High-Level Small-Step Operational Semantics for Transactions

Katherine F. Moore  Dan Grossman

University of Washington
{kfm, djg}@©cs.washington.edu

Abstract should happen “all at once” with respect to other parallel compu-

Software transactions have received significant attention as a way tof@tions: A construct likatomic (e) meanse should evaluate as

simplify shared-memory concurrent programming, but insufficient & transaction, which provides a mutual-exclusion mechanism that
focus has been given fo the precise meaning of software transac-a"o'ds many of the pitfalls of locks and condition variables. It dele-

tions or their interaction with other language features. This work 9ates 0 the language implementation the task of preserving the “all

begins to rectify that situation by presenting a family of formal lan- &t 0nce” illusion while striving to preserve parallelism among non-
guages that model a wide variety of behaviors for software trans- conflicting computations. Much recent work has investigated effi-

actions. These languages abstract away implementation details of- /€Nt implementation techniques (Harris and Fraser 2003; Harris

transactional memory, providing high-level definitions suitable for €t al- 2006; Adl-Tabatabai et al. 2006; Carlstrom et al. 2006; Mora-

programming languages. We use small-step semantics in order to’2n €t al. 2006; Kumar et al. 2006; Damron et al. 2006; Marathe

represent explicitly the interleaved execution of threads that is nec- &t @- 2005; Herlihy et al. 2006; Shpeisman et al. 2007).
essary to investigate pertinent issues. While this informal understanding of software transactions pro-

We demonstrate the value of our core approach to modeling Videés @ simple high-level semantics for programmers, unfortu-
transactions by investigating two issues in depth. First, we considernately' typical implementation approaches introduce complications

parallel nesting, in which parallelism and transactions can nest ar- hat forlce progrgmrrers t(t) ?bandonkth!;s S|dmple View. Ast a small
bitrarily. Second, we present multiple models for weak isolation, in eﬁlmpg, T\f’:lmy imp ?_men ‘;’1 lons n:_a ellf a ynlgaé)mlc etrf:O: 0 spawn
which nontransactional code can violate the isolation of a transac- & [féad whiie executing a transaction. 1f So, a library that encapsu-
tion. For both, type-and-effect systems let us soundly and statically lates a parallel algorithm cannot be called in the dynamic scope of
restrict what computation can occur inside or outside a transaction, 2h3atomic block.

We prove some key language-equivalence theorems to confirm that _EVEN more troubling are questions that arise from trying to give
under sufficient static restrictions, in particular that each mutable & Weak-isolation semantics to transactions. Under weak isolation,

memory location is used outside transactions or inside transactionshntransactional memory accesses bypass the mechanisms used

; . _to implement transactions. Recently, we (Shpeisman et al. 2007;
but not both), no program can determine whether the language im-
E)Iementatiorz’useSWEak isolation or strong isolation. guag Grossman et al. 2006) and others (Blundell et al. 2006; Larus and

Rajwar 2006; Hudson et al. 2006; Spear et al. 2007) have described

Categories and Subject DescriptorsD.1.3 [Programming Tech- many surprising behaviors that can result and that cannot be ex-
nique$: Concurrent Programming—~Parallel Programming; D.3.1 plained without understanding how transactions are implemented.
[Programming Languagés Formal Definitions and Theory— As just one example, consider this code in a Java-like language:
Semantics; D.3.3 Hrogramming Languagés I__anguage Con- Initially x=0, y=0, andb=true
structs and Features—Concurrent programming structures; F.3.2 Thread 1 ‘ Thread 2 ‘ Thread 3
[Logics and Meaning oflProgramsSemantlcs of Programming atomic { | atomic 1 prm—
Languages—Operational semantics 1f (b) b=false; | n=y;
General Terms Languages x=1; | }
else

. y=1;
1. Introduction }
1.1 The Need For Semantics Canm==1 andn==17?

Widespread availability of multicore architectures has incited ur- Despite races between Threads 1 and 3, intuitively Thread 1 does
gent interest in programming-language features that make it easieronly one assignment se or n or both stay0. However, weak-
to write correct and efficient parallel programs. Software transac- isolation implementations using “eager-update” (Harris et al. 2006;
tions are particularly appealing for shared-memory programming Adl-Tabatabai et al. 2006) can violate this intuition: transactions
because they let programmers declare that an entire computatiormay abort-and-retry multiple times and nontransactional code may
see partial results of aborted computations. Such behavior is im-
possible in lock-based code.
In general, weak isolation as well as the interaction between
Permission to make digital or hard copies of all or part of this work for personal or transactions a_nd Othel’ lfa_nguage features (SUCh as threjad'creatlon)
classroom use is granted without fee provided that copies are not made or distributedCAUSE semantic ambiguities that raise two sets of questions:

for profit or commercial advantage and that copies bear this notice and the full citation c desi | h desirable behavi
on the first page. To copy otherwise, to republish, to post on servers or to redistribute  ® Ca@n we design languages that prevent undesirable behaviors

to lists, requires prior specific permission and/or a fee. while still permitting typical implementations? What restric-
POPL’08, January 7-12, 2008, San Francisco, California, USA. tions must we put on source programs? How can we prove these
Copyright(© 2008 ACM 978-1-59593-689-9/08/0001. .. $5.00 restrictions suffice?



¢ If we make some errors the programmers’ responsibility, what

Our languages and type systems are not exhaustive. To the

guarantees must the language still provide? Can an illegal contrary, we consider it a strength that new variants are easy to
thread-creation or data-race lead to an arbitrary program statedefine and compare, nontrivial proofs notwithstanding. We expect

(like C array-bounds violations do)? to

Precisely answering these questions requires rigorous semantic
and proofs. Such semantics must be high-level enough to provide
a simple definition to programmers yet detailed enough to incor-

investigate more language features by adding toAtwens-

;amily (see Section 6) and encourage others to do the same.

1.3 Specific Results

porate relevant features. Restrictions on programs must be definedVhile generally useful, our approach has also produced several
in well-understood terms, such as with a type system. Variations Specific insights and theorems. The most important results are sum-
in semantic definitions should be compared by showing they are marized here and explained in the remainder of the paper:

unobservable (via an equivalence proof) or observable (via an ex-
ample program that distinguishes them). Proofs should reveal the
key invariants that motivate the semantics and type systems.

1.2 Our Family of High-Level Small-Step Semantics

To meet this need, we use operational semantics to define several ®
core languages based on a call-by-vahiealculus with a muta-
ble heap, threads, and transactions. Collectively, we call these lan-
guages theAtomsFamily. The languages differ where needed to
investigate a language feature or design decision. They are not de-
signed for reasoning about transactional-memory implementation
details. Rather, they provide high-level definitions of transactions
where only one transaction runs at a time. This high level matches
how we want programmers to reason about transactions so it is
appropriate for language definitions. At the same time, we use a
small-step semantics in which transactions take multiple steps to
complete. A potentially simpler transactions-in-one-step approach
would make it too awkward to investigate parallel nesting or weak
isolation because both features need threads to interleave while a
transaction executes. As Section 7 discusses, a high-level small-
step semantics distinguishes our approach from prior work.

We consider four languages in depth:

e StrongBasic (Section 2) is the simplest language. While a
transaction executes, it cannot spawn threads and other threads
that already exist may not read or write mutable heap locations.

e StrongNestedParallel (Section 3) extend$trongBasic with

For nested transactions to interact properly with either par-
allelism within transactionsSgrongNestedParallel) or abort-
and-retry (WeakUndo), the state of a transaction should include
whether another transaction is currently executing inside it.

A language with arbitrarily nested parallelism and transactions
(StrongNestedParallel) can be type-safe even if certain forms
for spawning threads can be used only in certain contexts.

Weak isolation \Veak) and strong isolationStrongBasic) are
indistinguishable (i.e., the languages are equivalent) under a
type system that prohibits the same heap location from being
accessed inside and outside transactions. The key to the proof
is showing that any computation interleaved with the current
transaction would have produced the same result had it pre-
ceded the transaction.

Weak isolation with abort-and-retry\eakUndo) and strong
isolation GtrongBasic) are indistinguishable under a similar
type system as the previous result, but with some interest-
ing caveats: (1WeakUndo has some intermediate states un-
reachable fronstrongBasic, (2) WeakUndo may allocate more
memory, and (3) for simplicity we strengthen the type system to
prohibit nested transactions. The key to the proof is to separate
the necessary argument that the operational semantics imple-
ments abort correctly.

Fortunately, the equivalence results Yoeak andWeakUndo con-
firm conventional wisdom. Given the until recently unforeseen be-

multiple ways to spawn threads. The different ways behave haviors resulting from races between transactional and nontransac-

differently inside and outside transactions.

e Weak (Section 4) is likeStrongBasic except nontransactional

tional code, it is reassuring to prove that such races are necessary
for weak isolation to exhibit such behaviors. Moreover, the struc-

code can access the heap concurrently with a transaction, thusture of our proofs can serve as a guide for extending the results to

allowing a definition of weak isolation in which transactions act
as if they are all protected by a single lock.

* WeakUndo (Section 5) is likeWeak except a transaction may
abort-and-retry by undoing its heap updates and restarting.

We also sketch two othektomsFamily membersWeakOnCom-

mit and StrongUndo. WeakOnCommit models transactions that
can abort-and-retry, but unlike WeakUndo, transactions do not
update the heap until they commit. WeakUndo, committing
takes only one step; iWeakOnCommit, aborting takes only one
step. In-depth investigation dfVeakOnCommit remains future
work. StrongUndo has the strong isolation 8ftrongBasic andthe
abort-and-retry oWWeakUndo. This unusual combination is a cru-
cial intermediate language for proving that, under a type system we
define,WeakUndo andStrongBasic are suitably equivalent.

Our type systems are all similar type-and-effect systems that
classify code based on where it can run safely: only inside trans-
actions, only outside transactions, or anywhere. $wongNest-
edParallel, our type system ensures forms of thread-creation that

make sense only inside transactions do not occur outside transac-

tions and vice-versa. FdVeak and WeakUndo, our type system

enforces that the same heap location is not accessed inside and out-

side a transaction. A simple variant can also preventainenic
block from executing in the dynamic scope of another.

more sophisticated (and less obviously correct) static invariants.
Full definitions and proofs appear in our technical report (Moore
and Grossman 2007).

2. TheStrongBasic Language

This section presents the syntax and small-step operational seman-
tics for aX-calculus with threads, shared memory, and transactions.
The language is largely a starting point for the additions and type
systems in the subsequent two sections. Three key design decisions
characterize our approach:

e The semantics ikigh-level It relies on implicit nondetermin-
ism to find a successful execution sequence. There is no notion
of transactions conflicting or aborting. Rather, a transaction is
always isolated from other threads because no thread may ac-
cess shared memory if another thread is in a transaction. This
simple semantics provides a correctness criterion for more real-
istic implementations and a simple model for programmers.

The semantics ismall-step In particular, transactions take
many computational steps to complete. While this decision is
an unnecessary complication firongBasic, it is essential for
considering the additional thread interleavings that parallelism
within transactions and weak isolation introduce.



thread evaluation ig; H;e — a'; H';e'; T, whereT is - if the
step does not spawn a thread and sefhi it does.

For conciseness, we use evaluation conte¥} to identify
where subexpressions are recursively evaluated. A single rule

)
Il

clx|Az.e]|er ez ]|seq(er,ez) |ifer ez es
| refe | e1 := ez | le | spawn, e | atomic e
| 1| inatomic(e)

13' = _C|| ;‘[xie’llv (CONTEXT) propagates changes from evaluating the subexpres-
T o | T’H . sion. As usual, the inductive definition &f describes expressions
a — 5 o with exactly one holg:] and E[e] means the expression resulting

from replacing the hole iZ with e. For exampleCONTEXT lets us
derivea; H;ref(seq(e1,e2)) — a'; H';ref(seq(el, e2)); T pro-
videda; H;e1 — a’; H';e};T. We do not treat the body of a
transaction as an evaluation context precisely because we do not
use the same anda’ for the subevaluation.

Rules for reducing sequences, memory allocations, and func-
tion calls are entirely conventional. lPpLY, e[v/z] means the
capture-avoiding substitution offor z in e.

The rules for reading and writing labels&€T andSET) require
a = o, meaning no other thread is executing a transaction. This

This language does not have an explicit abort/retry. Adding this €ncodes a high-level definition of strong isolation; it prohibits any
construct is easy; as in prior work (Harris et al. 2005) one simply memory conflict with a transaction. If no thread is in a transaction,
has no evaluation rule for it. A transaction that explicitly aborts then any thread may access the heap. We explain below how rule
is one that can never be chosen by the nondeterministic semanticsINATOMIC lets the thread executing a transaction access the heap.
However, this type of abort complicates stating type-safety because ~ The rules defining how an expression enters or exits a transac-

we would have to accommodate an abort preventing progress.  tion are of particular interest because they afiech thread can
enter a transaction only if = o (elseENTER ATOMIC does not ap-

2.1 Syntax ply), and it changes to e. Doing so prevents another thread from
entering a transaction unt@xiT ATomIC (applicable only if the
computation is finished, i.e., some valujechanges: back too.

A transaction itself needs to access the heap (which, as dis-
cussed above, requires = o) and execute nested transactions
(which requires before entry ané before exit), but. is e while a
transaction executes. That is why the hypothesis inindeomic
allows anya anda’ for the evaluation of the subexpressiarThat
way, thee in the program state; H; inatomic(e) constrains only
the otherthreads; the evaluation efcan choose any anda’ nec-
essary to take a step. If we requirednda’ to beo, thene could
access the heap but it could not evaluate a nested transaction.

Note rule INATOMIC ensures a transaction does not spawn a
thread (the hypothesis must produce thread-ppowhich en-
codes that all spawns must occur at top-level. An expression like
jnatomic(spawn,, e) is always stuck; there is ne and H with

hich it can take a step.

Figure 1. StrongBasic Syntax

e The semantics istrong Nontransactional code cannot observe
or influence partially completed transactions. We prove later
that strong-isolation semantics is equivalent to weak-isolation
semantics under certain conditions. One cannot do such a proof
without defining both semantics.

Figure 1 presents the formal abstract syntax for our first transac-
tional language. Most expression forms are typical far@lculus

with mutable references, including constant$, (variables ¢),
functions Q\x.e), function applicationsd; es), sequential compo-
sition (seq(e1, e2)), conditionals if e1 e2 es), memory allocation
(refe), assignmentd; := e2), and dereferencéd). Many omitted
constructs, such as records, would be straightforward additions. We
also have thread-creatiospéwn,, e), where thetl indicates it must

be used at top-level (not within a transaction), and atomic blocks
(atomic €) for executinge transactionally.

A program state has the formy H; T' wherea indicates if any
thread is currently executing a transactian £ e for yes and
a = o for no), H is a mutable heap (a mapping from labglalso
known as addresses, to values), &ds a collection of threads.
Each thread is an expression representing that thread’s remainin
computation. We usé&} || 7> to combine two thread collections
into a larger one, and we assufhis commutative, associative,and 2 3 Type System
has- (the empty collection) as an identity. We writen place of
- || e where convenient.

At run-time we need two new expression formstomic(e)
and!. The former represents a partially completed transaction witl
remaining computation. The latter represents a heap location.

The program-state componentleserves additional discussion.
Our semanticsallows at most one thread to execute a transaction
at a time. In essence is like a “global lock” wheree indicates 3. TheStrongNestedParallel Language
the lock is held. We daot suggest our language is a desirable yhile one reasonable semantics for spawn is that it is an error
implementation, but it is the high-level semantics that enforces for it to occur in a transaction, there are several reasons to al-
atomicity and isolation. We would like an efficient implementation  |ow other possibilities. First, there is no conceptual problem with
to be correct if, by definition, it is equivalent to our semantics. treating isolation and parallelism as orthogonal issues (Moss 1985;
Haines et al. 1994, Jagannathan et al. 2005). Secoadpiéwns a
thread (perhaps inside a library), themndatomic e behave dif-

Our small-step operational semantics (Figure 2) rewrites one pro- ferently. Third, for some computations it may be sensible to delay

We could present a type system firongBasic, but most of the
errors it would prevent are standard (e.g., using an integer as a

h function). The only non-standard “stuck states” so far occur when a
thread tries to perform a spawn inside a transaction. The type-and-
effect system presented in Section 3 prevents this error.

2.2 Operational Semantics

gram statez; H; T to anothera’; H'; T'. Source prograna starts any spawned threads until a transaction commits, and doing so is

with o; ;e and a terminal configuration has the formH; v, || not difficult to implement. Fourth, it is undesirable to forfeit the

... || vn, i.e., all threads are values (and no transaction is active). performance benefits of parallelism every time we need to isolate a

Although the source program contains only a singléhe evalua- computation from some other threads.

tion of e can spawn threads, which can spawn more threads, etc. This last issue becomes more important as the number of pro-
The rulePROGRAM chooses a thread nondeterministically and cessors increases; otherwise transactions become a sequential bot-

that thread takes a single step, which can afteand H as well tleneck. For example, consider a concurrent hashtable with insert,

as possibly create a new thread. So the judgment form for single- lookup, and resize operations. Resize operations may be relatively



a;H;e — a';H';e';T‘

CONTEXT
. a:H;e— a;H';e;T
E:=[]|Fe|vE|seq(E,e)|if Eezes|refE | E:=e|l:=F|!E — ;
a;H;Ele] — a';H';Ele]; T
IF-NZ
APPLY SEQ IF-Z c#0
a; H; (Ax.e) v — a; Hyelv/x]; - a; Hyseq(v,e2) — a; Hjes;- a;H;if 0eaes — a;H;es;-  a;Hjifceaes — a; Hjea;-
ALLOC
I ¢ Dom(H) SET GET SPAWN TL
a;Hyrefv — a; H,)l — v;l;- o;H;l:=v— o;H,l+— v;v;- o; H;l — oy H; H(1); a; H;spawn, e — a; H;0;5e
INATOMIC
/ ! /
ENTER ATOMIC EXIT ATOMIC a;Hie— a;H e
o; H; atomic e — ; H;inatomic(e); - e; H;inatomic(v) — o; H;v;- o; H;inatomic(e) — e; H';inatomic(e); -

a; H;T — o H; T

PROGRAM
a:H;e— d;H' ;5T
e ;T e Te— o sH Ty || e | T2 | T

Figure 2. StrongBasic Operational Semantics

a and two threadpoold,. andT;,. Thea indicates whetheg or

e == o | spawnq eE| S'?awnip ¢ | inatomic(a, e, Toc, Tip) any thread inT}, is currently executing a transactiofi,. holds
T u= int|refr |7 =7 the threads that will be produced as “on commit” threads when
e u= emp|ot|wt the transaction completes. The discussion of the semantics below
o= [T ar explainsinatomic further.
A single-thread evaluation step produces three possibly-empty
Figure 3. StrongNestedParallel Syntax (extends Figure 1) threadpoolsTy;, T,.., andT,. The evaluation rules for the three

flavors of spawn each put the new thread in the appropriate pool

with the other pools empty. ThREONTEXT rule propagates all three
rare and large yet still need to be isolated from other threads to threadpools out to evaluation of the larger expression. Other rules,
avoid the complexities of concurrent operations. By parallelizing like those for assignment, function application, etc., only change by
the resize operation within a transaction, we preserve correctnessproducing three empty pools instead of one. The rule for sequences
without letting sequential resize operations dominate performance. has been included as an example.

In the rest of this section, we exteBtrongBasic by adding sev- The PROGRAMrule requires that the thread chosen for evalua-
eral different flavors of spawn. This new languaggongNested- tion produces an empty;,, whereasl’; andT,. are added to the
Parallel, demonstrates that spawn expressions within transactionsglobal pool of threads, i.e., spawned immediately. Therefore, it is
can have reasonable semantics. We also present a type-and-effe@n error to usepawn;, outside a transaction.

system to ensure the different flavors are used sensibly. As in StrongBasic, entering a transaction changeso e. The
resulting expressiomnatomic(o, e, -,-) is a transaction with no
3.1 Syntax and Operational Semantics nested transaction (hence teno delayed threads (the firdtand

Figure 3 presents the new syntax and Figure 4 presents the change@0 internally parallel threads (the secopd
to the operational semantics. For a transactionatomic(a, e, Toc, Tip ), €ithere or a thread

The syntax additions are two new flavors of spawn expressions, " Zi» can take a step, USINGVATOMIC DISTINGUISHED Of
spawng. (for “on commit”) andspawn;, (for “internally parallel”). INATOMIC PARALLEL, respectlvely: The only reason to d|st|ngU|§h
The former is allowed anywhere, but if it occurs inside a trans- ¢S SOinatomic produces a value; in languages where the body is a
action, the spawned thread does not run until after the transactionStéteément that produces no result we could combine these two rules
commits. The latter is allowed only within a transaction and the PY includinge in T3,. In both rules, we evaluate some thread using
transaction does not commit until the spawned thread completes® @nd produce an’, 11", ¢’, T, andT},. As in StrongBasic, eval-
executing (i.e., becomes a value). One could certainly devise ad-Yation inside a transaction may not spawn a top-level thread. The
ditional flavors of spawn; we believe these two pdpswn, cover a’, To,, andT;, are added to the resulting expression, i.e., they are
a range of behaviors that are desirable in different situations. It is Part of the transaction’s new state. In particular, parallel threads in
reasonable to provide them all in one programming language, per_the transaction may produce other parallfel or on-commit .thre.ads.
haps with an undecoratedawn being a synonym for one of them. ~ Heap changes are propagated outward immediately, which is no
For example, the current Fortress specification (Allen et al. 2007) Problem because the outer stateis .
treatsspawn asspawny, but it also has constructs for fork-join style A transaction completes when the distinguished expression and
parallelism that our model could encode wégawn;,. all parallel threads are values. RuﬂmT ATOMIC thgn propagates

The inatomic expression, which as iStrongBasic does not out all the on-commit threads in one step. Notice a transaction

appear in source programs, has also changed. In addition to the"€Ver produces any threads visible outside the transaction until it
e whose eventual result is the transaction’s result, it now carries an COMMIts.



! ! ’
a;Hje — a’; H';e'5Tu; Toc; Tip

CONTEXT
! ! /
a;Hje— as;H e 5T0; Toc; Tip SEQ
! ! i . . . . o e L.
a;H;Ele] — a';H'; Ele); Tu; Toc; Tip a; H;seq(v,e2) — a; Hjez;-; ;-

SPAWN TL SPAWN OC SPAWN IP

a; H;spawn, e — a; H;0;e; ;- a; H;spawn, e — a; H;0;;e;- a; H;spawn,, e — a; H;0;+; ;€

ENTER ATOMIC EXIT ATOMIC

o; H;atomic e — e; H;inatomic(o,e,-,+); ;- o; H;inatomic(o, v, Toc, (v1 || ... || vn)) — o; H;v;+; Toc; -

INATOMIC DISTINGUISHED
a;Hye — a's H' €5 Tous Ty,
o; H;inatomic(a, €, Toc, Tip) — ®; H';inatomic(a’, €', (Toc || Toc)s (Tip || Tip)); 573 -

INATOMIC PARALLEL Lo o
a; Hye — a3 Hse's 5 To T,
e; H;inatomic(a, eo, Toc, (Tip || € || TZ;;)) — o; H';inatomic(a’, eq, (Toc || Toe), (Tip || € || T{;) | T{p)); ey

a;H;T —a;H'; T

PROGRAM
a;H;e — a' H' ;€' Ty Toes -
a;H;Ty e || To— o' sH Ty | e || Te || T || Toc

Figure 4. StrongNestedParallel Operational Semantics (selected rules omitted)

Unlike in StrongBasic, nested transactions are important; they all three flavors of spawn. Such an effect is sound but not useful
let one thread in a transaction perform a computation atomically because code that type-checked only under this most-permissive
with respect to other threads in the transaction. Each transactioneffect could run safely neither inside nor outside a transaction.
has an explicit: to ensure at most one of the threads is in a nested  Most other aspects of our effect system are standard. Expres-
transaction. Because we have strong isolation, if a thread is in asions that do not spawn threads can type-check with any effect.
transaction, then no parallel threads access the heap. However, iValues and variables are examples, ergconsTallows anye. By
the innermost transaction, parallel threads may access the heap sinot requiring effecemp in rules like T-CONST, rules like T-SEQ
multaneously. Note that on-commit threads spawned inside nestedand T-SET can use the same effect for both subexpressidfuy.
transactions do not run until the outermost transaction commits. example, we can derive:ref int; ot F seq(!z, spawn, 42) : int.
Other possibilities exist, but the soundness of our particular type- As expected, functions havatent effectsmeaning function types
and-effect system relies on this choice. carry an effect that occurs when the function is called. A function
itself can have any effect, but its body’s effect is included in the
effect of any call to it (seg-LAMBDA andT-APP). In T-APP, the
subeffect relation allows using a function with latent effestp
StrongNestedParallel has several error states. These include com- in a computation with effeat or wt. In practice, we expect most
mon type errors (e.g., treating an integer as a function), performing functions to type-check undemp; this subeffecting allows such
a top-level spawn inside a transaction, and performing an internally functions to be called anywhere.
parallel spawn outside a transaction. We now present a type-and- The most interesting rules are fatomic blocks and spawn
effect system that soundly and conservatively prohibits such errors expressions. The in atomic e must type-check undewt, but
(Figure 5). To prove type safety, Section 3.3 extends this type sys-the atomic block itself is allowed anywhere, which enables nested

3.2 Type System

tem to run-time states, including labels @ndtomic expressions. transactions and functions containiagpmic blocks that can be
T_he judgmentl;e e : 7 means (L) has typer yvhereF called inside and outside transactions. Becausspalln,; expres-
provides types for the free variableseqfand (2) executing only sions must execute outside transactions, the effect of the saavn

spawns threads of the flavors that the effeallows. A source of the inner expression . By contrast, all expressiomseated by
programe type-checks if;ot - e : 7 for somer. Because (1) spawn,. are evaluated at the top level (requiring effet), but it is
is standard, we focus on (2), which makes our judgment an effect acceptable to execute the spawn expression itself at top-level or
system. inside a transaction. Therefore, like fatomic blocks, we do not

The “empty” effectemp describes computations that are safe constrain the effect for spawn,.. Finally, spawn;, needs effecivt
anywhere(i.e., inside or outside transactions); such computations for the entire expression and the spawned expression because both
spawn neither top-level nor internally-parallel threads. On-commit execute only within a transaction.
threads are fine because creating them never leads to dynamic Note that if our language had expressions other gpiwny
errors. Effeciot describes computations safatside transactions that could not occur in transactions (e.g., irreversible 1/0), our
permitting on-commit and top-level threads, and effectiescribes effect system could statically prevent such errors in the same way.
computations safeithin transactions permitting on-commit and
internally-parallel threads. We do not have a “top” effect that allows *A fine alternative is to add an effect-subsumption rule.




REFLEXIVE EMPTY
e<e emp < ¢
T-LAMBDA T-APP o
- - / !
T-CONST T-VAR Dxme Fe:m DiekFer:m — 1 Miekex:m e <e
Tiebce:int Tiebkx:I(x) Tichk Ave:m S 1 IebFeres:m
T-SEQ T-IF T-REF T-SET
Iieber:mn Tiebes:m Iieker:int Tiebex:m Tebes:T iekbe:r Iiebep:refm Thebex: T
;e b seq(er,e2) : T2 Tiebiferezes: T ;e refe: ref 7 Tieber:=ex: T
T-GET T-ATOMIC T-SPAWN-TL T-SPAWN-OC T-SPAWN-IP
Tiebe:refr CiwthFe:r Tiotke:r Iiotke: T iwthe: T
Tiekle:r I';e b atomice: 7 I'; ot - spawny, e : int I';e - spawn,_ e : int I'; wt k= spawn; e @ int

Figure 5. StrongNestedParallel Type System for Source Programs

’ T';e - e: 7, additions and chang#s

Fu=...|T:7
T-LABEL T-LAMBDA
riy=r D,zim;e Fe:m not-activée)
Tieb1l:ref T

TiebAze:m =7

T-INATOMIC

Diwthe: T otk Toc T;wt - T not-activéT,.) correcta, e || Tip)
T';e - inatomic(a, e, Toc, Tip) : T

'-H:1' Tiebw:r TieT Tiebe:r THFH:T TiotHT correcfa,T)
T'E-:- 'FHl—ov:T 7 ek DieET e Fa H;T

Figure 6. StrongNestedParallel Type System Extensions for Program State (See also Figure 7)

3.3 Type Safety (" - H : )2 and (2) each thread type-checks under eftect

Type safety ensures a program never becomes stuck, which meangnd the labels in the heapiot I~ T'). Note our definition of” now

at least one thread (possibly more) can take a step. Some thread%nCIUdeS types for labels. Also note that when type-checking the
can be temporarily blocked. For example, when one thread is in a '€aP: effects are irrelevant because the heap contains only values
transaction, another thread is blocked if its next step is to enter a @1d values never spawn threads. The third obligation for a well-

transaction, Therefore, our type-safety theorem claims that someYPed state — corregt, ) — is discussed below. .
thread can proceed unless we have properly terminated: Turning to the typing rules for expressions, the typing rule for
labels is as expected. The typing rule for functions has the new

hypothesis not-actie). This technical point ensures a function
Theorem 3.1 Type Safetylf (1) -;ot + e : 7, (2) after some body never contains a partially completed transaction. While this

number of steps; ;e becomes:; H; T, and (3) not all threads is true for any state resulting from a source program, it is an in-
in T are values, then there exists a threddn T" such thats; H; ¢’ variant that we must establish holds during evaluation. Otherwise,
can take a single-thread evaluation step. a function call could lead to a state where two threads were execut-

ing transactions simultaneously. Formal syntax-directed rules for

As usual, we prove this theorem by showing preservation (any not-activée) are in the technical report, but as Figure 7 describes,
evaluation step from a well-typed state produces a well-typed state)they simply encode that rieaatomic expression occurs ia
and progress (no well-typed state is stuck). Doing so requires ex-  The typing ruleT-INATOMIC has several subtleties. Because
tending the type system to run-time state$7; 7" and the expres- e and T, evaluate within a transaction, they must have effect
sion forms that are not present in source programs. The extendedwt. Similarly, 7o, will be evaluated at the top level, so it must
system, presented in Figure 6, is only for the proof. Proof details are have effectot. As with atomic, the overall effect oinatomic is
in an available technical report (Moore and Grossman 2007); here unconstrained to allow nesting. As with function bodies, the not-
we sketch the interesting invariants that the rigorous proof reveals. yet-running thread,. must not contaifinatomic expressions.

To set the stage, most of the extensions are straightforward.
A state is well-typed K a; H;T), if (1) the heap is well-typed 2UsingT twice is a technical trick to allow cycles in the heap.




not-activée) e (or T') contains no = int|refT |7 57

not-activéT") inatomic expression. 7t- = ot|wt
active(e) e (or T') contains exactly 1 non-nested . _ emp | ¢
activg(T) inatomic expression, and that occurrence T = - |T,air | TL0(m8)

is in a “sensible” syntactic position.
(See discussion for more detail.)

correcta, T) (a = o and not-activél))

or (e = e and activéT"))

Figure 8. Weak Type-System Syntax

Figure 7. Active, Not-Active, and Correct Activeness GET SET

a; H;\l — a; H; H(l); - a;Hl:=v— a;H,l— v;v;-

The final definition to explain is correet(l"), which is used to ) . . L
type-check program states aitthtomic expressions. This judg- ~ 1hat is, o is no longer required for heap accesses (but it is still
ment, defined formally in the technical report and summarized réquired to enter a transaction).

in Figure 7, ensures that eaehis correct:a = e if and only This new language clearly allows every sequence of steps
if exactly one thread is in a transaction, amd= o if and only StrongBasic does (rulessET and SET apply strictly more often),

if no thread is in a transaction. Without this invariant, the ma- and it allows more. For example, from the program state:

chine might be stuck. For example,df = e, no thread is in a o Iy 5,16 (atomic (seq(ly := 7,11 := l2)))
transaction, and every thread is blocked waiting to enter a transac- | (I2 := 4)

tion, then no thread can proceed. The detailed rules for ae}ive(

(and activel")) require some care. There must be exactly one Weak allows a sequence of steps where the final valug iis 4.
inatomic expression ine (or T'), not counting possibly nested  Therefore, the two languages are not equivalent, but there are still
transactions inside it, and that one outermost transaction mustmany programs for which they are (i.e., any result possible in one
occur in a thread's “active position.” For example, we may be language is possible in the other). In particular, it is intuitive that
able to show activeéq(inatomic(o, 17, ,-),e)), but we cannot  fora program to distinguish the two semantics it must have thread-
show activegeq(e, inatomic(o, 17, -, -))). To summarize, proving shared muta_lble datathatis accessed inside and outside transactions.
progress requires tight control over the connection between eachWe now define a type system that allows only programs for which
a in the program state and the state of the threads ttiescribes,  the two languages are equivalent.

and this control is specified with the correcf(’) invariant. Prov-

ing preservation requires establishing this invariant after each step,4.2  Type-And-Effect System for Ensuring Serializability

particularly when a thread enters or exits a transaction. _ Our type-and-effect system enforces a partition in which each
With the ability to type-check heaps, thread-pools, and run-time memory location can be accessed outside transactions or inside
expressions, we can state and prove the key lemmas: transactions but not both. More expressive type systems are pos-
sible (see Section 6), but this system suffices for showing the key
Lemma 3.2 Progresdf + a; H; T, then eitherT is all values or ideas required to prove equivalence assuming a static discipline. It
Ja’; H', T’ suchthata; H; T — o'; H'; T". also corresponds to the partition enforced by the monads in STM
Haskell (Harris et al. 2005).
Lemma 3.3 Preservationlf I' - H : I, correc{(a,T), T;ot - The syntax for types is in Figure 8. Our effects are the same
T,and a; H;T — o'; H'; T’, then there exists sonii# extending as inStrongNestedParallel; the difference is we now use them to
T'suchthatl’ - H' : ', correc(a’,T"), and I";ot - T". restrict heap accesses. As such, reference types now carry an anno-

tation indicating a side of a partition. For examplef,.: (ref: int)
Because; ot - e : T implies the initial program state type-checks is the type of an expression that produces a label that can be ac-
(i.e.,- o;-;¢€), Theorem 3.1 is a corollary to Lemmas 3.2 and 3.3.  cessed (read or written) inside transactions and that contains a label

that can be accessed outside transactions (and the pointed-to label
4. TheWeak Language contains an integer). Notice pointers from one side of the partition

] ] o i ] ] to the other are allowed. Continuing our exampleg ihas type
This section revisits the choice §trongBasic that if one thread is refu: (refy int), then(atomic (!z)) := 42 would type-check.

executing a transaction, then no other thread may access the heap. Qur typing judgment has the same form as befdre; + e :
Allowing such heap accesses lets a race between transactional angd, meaninge has typer and effecte wheree beingwt, ot, or
nontransactional code violate a transaction’s isolation. This prop- emp meanse is safe inside transactions, outside transactions, or
erty is often referred to as weak atomicity (Blundell et al. 2006), so anywhere, respectively. In fact, except for disallowimgwn,. e

we call our language with this behavidfeak. Many software im-  and spawn;, e (because like irStrongBasic we have only top-
plementations of transactional memory use weak isolation becauseleve| spawn), most of the typing rules are identical to those in
it is simpler to implement and usually improves performance. In- StrongNestedParallel. The differences are in Figure 9. Rules
tuitively, if transactional and non-transactional code do not access set and T-GET require the annotation on the reference type to be

the same memory, then allowing heap accesses concurrently withthe same as the overall effect, which is what enforces the partition
transactions does not lead to any additional behavior. The main the-on all accesses. Notice rulfeREF has no such requirement; it is

oremwe pl’esent validates this intuition. Given the subtleties of race safe to allocate aot reference inside a transaction and vice-versa.
conditions and isolation, it is wise not to rely on intuition alone. (At allocation-time the new memory is thread-local.) To extend the
. . type system to run-time states,LABEL usesl' to determine the
4.1 Operational Semantics ¢ for the accessed label. Thiscan differ from the effect of the
ChangingStrongBasic to produceWeak is extremely simple; we expression becausecontrols access to the labekontents As
leave the syntax unchanged and replace the operational rules fohefore, we extend the type system only for the proofs; the partition
reading and writing heap locations: and annotations are entirely conceptual (i.e., types are erasable).



T-SET T-GET T-REF T-LABEL T-INATOMIC
Titheq:refy 7 Tithex: T Tithe:refy 7 Tieke:r L) =(mt) Tywthe: T correcta, e)
Iithel:=ex: T Oit-le:r ;e b refe:ref, 7 Tiebl:refyr T';e - inatomic(e) : 7

Figure 9. Weak Type System (omitted rules and definitions are the same as in Figures 5, 6, and 7)

The proofs of preservation and progress\fé¢ak are similar to

the proofs forStrongNestedParallel, but type safety now ensures e = ...|inatomic(a, e, Hiog, eo) | inrollback(Hiog; €0)
evaluation preserves the heap partition. This invariant is necessary.
for the equivalence result we discuss next. Figure 10. WeakUndo Syntax (extends Figure 1)

4.3 Weak/Strong Equivalence Under Partition
Our primary result is that any program that type-checks has the across a thread context-switch. Because these and other reasons are
same possible behaviors undirongBasic andWeak. Formally, low-level details not visible in the source langudghe best way
letting —* mean O or more steps under the strong semantics angto model abort-and-retry at a high-level is to let a transaction undo

S

—.* mean 0 or more steps under the weak semantics we have: its changes nondeterministically at any point. @gakUndo lan-
guage does precisely this, revealing interesting interactions with
] both nested transactions and weak isolation.
Theorem 4.1 Equivalencdf -;ot e : 7, theno; ;e —5 a; H; T

ifand only ifo; ;e —3, a; H; T. 5.1 Syntax and Operational Semantics

Figure 10 presents the new syntax and Figure 11 presents the new
gvaluation rules.

Our source language is the same asSfiobngBasic andWeak.
At run-time, transactions need extra state to enable rollback, so we

rection (given a weak transition sequence, produce a strong transi-haye'natom'c(‘ll’ ﬁ’ Hiog, €0). ('jl'hea |nd|(.:ate|i‘\év.hether the compu-
tion sequence) is much more interesting. Space constraints compefatione currently has a nested transaction lik&trongNestedPar-

a high-level description but the full proof is available (Moore and allel. This is important begausg we cannot perform an undo when
Grossman 2007). there is a nested transaction; it must be completed or undone first.

The H,o is a log of labels written to and the values they had be-
produces; H; T in n steps, theStrongBasic can produce:; H; T fore the assignment. To undo a transaction’'s memory effects, we
-1 ' o use the log to undo the assignments in last-in-first-out order. Syn-

in n steps. Moreover, it: = e, thenStrongBasic can produce icallv. iT label | like a h b like a h
a; H; T in n steps using a sequence where a suffix of the sequencet@ctically, Hi,e maps labels to values like a heap, but unlike a heap

is the active thread entering the transaction and then taking somelt IS thefirst (or '?“mosl entry fpr a I_abgl that hOId.S the relevant
number of stepsvithout steps from any other threads interleaved value. Finally,eo is the transaction’s initial expression, so a trans-

In other words, the current transaction could have run serially at the 3Ction starts byitomic eq becominginatomic(o, eo, -, €o) (i.€., no
end of the sequence. nested transaction and an empty log).

In maintaining this stronger invariant, the interesting case is _ 10 undo a transaction, we roll back the heap assignments one at
when the next step undateak is done by a thread not in the @ {ime using the log. The syntanrollback(Hicg, co) maintains the
transaction. A key lemma lets us permute this non-transactional State of an undo. Itis likinatomic except we do not need anyor
step to the position in the strong-semantics sequence just before® 1€ l0g gets smaller as evaluation rolls back entries.
the current transaction began, and the ability to permute like this For the operational semantics, an evaluation step for one thread
without affecting the resulting program state depends precisely on Producesiisg, which contains the entries that must be appended to
the lack of memory conflicts that our type system enforces. the log in the nearest enclosing transacticONTEXT propagates

It is clear that this equivalenqaroof relies on notions similar ~ SUCh entries and rules like=Q (not shown) produce the empty log
to classic ideas in concurrent computation such as serializability - SET Produces the one-entry lag— (), i.e., ! maps to the

and reducibility. Note, however, that thieeoremis purely in terms ~ value before the assignment while updating the heap as wsral.
of two operational semantics. It says that given the type system Produces an empty log; there is nothing to undo. Most importantly,

enforcing a partition, the language defined in Section 2 may be 'NATOMIC appends the log produced by the subexpression eval-
correctly implemented by the language defined in Section 4. This uatiorf and propagates the empty-log. If a transaction eventually
result is directly useful to language implementors and does not 2POrts, it never propagates any log entries. EisayiMIT propa-
require a notion of serializability. gates the entire log for the next enclosing transaction in one step.

However, theWeak language remains unrealistic because its B&cause logs are unneeded outside transactrRisGRAM does
transactions never execute partially and then abort. The following MOt uSe the log its hypothesis produces.

section’s language incorporates this significant complication. A rollback occurs by uSingNTER ROLLBACK, then using one
DO ROLLBACK for each log entry, and finally usingOMPLETE

ROLLBACK. To begin rollback, there must be no nested transac-

In fact, the equivalence is stronger; the two semantics can pro-
duce the same states in the same number of steps. One directio
of the proof is trivial: any sequence of transitions un8efong-
Basic is also a sequence of transitions untiésak. The other di-

We strengthen the induction hypothesis as followsMéak can

5. TheWeakUndo Language

In practice, many implementations of transactions employ abort- 2In the case of memory conflicts, false-sharing issues that arise from de-
and-retry, undoing any changes a transaction has made and starttecting conflicts at a coarse granularity (e.g., using hashing or cache-lines)
ing again from the originahtomic expression. There are various ~¢an make a conflict unpredictable at the source level.

reasons to do this, such as avoiding a memory conflict with a con- *By Hiog H|,, we mean the log wherél|  follows Hieg, SO the last-in-
currently executing transaction or not having a transaction stay live first-out undo will process théf . entries before théf\q, entries.




a;H;e — a's H';€'5T; Hiog

CONTEXT
a;Hie —a'; H' €' T Hig SET GET
a;H; Ele] — a'; H; E[€']; T; Hiog a;Hyl:=v—a;H,l — v;v;;1— H(I) a; H;\l — a; H; H(l); - -
INATOMIC
ENTER ATOMIC .. rorpt. o gy
a,H,e —a vH vev’aHlog
. . H . o1 1 “ . H H ! - . ! ! !
o; H; atomic e — o; H;inatomic(o, e, -, e); ;- e; H;inatomic(a, e, Hiog, €0) — ®; H';inatomic(a’, €', HiogHjog, €0); -5 -
COMMIT ENTER ROLLBACK
o; H;inatomic(o, v, Hiog, €0) — 0; H;v; -; Hiog e; H;inatomic(o, e, Hiog, €0) — ®; H;inrollback(Hieg, €0); -; -
DO ROLLBACK COMPLETE ROLLBACK
o; H;inrollback(Hiog, ! — vold, €0) — ®; H,l — wvoq; inrollback(Hieg, €0); -; - e; H;inrollback(-, eg) — o; H; atomic eq; -; -

a;H;T —a;H; T

PROGRAM
a;Hje —a'; H';€';T; Hig
G ;T |le||To —d;HTh || € | T2 || T

Figure 11. WeakUndo Operational Semantics (selected rules omitted)

a |le l, 1. Iln l,| Threadl Thread 2

o [0 0 0 0 0] atomic(if (o) (I :=1) (I, :=1)) lo =110 =l =1
—* e |0 0 1 0 0] inatomic(o,1,l.+ 0,(if () (Iy :==1) (I. :==1))) lo =151 =Ml =y
e |1 0 1 0 1 inatomic(o,1,l0,(if (Ue)(ly:=1)(L:=1))) | lm :=l,
- o |1 0 0 0 1] atomic(if (W) (,:=1)(.:=1)) I =y
—* o1 1 0 0 1)1 1
—* o1 1 0 1 1)1 1

Figure 12. Selected states from\lleakUndo trace, starting with; H; T"whereH maps each label tand7 contains Thread 1 and Thread
2. In the end],, andl,, map to 1. UndekVeak, Thread 1 could not change bdthand!..

tion else the entries in its log would be lost. Thé theinatomic inrollback forms requires maintaining a number of technical in-
expression iIrENTER ROLLBACK enforces this requirement. Dur-  variants. For example, all log entries must be for labels with effect
ing rollback, the top-level transaction state remainsve cannot wt. Given these details (see the technical report), Preservation and
start another transaction until the rollback is complete. Finally, Progress hold as in the oth&tomsFamily languages.
COMPLETE ROLLBACK produces aratomic expression ready to Though we believaVeakUndo is equivalent toStrongBasic,
(re)execute, but another transaction may run first. for simplicity our current proof of this result does not consider
After rollback all labels have the values they had before the nested transactions. Fortunately, formalizing this simplification re-
transaction began, but the heap is not exactly the same. Memoryquires only a small change. We can forbid nested transactions by
allocation (ruleaLLoc, not shown in Figure 11) doewt produce type-checkingaitomic e only under effecbt rather thare:
a log entry and rollback doemtremove the new label. However, it T-ATOMIC
will be unreachable (i.e., garbage) after the transaction rolls back. Diwthe: T
Figure 12 shows an example trace possibl&®\ieakUndo but
not in Weak or StrongBasic; it is similar to the example in Sec- L . .
tion 1. Each row represents a program state (not every state is |YP€-checkingnatomic requires an analogous change. Preserva-
shown). The transaction in Thread 1 rolls back between the third tion and Progress also hold for this more restrictive type system.
and fourth rows and its reexecution takes the other conditional 5 3 \eakUndo/Strong Equivalence
branch. However, Thread 2 uses nontransactional code to see a . . .
write from Thread 1 before that write is rolled back. Notice the ini- USing the type system described above and lettingmean 0 or
tial state shown would not type-check under our effect system for More steps unde$trongBasic and —;,, mean 0 or more steps
partitioning the heap becausg I, andl. are all accessed inside ~ UnderWeakUndo, we have the following theorem:
(Thread 1) and outside (Thread 2) transactions.

I';otF atomice: 7

Theorem 5.1 Equivalencdf -;ot+ e : 7, then:

1) Ifo; s 0; H; T, theno; -; wu O3 H; T

5.2 Type-And-Effect System gn)d 0;5€—s o515 4, 055 € —rayy O3 H

For source programs, we can use the same type system we do fo(2) If o;;e —%, o;H;T, then there exists a{’ such that
Weak to ensure the same memory is not used inside and outsideo; ;e —3 o; H'; T and for all I and v, if H'(I) = v, then
transactions. Extending the type system to the ewomic and H(l) =w.



This theorem is weaker than the analogous theoremark in

two interesting ways. FirstVeakUndo may produce a larger heap
(the domain off may exceed the domain éf’, but H restricted

to the domain of’ must beH’) because aborted transactions can
generate garbage. Second, the equivalence holds only avisen
i.e., no transaction is executing.dfis e, thenWeakUndo may be
performing a rollback anftrongBasic has no corresponding state.
Also, as a technical point, the different syntax fesitomic in the

commits. We have fully defined the syntax and operational seman-
tics of such a language (see the technical report), which we call
WeakOnCommit, but have not yet proven safety and equivalence
results for this language. This section sketciésakOnCommit
and its relation t&VeakUndo.

At run-time, transactions have the forinatomic(e, H, eo)
wheree andeg are like inWeakUndo, but H is an “on-commit”
heap containing labels allocated or updated by the transaction so

languages precludes having syntactically equal programs wheneveffar. Inside a transaction, any assignment or allocation is propagated

a transaction is executing.
While part (1) of the theorem is trivial, part (2) is not. The proof,

out only to the innermost transaction, where it is added tdih&o
read a reference, the operational semantics looks first at the heap

detailed in the technical report and briefly summarized here, cannotfor the closest containing transaction and then in the next closest

ignore states whereis e. Instead, we must show that transactions
in WeakUndo are serializable (as in the proof f&eak) and

heap if it is not there.
To handle this gracefully in a formal operational semantics, the

that rollback is correct (produces a state close enough to the onejudgment for evaluating an expression usestack of heapsS
before the transaction began). Because the latter is much easier tavhere S is defined inductively as empty or a stask:H where
show under strong isolation, we define an intermediate language H is the shallowest stack element. We then have the judgment

StrongUndo in which we haveinrollback and the corresponding
evaluation rules as iWeakUndo but when one thread is executing

a;S;e — a';8';¢;T. Outside of a transactior§ is just the
outermost heap, i.e., thH in the program state; H; 7. Inside

a transaction, no other thread can execute. We then have these twa transaction, we have a deeper stack:

lemmas (with—7},, for evaluation unde$trongUndo):

Lemmab.2If ;ot F e :
0;-e —uy, a; H; T.

7 ando;;e —i, a;H;T, then

Lemma5.3If ;ot - e : 7ando;-;e —5, o; H; T, then there
exists anH’ such thato; ;e —* o; H'; T and for all ! and v, if
H'(l) = v, thenH (l) = v.

Proving the first lemma follows exactly the proof strategy de-
scribed in Section 4.3 foWeak and StrongBasic, with addi-

tional cases for the rollback steps. Proving the second lemma re-
quires a strengthened induction hypothesis arguing that wheneve

StrongUndo is executing a transaction, all the following hold:

e If StrongUndo is not rolling the transaction back, th8erong-
Basic could get to a similar state.

e If StrongUndo is not rolling the transaction back, but it chose
to from this point, then it would produce a state just like before
the transaction started (plus possible garbage).

e If StrongUndo is rolling the transaction back, then after com-
pleting the rollback it will have a state just like before the trans-
action started (plus possible garbage).

As a corollary,Weak andWeakUndo are equivalent for well-
typed programs because both are equivalerttongBasic. We
were surprised that we did not pro¥eakUndo equivalent to
Weak directly, but it is not clear to us how to do s&trongUndo

f

INATOMIC
a;S:H;e —a';S:H'; € -
o; S;inatomic(e, H, eg) — e; S;inatomic(e’, H', eo); -

Evaluation ofe can changé? (which is empty when the transaction
starts) but nofS. For example, the rule for assignment is:

SET
a;S:H;l:=v — a;S:(H,l — v);v;-

However, evaluation needs the entire st&ckid because the rule
for !l searches the stack in order frathoutward.

Aborting a transaction ilWWeakOnCommit takes only one step
and can apply even if there is a nested transaction:

ROLLBACK

e; S;inatomic(e, H, eq) — o; S; atomic eq; -

On the other hand, to commit a transaction we use the new syn-
tax form incommit(H,v). A transactioninatomic(v, H, eg) can

step toincommit(H, v), after which abort is impossible. Then el-
ements of H are propagated out one label at a time, removing
them fromH, and finallyincommit(-, v) becomesy. Whereas in
WeakUndo the heap innrollback(H, eg) maps labels to old val-
ues, inWeakOnCommit the H in incommit(H, v) maps labels to
new values.

For programs that do not type-check under our type-and-effect
system, strange behaviors can arise. As in actual implementations,
we have defined the in-commit rules to propagate the new values for
the labels in an arbitrary ordeiHence, nontransactional code rac-

turned out to be a crucial technical tool. Abadi et al. (2008) inde- ing with atomic (seq(z := 1,y := 1)) could see the assignment to
pendently reached a very similar conclusion, which indicates that y before the assignment to Our prior work shows how this flexi-

this approach is indeed the natural one.

6. Future Work
Because thé\tomsFamily approach is amenable to investigating

bility leads to strange results (Shpeisman et al. 2007). In the future,
we intend to prov&VeakOnCommit equivalent tdStrongBasic for
well-typed programs and to explore the extent to wiMédakUndo
andWeakOnCommit are equivalent for ill-typed programs.

different features, there are many directions for future work. We 6.2 More Permissive Semantics

first describe a language that is in many ways duaMakUndo

There are several ways to relax the type-and-effect system for

but for which we have not yet proven relevant theorems. We then \yeak andweakUndo without invalidating our equivalence results.
consider other ways to define transactional semantics, make oUrgqr example, we could have invariants for thread-local or read-only

type systems more expressive, or add new language features.

6.1 TheWeakOnCommit Language

data because both can be accessed inside and outside transactions
without interleaving with other threads causing problems. Another
extension would be “partition polymorphism,” which would allow

Instead of supporting abort-and-retry by keeping a log of old val- some functions to take arguments that could point into either side
ues, we can maintain a private copy of updated heap values in a
transaction and propagate updated values only when a transactiorf Implementations have strange orders if, for example, they use hashtables.




of the partition, depending on the call-site. This extension would Third, Wojciechowski (2005) proves isolation for a formal lan-
require type-level variables that range over effects. guage where transactions with nested parallelism (called tasks in
The AtomsFamily can also be extended with languages that the work) explicitly acquire locks before accessing data and the
have more permissive dynamic semantics (i.e., allow more behav-beginning of the task must declare all the locks it might acquire.
iors). For example, we could support open-nesting by having a con- Explicit locking and version counters leads to a lower-level model
structopen(e) where the effects of are never undone even if an  and an effect system that is an extension of lock types (Flanagan
enclosing transaction aborts (Moss and Hosking 2005). Hopefully and Abadi 1999). The main theorem essentially proves a particular
we can define sufficient conditions under which open-nesting is low-level rollback-free transaction mechanism correct.
“safe” in the sense that other threads cannot determine that a trans-  Finally, Liblit (2006) gives an operational semantics for the
action aborted. We would also like to investigate relaxed memory hardware-based LogTM (Moravan et al. 2006). This assembly lan-
models (Grossman et al. 2006; Manson et al. 2005), which can beguage is at a much lower level. It has neither nested parallelism nor
awkward because it is unnatural for a formal operational semantics weak isolation.

not to be sequentially consistent. . .
7.2 Concurrent Work on Operational Semantics

6.3 Other Language Interactions Concurrent with our work, Abadi et al. (2008) also developed
More languages similar to th&tomsFamily could allow additional a small-step operational model for transactions. Among various
constructs and combinations thereof that merit investigation. For differences in the basic approach, the most significant is that we
example, combining the weak isolation Weak and the nested  have a lexically scoped transactioat¢mic (e)) whereas they
parallelism ofStrongNestedParallel is straightforward for the se-  have primitives for starting and ending transactions. Because they
mantics, but the type system adjustments needed to preserve equivprohibit starting a transaction within another, they do not have any
alence remain unclear. In addition, the interaction of transactions notion of nested transactions.

with exceptions (Harris 2004; Ringenburg and Grossman 2005) or ~ Both projects investigated weak isolation with reassuringly sim-
first-class continuations (Kimball and Grossman 2007) needs to beilar results. In our terms, Abadi et al. also prow&dakUndo equiv-
defined precisely. Programs using transactions also need fairnesglent to StrongBasic and even followed the approach of using
guarantees from the thread scheduler and conflict manager; inte-StrongUndo as an intermediate point. In proviMjeak equivalent

grating such guarantees into our models would be valuable. to StrongBasic, they used a semantic notion of memory conflict
rather than our more restrictive syntactic type-and-effect system.

Beyond weak isolation, the projects have considered different

7. Related Work extensions. Abadi et al. have not considered parallelism within

7.1 Prior Work on Operational Semantics transactions. Instead, they have considered a model where multiple
threads can execute transactions simultaneously but any conflict
aborts all the transactions. This model reveals some additional
anomalies thatVeakUndo does not.

The most closely related prior work uses operational semantics to
define various aspects of transactions. All such work we are aware
of has significantly different foci and techniques, either focusing
on implementation-level issues or modeling transactions as a single7'3 Unformalized Languages
computational step.

First, Jagannathan et al. (2005) and Vitek et al. (2004) use a vari- Many recent proposals for transactions in programming languages
ant of Featherweight Java (Igarashi et al. 2001) to define a frame-€ither do not discuss the effect of spawning inside a transaction
work in which different transactional implementations (such as ver- O make it a dynamic error. In other words, to the extent it is
sioning or two-phase locking) can be embedded and proven correctconsidered, the most common flavorsigawny. When designing
by establishing a serializability result. They support parallelism the AtomCaml system (Ringenburg and Grossman 2005), we felt
within transactions by requiring each thread in the transaction to spawnoc would be most natural, but it was the only option. The
execute a “commit” statement for the transaction to complete. This Venari system for ML (Haines et al. 1994) had something close to
is similar but not identical to ouspawn;,; they have no analogue  SPawnip, butitwas up to the programmer to acquire locks explicitly
of our other spawn flavors nor any effect system. Formally, they in the style pioneered by Moss (1985). _ .
assume all code executes within a transaction; there is no notion of ~ Weak isolation has primarily been considered for its surprising
weak isolation. Their run-time state and semantics is, in our view, Pitfalls, including its incomparability with strong isolation (Blun-
more complicated, with thread identifiers, nested heaps, and traceglell et al. 2006) and situations in which it leads to isolation vi-
of actions. While some of this machinery may be necessary for olations that corresponding lock-based code does not (Larus and
proving lower-level implementation strategies correct, it is less de- Rajwar 2006; Hudson et al. 2006; Shpeisman et al. 2007). It is be-
sirable for a high-level model. Though their system and ours have lieved that all examples of the latter require violating the partition
many technical differences, the fundamental idea of permuting in- Property we defined in Section 4, which is why we proved this re-
dependent actions arises (unsurprisingly) in both settings. sult for Weak andWeakUndo.

Second, Harris et al. (2005) present an operational semantics for .

STM Haskell. Like our work, it is high-level, with one transaction /-4 Other Semantics
executing at a time. However, the semantics is layered such that anOperational semantics gives meaning directly to source programs,
entire transaction occurs as one step at the outer layer, essentiallyhich lets us study how transactions interact with other language
using a large-step model for transactions that does not lend itself tofeatures, define type systems, and provide a direct model to pro-
investigating nested parallelism nor weak isolation. Indeed, they do grammers. Other computational models, based on notions of mem-
not have nested parallelism and the partition between mutable dataory accesses or computation dependencies, can prove useful for
accessed inside and outside transactions (enforced by a monadinvestigating properties of transactions. Recent examples include
lets them define strong isolation yet implement weak isolation. It work on specifying fairness and conflicts (Scott 2006), work on us-
is not significant that we enforced a partition with an effect sys- ing the computation-centric model of Frigo and Luchangco (1998)
tem rather than monads as the two technologies have well-knownto give semantics to open nesting (Agrawal et al. 2006), and work
connections (Wadler 1999). Rather, our contribution is proving that on defining open nesting in terms of transactions’ read and write
given a partition, strong and weak isolation are indistinguishable. sets (Moss and Hosking 2005).
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