and Fraser 2003; Harris
et al. 2006; Adl-Tabatabai et al. 2006; Carlstrom et al. 2006; Mora-
van et al. 2006; Kumar et al. 2006; Damron et al. 2006; Marathe
et al. 2005; Herlihy et al. 2006; Shpeisman et al. 2007).

While this informal understanding of software transactions pro-
vides a simple high-level semantics for programmers, unfortu-
nately, typical implementation approaches introduce complications
that force programmers to abandon this simple view. As a small
example, many implementations make it a dynamic error to spawn
a thread while executing a transaction. If so, a library that encapsu-
lates a parallel algorithm cannot be called in the dynamic scope of
anatomic block.

Even more troubling are questions that arise from trying to give
a weak-isolation semantics to transactions. Under weak isolation,
nontransactional memory accesses bypass the mechanisms used
to implement transactions. Recently, we (Shpeisman et al. 2007;
Grossman et al. 2006) and others (Blundell et al. 2006; Larus and
Rajwar 2006; Hudson et al. 2006; Spear et al. 2007) have described
many surprising behaviors that can result and that cannot be ex-
plained without understanding how transactions are implemented.

As just one example, consider this code in a Java-like language:

Initially x=0, y=0, andb=true
Thread 1 Thread 2 Thread 3
atomic { atomic { m=x;

if(b) b=false; n=y;
x=1; }

else
y=1;

}
Canm==1 andn==1?

Despite races between Threads 1 and 3, intuitively Thread 1 does
only one assignment som or n or both stay0. However, weak-
isolation implementations using “eager-update” (Harris et al. 2006;
Adl-Tabatabai et al. 2006) can violate this intuition: transactions
may abort-and-retry multiple times and nontransactional code may
see partial results of aborted computations. Such behavior is im-
possible in lock-based code.

In general, weak isolation as well as the interaction between
transactions and other language features (such as thread-creation)
cause semantic ambiguities that raise two sets of questions:

• Can we design languages that prevent undesirable behaviors
while still permitting typical implementations? What restric-
tions must we put on source programs? How can we prove these
restrictions suffice?

• If we make some errors the programmers’ responsibility, what
guarantees must the language still provide? Can an illegal
thread-creation or data-race lead to an arbitrary program state
(like C array-bounds violations do)?

Precisely answering these questions requires rigorous semantics
and proofs. Such semantics must be high-level enough to provide
a simple definition to programmers yet detailed enough to incor-
porate relevant features. Restrictions on programs must be defined
in well-understood terms, such as with a type system. Variations
in semantic definitions should be compared by showing they are
unobservable (via an equivalence proof) or observable (via an ex-
ample program that distinguishes them). Proofs should reveal the
key invariants that motivate the semantics and type systems.

1.2 Our Family of High-Level Small-Step Semantics

To meet this need, we use operational semantics to define several
core languages based on a call-by-valueλ-calculus with a muta-
ble heap, threads, and transactions. Collectively, we call these lan-
guages theAtomsFamily. The languages differ where needed to
investigate a language feature or design decision. They are not de-
signed for reasoning about transactional-memory implementation
details. Rather, they provide high-level definitions of transactions
where only one transaction runs at a time. This high level matches
how we want programmers to reason about transactions so it is
appropriate for language definitions. At the same time, we use a
small-step semantics in which transactions take multiple steps to
complete. A potentially simpler transactions-in-one-step approach
would make it too awkward to investigate parallel nesting or weak
isolation because both features need threads to interleave while a
transaction executes. As Section 7 discusses, a high-level small-
step semantics distinguishes our approach from prior work.

We consider four languages in depth:

• StrongBasic (Section 2) is the simplest language. While a
transaction executes, it cannot spawn threads and other threads
that already exist may not read or write mutable heap locations.

• StrongNestedParallel (Section 3) extendsStrongBasic with
multiple ways to spawn threads. The different ways behave
differently inside and outside transactions.

• Weak (Section 4) is likeStrongBasic except nontransactional
code can access the heap concurrently with a transaction, thus
allowing a definition of weak isolation in which transactions act
as if they are all protected by a single lock.

• WeakUndo (Section 5) is likeWeak except a transaction may
abort-and-retry by undoing its heap updates and restarting.

We also sketch two otherAtomsFamily members:WeakOnCom-
mit andStrongUndo. WeakOnCommit models transactions that
can abort-and-retry, but unlike inWeakUndo, transactions do not
update the heap until they commit. InWeakUndo, committing
takes only one step; inWeakOnCommit, aborting takes only one
step. In-depth investigation ofWeakOnCommit remains future
work.StrongUndo has the strong isolation ofStrongBasic and the
abort-and-retry ofWeakUndo. This unusual combination is a cru-
cial intermediate language for proving that, under a type system we
define,WeakUndo andStrongBasic are suitably equivalent.

Our type systems are all similar type-and-effect systems that
classify code based on where it can run safely: only inside trans-
actions, only outside transactions, or anywhere. ForStrongNest-
edParallel, our type system ensures forms of thread-creation that
make sense only inside transactions do not occur outside transac-
tions and vice-versa. ForWeak andWeakUndo, our type system
enforces that the same heap location is not accessed inside and out-
side a transaction. A simple variant can also prevent oneatomic
block from executing in the dynamic scope of another.

Our languages and type systems are not exhaustive. To the
contrary, we consider it a strength that new variants are easy to
define and compare, nontrivial proofs notwithstanding. We expect
to investigate more language features by adding to theAtoms-
Family (see Section 6) and encourage others to do the same.

1.3 Specific Results

While generally useful, our approach has also produced several
specific insights and theorems. The most important results are sum-
marized here and explained in the remainder of the paper:

• For nested transactions to interact properly with either par-
allelism within transactions (StrongNestedParallel) or abort-
and-retry (WeakUndo), the state of a transaction should include
whether another transaction is currently executing inside it.

• A language with arbitrarily nested parallelism and transactions
(StrongNestedParallel) can be type-safe even if certain forms
for spawning threads can be used only in certain contexts.

• Weak isolation (Weak) and strong isolation (StrongBasic) are
indistinguishable (i.e., the languages are equivalent) under a
type system that prohibits the same heap location from being
accessed inside and outside transactions. The key to the proof
is showing that any computation interleaved with the current
transaction would have produced the same result had it pre-
ceded the transaction.

• Weak isolation with abort-and-retry (WeakUndo) and strong
isolation (StrongBasic) are indistinguishable under a similar
type system as the previous result, but with some interest-
ing caveats: (1)WeakUndo has some intermediate states un-
reachable fromStrongBasic, (2)WeakUndo may allocate more
memory, and (3) for simplicity we strengthen the type system to
prohibit nested transactions. The key to the proof is to separate
the necessary argument that the operational semantics imple-
ments abort correctly.

Fortunately, the equivalence results forWeak andWeakUndo con-
firm conventional wisdom. Given the until recently unforeseen be-
haviors resulting from races between transactional and nontransac-
tional code, it is reassuring to prove that such races are necessary
for weak isolation to exhibit such behaviors. Moreover, the struc-
ture of our proofs can serve as a guide for extending the results to
more sophisticated (and less obviously correct) static invariants.

Full definitions and proofs appear in our technical report (Moore
and Grossman 2007).

2. TheStrongBasic Language
This section presents the syntax and small-step operational seman-
tics for aλ-calculus with threads, shared memory, and transactions.
The language is largely a starting point for the additions and type
systems in the subsequent two sections. Three key design decisions
characterize our approach:

• The semantics ishigh-level. It relies on implicit nondetermin-
ism to find a successful execution sequence. There is no notion
of transactions conflicting or aborting. Rather, a transaction is
always isolated from other threads because no thread may ac-
cess shared memory if another thread is in a transaction. This
simple semantics provides a correctness criterion for more real-
istic implementations and a simple model for programmers.

• The semantics issmall-step. In particular, transactions take
many computational steps to complete. While this decision is
an unnecessary complication forStrongBasic, it is essential for
considering the additional thread interleavings that parallelism
within transactions and weak isolation introduce.

e ::= c | x | λx.e | e1 e2 | seq(e1, e2) | if e1 e2 e3

| refe | e1 := e2 | !e | spawntl e | atomic e
| l | inatomic(e)

v ::= c | λx.e | l
H ::= · | H, l 7→ v
T ::= · | T ‖ e
a ::= ◦ | •

Figure 1. StrongBasic Syntax

• The semantics isstrong. Nontransactional code cannot observe
or influence partially completed transactions. We prove later
that strong-isolation semantics is equivalent to weak-isolation
semantics under certain conditions. One cannot do such a proof
without defining both semantics.

This language does not have an explicit abort/retry. Adding this
construct is easy; as in prior work (Harris et al. 2005) one simply
has no evaluation rule for it. A transaction that explicitly aborts
is one that can never be chosen by the nondeterministic semantics.
However, this type of abort complicates stating type-safety because
we would have to accommodate an abort preventing progress.

2.1 Syntax

Figure 1 presents the formal abstract syntax for our first transac-
tional language. Most expression forms are typical for aλ-calculus
with mutable references, including constants (c), variables (x),
functions (λx.e), function applications (e1 e2), sequential compo-
sition (seq(e1, e2)), conditionals (if e1 e2 e3), memory allocation
(refe), assignment (e1 := e2), and dereference (!e). Many omitted
constructs, such as records, would be straightforward additions. We
also have thread-creation (spawntl e), where thetl indicates it must
be used at top-level (not within a transaction), and atomic blocks
(atomic e) for executinge transactionally.

A program state has the forma; H; T wherea indicates if any
thread is currently executing a transaction (a = • for yes and
a = ◦ for no),H is a mutable heap (a mapping from labelsl, also
known as addresses, to values), andT is a collection of threads.
Each thread is an expression representing that thread’s remaining
computation. We useT1 ‖ T2 to combine two thread collections
into a larger one, and we assume‖ is commutative, associative, and
has· (the empty collection) as an identity. We writee in place of
· ‖ e where convenient.

At run-time we need two new expression forms,inatomic(e)
andl. The former represents a partially completed transaction with
remaining computatione. The latter represents a heap location.

The program-state componenta deserves additional discussion.
Our semanticsallows at most one thread to execute a transaction
at a time. In essencea is like a “global lock” where• indicates
the lock is held. We donot suggest our language is a desirable
implementation, but it is the high-level semantics that enforces
atomicity and isolation. We would like an efficient implementation
to be correct if, by definition, it is equivalent to our semantics.

2.2 Operational Semantics

Our small-step operational semantics (Figure 2) rewrites one pro-
gram statea; H; T to anothera′; H ′; T ′. Source programe starts
with ◦; ·; e and a terminal configuration has the form◦; H; v1 ‖
... ‖ vn, i.e., all threads are values (and no transaction is active).
Although the source program contains only a singlee, the evalua-
tion of e can spawn threads, which can spawn more threads, etc.

The rulePROGRAM chooses a thread nondeterministically and
that thread takes a single step, which can affecta andH as well
as possibly create a new thread. So the judgment form for single-

thread evaluation isa; H; e → a′; H ′; e′; T , whereT is · if the
step does not spawn a thread and somee′′ if it does.

For conciseness, we use evaluation contexts (E) to identify
where subexpressions are recursively evaluated. A single rule
(CONTEXT) propagates changes from evaluating the subexpres-
sion. As usual, the inductive definition ofE describes expressions
with exactly one hole[·] andE[e] means the expression resulting
from replacing the hole inE with e. For example,CONTEXT lets us
derivea; H; ref(seq(e1, e2)) → a′; H ′; ref(seq(e′1, e2)); T pro-
vided a; H; e1 → a′; H ′; e′1; T . We do not treat the body of a
transaction as an evaluation context precisely because we do not
use the samea anda′ for the subevaluation.

Rules for reducing sequences, memory allocations, and func-
tion calls are entirely conventional. InAPPLY, e[v/x] means the
capture-avoiding substitution ofv for x in e.

The rules for reading and writing labels (GET andSET) require
a = ◦, meaning no other thread is executing a transaction. This
encodes a high-level definition of strong isolation; it prohibits any
memory conflict with a transaction. If no thread is in a transaction,
then any thread may access the heap. We explain below how rule
INATOMIC lets the thread executing a transaction access the heap.

The rules defining how an expression enters or exits a transac-
tion are of particular interest because they affecta. A thread can
enter a transaction only ifa = ◦ (elseENTER ATOMIC does not ap-
ply), and it changesa to •. Doing so prevents another thread from
entering a transaction untilEXIT ATOMIC (applicable only if the
computation is finished, i.e., some valuev) changesa back to◦.

A transaction itself needs to access the heap (which, as dis-
cussed above, requiresa = ◦) and execute nested transactions
(which requires◦ before entry and• before exit), buta is • while a
transaction executes. That is why the hypothesis in ruleINATOMIC
allows anya anda′ for the evaluation of the subexpressione. That
way, the• in the program state•; H; inatomic(e) constrains only
theother threads; the evaluation ofe can choose anya anda′ nec-
essary to take a step. If we requireda anda′ to be◦, thene could
access the heap but it could not evaluate a nested transaction.

Note rule INATOMIC ensures a transaction does not spawn a
thread (the hypothesis must produce thread-pool·), which en-
codes that all spawns must occur at top-level. An expression like
inatomic(spawntl e) is always stuck; there is noa and H with
which it can take a step.

2.3 Type System

We could present a type system forStrongBasic, but most of the
errors it would prevent are standard (e.g., using an integer as a
function). The only non-standard “stuck states” so far occur when a
thread tries to perform a spawn inside a transaction. The type-and-
effect system presented in Section 3 prevents this error.

3. TheStrongNestedParallel Language
While one reasonable semantics for spawn is that it is an error
for it to occur in a transaction, there are several reasons to al-
low other possibilities. First, there is no conceptual problem with
treating isolation and parallelism as orthogonal issues (Moss 1985;
Haines et al. 1994; Jagannathan et al. 2005). Second, ife spawns a
thread (perhaps inside a library), thene andatomic e behave dif-
ferently. Third, for some computations it may be sensible to delay
any spawned threads until a transaction commits, and doing so is
not difficult to implement. Fourth, it is undesirable to forfeit the
performance benefits of parallelism every time we need to isolate a
computation from some other threads.

This last issue becomes more important as the number of pro-
cessors increases; otherwise transactions become a sequential bot-
tleneck. For example, consider a concurrent hashtable with insert,
lookup, and resize operations. Resize operations may be relatively

a; H; e → a′; H ′; e′; T

E ::= [·] | E e | v E | seq(E, e) | if E e2 e3 | refE | E := e | l := E | !E

CONTEXT

a; H; e → a′; H ′; e′; T

a; H; E[e] → a′; H ′; E[e′]; T

APPLY

a; H; (λx.e) v → a; H; e[v/x]; ·

SEQ

a; H; seq(v, e2) → a; H; e2; ·

IF-Z

a; H; if 0 e2 e3 → a; H; e3; ·

IF-NZ
c 6= 0

a; H; if c e2 e3 → a; H; e2; ·

ALLOC
l 6∈ Dom(H)

a; H; refv → a; H, l 7→ v; l; ·

SET

◦; H; l := v → ◦; H, l 7→ v; v; ·

GET

◦; H; !l → ◦; H; H(l); ·

SPAWN TL

a; H; spawntl e → a; H; 0; e

ENTER ATOMIC

◦; H; atomic e → •; H; inatomic(e); ·

EXIT ATOMIC

•; H; inatomic(v) → ◦; H; v; ·

INATOMIC

a; H; e → a′; H ′; e′; ·
•; H; inatomic(e) → •; H ′; inatomic(e′); ·

a; H; T → a′; H ′; T ′

PROGRAM

a; H; e → a′; H ′; e′; T ′

a; H; T1 ‖ e ‖ T2 → a′; H ′; T1 ‖ e′ ‖ T2 ‖ T ′

Figure 2. StrongBasic Operational Semantics

e ::= . . . | spawnoc e | spawnip e | inatomic(a, e, Toc , Tip)

τ ::= int | ref τ | τ
ε→ τ ′

ε ::= emp | ot | wt
Γ ::= · | Γ, x:τ

Figure 3. StrongNestedParallel Syntax (extends Figure 1)

rare and large yet still need to be isolated from other threads to
avoid the complexities of concurrent operations. By parallelizing
the resize operation within a transaction, we preserve correctness
without letting sequential resize operations dominate performance.

In the rest of this section, we extendStrongBasic by adding sev-
eral different flavors of spawn. This new language,StrongNested-
Parallel, demonstrates that spawn expressions within transactions
can have reasonable semantics. We also present a type-and-effect
system to ensure the different flavors are used sensibly.

3.1 Syntax and Operational Semantics

Figure 3 presents the new syntax and Figure 4 presents the changes
to the operational semantics.

The syntax additions are two new flavors of spawn expressions,
spawnoc (for “on commit”) andspawnip (for “internally parallel”).
The former is allowed anywhere, but if it occurs inside a trans-
action, the spawned thread does not run until after the transaction
commits. The latter is allowed only within a transaction and the
transaction does not commit until the spawned thread completes
executing (i.e., becomes a value). One could certainly devise ad-
ditional flavors of spawn; we believe these two plusspawntl cover
a range of behaviors that are desirable in different situations. It is
reasonable to provide them all in one programming language, per-
haps with an undecoratedspawn being a synonym for one of them.
For example, the current Fortress specification (Allen et al. 2007)
treatsspawn asspawntl, but it also has constructs for fork-join style
parallelism that our model could encode withspawnip.

The inatomic expression, which as inStrongBasic does not
appear in source programs, has also changed. In addition to the
e whose eventual result is the transaction’s result, it now carries an

a and two threadpools,Toc andTip . Thea indicates whethere or
any thread inTip is currently executing a transaction.Toc holds
the threads that will be produced as “on commit” threads when
the transaction completes. The discussion of the semantics below
explainsinatomic further.

A single-thread evaluation step produces three possibly-empty
threadpoolsTtl , Toc , andTip . The evaluation rules for the three
flavors of spawn each put the new thread in the appropriate pool
with the other pools empty. TheCONTEXT rule propagates all three
threadpools out to evaluation of the larger expression. Other rules,
like those for assignment, function application, etc., only change by
producing three empty pools instead of one. The rule for sequences
has been included as an example.

The PROGRAM rule requires that the thread chosen for evalua-
tion produces an emptyTip , whereasTtl andToc are added to the
global pool of threads, i.e., spawned immediately. Therefore, it is
an error to usespawnip outside a transaction.

As in StrongBasic, entering a transaction changes◦ to •. The
resulting expressioninatomic(◦, e, ·, ·) is a transaction with no
nested transaction (hence the◦), no delayed threads (the first·) and
no internally parallel threads (the second·).

For a transactioninatomic(a, e, Toc , Tip), eithere or a thread
in Tip can take a step, usingINATOMIC DISTINGUISHED or
INATOMIC PARALLEL , respectively. The only reason to distinguish
e is soinatomic produces a value; in languages where the body is a
statement that produces no result we could combine these two rules
by includinge in Tip . In both rules, we evaluate some thread using
a and produce ana′, H ′, e′, T ′

oc , andT ′
ip . As inStrongBasic, eval-

uation inside a transaction may not spawn a top-level thread. The
a′, T ′

oc , andT ′
ip are added to the resulting expression, i.e., they are

part of the transaction’s new state. In particular, parallel threads in
the transaction may produce other parallel or on-commit threads.
Heap changes are propagated outward immediately, which is no
problem because the outer state is•.

A transaction completes when the distinguished expression and
all parallel threads are values. RuleEXIT ATOMIC then propagates
out all the on-commit threads in one step. Notice a transaction
never produces any threads visible outside the transaction until it
commits.

a; H; e → a′; H ′; e′; Ttl ; Toc ; Tip

CONTEXT

a; H; e → a′; H ′; e′; Ttl ; Toc ; Tip

a; H; E[e] → a′; H ′; E[e′]; Ttl ; Toc ; Tip

SEQ

a; H; seq(v, e2) → a; H; e2; ·; ·; ·

SPAWN TL

a; H; spawntl e → a; H; 0; e; ·; ·

SPAWN OC

a; H; spawnoc e → a; H; 0; ·; e; ·

SPAWN IP

a; H; spawnip e → a; H; 0; ·; ·; e

ENTER ATOMIC

◦; H; atomic e → •; H; inatomic(◦, e, ·, ·); ·; ·; ·

EXIT ATOMIC

•; H; inatomic(◦, v, Toc , (v1 ‖ . . . ‖ vn)) → ◦; H; v; ·; Toc ; ·

INATOMIC DISTINGUISHED

a; H; e → a′; H ′; e′; ·; T ′
oc ; T

′
ip

•; H; inatomic(a, e, Toc , Tip) → •; H ′; inatomic(a′, e′, (Toc ‖ T ′
oc), (Tip ‖ T ′

ip)); ·; ·; ·

INATOMIC PARALLEL

a; H; e → a′; H ′; e′; ·; T ′
oc ; T

′
ip

•; H; inatomic(a, e0, Toc , (Tip ‖ e ‖ T ′′
ip)) → •; H ′; inatomic(a′, e0, (Toc ‖ T ′

oc), ((Tip ‖ e′ ‖ T ′′
ip) ‖ T ′

ip)); ·; ·; ·

a; H; T → a′; H ′; T ′

PROGRAM

a; H; e → a′; H ′; e′; Ttl ; Toc ; ·
a; H; T1 ‖ e ‖ T2 → a′; H ′; T1 ‖ e′ ‖ T2 ‖ Ttl ‖ Toc

Figure 4. StrongNestedParallel Operational Semantics (selected rules omitted)

Unlike in StrongBasic, nested transactions are important; they
let one thread in a transaction perform a computation atomically
with respect to other threads in the transaction. Each transaction
has an explicita to ensure at most one of the threads is in a nested
transaction. Because we have strong isolation, if a thread is in a
transaction, then no parallel threads access the heap. However, in
the innermost transaction, parallel threads may access the heap si-
multaneously. Note that on-commit threads spawned inside nested
transactions do not run until the outermost transaction commits.
Other possibilities exist, but the soundness of our particular type-
and-effect system relies on this choice.

3.2 Type System

StrongNestedParallel has several error states. These include com-
mon type errors (e.g., treating an integer as a function), performing
a top-level spawn inside a transaction, and performing an internally
parallel spawn outside a transaction. We now present a type-and-
effect system that soundly and conservatively prohibits such errors
(Figure 5). To prove type safety, Section 3.3 extends this type sys-
tem to run-time states, including labels andinatomic expressions.

The judgmentΓ; ε ` e : τ means (1)e has typeτ whereΓ
provides types for the free variables ofe, and (2) executinge only
spawns threads of the flavors that the effectε allows. A source
programe type-checks if·; ot ` e : τ for someτ . Because (1)
is standard, we focus on (2), which makes our judgment an effect
system.

The “empty” effectemp describes computations that are safe
anywhere(i.e., inside or outside transactions); such computations
spawn neither top-level nor internally-parallel threads. On-commit
threads are fine because creating them never leads to dynamic
errors. Effectot describes computations safeoutside transactions,
permitting on-commit and top-level threads, and effectwt describes
computations safewithin transactions, permitting on-commit and
internally-parallel threads. We do not have a “top” effect that allows

all three flavors of spawn. Such an effect is sound but not useful
because code that type-checked only under this most-permissive
effect could run safely neither inside nor outside a transaction.

Most other aspects of our effect system are standard. Expres-
sions that do not spawn threads can type-check with any effect.
Values and variables are examples, e.g.,T-CONSTallows anyε. By
not requiring effectemp in rules like T-CONST, rules like T-SEQ

and T-SET can use the same effect for both subexpressions.1 For
example, we can derivex:ref int; ot ` seq(!x, spawntl 42) : int.
As expected, functions havelatent effects, meaning function types
carry an effect that occurs when the function is called. A function
itself can have any effect, but its body’s effect is included in the
effect of any call to it (seeT-LAMBDA and T-APP). In T-APP, the
subeffect relation allows using a function with latent effectemp
in a computation with effectot or wt. In practice, we expect most
functions to type-check underemp; this subeffecting allows such
functions to be called anywhere.

The most interesting rules are foratomic blocks and spawn
expressions. Thee in atomic e must type-check underwt, but
theatomic block itself is allowed anywhere, which enables nested
transactions and functions containingatomic blocks that can be
called inside and outside transactions. Because allspawntl expres-
sions must execute outside transactions, the effect of the spawnand
of the inner expression isot. By contrast, all expressionscreated by
spawnoc are evaluated at the top level (requiring effectot), but it is
acceptable to execute the spawn expression itself at top-level or
inside a transaction. Therefore, like foratomic blocks, we do not
constrain the effectε for spawnoc. Finally, spawnip needs effectwt
for the entire expression and the spawned expression because both
execute only within a transaction.

Note that if our language had expressions other thanspawntl

that could not occur in transactions (e.g., irreversible I/O), our
effect system could statically prevent such errors in the same way.

1 A fine alternative is to add an effect-subsumption rule.

ε ≤ ε′
REFLEXIVE

ε ≤ ε

EMPTY

emp ≤ ε

Γ; ε ` e : τ

T-CONST

Γ; ε ` c : int

T-VAR

Γ; ε ` x : Γ(x)

T-LAMBDA

Γ, x:τ1; ε
′ ` e : τ2

Γ; ε ` λx.e : τ1
ε′
→ τ2

T-APP

Γ; ε ` e1 : τ1
ε′
→ τ2 Γ; ε ` e2 : τ1 ε′ ≤ ε

Γ; ε ` e1 e2 : τ2

T-SEQ

Γ; ε ` e1 :τ1 Γ; ε ` e2 :τ2

Γ; ε ` seq(e1, e2) : τ2

T-IF
Γ; ε ` e1 : int Γ; ε ` e2 :τ Γ; ε ` e3 :τ

Γ; ε ` if e1 e2 e3 : τ

T-REF
Γ; ε ` e : τ

Γ; ε ` refe : ref τ

T-SET
Γ; ε ` e1 : ref τ Γ; ε ` e2 : τ

Γ; ε ` e1 := e2 : τ

T-GET
Γ; ε ` e : ref τ

Γ; ε ` !e : τ

T-ATOMIC
Γ; wt ` e : τ

Γ; ε ` atomic e : τ

T-SPAWN-TL
Γ; ot ` e : τ

Γ; ot ` spawntl e : int

T-SPAWN-OC
Γ; ot ` e : τ

Γ; ε ` spawnoc e : int

T-SPAWN-IP
Γ; wt ` e : τ

Γ; wt ` spawnip e : int

Figure 5. StrongNestedParallel Type System for Source Programs

Γ; ε ` e : τ , additions and changes

Γ ::= . . . | Γ, l : τ
T-LABEL

Γ(l) = τ

Γ; ε ` l : ref τ

T-LAMBDA

Γ, x:τ1; ε
′ ` e : τ2 not-active(e)

Γ; ε ` λx.e : τ1
ε′
→ τ2

T-INATOMIC
Γ; wt ` e : τ Γ; ot ` Toc Γ; wt ` Tip not-active(Toc) correct(a, e ‖ Tip)

Γ; ε ` inatomic(a, e, Toc , Tip) : τ

Γ ` H : Γ′ Γ; ε ` T ` a; H; T

Γ ` · : ·
Γ ` H : Γ′ Γ; ε ` v : τ

Γ ` H, l 7→ v : Γ′, l:τ Γ; ε ` ·
Γ; ε ` T Γ; ε ` e : τ

Γ; ε ` T ‖ e

Γ ` H : Γ Γ; ot ` T correct(a, T)

` a; H; T

Figure 6. StrongNestedParallel Type System Extensions for Program State (See also Figure 7)

3.3 Type Safety

Type safety ensures a program never becomes stuck, which means
at least one thread (possibly more) can take a step. Some threads
can be temporarily blocked. For example, when one thread is in a
transaction, another thread is blocked if its next step is to enter a
transaction. Therefore, our type-safety theorem claims that some
thread can proceed unless we have properly terminated:

Theorem 3.1 Type SafetyIf (1) ·; ot ` e : τ , (2) after some
number of steps◦; ·; e becomesa; H; T , and (3) not all threads
in T are values, then there exists a threade′ in T such thata; H; e′

can take a single-thread evaluation step.

As usual, we prove this theorem by showing preservation (any
evaluation step from a well-typed state produces a well-typed state)
and progress (no well-typed state is stuck). Doing so requires ex-
tending the type system to run-time statesa; H; T and the expres-
sion forms that are not present in source programs. The extended
system, presented in Figure 6, is only for the proof. Proof details are
in an available technical report (Moore and Grossman 2007); here
we sketch the interesting invariants that the rigorous proof reveals.

To set the stage, most of the extensions are straightforward.
A state is well-typed (̀ a; H; T), if (1) the heap is well-typed

(Γ ` H : Γ),2 and (2) each thread type-checks under effectot
and the labels in the heap (Γ; ot ` T). Note our definition ofΓ now
includes types for labels. Also note that when type-checking the
heap, effects are irrelevant because the heap contains only values
and values never spawn threads. The third obligation for a well-
typed state — correct(a, T) — is discussed below.

Turning to the typing rules for expressions, the typing rule for
labels is as expected. The typing rule for functions has the new
hypothesis not-active(e). This technical point ensures a function
body never contains a partially completed transaction. While this
is true for any state resulting from a source program, it is an in-
variant that we must establish holds during evaluation. Otherwise,
a function call could lead to a state where two threads were execut-
ing transactions simultaneously. Formal syntax-directed rules for
not-active(e) are in the technical report, but as Figure 7 describes,
they simply encode that noinatomic expression occurs ine.

The typing ruleT-INATOMIC has several subtleties. Because
e and Tip evaluate within a transaction, they must have effect
wt. Similarly, Toc will be evaluated at the top level, so it must
have effectot. As with atomic, the overall effect ofinatomic is
unconstrained to allow nesting. As with function bodies, the not-
yet-running threadsToc must not containinatomic expressions.

2 UsingΓ twice is a technical trick to allow cycles in the heap.

not-active(e) e (or T) contains no
not-active(T) inatomic expression.

active(e) e (or T) contains exactly 1 non-nested
active(T) inatomic expression, and that occurrence

is in a “sensible” syntactic position.
(See discussion for more detail.)

correct(a, T) (a = ◦ and not-active(T))
or (a = • and active(T))

Figure 7. Active, Not-Active, and Correct Activeness

The final definition to explain is correct(a,T), which is used to
type-check program states andinatomic expressions. This judg-
ment, defined formally in the technical report and summarized
in Figure 7, ensures that eacha is correct:a = • if and only
if exactly one thread is in a transaction, anda = ◦ if and only
if no thread is in a transaction. Without this invariant, the ma-
chine might be stuck. For example, ifa = •, no thread is in a
transaction, and every thread is blocked waiting to enter a transac-
tion, then no thread can proceed. The detailed rules for active(e)
(and active(T)) require some care. There must be exactly one
inatomic expression ine (or T), not counting possibly nested
transactions inside it, and that one outermost transaction must
occur in a thread’s “active position.” For example, we may be
able to show active(seq(inatomic(◦, 17, ·, ·), e)), but we cannot
show active(seq(e, inatomic(◦, 17, ·, ·))). To summarize, proving
progress requires tight control over the connection between each
a in the program state and the state of the threads thea describes,
and this control is specified with the correct(a,T) invariant. Prov-
ing preservation requires establishing this invariant after each step,
particularly when a thread enters or exits a transaction.

With the ability to type-check heaps, thread-pools, and run-time
expressions, we can state and prove the key lemmas:

Lemma 3.2 ProgressIf ` a; H; T , then eitherT is all values or
∃a′; H ′, T ′ such thata; H; T → a′; H ′; T ′.

Lemma 3.3 PreservationIf Γ ` H : Γ, correct(a, T), Γ; ot `
T , and a; H; T → a′; H ′; T ′, then there exists someΓ′ extending
Γ such thatΓ′ ` H ′ : Γ′, correct(a′, T ′), and Γ′; ot ` T ′.

Because·; ot ` e : τ implies the initial program state type-checks
(i.e.,` ◦; ·; e), Theorem 3.1 is a corollary to Lemmas 3.2 and 3.3.

4. TheWeak Language
This section revisits the choice inStrongBasic that if one thread is
executing a transaction, then no other thread may access the heap.
Allowing such heap accesses lets a race between transactional and
nontransactional code violate a transaction’s isolation. This prop-
erty is often referred to as weak atomicity (Blundell et al. 2006), so
we call our language with this behaviorWeak. Many software im-
plementations of transactional memory use weak isolation because
it is simpler to implement and usually improves performance. In-
tuitively, if transactional and non-transactional code do not access
the same memory, then allowing heap accesses concurrently with
transactions does not lead to any additional behavior. The main the-
orem we present validates this intuition. Given the subtleties of race
conditions and isolation, it is wise not to rely on intuition alone.

4.1 Operational Semantics

ChangingStrongBasic to produceWeak is extremely simple; we
leave the syntax unchanged and replace the operational rules for
reading and writing heap locations:

τ ::= int | reft τ | τ
ε→ τ ′

t ::= ot | wt
ε ::= emp | t
Γ ::= · | Γ, x:τ | Γ, l:(τ, t)

Figure 8. Weak Type-System Syntax

GET

a; H; !l → a; H; H(l); ·

SET

a; H; l := v → a; H, l 7→ v; v; ·

That is,◦ is no longer required for heap accesses (but it is still
required to enter a transaction).

This new language clearly allows every sequence of steps
StrongBasic does (rulesGET and SET apply strictly more often),
and it allows more. For example, from the program state:

◦; l1 7→ 5, l2 7→ 6; (atomic (seq(l2 := 7, l1 := !l2)))
‖ (l2 := 4)

Weak allows a sequence of steps where the final value inl1 is 4.
Therefore, the two languages are not equivalent, but there are still
many programs for which they are (i.e., any result possible in one
language is possible in the other). In particular, it is intuitive that
for a program to distinguish the two semantics it must have thread-
shared mutable data that is accessed inside and outside transactions.
We now define a type system that allows only programs for which
the two languages are equivalent.

4.2 Type-And-Effect System for Ensuring Serializability

Our type-and-effect system enforces a partition in which each
memory location can be accessed outside transactions or inside
transactions but not both. More expressive type systems are pos-
sible (see Section 6), but this system suffices for showing the key
ideas required to prove equivalence assuming a static discipline. It
also corresponds to the partition enforced by the monads in STM
Haskell (Harris et al. 2005).

The syntax for types is in Figure 8. Our effects are the same
as inStrongNestedParallel; the difference is we now use them to
restrict heap accesses. As such, reference types now carry an anno-
tation indicating a side of a partition. For example,refwt (refot int)
is the type of an expression that produces a label that can be ac-
cessed (read or written) inside transactions and that contains a label
that can be accessed outside transactions (and the pointed-to label
contains an integer). Notice pointers from one side of the partition
to the other are allowed. Continuing our example, ifx has type
refwt (refot int), then(atomic (!x)) := 42 would type-check.

Our typing judgment has the same form as before,Γ; ε ` e :
τ , meaninge has typeτ and effectε whereε being wt, ot, or
emp meanse is safe inside transactions, outside transactions, or
anywhere, respectively. In fact, except for disallowingspawnoc e
and spawnip e (because like inStrongBasic we have only top-
level spawn), most of the typing rules are identical to those in
StrongNestedParallel. The differences are in Figure 9. RulesT-
SET andT-GET require the annotation on the reference type to be
the same as the overall effect, which is what enforces the partition
on all accesses. Notice ruleT-REF has no such requirement; it is
safe to allocate anot reference inside a transaction and vice-versa.
(At allocation-time the new memory is thread-local.) To extend the
type system to run-time states,T-LABEL usesΓ to determine the
t for the accessed label. Thist can differ from the effect of the
expression becauset controls access to the label’scontents. As
before, we extend the type system only for the proofs; the partition
and annotations are entirely conceptual (i.e., types are erasable).

Γ; ε ` e : τ

T-SET
Γ; t ` e1 : reft τ Γ; t ` e2 : τ

Γ; t ` e1 := e2 : τ

T-GET
Γ; t ` e : reft τ

Γ; t ` !e : τ

T-REF
Γ; ε ` e : τ

Γ; ε ` refe : reft τ

T-LABEL
Γ(l) = (τ, t)

Γ; ε ` l : reft τ

T-INATOMIC
Γ; wt ` e : τ correct(a, e)

Γ; ε ` inatomic(e) : τ

Figure 9. Weak Type System (omitted rules and definitions are the same as in Figures 5, 6, and 7)

The proofs of preservation and progress forWeak are similar to
the proofs forStrongNestedParallel, but type safety now ensures
evaluation preserves the heap partition. This invariant is necessary
for the equivalence result we discuss next.

4.3 Weak/Strong Equivalence Under Partition

Our primary result is that any program that type-checks has the
same possible behaviors underStrongBasic andWeak. Formally,
letting →∗

s mean 0 or more steps under the strong semantics and
→∗

w mean 0 or more steps under the weak semantics we have:

Theorem 4.1 EquivalenceIf ·; ot ` e : τ , then◦; ·; e →∗
s a; H; T

if and only if◦; ·; e →∗
w a; H; T .

In fact, the equivalence is stronger; the two semantics can pro-
duce the same states in the same number of steps. One direction
of the proof is trivial: any sequence of transitions underStrong-
Basic is also a sequence of transitions underWeak. The other di-
rection (given a weak transition sequence, produce a strong transi-
tion sequence) is much more interesting. Space constraints compel
a high-level description but the full proof is available (Moore and
Grossman 2007).

We strengthen the induction hypothesis as follows: IfWeak can
producea; H; T in n steps, thenStrongBasic can producea; H; T
in n steps. Moreover, ifa = •, thenStrongBasic can produce
a; H; T in n steps using a sequence where a suffix of the sequence
is the active thread entering the transaction and then taking some
number of stepswithout steps from any other threads interleaved.
In other words, the current transaction could have run serially at the
end of the sequence.

In maintaining this stronger invariant, the interesting case is
when the next step underWeak is done by a thread not in the
transaction. A key lemma lets us permute this non-transactional
step to the position in the strong-semantics sequence just before
the current transaction began, and the ability to permute like this
without affecting the resulting program state depends precisely on
the lack of memory conflicts that our type system enforces.

It is clear that this equivalenceproof relies on notions similar
to classic ideas in concurrent computation such as serializability
and reducibility. Note, however, that thetheoremis purely in terms
of two operational semantics. It says that given the type system
enforcing a partition, the language defined in Section 2 may be
correctly implemented by the language defined in Section 4. This
result is directly useful to language implementors and does not
require a notion of serializability.

However, theWeak language remains unrealistic because its
transactions never execute partially and then abort. The following
section’s language incorporates this significant complication.

5. TheWeakUndo Language
In practice, many implementations of transactions employ abort-
and-retry, undoing any changes a transaction has made and start-
ing again from the originalatomic expression. There are various
reasons to do this, such as avoiding a memory conflict with a con-
currently executing transaction or not having a transaction stay live

e ::= . . . | inatomic(a, e, Hlog, e0) | inrollback(Hlog, e0)

Figure 10. WeakUndo Syntax (extends Figure 1)

across a thread context-switch. Because these and other reasons are
low-level details not visible in the source language,3 the best way
to model abort-and-retry at a high-level is to let a transaction undo
its changes nondeterministically at any point. OurWeakUndo lan-
guage does precisely this, revealing interesting interactions with
both nested transactions and weak isolation.

5.1 Syntax and Operational Semantics

Figure 10 presents the new syntax and Figure 11 presents the new
evaluation rules.

Our source language is the same as forStrongBasic andWeak.
At run-time, transactions need extra state to enable rollback, so we
haveinatomic(a, e, Hlog, e0). Thea indicates whether the compu-
tatione currently has a nested transaction like inStrongNestedPar-
allel. This is important because we cannot perform an undo when
there is a nested transaction; it must be completed or undone first.
The Hlog is a log of labels written to and the values they had be-
fore the assignment. To undo a transaction’s memory effects, we
use the log to undo the assignments in last-in-first-out order. Syn-
tactically,Hlog maps labels to values like a heap, but unlike a heap
it is the first (or leftmost) entry for a label that holds the relevant
value. Finally,e0 is the transaction’s initial expression, so a trans-
action starts byatomic e0 becominginatomic(◦, e0, ·, e0) (i.e., no
nested transaction and an empty log).

To undo a transaction, we roll back the heap assignments one at
a time using the log. The syntaxinrollback(Hlog, e0) maintains the
state of an undo. It is likeinatomic except we do not need anya or
e. The log gets smaller as evaluation rolls back entries.

For the operational semantics, an evaluation step for one thread
producesHlog, which contains the entries that must be appended to
the log in the nearest enclosing transaction.CONTEXT propagates
such entries and rules likeSEQ (not shown) produce the empty log
·. SET produces the one-entry logl 7→ H(l), i.e., l maps to the
value before the assignment while updating the heap as usual.GET
produces an empty log; there is nothing to undo. Most importantly,
INATOMIC appends the log produced by the subexpression eval-
uation4 and propagates the empty-log. If a transaction eventually
aborts, it never propagates any log entries. Else,COMMIT propa-
gates the entire log for the next enclosing transaction in one step.
Because logs are unneeded outside transactions,PROGRAM does
not use the log its hypothesis produces.

A rollback occurs by usingENTER ROLLBACK, then using one
DO ROLLBACK for each log entry, and finally usingCOMPLETE
ROLLBACK. To begin rollback, there must be no nested transac-

3 In the case of memory conflicts, false-sharing issues that arise from de-
tecting conflicts at a coarse granularity (e.g., using hashing or cache-lines)
can make a conflict unpredictable at the source level.
4 By HlogH

′
log we mean the log whereH′

log follows Hlog, so the last-in-
first-out undo will process theH′

log entries before theHlog entries.

a; H; e → a′; H ′; e′; T ; Hlog

CONTEXT

a; H; e → a′; H ′; e′; T ; Hlog

a; H; E[e] → a′; H ′; E[e′]; T ; Hlog

SET

a; H; l := v → a; H, l 7→ v; v; ·; l 7→ H(l)

GET

a; H; !l → a; H; H(l); ·; ·

ENTER ATOMIC

◦; H; atomic e → •; H; inatomic(◦, e, ·, e); ·; ·

INATOMIC

a; H; e → a′; H ′; e′; ·; H ′
log

•; H; inatomic(a, e, Hlog, e0) → •; H ′; inatomic(a′, e′, HlogH
′
log, e0); ·; ·

COMMIT

•; H; inatomic(◦, v, Hlog, e0) → ◦; H; v; ·; Hlog

ENTER ROLLBACK

•; H; inatomic(◦, e, Hlog, e0) → •; H; inrollback(Hlog, e0); ·; ·

DO ROLLBACK

•; H; inrollback(Hlog, l 7→ vold, e0) → •; H, l 7→ vold; inrollback(Hlog, e0); ·; ·

COMPLETE ROLLBACK

•; H; inrollback(·, e0) → ◦; H; atomic e0; ·; ·

a; H; T → a′; H ′; T ′

PROGRAM

a; H; e → a′; H ′; e′; T ; Hlog

a; H; T1 ‖ e ‖ T2 → a′; H ′; T1 ‖ e′ ‖ T2 ‖ T

Figure 11. WeakUndo Operational Semantics (selected rules omitted)

a lx ly lz lm ln Thread 1 Thread 2
◦ 0 0 0 0 0 atomic (if (!lx) (ly := 1) (lz := 1)) lx := 1; ln :=!lz; lm :=!ly

→∗ • 0 0 1 0 0 inatomic(◦, 1, lz 7→ 0, (if (!lx) (ly := 1) (lz := 1))) lx := 1; ln :=!lz; lm :=!ly
→∗ • 1 0 1 0 1 inatomic(◦, 1, lz 7→ 0, (if (!lx) (ly := 1) (lz := 1))) lm :=!ly
→∗ ◦ 1 0 0 0 1 atomic (if (!lx) (ly := 1) (lz := 1)) lm :=!ly
→∗ ◦ 1 1 0 0 1 1 1
→∗ ◦ 1 1 0 1 1 1 1

Figure 12. Selected states from aWeakUndo trace, starting with◦; H; T whereH maps each label to0 andT contains Thread 1 and Thread
2. In the end,lm andln map to 1. UnderWeak, Thread 1 could not change bothly andlz.

tion else the entries in its log would be lost. The◦ in the inatomic
expression inENTER ROLLBACK enforces this requirement. Dur-
ing rollback, the top-level transaction state remains•; we cannot
start another transaction until the rollback is complete. Finally,
COMPLETE ROLLBACK produces anatomic expression ready to
(re)execute, but another transaction may run first.

After rollback all labels have the values they had before the
transaction began, but the heap is not exactly the same. Memory
allocation (ruleALLOC, not shown in Figure 11) doesnot produce
a log entry and rollback doesnot remove the new label. However, it
will be unreachable (i.e., garbage) after the transaction rolls back.

Figure 12 shows an example trace possible inWeakUndo but
not in Weak or StrongBasic; it is similar to the example in Sec-
tion 1. Each row represents a program state (not every state is
shown). The transaction in Thread 1 rolls back between the third
and fourth rows and its reexecution takes the other conditional
branch. However, Thread 2 uses nontransactional code to see a
write from Thread 1 before that write is rolled back. Notice the ini-
tial state shown would not type-check under our effect system for
partitioning the heap becauselx, ly, andlz are all accessed inside
(Thread 1) and outside (Thread 2) transactions.

5.2 Type-And-Effect System

For source programs, we can use the same type system we do for
Weak to ensure the same memory is not used inside and outside
transactions. Extending the type system to the newinatomic and

inrollback forms requires maintaining a number of technical in-
variants. For example, all log entries must be for labels with effect
wt. Given these details (see the technical report), Preservation and
Progress hold as in the otherAtomsFamily languages.

Though we believeWeakUndo is equivalent toStrongBasic,
for simplicity our current proof of this result does not consider
nested transactions. Fortunately, formalizing this simplification re-
quires only a small change. We can forbid nested transactions by
type-checkingatomic e only under effectot rather thanε:

T-ATOMIC
Γ; wt ` e : τ

Γ; ot ` atomic e : τ

Type-checkinginatomic requires an analogous change. Preserva-
tion and Progress also hold for this more restrictive type system.

5.3 WeakUndo/Strong Equivalence

Using the type system described above and letting→∗
s mean 0 or

more steps underStrongBasic and→∗
wu mean 0 or more steps

underWeakUndo, we have the following theorem:

Theorem 5.1 EquivalenceIf ·; ot ` e : τ , then:
(1) If ◦; ·; e →∗

s ◦; H; T , then◦; ·; e →∗
wu ◦; H; T

and
(2) If ◦; ·; e →∗

wu ◦; H; T , then there exists anH ′ such that
◦; ·; e →∗

s ◦; H ′; T and for all l and v, if H ′(l) = v, then
H(l) = v.

This theorem is weaker than the analogous theorem forWeak in
two interesting ways. First,WeakUndo may produce a larger heap
(the domain ofH may exceed the domain ofH ′, butH restricted
to the domain ofH ′ must beH ′) because aborted transactions can
generate garbage. Second, the equivalence holds only whena is ◦,
i.e., no transaction is executing. Ifa is •, thenWeakUndo may be
performing a rollback andStrongBasic has no corresponding state.
Also, as a technical point, the different syntax forinatomic in the
languages precludes having syntactically equal programs whenever
a transaction is executing.

While part (1) of the theorem is trivial, part (2) is not. The proof,
detailed in the technical report and briefly summarized here, cannot
ignore states wherea is •. Instead, we must show that transactions
in WeakUndo are serializable (as in the proof forWeak) and
that rollback is correct (produces a state close enough to the one
before the transaction began). Because the latter is much easier to
show under strong isolation, we define an intermediate language
StrongUndo in which we haveinrollback and the corresponding
evaluation rules as inWeakUndo but when one thread is executing
a transaction, no other thread can execute. We then have these two
lemmas (with→∗

su for evaluation underStrongUndo):

Lemma 5.2 If ·; ot ` e : τ and ◦; ·; e →∗
wu a; H; T , then

◦; ·e →∗
su a; H; T .

Lemma 5.3 If ·; ot ` e : τ and ◦; ·; e →∗
su ◦; H; T , then there

exists anH ′ such that◦; ·; e →∗
s ◦; H ′; T and for all l and v, if

H ′(l) = v, thenH(l) = v.

Proving the first lemma follows exactly the proof strategy de-
scribed in Section 4.3 forWeak and StrongBasic, with addi-
tional cases for the rollback steps. Proving the second lemma re-
quires a strengthened induction hypothesis arguing that whenever
StrongUndo is executing a transaction, all the following hold:

• If StrongUndo is not rolling the transaction back, thenStrong-
Basic could get to a similar state.

• If StrongUndo is not rolling the transaction back, but it chose
to from this point, then it would produce a state just like before
the transaction started (plus possible garbage).

• If StrongUndo is rolling the transaction back, then after com-
pleting the rollback it will have a state just like before the trans-
action started (plus possible garbage).

As a corollary,Weak andWeakUndo are equivalent for well-
typed programs because both are equivalent toStrongBasic. We
were surprised that we did not proveWeakUndo equivalent to
Weak directly, but it is not clear to us how to do so.StrongUndo
turned out to be a crucial technical tool. Abadi et al. (2008) inde-
pendently reached a very similar conclusion, which indicates that
this approach is indeed the natural one.

6. Future Work
Because theAtomsFamily approach is amenable to investigating
different features, there are many directions for future work. We
first describe a language that is in many ways dual toWeakUndo
but for which we have not yet proven relevant theorems. We then
consider other ways to define transactional semantics, make our
type systems more expressive, or add new language features.

6.1 TheWeakOnCommit Language

Instead of supporting abort-and-retry by keeping a log of old val-
ues, we can maintain a private copy of updated heap values in a
transaction and propagate updated values only when a transaction

commits. We have fully defined the syntax and operational seman-
tics of such a language (see the technical report), which we call
WeakOnCommit, but have not yet proven safety and equivalence
results for this language. This section sketchesWeakOnCommit
and its relation toWeakUndo.

At run-time, transactions have the forminatomic(e, H, e0)
wheree ande0 are like inWeakUndo, but H is an “on-commit”
heap containing labels allocated or updated by the transaction so
far. Inside a transaction, any assignment or allocation is propagated
out only to the innermost transaction, where it is added to theH. To
read a reference, the operational semantics looks first at the heap
for the closest containing transaction and then in the next closest
heap if it is not there.

To handle this gracefully in a formal operational semantics, the
judgment for evaluating an expression uses astack of heapsS
whereS is defined inductively as empty or a stackS::H where
H is the shallowest stack element. We then have the judgment
a; S; e → a′; S′; e′; T . Outside of a transaction,S is just the
outermost heap, i.e., theH in the program statea; H; T . Inside
a transaction, we have a deeper stack:

INATOMIC

a; S::H; e → a′; S::H ′; e′; ·
•; S; inatomic(e, H, e0) → •; S; inatomic(e′, H ′, e0); ·

Evaluation ofe can changeH (which is empty when the transaction
starts) but notS. For example, the rule for assignment is:

SET

a; S::H; l := v → a; S::(H, l 7→ v); v; ·
However, evaluation needs the entire stackS::H because the rule
for !l searches the stack in order fromH outward.

Aborting a transaction inWeakOnCommit takes only one step
and can apply even if there is a nested transaction:

ROLLBACK

•; S; inatomic(e, H, e0) → ◦; S; atomic e0; ·
On the other hand, to commit a transaction we use the new syn-
tax form incommit(H, v). A transactioninatomic(v, H, e0) can
step toincommit(H, v), after which abort is impossible. Then el-
ements ofH are propagated out one label at a time, removing
them fromH, and finallyincommit(·, v) becomesv. Whereas in
WeakUndo the heap ininrollback(H, e0) maps labels to old val-
ues, inWeakOnCommit theH in incommit(H, v) maps labels to
new values.

For programs that do not type-check under our type-and-effect
system, strange behaviors can arise. As in actual implementations,
we have defined the in-commit rules to propagate the new values for
the labels in an arbitrary order.5 Hence, nontransactional code rac-
ing with atomic (seq(x := 1, y := 1)) could see the assignment to
y before the assignment tox. Our prior work shows how this flexi-
bility leads to strange results (Shpeisman et al. 2007). In the future,
we intend to proveWeakOnCommit equivalent toStrongBasic for
well-typed programs and to explore the extent to whichWeakUndo
andWeakOnCommit are equivalent for ill-typed programs.

6.2 More Permissive Semantics

There are several ways to relax the type-and-effect system for
Weak andWeakUndo without invalidating our equivalence results.
For example, we could have invariants for thread-local or read-only
data because both can be accessed inside and outside transactions
without interleaving with other threads causing problems. Another
extension would be “partition polymorphism,” which would allow
some functions to take arguments that could point into either side

5 Implementations have strange orders if, for example, they use hashtables.

of the partition, depending on the call-site. This extension would
require type-level variables that range over effects.

The AtomsFamily can also be extended with languages that
have more permissive dynamic semantics (i.e., allow more behav-
iors). For example, we could support open-nesting by having a con-
structopen(e) where the effects ofe are never undone even if an
enclosing transaction aborts (Moss and Hosking 2005). Hopefully
we can define sufficient conditions under which open-nesting is
“safe” in the sense that other threads cannot determine that a trans-
action aborted. We would also like to investigate relaxed memory
models (Grossman et al. 2006; Manson et al. 2005), which can be
awkward because it is unnatural for a formal operational semantics
not to be sequentially consistent.

6.3 Other Language Interactions

More languages similar to theAtomsFamily could allow additional
constructs and combinations thereof that merit investigation. For
example, combining the weak isolation ofWeak and the nested
parallelism ofStrongNestedParallel is straightforward for the se-
mantics, but the type system adjustments needed to preserve equiv-
alence remain unclear. In addition, the interaction of transactions
with exceptions (Harris 2004; Ringenburg and Grossman 2005) or
first-class continuations (Kimball and Grossman 2007) needs to be
defined precisely. Programs using transactions also need fairness
guarantees from the thread scheduler and conflict manager; inte-
grating such guarantees into our models would be valuable.

7. Related Work
7.1 Prior Work on Operational Semantics

The most closely related prior work uses operational semantics to
define various aspects of transactions. All such work we are aware
of has significantly different foci and techniques, either focusing
on implementation-level issues or modeling transactions as a single
computational step.

First, Jagannathan et al. (2005) and Vitek et al. (2004) use a vari-
ant of Featherweight Java (Igarashi et al. 2001) to define a frame-
work in which different transactional implementations (such as ver-
sioning or two-phase locking) can be embedded and proven correct
by establishing a serializability result. They support parallelism
within transactions by requiring each thread in the transaction to
execute a “commit” statement for the transaction to complete. This
is similar but not identical to ourspawnip; they have no analogue
of our other spawn flavors nor any effect system. Formally, they
assume all code executes within a transaction; there is no notion of
weak isolation. Their run-time state and semantics is, in our view,
more complicated, with thread identifiers, nested heaps, and traces
of actions. While some of this machinery may be necessary for
proving lower-level implementation strategies correct, it is less de-
sirable for a high-level model. Though their system and ours have
many technical differences, the fundamental idea of permuting in-
dependent actions arises (unsurprisingly) in both settings.

Second, Harris et al. (2005) present an operational semantics for
STM Haskell. Like our work, it is high-level, with one transaction
executing at a time. However, the semantics is layered such that an
entire transaction occurs as one step at the outer layer, essentially
using a large-step model for transactions that does not lend itself to
investigating nested parallelism nor weak isolation. Indeed, they do
not have nested parallelism and the partition between mutable data
accessed inside and outside transactions (enforced by a monad)
lets them define strong isolation yet implement weak isolation. It
is not significant that we enforced a partition with an effect sys-
tem rather than monads as the two technologies have well-known
connections (Wadler 1999). Rather, our contribution is proving that
given a partition, strong and weak isolation are indistinguishable.

Third, Wojciechowski (2005) proves isolation for a formal lan-
guage where transactions with nested parallelism (called tasks in
the work) explicitly acquire locks before accessing data and the
beginning of the task must declare all the locks it might acquire.
Explicit locking and version counters leads to a lower-level model
and an effect system that is an extension of lock types (Flanagan
and Abadi 1999). The main theorem essentially proves a particular
low-level rollback-free transaction mechanism correct.

Finally, Liblit (2006) gives an operational semantics for the
hardware-based LogTM (Moravan et al. 2006). This assembly lan-
guage is at a much lower level. It has neither nested parallelism nor
weak isolation.

7.2 Concurrent Work on Operational Semantics

Concurrent with our work, Abadi et al. (2008) also developed
a small-step operational model for transactions. Among various
differences in the basic approach, the most significant is that we
have a lexically scoped transaction (atomic (e)) whereas they
have primitives for starting and ending transactions. Because they
prohibit starting a transaction within another, they do not have any
notion of nested transactions.

Both projects investigated weak isolation with reassuringly sim-
ilar results. In our terms, Abadi et al. also provedWeakUndo equiv-
alent to StrongBasic and even followed the approach of using
StrongUndo as an intermediate point. In provingWeak equivalent
to StrongBasic, they used a semantic notion of memory conflict
rather than our more restrictive syntactic type-and-effect system.

Beyond weak isolation, the projects have considered different
extensions. Abadi et al. have not considered parallelism within
transactions. Instead, they have considered a model where multiple
threads can execute transactions simultaneously but any conflict
aborts all the transactions. This model reveals some additional
anomalies thatWeakUndo does not.

7.3 Unformalized Languages

Many recent proposals for transactions in programming languages
either do not discuss the effect of spawning inside a transaction
or make it a dynamic error. In other words, to the extent it is
considered, the most common flavor isspawntl. When designing
the AtomCaml system (Ringenburg and Grossman 2005), we felt
spawnoc would be most natural, but it was the only option. The
Venari system for ML (Haines et al. 1994) had something close to
spawnip, but it was up to the programmer to acquire locks explicitly
in the style pioneered by Moss (1985).

Weak isolation has primarily been considered for its surprising
pitfalls, including its incomparability with strong isolation (Blun-
dell et al. 2006) and situations in which it leads to isolation vi-
olations that corresponding lock-based code does not (Larus and
Rajwar 2006; Hudson et al. 2006; Shpeisman et al. 2007). It is be-
lieved that all examples of the latter require violating the partition
property we defined in Section 4, which is why we proved this re-
sult forWeak andWeakUndo.

7.4 Other Semantics

Operational semantics gives meaning directly to source programs,
which lets us study how transactions interact with other language
features, define type systems, and provide a direct model to pro-
grammers. Other computational models, based on notions of mem-
ory accesses or computation dependencies, can prove useful for
investigating properties of transactions. Recent examples include
work on specifying fairness and conflicts (Scott 2006), work on us-
ing the computation-centric model of Frigo and Luchangco (1998)
to give semantics to open nesting (Agrawal et al. 2006), and work
on defining open nesting in terms of transactions’ read and write
sets (Moss and Hosking 2005).

8. Conclusions
TheAtomsFamily is a collection of core languages that uses small-
step operational semantics to model software transactions. We have
used this approach to investigate the precise meaning of both paral-
lelism within transactions and weak isolation. Our approach reveals
subtle differences among similar semantics without exposing im-
plementation details of transactional memory. We have used type-
and-effect systems to restrict programs so that evaluation does not
get stuck and to establish restrictions under which differentAtoms-
Family languages are equivalent.

In general, our work brings a needed level of rigor to the def-
inition of programming languages containing software transac-
tions. We have provided several possible definitions, an approach
that makes defining additional possibilities straightforward, and
metatheory proofs that reveal the key invariants needed for trans-
actions to work as expected.

References
Mart́ın Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics

of transactional memory and automatic mutual exclusion. In35th ACM
Symposium on Principles of Programming Languages, 2008.

Ali-Reza Adl-Tabatabai, Brian Lewis, Vijay Menon, Brian R. Murphy,
Bratin Saha, and Tatiana Shpeisman. Compiler and runtime support
for efficient software transactional memory. InACM Conference on
Programming Language Design and Implementation, 2006.

Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Memory models
for open-nested transactions. InACM SIGPLAN Workshop on Memory
Systems Performance & Correctness, 2006.

Eric Allen, David Chase, Joe Hallet, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-
Hochstadt. The Fortress language specification, version 1.0β, 2007.
http://research.sun.com/projects/plrg/Publications/fortress1.0beta.pdf.

Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Subtleties
of transactional memory atomicity semantics.Computer Architecture
Letters, 5(2), 2006.

Brian D. Carlstrom, JaeWoong Chung, Austen McDonald, Hassan Chafi,
Christos Kozyrakis, and Kunle Olukotun. The Atomos transactional
programming language. InACM Conference on Programming Language
Design and Implementation, 2006.

Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchangco, Mark
Moir, and Daniel Nussbaum. Hybrid transactional memory. InInterna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, 2006.

Cormac Flanagan and Martı́n Abadi. Types for safe locking. InEuropean
Symposium on Programming, volume 1576 ofLecture Notes in Com-
puter Science, 1999.

Matteo Frigo and Victor Luchangco. Computation-centric memory models.
In ACM Symposium on Parallel Algorithms and Architectures, 1998.

Dan Grossman, Jeremy Manson, and William Pugh. What do high-level
memory models mean for transactions? InACM SIGPLAN Workshop on
Memory Systems Performance & Correctness, 2006.

Nicholas Haines, Darrell Kindred, J. Gregory Morrisett, Scott M. Nettles,
and Jeannette M. Wing. Composing first-class transactions.ACM Trans.
on Programming Languages and Systems, 16(6):1719–1736, 1994.

Tim Harris. Exceptions and side-effects in atomic blocks. InPODC
Workshop on Concurrency and Synchronization in Java Programs, 2004.

Tim Harris and Keir Fraser. Language support for lightweight transactions.
In ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2003.

Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy.
Composable memory transactions. InACM Symposium on Principles
and Practice of Parallel Programming, 2005.

Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing
memory transactions. InACM Conference on Programming Language
Design and Implementation, 2006.

Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible framework
for implementing software transactional memory. InACM Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions, 2006.

Richard Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin
Hertzberg. McRT-Malloc: A scalable transactional memory allocator.
In International Symposium on Memory Management, 2006.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
Java: a minimal core calculus for Java and GJ.ACM Trans. on Program-
ming Languages and Systems, 23(3), 2001.

Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony L. Hosking. A
transactional object calculus.Science of Computer Programming, 57(2),
2005.

Aaron Kimball and Dan Grossman. Software transactions meet first-class
continuations. In8th Annual Workshop on Scheme and Functional
Programming, 2007.

Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu, and
Anthony Nguyen. Hybrid transactional memory. InACM Symposium on
Principles and Practice of Parallel Programming, 2006.

James R. Larus and Ravi Rajwar.Transactional Memory. Morgan &
Claypool Publishers, 2006.

Ben Liblit. An operational semantics for LogTM. Technical Report 1571,
University of Wisconsin–Madison, 2006.

Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory
model. In32nd ACM Symposium on Principles of Programming Lan-
guages, 2005.

Virendra J. Marathe, William N. Scherer, and Michael L. Scott. Adap-
tive software transactional memory. InInternational Symposium on Dis-
tributed Computing, 2005.

Katherine F. Moore and Dan Grossman. High-level small-step opera-
tional semantics for transactions (technical companion). Technical re-
port, Univ. of Wash. Dept. of Computer Science & Engineering, 2007.
http://www.cs.washington.edu/homes/kfm/atomsfamilyproofs.pdf.

Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D.
Hill, Ben Liblit, Michael M. Swift, and David A. Wood. Supporting
nested transactional memory in LogTM. In12th International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems, 2006.

J. Eliot B. Moss.Nested Transactions: An Approach to Reliable Distributed
Computing. The MIT Press, 1985.

J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory:
Model and preliminary architecture sketches. InSynchronization and
Concurrency in Object-Oriented Languages (SCOOL), 2005.

Michael F. Ringenburg and Dan Grossman. AtomCaml: First-class atomic-
ity via rollback. In10th ACM International Conference on Functional
Programming, 2005.

Michael L. Scott. Sequential specification of transactional memory seman-
tics. InWorkshop on Languages, Compilers, and Hardware Support for
Transactional Computing (TRANSACT), 2006.

Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steve Balen-
siefer, Dan Grossman, Richard Hudson, Katherine F. Moore, and Bratin
Saha. Enforcing isolation and ordering in STM. InACM Conference on
Programming Language Design and Implementation, 2007.

Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L.
Scott. Privatization techniques for software transactional memory.
Technical Report 915, Computer Science Department, University of
Rochester, 2007.

Jan Vitek, Suresh Jagannathan, Adam Welc, and Antony L. Hosking. A
semantic framework for designer transactions. InEuropean Symposium
on Programming, volume 2986 ofLecture Notes in Computer Science,
2004.

Philip Wadler. The marriage of effects and monads. In3rd ACM Interna-
tional Conference on Functional Programming, 1999.

Pawel T. Wojciechowski. Isolation-only transactions by typing and ver-
sioning. InACM International Conference on Principles and Practice
of Declarative Programming, 2005.

