
Transactional Events for ML

Laura Effinger-Dean Matthew Kehrt Dan Grossman
University of Washington

{effinger, mkehrt, djg}@cs.washington.edu

Abstract
Transactional events (TE) are an approach to concurrent program-
ming that enriches the first-class synchronous message-passing of
Concurrent ML (CML) with a combinator that allows multiple
messages to be passed as part of one all-or-nothing synchroniza-
tion. Donnelly and Fluet (2006) designed and implemented TE as
a Haskell library and demonstrated that it enables elegant solutions
to programming patterns that are awkward or impossible in CML.
However, both the definition and the implementation of TE relied
fundamentally on the code in a synchronization not using muta-
ble memory, an unreasonable assumption for mostly functional lan-
guages like ML where functional interfaces may have impure im-
plementations.

We present a definition and implementation of TE that supports
ML-style references and nested synchronizations, both of which
were previously unnecessary due to Haskell’s more restrictive type
system. As in prior work, we have a high-level semantics that
makes nondeterministic choices such that synchronizations suc-
ceed whenever possible and a low-level semantics that uses search
to implement the high-level semantics soundly and completely. The
key design trade-off in the semantics is to allow updates to mutable
memory without requiring the implementation to consider all pos-
sible thread interleavings. Our solution uses first-class heaps and
allows interleavings only when a message is sent or received. We
have used Coq to prove the high- and low-level semantics equiva-
lent.

We have implemented our approach by modifying the Objective
Caml run-time system. By modifying the run-time system, rather
than relying solely on a library, we can eliminate the potential
for nonterminating computations within unsuccessful synchroniza-
tions to run forever.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language constructs and features—Concurrent program-
ming structures; D.1.3 [Programming Techniques]: Concurrent
programming

General Terms Languages, Design

Keywords Transactional Events, Synchronous Message Passing,
Concurrency

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’08, September 22–24, 2008, Victoria, BC, Canada.
Copyright c© 2008 ACM 978-1-59593-919-7/08/09. . . $5.00

1. Introduction
Programming abstractions for concurrent programming are crucial
for helping programmers manage the complexity inherent in sup-
porting multiple threads of execution. Concurrent ML (CML) (Rep-
py 1999) is an elegant approach based on first-class synchronous
message-passing. Programs build events that when synchronized
on block until they can complete successfully. Events can send or
receive messages on channels. Powerful event combinators, such
as an event that chooses exactly one of two events to perform,
let programmers build more sophisticated abstract communication
protocols out of simpler ones. Section 2.1 briefly reviews CML.

By design, CML has a key limitation: Any synchronization per-
forms at most one message send/receive. While convenient for ef-
ficient implementation, this limitation makes some communication
protocols more difficult or even impossible to write. Recently, Don-
nelly and Fluet (2006) developed Transactional Events (TE) for
Haskell, which removes this limitation. A “thenEvt” combinator
lets programmers build events that contain multiple communica-
tions and that block until all the communications can succeed. Con-
sider this example (in Caml syntax, which we use throughout):

thenEvt (recvEvt k1) (fun x ->
if f x then sendEvt k2 x else neverEvt)

This event receives a value on k1 and sends it on k2, but only if
the function f “approves” the value. Otherwise, the entire event
cannot succeed since neverEvt never succeeds and an event built
from thenEvt succeeds only if both its arguments produce suc-
cessful events. Therefore, no value is received on k1. Implementing
thenEvt is nontrivial, requiring search to see if an entire synchro-
nization can succeed while having no observable effect until the
synchronization succeeds. Section 2.2 briefly reviews TE.

TE is a great step forward in providing rich combinators for
synchronous message-passing and integrating them into a modern
language implementation, but the definition and implementation
both rely fundamentally on Haskell’s purely functional nature.1 For
the example above, if we ask, “what might f x do?” the answer
in Haskell is quite benign: Thanks to the monad to which the TE
combinators belong, f x cannot mutate any memory references
and cannot perform any message passing. It might not terminate,
which in the TE implementation would hurt performance (it would
consume resources forever) but would not violate the semantics.

In a mostly functional language like ML, we cannot assume f
x is so well-behaved. Moreover, simplistic restrictions, like treating
any access to mutable memory inside f x as a dynamic error, are
fundamentally inappropriate: An essential aspect of ML is that code
may use references at any time, often using abstraction to provide a
functional interface. For example, if the function f used a memoiza-
tion table internally, that should not be observable to callers. Hav-
ing a memoizing f fail within events but a non-memoizing variant

1 They do not rely on Haskell’s laziness; in fact, eagerness slightly simplifies
parts of the implementation.

succeed is a fundamental violation of ML-style abstraction. Sim-
ilarly, f might perform a nested synchronization with additional
message sends/receives, which is also impossible in the monadic
setting. In short, if we cannot provide reasonable semantics and
implementation for TE in the presence of side effects, then TE’s
utility will be restricted to purely functional languages.

This paper provides precisely such a semantics and implementa-
tion, focusing on effects from accessing mutable references. In ex-
tending TE to make sense in the presence of side effects and nested
synchronizations, the most important issue is how to provide an ap-
propriate guarantee that the implementation will find a successful
communication if one exists. This completeness guarantee is essen-
tial to TE’s usefulness, but extending it naı̈vely would require the
implementation to consider all interleavings of side effects.

More specifically, if two threads are communicating and one
performs r:=1; r:=2 while the other performs if !r = 1 then
fail() else succeed(), must TE find the successful interleav-
ing? We decide no since doing so is intractably expensive and not
useful for any reasonable idiom we have encountered. To avoid this
problem while still providing a precise semantics and a complete-
ness guarantee with respect to communication patterns, we define
and implement a semantics in which each thread’s updates to the
shared-memory heap happen in “chunks” (much like transactional
memory) at the point where message sends/receives occur. Sec-
tion 3 provides a more complete informal description of our ap-
proach to mutation and several examples justifying the semantics.

As in the original TE work, we have two formal semantics,
a high-level nondeterministic semantics for programmers in Sec-
tion 4 and a low-level semantics in Section 5 that makes the search
for a successful communication explicit. While the addition of a
mutable heap and nested synchronizations is nontrivial, the overall
structure of both semantics is reassuringly similar to prior work.
To bolster our confidence in the requisite correctness proof—that
the low-level semantics finds a communication if and only if the
high-level semantics does (see Section 6)—we have formalized the
semantics and proof in Coq, which has not been done previously.

The low-level semantics directly informs our implementation,
which we achieved by modifying the Objective Caml bytecode in-
terpreter and run-time system, as described in Section 7. Run-time
support simplifies parts of the implementation, such as copying
threads to perform search, and lets us ensure nontermination on
unsuccessful communications is stopped in a timely fashion.

For further discussion of related work and conclusions, see
Sections 8 and 9 respectively.

2. Background
2.1 Concurrent ML
Concurrent ML (Reppy 1999) is a synchronous message-passing
system originally developed for Standard ML. Threads communi-
cate by sending values over typed channels. Threads sending or re-
ceiving on a channel block until a complementary send or receive
is performed by another thread on the same channel.

CML introduces events, which describe communications to be
performed later. The simplest events are produced by the functions
sendEvt and recvEvt, whose types are shown in Figure 1, along
with most of the CML interface. These functions do not perform the
send or receive; they produce events describing a send or receive.

To perform the communication that an event describes, a thread
synchronizes on the event by calling sync, which has type ’a
event -> ’a. For send and receive events, this attempts the com-
munication, blocking until a matching communication occurs. The
synchronization succeeds if the communication is performed.

Once the separation between the definition and synchronization
of events is articulated, the concept can be generalized with several

type ’a channel
type ’a event

val newChan : unit -> ’a channel

val sendEvt : ’a channel -> ’a -> unit event
val recvEvt : ’a channel -> ’a event
val alwaysEvt : ’a -> ’a event
val neverEvt : ’a event
val chooseEvt : ’a event -> ’a event -> ’a event
val wrapEvt : ’a event -> (’a -> ’b) -> ’b event
(* others *)

val sync : ’a event -> ’a

Figure 1. CML’s interface.

other combinators that produce events. We will discuss just those
used in this paper. One is chooseEvt, which produces an event
from two other events.2 When synchronized on, a chooseEvt
synchronizes on both its subevents until exactly one succeeds. The
value produced by the chooseEvent is the value produced by the
chosen subevent.

As a simple example, the following event, when synchronized
on, waits to receive on two different channels, k1 and k2, and
succeeds by receiving exactly one value.

let either = chooseEvt (recvEvt k1) (recvEvt k2)

Another, simpler event combinator is alwaysEvt, which takes a
value and returns an event on which synchronization always suc-
ceeds immediately with that value. Conversely, synchronizing on a
neverEvtwill never succeed, i.e., it will block forever. alwaysEvt
and neverEvt are often useful in conjunction with other event
combinators.

The final event combinator we discuss is wrapEvt. It takes a
single event and a function to apply to the result of synchronizing
on that event. Synchronizing on a wrapEvt first synchronizes on
the subevent, and, when it succeeds, applies the function to the
result of synchronization to produce a value.

wrapEvt is often used to change the type of one subevent in
a chooseEvt, such that both subevents have the same type. For
example, the following event chooses between receiving on two
channels. However, one channel returns floats and the other ints.
We convert the int to a float with a wrapEvt before returning it.

let floatEvt =
chooseEvt (wrapEvt (recvEvt intk) float_of_int)

(recvEvt floatk)

The function passed to wrapEvt is called after the event passed
to wrapEvt has synchronized. At that point, the event can no longer
fail, even if the function does not terminate or raises an exception.
Moreover, if the function synchronizes on a second event, the
first event in a wrapEvt will already have synchronized even if
the second synchronization fails. For example, the following code
repeatedly sends on a channel. Each send happens individually,
when a single receive is performed on the channel in another thread.

let rec sendForever k v =
sync (wrapEvt (sendEvt k v)

(fun () -> sendForever k v))

There are many examples of elegant multithreaded code using
the CML event combinators. In particular, CML easily lends itself
to writing server threads, which compute some value, possibly with

2 This is just as powerful as a variant that chooses from a list of events.

let refServer init =
let setk = newChan () in
let getk = newChan () in
let loop value =
sync (chooseEvt

(wrapEvt
(sendEvt getk value)
(fun () -> loop value))

(wrapEvt
(recvEvt setk)
(fun value’ -> loop value’))) in

ignore (Thread.create loop init);
(setk, getk)

let get (setk, getk) = sync (recvEvt getk)

let set (setk, getk) v = sync (sendEvt setk v)

Figure 2. A server to simulate a mutable reference in CML

val thenEvt :
’a event -> (’a -> ’b event) -> ’b event

Figure 3. Type of thenEvt

input received on channels, and send the value on another channel.
For example, Figure 2 presents a refserver that simulates a mutable
reference. The function creates a new thread that synchronizes on
an event that chooses between receiving a new value on a setter
channel and sending the old value on a getter channel.

2.2 Transactional Events
Transactional events are an extension of CML motivated by the ob-
servation that CML does not provide a way of sequencing multiple
communications in a single event. To address this limitation, TE
provides a combinator, thenEvt, that allows such sequencing. Its
type is shown in Figure 3.3 Specifically, thenEvt takes an event
and a function for producing a new event from the result of the
first event. Synchronizing on a thenEvt synchronizes on the first
event and then calls the function with the resulting value. This re-
sults in an event that is then synchronized on. We can use nested
thenEvts to sequence an arbitrary number of events. For the syn-
chronization of thenEvt to succeed, the synchronization of both
sequenced events must succeed. Such events are transactional in
that they provide an all-or-nothing semantics: the events contained
in them either all succeed or all fail.

The ability to combine a sequence of events into a single, trans-
actional event makes synchronizing on events significantly more
complex than in CML. In CML, synchronizing on an event per-
forms at most a single send or receive. In TE, synchronizing on an
event may perform an arbitrary number of communications, which
may be with multiple threads. For such a synchronization to suc-
ceed, all the threads with which it communicates must also have
successful synchronizations, which may themselves communicate
with other synchronizing threads. Moreover, all these threads may
use chooseEvent any number of times during their sequence of
communications.

Adding thenEvt increases the expressive power of CML. A
simple example of this is the guarded-receive idiom, which is
common enough to enjoy explicit support in frameworks such as
Erlang (Armstrong et al. 1996) and CSP (Hoare 1978). In guarded

3 The addition of thenEvt to CML makes the type constructor event an
instance of a monad with plus, which was useful in Haskell.

(* ’a chan -> (’a -> bool) -> ’a event *)
let guardedRecvEvt k pred =
thenEvt

(recvEvt k)
(fun x ->
if pred x then alwaysEvt x else neverEvt)

Figure 4. Guarded receive in TE

receive, a thread attempts to receive on a channel by synchronizing
on an event. There is some predicate that guards the receive, such
that the receive (and, as always, the matching send of another
thread) succeeds only if the predicate holds on the received value.

Implementing guarded receive with CML is unexpectedly com-
plex for such a relatively straightforward operation (Donnelly and
Fluet 2006). In particular, a CML-style guarded receive is inher-
ently non-modular, because the protocol requires the participation
of both the sender and the receiver. If a thread needs to guard re-
ceives on a channel, all other threads that send or receive on that
channel must follow the guarded-receive protocol as well.

A TE implementation of this idiom, presented in Figure 4, is
simple. The thenEvent sequences together two events. The first
is a receive. The received value is checked to see if it satisfies
the guard. If so, the next event is an alwaysEvt that returns the
received value. Otherwise the next event is a neverEvt, which
cancels the transaction. The whole event, therefore, blocks until a
value is received that satisfies the predicate. The event is modular:
other threads do not have to use a complex protocol to communicate
with this event.

The inclusion of thenEvt also allows protocols that cannot be
encoded in CML at all. One example is n-way thread synchro-
nization. An event synchronization in CML performs a single send
or receive, which necessarily synchronizes only two threads. One
cannot use CML’s event combinators to build an event that syn-
chronizes more than two threads. With thenEvt, however, mul-
tiple sends and receives can be performed by synchronizing on a
single event, and each individual communication will occur only
if the event succeeds and all the communications occur. Donnelly
and Fluet (2006) show that this can be used to implement an n-way
synchronization.

2.3 Implementing Transactional Events
Transactional events have been implemented as a library for
Haskell. Calling sync performs a search through the space of pos-
sible ways of executing the event. When a thread calls sync, a new
search thread is spawned, which performs the communications de-
scribed.4 At any source of nondeterminism, such as which branch
of a chooseEvt to take, or which of several other threads com-
municating on a channel to communicate with, new search threads
are spawned to search all the possibilities. We formalize a similar
search strategy in detail in Section 5.

The goal of this search is to produce a set of search threads that
have successfully completed by communicating with each other.
The set must be closed; that is, no thread in the set can have com-
municated with any thread outside of it. Moreover, each program
thread that is synchronizing may have produced multiple search
threads, representing different ways of nondeterministically execut-
ing a given event. For correctness, the search is restricted to allow
the final set of threads to contain at most one search thread corre-
sponding to each program thread. This restriction guarantees that

4 Performing communications between threads is obviously an imperative
operation, which Haskell strictly controls. TE Haskell is built on top of
STM Haskell (Harris et al. 2005a,b), which allows shared memory in the
STM monad.

Thread 1: sync (chooseEvt

(thenEvt (sendEvt k1 2)
(fun () -> sendEvt k2 3))

(thenEvt (sendEvt k2 4)
(fun () -> sendEvt k1 5)))

Thread 2: sync (recvEvt k1)

Thread 3: sync (recvEvt k2)

Figure 5. Three threads with a nondeterministic choice

let mapEvt f k1 k2 =
thenEvt (recv k1) (fun x -> sendEvt k2 (f x))

Figure 6. A thenEvt running arbitrary code

there is a globally correct view of what each program thread did
during the event.

We illustrate this restriction using Figure 5. Here, thread 1 may
choose to send to the other two threads in either order. Threads 2
and 3 simply receive values. However, search threads for thread
1 will take both branches of the chooseEvt, so search threads
for 2 and 3 will have the opportunity to communicate with either
branch of the chooseEvt. For the search to complete, 2 and 3 must
communicate with the same branch of the chooseEvt. If they did
not, multiple search threads spawned from thread 1 would appear
in the final set of threads, and there would be no globally correct
view of what thread 3 did.

However, the implementation must also consider the effects of
functions passed into thenEvt. Such functions can contain arbi-
trary user code, including code with side-effects. For example, Fig-
ure 6 contains a call to a function f inside a thenEvt.

Transactional events for Haskell use the Haskell type system
to prevent side effects in thenEvts.5 The Event library is not part
of the IO monad, which means that any code passed to thenEvt
is purely functional. thenEvt in a setting without similar purity
guarantees is the major topic investigated in our work and will be
discussed in the following section.

3. Adding TE to Caml
Combining transactional events with an impure language intro-
duces unexpected complications, particularly when threads share
data via reads and writes to a global heap. Section 3.1 describes
three necessary properties of a semantics for mutation within trans-
actions. Sections 3.2 and 3.3 then describe two extreme and unsuit-
able approaches: disallowing mutation within events and allowing
threads to access the heap in any order. The benefits of each extreme
and the examples they support motivate the solution we describe
in Section 3.4: heap accesses are made in “chunks” delineated by
sends and receives. Section 3.5 considers other effectful features,
most importantly nested synchronizations.

3.1 Three Properties of Mutation within Events
In this section, we identify three properties of mutation within
transactions that would lead to nonsensical behavior if violated.
The approaches in Sections 3.2–3.4 all respect these properties, but
Sections 3.2 and 3.3 suffer from other limitations.

5 Nontermination and exceptions remain possible. Nontermination of code
in thenEvts does not prevent another path through the event from com-
pleting successfully, so only performance suffers. Uncaught exceptions in
an event are considered the same as neverEvt, i.e., the event fails.

First, synchronizing on an unsuccessful event should have no
observable effect; that is, it must remain atomic. Take the following
example:

sync (thenEvt (sendEvt k1 0)
(fun _ -> r := 47; recvEvt k2))

If the send succeeds but the receive does not, then neither the send
nor the update to r may be visible to other threads.

Second, if there are multiple ways in which a given synchroniza-
tion may succeed, the effects of each alternative should be isolated
from one another. Consider this code:

sync (chooseEvt
(thenEvt (recvEvt k1)

(fun _ -> r := 43; recvEvt k2))
(thenEvt (recvEvt k1)

(fun _ -> r := !r + 1; recvEvt k2)))

In this example, if the chooseEvt succeeds and r is 17 initially,
then we expect that the final value of r will be either 43 or 18. If
the right side were to mistakenly see the left’s write of 43 to r, we
would get a final value of 44.

Third, heap reads and writes must be consistent with respect to
thread communication order. For example:

Thread 1: sync (thenEvt (recvEvt k1)
(fun -> r := 45; sendEvt k2 0))

Thread 2: sync (thenEvt (recvEvt k2)
(fun -> sendEvt k3 (!r)))

If these threads successfully synchronize together, the commu-
nication on k2 implies that Thread 2’s read of r comes after Thread
1’s write, so Thread 2 must send 45 on k3.

We seek an implementation of transactional events that supports
the three properties these examples illustrate.

3.2 One Extreme: Disallowing Mutation
As a first attempt to solve our mutation problems, consider a se-
mantics in which any attempt to read from or write to a mutable
heap location would result in a dynamic error (or alternatively, the
enclosing event failing to synchronize). This solution seems rea-
sonable; threads should ideally be using message-passing to com-
municate, so why would a programmer need mutable state within a
transaction?

However, disallowing mutation within transactions would break
functional abstractions. ML functions and data structures com-
monly make use of internal mutable state while presenting a purely
functional interface. For instance, a function might memoize results
of previous calls to increase efficiency.

As an example, Figure 7 gives two implementations of a sim-
ple dictionary interface. The functional implementation FunDict
implements lookup using pure list lookup. CacheDict caches
the most recently looked-up element in a reference cell. Although
CacheDict has an impure implementation, its interface is purely
functional, so clients should be able to use CacheDict wherever
they use FunDict. Disallowing mutation within events breaks this
abstraction, as in this example:

(* (’a * ’b channel) channel ->
(’a, ’b) CacheDict.t -> unit *)

let lookupDictEvt k1 d =
thenEvt (recv k1)

(fun (k2, key) ->
sendEvt k2 (CacheDict.lookup key d))

Mutation is useful in transactional events even when not hidden
under a functional interface. The TE implementation of guarded

module type DICT = sig
type (’key,’val) t
val empty : (’key,’val) t
val add : ’key -> ’val -> (’key,’val) t ->

(’key,’val) t
val lookup : ’key -> (’key,’val) t -> ’val

end

module FunDict : DICT = struct
type (’key,’val) t = (’key * ’val) list
let empty = []
let add key val dict = (key, val)::dict
let lookup key dict =
snd (List.find (fun (k’,_) -> k = k’) dict)

end

module CacheDict : DICT = struct
type (’key,’val) t =
(’key * ’val) option ref * FunDict.t

let empty = (ref NONE, FunDict.empty)
let add key val (r,d) =
(r, FunDict.add(key,val,d))

let lookup key (r,d) =
match r with

(ref (SOME(k,v)) when k=key -> v
| _ -> let ans = FunDict.lookup d in

r := SOME(key,ans);
ans

end

Figure 7. Two implementations of dictionary lookup, one func-
tional and one using a mutable field as a cache.

receive in Figure 4 requires a user-provided predicate to approve
the received value. The following example uses a reference cell
within the guard to guarantee that one or more threads receive
strictly increasing integer values.

let increasingRecvEvt k r =
guardedRecvEvt k (fun x -> let i = !r in

let _ = r := x in
x > i)

In short, there are a number of practical idioms that read or
write the heap within a transaction. Disallowing mutation within
transactions is simply not in the mostly-functional spirit of ML.

3.3 The Other Extreme: Refservers
Consider an alternative solution in which threads in a transaction
may freely read and modify the heap in any order. Again such be-
havior initially seems reasonable; non-transactional code is not re-
stricted from modifying the heap at any time, so why restrict trans-
actional code? Moreover, there is a straightforward way of extend-
ing TE to support this semantics. Recall the “refserver” interface in-
troduced in Figure 2, in which a CML thread simulates a reference
cell. We could map each heap location to a refserver thread, and
translate heap reads and writes to receives and sends, respectively.
Unfortunately, we shall see that this potential solution is expensive
to implement and encourages ugly programming idioms.

One problem is that transactional events guarantee complete-
ness as well as correctness: if a successful transaction exists, our
implementation would be required to find it, potentially having to
deal with a very large search space. Even without references, the
size of the search space of possible transactions can be very large.
However, TE is “pay-as-you-go”: the size of the search space is ex-
ponential in the complexity of the program’s communication proto-

col. For example, a pure guarded receive is a simple communication
protocol, so the space needed for finding a successful transaction is
relatively small. By turning reference reads and writes into commu-
nications, we would be greatly increasing the protocol complexity,
and hence blowing up the search space.

Even if we could ignore the potential search-space blowup, this
solution’s guarantees are stronger than we believe is appropriate.
For example, the following code would always succeed, because
it abuses the completeness of the refserver solution by assuming
that two threads’ heap accesses will interleave in a specific way.
We are unaware of any practical examples in which such an ugly
programming idiom is necessary or useful.

Thread 1:
sync (thenEvt (sendEvt k 0)

(fun _ -> r := 1; r := 0; alwaysEvt ()))

Thread 2:
sync (thenEvt (recvEvt k)

(fun _ ->
if !r = 1 then alwaysEvt () else neverEvt))

3.4 A Solution: Chunking
We have a dilemma. We cannot disallow mutation, as we do not
want to break functional abstractions. Allowing any sequence of
reads and writes is unacceptably expensive and encourages ugly
programming idioms. We propose a compromise (explained below)
between these two extremes: chunking heap accesses to allow mu-
tation without sacrificing efficiency. Chunking allows mutation like
the refserver solution, yet it can be implemented more efficiently
and allows all useful examples we have encountered.

Our solution is to restrict the allowable interleavings of heap
reads and writes to those in which threads are interleaved only when
a thread reaches a communication event (sendEvt or recvEvt) or
completes its sync. This restriction divides each thread’s heap ac-
cesses into chunks, atomic blocks of code separated by sends and
receives. We guarantee that if a successful transaction using chun-
ked heap accesses exists, our implementation will find it; we also
guarantee that any solution found by our implementation chunks
heap accesses, as well as obeying the properties discussed in Sec-
tion 3.1. The key trade-off here is that we are allowing mutation
within a transaction without requiring an expensive search of all
possible thread interleavings.

Chunking is both a reasonable and useful restriction on the
behavior of heap accesses in transactions, as our next example
shows. Suppose we have a function that generates unique identifiers
by incrementing a shared counter:

let counter := ref 0
let getID () =
let ans = !counter in
let _ = counter := ans + 1 in
ans

Now consider a transaction in which two threads both call getID:

Thread 1: sync (thenEvt (sendEvt k 42)
(fun -> sendEvt k1 (getID ())))

Thread 2: sync (thenEvt (recvEvt k)
(fun -> sendEvt k2 (getID ())))

Thread 3: sync (thenEvt (recvEvt k1)
(fun x -> thenEvt (recvEvt k2)

(fun y -> alwaysEvt (x, y))))

Suppose that counter is 0 when the transaction begins. If we
permit any thread interleaving within a transaction, we would ex-

pect that when the transaction completed, Thread 3’s result could be
(0,0), (0,1) or (1,0). (0,0) represents a transaction in which
both reads of counter completed before either write; (0,1) and
(1,0) occur if one of the threads completes its update to counter
before the other reads counter. Restricting the set of correct trans-
actions to those with “chunked” interleavings, the results (0,1)
and (1,0) are legal, but (0,0) is not, because each thread’s chunk
includes both a write and a read. In this case, our semantics disal-
lows the incorrect interleaving.

All the examples discussed in Section 3.2 run correctly under
chunking. For example, any memoized function makes its updates
to the memo table without using sends or receives, so the updates
are executed in a contiguous block. Similarly, CacheDict’s lookup
function reads and updates the cache within a single chunk.

3.5 Other Side Effects
The primary contribution of this paper is a semantics for mutation
within transactional events, but ML has several other effectful fea-
tures whose behavior in the presence of transactions deserves con-
sideration. Our implementation supports nested synchronization,
and we expect that existing techniques in the literature for excep-
tions, I/O, and thread creation can be incorporated.

We say that a nested sync occurs when a thread synchronizes on
an event while executing transactional code. Consider the following
code, which sequences two receives using a nested sync:

sync (thenEvt (recvEvt k1)
(fun x -> let y = sync (recvEvt k2) in

alwaysEvt (x, y)))

It is reasonable to expect that this code is functionally equivalent to
a version using thenEvt to sequence the receives:

sync (thenEvt (recvEvt k1)
(fun x -> thenEvt (recvEvt k2)
(fun y -> alwaysEvt (x, y))))

Note, too, that library code with a purely functional interface may
use events internally to perform multithreaded computation. For ex-
ample, we could have implemented Section 3.4’s unique-identifier
generator using a server thread that repeatedly sent unique iden-
tifiers on a channel. For calls to these library functions to work
correctly, we need nested synchronizations. Hence, by supporting
nested sync, we avoid breaking functional abstractions, much as we
did by allowing mutation within transactions. This issue does not
arise in Haskell because the monadic type system ensures no call
to sync is evaluated as part of an event.

In our semantics, nested syncs simply execute as part of the
same transaction as the outer sync. That is, any sends or receives
in nested syncs are part of the same all-or-nothing communication
protocol begun before reaching the nested sync. We discuss the
details of supporting nested sync in Sections 4 and 7.

We anticipate that existing work on exceptions and thread cre-
ation will apply to our system. Donnelly and Fluet (2006) discuss
exceptions in the original TE paper; they suggest that any event that
raises an exception become a neverEvt, with a catchEvt combi-
nator to avoid aborting the transaction. Thread creation in tradi-
tional software transactions has been addressed in prior work (Ja-
gannathan et al. 2005; Ziarek and Jagannathan 2008; Moore and
Grossman 2008). Moore and Grossman propose two separate se-
mantics for thread creation: internally parallel threads that execute
within a transaction, and on-commit threads that execute at top-
level after the transaction commits. We expect that it would be pos-
sible to implement both types of thread creation within TE.

Arbitrary irreversible I/O is essentially not supportable within
transactions, but existing pragmatic techniques for transactional
memory systems — particularly buffering of input and output, as in

Expressions:
e ::= () | l | κ | x | λx.e | e e |

ref e | e := e | !e |
create e | sync e | newChan |
alwaysEvt e | neverEvt | thenEvt e e |
chooseEvt e e | sendEvt e e | recvEvt e

Values:
v ::= () | l | κ | λx.e |

alwaysEvt v | neverEvt | thenEvt v v |
chooseEvt v v | sendEvt v v | recvEvt v

Mutable heap:
H ::= · | H, l 7→ v

Evaluation contexts:
M ::= [·] | M e | v M |

ref M | !M | M := e | v :=M |
sync M | alwaysEvt M |
thenEvt M e | thenEvt v M |
chooseEvt M e | chooseEvt v M |
sendEvt M e | sendEvt v M | recvEvt M

M ::= · | M :M

Threads:
T ::= 〈θ, e〉
T ::= · | T ‖ T

Transaction syntax during execution:
E ::= [·] | thenEvt E v
K ::= 〈θ,M, e〉
K ::= · | K ‖ KeK ::= · | K

Figure 8. TE syntax.

H; e ↪→ H ′; e′

CONTEXT
H; e ↪→ H ′; e′

H;M [e] ↪→ H ′;M [e′]

APP

H; (λx.e) v ↪→ H; e[v/x]

NEWREF
l fresh

H; ref v ↪→ H, l 7→ v; l

GETREF

H; !l ↪→ H;H(l)

SETREF

H; l := v ↪→ H, l 7→ v; ()

NEWCHAN
κ fresh

H; newChan ↪→ H;κ

Figure 9. Single-threaded semantics.

AtomCaml (Ringenburg and Grossman 2005) — seem reasonable
for transactional events as well. Such systems buffer output until
after the transaction has successfully completed. If the transaction
fails, the output is discarded. Similarly, input can be buffered, with
any input read put back in the buffer if the transaction failed.

4. High-Level Semantics
We define a high-level, nondeterministic semantics for transac-
tional events that clarifies the design decisions discussed in Section
3. Our goal is that the high-level semantics provide a clear defini-
tion of which transactions can succeed in our implementation. The

H;T → H ′;T
′

STEPTHREAD
H; e ↪→ H ′; e′

H; 〈θ, e〉 ‖ T → H ′; 〈θ, e′〉 ‖ T

CREATE
θ′ fresh

H; 〈θ,M [create e]〉 ‖ T → H; 〈θ,M [()]〉 ‖ 〈θ′, e〉 ‖ T

SYNC
H; 〈θ1, ·, v1〉 ‖ 〈θ2, ·, v2〉 ‖ . . . ‖ 〈θn, ·, vn〉; · ∗ H ′; 〈θ1, ·, alwaysEvt v′1〉 ‖ 〈θ2, ·, alwaysEvt v′2〉 ‖ . . . ‖ 〈θn, ·, alwaysEvt v′n〉; ·

H; 〈θ1,M1[sync v1]〉 ‖ 〈θ2,M2[sync v2]〉 ‖ . . . ‖ 〈θn,Mn[sync vn]〉 ‖ T → H ′; 〈θ1,M1[v
′
1]〉 ‖ 〈θ2,M2[v

′
2]〉 ‖ . . . ‖ 〈θn,Mn[v′n]〉 ‖ T

H;K; eK H ′;K
′
; eK′ SENDRECV

H; 〈θ1,M1, E1[sendEvt κ v]〉 ‖ 〈θ2,M2, E2[recvEvt κ]〉 ‖ K; eK
H; 〈θ1,M1, E1[alwaysEvt ()]〉 ‖ 〈θ2,M2, E2[alwaysEvt v]〉 ‖ K; eK

THENALWAYS

H;K; 〈θ,M, E[thenEvt (alwaysEvt v1) v2]〉
H;K; 〈θ,M, E[v2 v1]〉

CHOOSELEFT

H;K; 〈θ,M, E[chooseEvt v1 v2]〉
H;K; 〈θ,M, E[v1]〉

CHOOSERIGHT

H;K; 〈θ,M, E[chooseEvt v1 v2]〉
H;K; 〈θ,M, E[v2]〉

BEGINRUNTHREAD

H;K ‖ K; · H;K;K

ENDRUNTHREAD
EndRun(M, v)

H;K; 〈θ,M, v〉 H; 〈θ,M, v〉 ‖ K; ·

STEPRUNNINGTHREAD
H; e ↪→ H ′; e′

H;K; 〈θ,M, e〉 H ′;K; 〈θ,M, e′〉

NESTEDSYNCINIT

H;K; 〈θ,M,M [sync v]〉 H;K; 〈θ,M :M, v〉

NESTEDSYNCCOMPLETE

H;K; 〈θ,M :M, alwaysEvt v〉 H;K; 〈θ,M,M [v]〉

EndRun(M, v)
ENDRUNSEND

EndRun(M, E[sendEvt κ v])

ENDRUNRECV

EndRun(M, E[recvEvt κ])

ENDRUNALWAYS

EndRun(·, alwaysEvt v)

Figure 10. High-level semantics.

semantics enforces chunking of heap accesses as described in Sec-
tion 3.4 and allows nested sync as described in Section 3.5.

Syntax and basic evaluation steps We model ML as a call-by-
value lambda calculus with a mutable heap and threads. The syn-
tax (Figure 8) includes primitives for mutable references, thread
creation, channels, and events. We provide six composable event
combinators, as well as the newChan keyword for creating a new
channel and the sync keyword for synchronizing on an event. Value
forms are (), heap locations l, channels κ, and events. We omit data
types such as integers or pairs for simplicity. A program state is
a mutable heap H and a pool of threads T , each of which has a
thread ID θ and an expression e. We use the ‖ operator, assumed
to be commutative and associative, to build pools of threads. The
use of stacks of evaluation contexts and run-time transaction syn-
tax is discussed below. Our language does not have a type system;
although the Caml implementation uses standard ML-style types,
type safety is orthogonal to the issues being considered.

The high-level semantics is divided into three levels of execu-
tion: single-threaded, multithreaded, and synchronous. The single-
threaded transition ↪→ (Figure 9) performs basic function applica-
tion, reads and writes the heap, and creates fresh channels. Note
the use of evaluation contexts M to streamline the semantics and
enforce call-by-value behavior.

The multithreaded transition→ (Figure 10) is nondeterministic.
It may choose any thread to take a basic evaluation step or to spawn
a new thread. It may also choose a subset of threads to execute
a transaction (rule SYNC). SYNC nondeterministically chooses a
subset of the thread pool T , finds a successful transaction using the
subset’s threads and transitions, and updates the threads’ values
in T to reflect the result of the transaction.

Events The transition (Figure 10) steps between pools of sync-
ing threads K. Each syncing thread consists of a thread ID θ,
a stack of evaluation contexts M (M is nonempty in the pres-
ence of nested sync; described below), and an expression e. The
syncing program state also includes an optional running thread eK
that we use to enforce chunked heap accesses. Threads move to
the running-thread position to execute single-threaded steps, pro-
cess chooseEvt or thenEvt combinators, or begin or end nested
syncs. (To enforce chunking, we could require only heap accesses
take place from the running-thread position, but such a semantics
is equivalent and more complicated.)

As in TE Haskell, we have four rules for processing events:

• The CHOOSELEFT and CHOOSERIGHT rules nondeterministi-
cally take the left and right branches of a chooseEvt.

• The SENDRECV rule nondeterministically takes two threads,
one of which is blocked at a sendEvt on a channel κ and
one of which is blocked at a recvEvt on κ, and performs a
communication between the two threads.

• THENALWAYS takes the completed left side of a thenEvt and
applies the thunked code on the right side to the result.

We use event contextsE to evaluate under the left side of a thenEvt.
An event is a tree of thenEvt and chooseEvt combinators. The
syntax for E isolates the first event to process by moving down the
left side of each thenEvt in the tree. After a THENALWAYS step,
the expression v2 v1 must be re-evaluated to an event using basic
evaluation steps. These steps may read from or write to the heap,
and we require that these heap accesses occur “all at once” with
chunking.

Nondeterministic choice High-level transition Low-level equivalent
Which threads participate SYNC SYNCINIT, SYNCCOMPLETE
Which side of chooseEvt CHOOSELEFT, CHOOSERIGHT CHOOSE

Whether to perform a communication SENDRECV SENDRECV
Which thread enters run mode / What heap to use BEGINRUNTHREAD BEGINRUNTHREAD

Figure 11. Nondeterministic choices made while a transaction is executing.

Chunking We enforce the chunking of heap accesses described
in Section 3.4 with an additional piece of program state eK, which
either holds a running thread K or is empty (·). A thread enters run
mode with the BEGINRUNTHREAD rule, which requires that eK
be empty before the step. The STEPRUNNINGTHREAD rule allows
the running thread to take single-threaded steps, possibly reading
or writing the heap. Rule ENDRUNTHREAD moves the running
thread out of run mode only when the thread completes its sync or
reaches a communication (formalized with the predicate EndRun
in Figure 10). Hence, threads executing within a transaction access
the heap in atomic “chunks” delineated by communications. Note
that the thread’s run does not complete when the thread reaches a
chooseEvt or thenEvt.

Nested sync The stack of evaluation contextsM included in each
syncing thread implements nested sync. If a thread executing in
run mode reaches a nested sync, its evaluation context is saved and
pushed ontoM (rule NESTEDSYNCINIT). When the nested sync
completes, the most recent context is popped off the stack and the
thread continues execution where it left off (rule NESTEDSYNC-
COMPLETE). A top-level sync cannot complete unless the stack of
contexts is empty.

Example Consider the following example, which assumes that
our language includes integer constants and that e1; e2 is syntactic
sugar for (λ .e2) e1.

Thread 1:
sync (thenEvt (alwaysEvt ()) (λ .r := 22; recvEvt κ))

Thread 2:
sync (thenEvt (alwaysEvt ()) (λ .r := 45; sendEvt κ (!r)))

The SYNC rule can select both threads to participate in a trans-
action. We then nondeterministically choose a thread to enter run
mode. Suppose Thread 1 is chosen; it writes 22 to r and exits run
mode waiting to receive on κ. Thread 2 then enters run mode, writes
45 to r, reads 45 from r, and exits run mode trying to send 45 on
κ. Note it is not possible for Thread 2 to read 22 from r, no matter
which thread enters run mode first. The two threads then communi-
cate over κ, leaving Thread 1 with the expression alwaysEvt 45 and
Thread 2 with expression alwaysEvt (). At this point, both threads
have the form alwaysEvt v for some value v, so the sync succeeds
and the two threads return to the normal pool of threads.

5. Low-Level Semantics
The section presents a low-level semantics that implements Section
4’s high-level semantics with an exhaustive search of interactions
among syncing threads. The low-level rules “determinize” several
sources of nondeterminism, such as which branch of a chooseEvt
to take or whether to communicate with another thread (Figure 11).

Program execution The low-level syntax and semantics appear
in Figures 12 and 13, respectively. We have closely followed TE
Haskell’s low-level semantics, with some key changes to allow for
mutation and nested sync. Our low-level program state consists of a
global heap H that may be frozen as��H , a pool of threads T , a pool

Search threads: S ::= 〈θ, eR,M, e, ρ〉eR ::= · | R

Search heaps: R ::= 〈H, η〉

Paths: ρ̂ ::= Left | Right | Send(〈θ, ρ〉) |
Recv(〈θ, ρ〉) | Heap(η)

ρ ::= · | ρ̂:ρ
η ::= · | 〈θ, ρ〉:η

Program state: h ::= H |��H
S ::= · | S ‖ S
R ::= · | R ‖ R

Trails: τ ::= 〈θ, ρ〉 | 〈heap, η〉

Figure 12. Low-level runtime syntax (extends Figure 8).

of search heaps (explained below) R, and a pool of search threads
S (also explained below). Program execution takes place in two al-
ternating stages: normal thread execution, during which the heap is
unfrozen (H) and threads in T may make progress, and synchro-
nization, during which the heap is frozen (��H) and search heaps and
search threads attempt to find a successful transaction. The pro-
gram enters the synchronization stage with rule SYNCINIT, which
initializes a single search heap and a pool of search threads from the
current global heap and a set of threads that are blocked at a sync
in T . SYNCINIT nondeterministically chooses which threads to ini-
tialize as search threads; in practice, we take all threads blocked at a
sync. The SYNCCOMPLETE rule exits synchronization when a set
of search threads is committable (explained below) with a single
search heap, committing the transaction’s results back to the main
pool T . The synchronization stage cannot be stuck, even if no suc-
cessful transaction exists: it is always possible to unfreeze the heap
and return to normal thread execution by committing an empty set
of search threads with the initial search heap created by SYNCINIT.

Search threads During synchronization, each thread T that is at
a sync corresponds to one or more search threads S. A search
thread consists of a thread ID θ, an optional first class heap eR
(explained below), a stack M of evaluation contexts for nested
sync, an expression, and a path ρ (also explained below). Search
threads perform a search for possible transactions by speculatively
executing transactional code. As in the TE Haskell semantics, we
search for a successful transaction by replicating search threads for
each nondeterministic step. Therefore, the pool of search threads S
may represent many different partially completed transactions.

When a search thread replicates, the path ρ of each replicated
search thread is updated to record what nondeterministic choice
was made. For example, in the CHOOSE rule, a search thread
replicates as two search threads, one taking the left branch and one
taking the right. Each replicated thread updates its path with either
Left or Right. In SENDRECV, the choice is between performing a
communication or not, so the sender and receiver each replicate as
two search threads, one of which performed the communication and

h;T ;R;S → h′;T
′
;R
′
;S
′

STEPTHREAD
H; e ↪→ H ′; e′

H; 〈θ, e〉 ‖ T ; ·; · → H ′; 〈θ, e′〉 ‖ T ; ·; ·

CREATE
θ′ fresh

H; 〈θ,M [create e]〉 ‖ T ; ·; · →
H; 〈θ,M [()]〉 ‖ 〈θ′, e〉 ‖ T ; ·; ·

SYNCINIT

H; 〈θ1,M1[sync v1]〉 ‖ 〈θ2,M2[sync v2]〉 ‖ . . . ‖ 〈θk,Mn[sync vn]〉 ‖ T ; ·; · →
��H; 〈θ1,M1[sync v1]〉 ‖ 〈θ2,M2[sync v2]〉 ‖ . . . ‖ 〈θk,Mn[sync vn]〉 ‖ T ; 〈H, ·〉; 〈θ1, ·, ·, v1, ·〉 ‖ . . . ‖ 〈θk, ·, ·, vk, ·〉

SYNCCOMPLETE
{〈θ1, ρ1〉, 〈θ2, ρ2〉, . . . , 〈θn, ρn〉, 〈heap, η〉} committable

��H; 〈θ1,M1[sync v1]〉 ‖ 〈θ2,M2[sync v2]〉 ‖ . . . ‖ 〈θn,Mn[sync vn]〉 ‖ T ; 〈H ′, η〉 ‖ R;
〈θ1, ·, ·, alwaysEvt v′1, ρ1〉 ‖ 〈θ2, ·, ·, alwaysEvt v′2, ρ2〉 ‖ . . . ‖ 〈θn, ·, ·, alwaysEvt v′n, ρn〉 ‖ S →

H ′; 〈θ1,M1[v
′
1]〉 ‖ 〈θ2,M2[v

′
2]〉 ‖ . . . ‖ 〈θn,Mn[v′n]〉 ‖ T ; ·; ·

SENDRECV
〈θ1, ρ1〉 and 〈θ2, ρ2〉 coherent

��H;T ;R; 〈θ1, ·,M1, E1[sendEvt κ v], ρ1〉 ‖ 〈θ2, ·,M2, E2[recvEvt κ], ρ2〉 ‖ S →
��H;T ;R; 〈θ1, ·,M1, E1[sendEvt κ v], ρ1〉 ‖ 〈θ2, ·,M2, E2[recvEvt κ], ρ2〉 ‖

〈θ1, ·,M1, E1[alwaysEvt ()], Send(〈θ2, ρ2〉):ρ1〉 ‖ 〈θ2, ·,M2, E2[alwaysEvt v],Recv(〈θ1, ρ1〉):ρ2〉 ‖ S

CHOOSE

��H;T ;R; 〈θ,R,M, E[chooseEvt v1 v2], ρ〉 ‖ S →
��H;T ;R; 〈θ,R,M, E[v1], Left:ρ〉 ‖
〈θ,R,M, E[v2],Right:ρ〉 ‖ S

THENALWAYS

��H;T ;R; 〈θ,R,M, E[thenEvt (alwaysEvt v1) v2], ρ〉 ‖ S →
��H;T ;R; 〈θ,R,M, E[v2 v1], ρ〉 ‖ S

BEGINRUNTHREAD
〈heap, η〉 and 〈θ, ρ〉 coherent

��H;T ; 〈H ′, η〉 ‖ R; 〈θ, ·,M, e, ρ〉 ‖ S →
��H;T ; 〈H ′, η〉 ‖ R; 〈θ, ·,M, e, ρ〉 ‖ 〈θ, 〈H ′, η〉,M, e, ρ〉 ‖ S

ENDRUNTHREAD
EndRun(M, v)

��H;T ;R; 〈θ, 〈H ′, η〉,M, v, ρ〉 ‖ S →
��H;T ; 〈H ′, 〈θ, ρ〉:η〉 ‖ R; 〈θ, ·,M, v,Heap(η):ρ〉 ‖ S

STEPRUNNINGTHREAD
H ′; e ↪→ H ′′; e′

��H;T ;R; 〈θ, 〈H ′, η〉,M, e, ρ〉 ‖ S →
��H;T ;R; 〈θ, 〈H ′′, η〉,M, e′, ρ〉 ‖ S

NESTEDSYNCINIT

��H;T ; 〈θ,R,M,M [sync v], ρ〉 ‖ S →
��H;T ; 〈θ,R,M :M, v, ρ〉 ‖ S

NESTEDSYNCCOMPLETE

��H;T ; 〈θ,R,M :M, alwaysEvt v, ρ〉 ‖ S →
��H;T ; 〈θ,R,M,M [v], ρ〉 ‖ S

Figure 13. Low-level semantics (coherent and committable defined in text; EndRun unchanged from Figure 10).

one of which did not. The communicating pair both update their
paths with Send or Recv. The final type of path element, Heap,
indicates that the thread entered run mode (explained below).

Search heaps Search heaps implement the chunking semantics
discussed in the previous section. Unlike the high-level semantics,
in which syncing threads had direct access to the global heap, the
search threads work with local first-class heaps, stored in search
heaps R. Each R includes a heap path η, which records the search
threads that contributed toward producing that first-class heap. Ev-
ery successful transaction produces one search heap that represents
the final state of the global heap for that transaction.

During a transaction, search heaps move among search threads
by moving in and out of the pool of available search heaps R. The
BEGINRUNTHREAD rule copies a search heap fromR into a search
thread’s local state. When a search thread exits run mode, END-
RUNTHREAD adds the updated search heap to the pool. ENDRUN-
THREAD updates the paths in the search thread and search heap.

Nested sync Each search thread stores a list of evaluation con-
texts (M) for nested sync. The details of nested sync (M, NEST-
EDSYNCINIT and NESTEDSYNCCOMPLETE) are identical to their
high-level equivalents.

Committability and coherency The low-level semantics takes a
SENDRECV or BEGINRUNTHREAD step only if the step might lead
to a successful transaction. The communicating threads (or in the
case of BEGINRUNTHREAD, the thread entering run mode and its
new heap) must have a consistent view of what has happened thus
far in the transaction. We formalize this requirement by defining
when two trails are coherent, where a trail is either a “thread
trail” 〈θ, ρ〉 or a “heap trail” 〈heap, η〉. In addition, the pools of
search threads and search heaps may correspond to many different
transactions, and it is important that the threads and heap used in the
final successful transaction have observed the same transaction in
progress. To that end, we define the notion of committability, which
checks that the paths in a set are all consistent with one another.

To explain coherence and committability, we first define the �
(extends) operator for paths and the dependency set for a trail.

DEFINITION 1 (Extends).
A path ρ extends a path ρ′ (ρ � ρ′) if
• ρ = ρ′, or
• there exist ρ̂ and ρ′′ such that ρ = ρ̂:ρ′′ and ρ′′ � ρ.

The � operator applies similarly to heap paths η.
A trail’s dependency set is the set of trails with which it has

interacted, directly or indirectly.

DEFINITION 2 (Dependency set).
For all trails τ , we define Dep(τ) as follows:

Dep(τ) = {τ} ∪ DepAux(τ)

where we define DepAux(τ) as:

DepAux(〈θ, ·〉) = {}
DepAux(〈θ, Left:ρ〉) = DepAux(〈θ, ρ〉)
DepAux(〈θ,Right:ρ〉) = DepAux(〈θ, ρ〉)
DepAux(〈θ,Send(〈θ′, ρ′〉):ρ〉) = {〈θ′,Recv(〈θ, ρ〉):ρ′〉} ∪

DepAux(〈θ, ρ〉) ∪ DepAux(〈θ′, ρ′〉)
DepAux(〈θ,Recv(〈θ′, ρ′〉):ρ〉) = {〈θ′, Send(〈θ, ρ〉):ρ′〉} ∪

DepAux(〈θ, ρ〉) ∪ DepAux(〈θ′, ρ′〉)
DepAux(〈θ,Heap(η):ρ〉) = {〈heap, 〈θ, ρ〉:η〉} ∪

DepAux(〈θ, ρ〉) ∪ DepAux(〈heap, η〉)
DepAux(〈heap, ·〉) = {}
DepAux(〈heap, 〈θ, ρ〉:η〉) = {〈θ,Heap(η):ρ〉} ∪

DepAux(〈θ, ρ〉) ∪ DepAux(〈heap, η〉)

In practice, we maintain the dependency set incrementally.
We define coherency to guarantee that two threads communicate

only when they have observed the same transaction thus far.

DEFINITION 3 (Coherent).
〈θ1, ρ1〉 and 〈θ2, ρ2〉 are coherent if:

• θ1 6= θ2;
• For all 〈θ1, ρ′1〉 ∈ Dep(〈θ2, ρ2〉), ρ1 � ρ′1;
• For all 〈θ2, ρ′2〉 ∈ Dep(〈θ1, ρ1〉), ρ2 � ρ′2;
• For all 〈θ, ρ〉 ∈ Dep(〈θ1, ρ1〉) and 〈θ, ρ′〉 ∈ Dep(〈θ2, ρ2〉),
ρ � ρ′ or ρ′ � ρ; and

• For all 〈heap, η〉 ∈ Dep(〈θ1, ρ1〉) and
〈heap, η′〉 ∈ Dep(〈θ2, ρ2〉), η � η′ or η′ � η.

A similar definition applies when one trail is a thread trail and the
other a heap trail, as in BEGINRUNTHREAD.

The SYNCCOMPLETE rule takes a set of complete search
threads and a search heap and checks that the trails of each is
committable. Committability formally defines the intuition that all
of the threads have participated in the same transaction, and that no
other search threads participated in that transaction.

DEFINITION 4 (Committable).
A set of trails C is committable if:

1. The thread IDs θ of the trails inC are distinct from one another;
2. For all τ ∈ C, if 〈θ, ρ〉 ∈ Dep(τ), then there exists ρ′ such that
〈θ, ρ′〉 ∈ C and ρ′ � ρ; and

3. There exists a unique heap path η such that 〈heap, η〉 ∈ C.
Moreover, for all τ ∈ C, if 〈heap, η′〉 ∈ Dep(τ), then η � η′.

In Section 6, we shall show that the low-level semantics is both
correct and complete — that is, any transaction that succeeds in
the low-level semantics could have succeeded in the high-level
semantics, and vice versa. And unlike the high-level semantics, the
low-level semantics is reasonable to implement in a real system, as
we shall see in Section 7.

6. Proof of Equivalence
In Sections 4 and 5, we presented two distinct semantics for trans-
actional events in an ML-like language: a high-level, nondetermin-
istic semantics that defines the set of correct transactions, and a
search-based low-level semantics, representing our Caml imple-
mentation. This section gives a very brief overview of our formal
proof of equivalence for these two semantics.

Our proof establishes two core facts, Theorems 1 and 2.

THEOREM 1 (High-level to low-level).
If H;T → H ′;T

′
in the high-level semantics, then H;T ; ·; · →∗

H ′;T
′
; ·; · in the low-level semantics.

Theorem 1 states that the low-level semantics permits all pos-
sible program executions allowed by the high-level semantics. In
particular, if a set of syncing threads successfully completes a trans-
action in the high-level semantics, then there exists a sequence of
steps such that the same threads successfully synchronize in the
low-level semantics. The proof maintains a correspondence be-
tween high-level and low-level search threads and demonstrates
that at each step the set of low-level search threads is committable.
Hence, when the high-level transaction completes, the low-level
transaction may commit with SYNCCOMPLETE.

THEOREM 2 (Low-level to high-level).
If h;T ;R;S → h′;T

′
;R
′
;S
′

in the low-level semantics and
SyncSim(h;T ;R;S), then SyncSim(h′;T

′
;R
′
;S
′
) and

unfreeze(h);T →∗ unfreeze(h′);T
′

in the high-level semantics,
where unfreeze(H) = H and unfreeze(��H) = H .

Theorem 2 states that the low-level semantics does not introduce
new possible program executions. At each step in the low-level
semantics, we erase any incomplete transactions to translate to
the high-level state. The theorem uses a key invariant SyncSim
(the formal definition of which is omitted here) which holds when
low-level program state is synchronously simulable: the pools of
search threads and search heaps represent valid evolutions of the
high-level semantics. Hence, when a low-level transaction commits
with SYNCCOMPLETE, the high-level semantics may take a single
SYNC step to “catch up.”

Together, these two theorems demonstrate that our two seman-
tics are equivalent. Both proofs rely on the notion of a commit-
table set by mapping between a pool of high-level syncing threads
and a committable set of low-level search threads. There are many
subtleties and corner cases in showing that committability is pre-
served with each step; hence, we found it useful to mechanize
our proof in the Coq proof assistant so as to avoid missing cru-
cial details. Readers are encouraged to peruse our Coq code at
http://wasp.cs.washington.edu/tecaml to get an idea of
the proof techniques used for Theorems 1 and 2. The proof is large
(some 15,000 lines of Coq code) but reassuringly similar to TE
Haskell’s paper proof of correctness (Donnelly and Fluet 2008).

7. Implementation
We have created a prototype implementation of TE Caml for Ob-
jective Caml. Our implementation consists of modifications to the
thread scheduler and bytecode interpreter and a Caml library that
uses these to implement TE. All the examples in this paper and
some other small programs produce the correct answer and gener-
ate the expected set of search threads and search heaps. The devel-
opment and evaluation of larger benchmarks remains future work.

7.1 OCaml Library
The core of our prototype is an OCaml library that uses the run-
time changes described in Sections 7.2–7.4 to implement a system
that closely follows our low-level semantics. A thread syncing
on an event blocks while search threads speculatively execute all
possible nondeterministic executions of an event. If a search thread
encounters a nondeterministic choice, such as which branch in a
chooseEvt, or what thread to communicate with, it spawns new
search threads for all the choices. A search thread carries a path, as
in the low-level semantics, to record the choices that identify that
search thread’s execution of the event. This lets us check that the
views of the past seen by communicating threads are coherent.

Once a transaction completes, the library kills all search threads.
We do not wait for a search thread to reach some sort of event be-
fore killing it because an infinite loop involving no such events
could mean this never occurs. Therefore, run-time support for
killing (search) threads is important. It is an improvement over
the Haskell implementation, which can never kill search threads
that do not return from the function call caused by thenEvent.

An event is implemented as a function that takes a state, con-
taining a path and first class heap, and returns a new state and a
value, which is the value the event returns when synchronized on.
sync calls this function with an initial state; events containing other
events call the functions representing their subevents.

Channels are implemented as two lists of threads: those waiting
for sends and those waiting for receives. A communicating thread
wakes all the threads in one list, supplying them with a value if
it is sending, and then adds itself to the other list and sleeps. An
awoken thread spawns a new copy of itself to run, possibly with
a newly received value if it is receiving, and then returns to sleep.
Note that unlike a Concurrent ML implementation, completeness
requires trying all matching communications, not just one.

7.2 First Class Heaps
Our semantics prevent effects in events from being seen before
events succeed through the use of multiple, first class heaps. Part of
the state of a running search thread is the current heap that should
be used in code run in a thenEvt.

We modified the bytecode interpreter to write to different loca-
tions in the actual heap depending on which first class heap was
currently associated with the currently running search thread. This
required checking on each access of the heap to discover if there is
currently a first class heap that should be used.

While other work has investigated sophisticated techniques for
representing first class heaps, our proof-of-concept implementation
uses very simple heaps. We represent first class heaps as Caml lists
of tuples to take advantage of the functional nature of ML data
structures. A heap write simply adds a tuple to the head of the list,
which lets us exploit tail sharing for immutable lists.

Our first class heaps are implemented lazily. Until client code
writes to a heap location, the ordinary OCaml heap is used instead.
Once a write to a location is encountered for a given first class heap,
that location is added to the first class heap and all further reads or
writes to that location use the first class heap.

When a committable set of search threads is found, the resulting
heap is copied back into the global OCaml heap. This copying must
occur atomically, which is simple because OCaml runs only one
thread at a time.

7.3 Stack Copying Thread Creation
While speculatively executing events, our implementation forks off
search threads to continue executing with different nondeterminis-
tic choices. Such execution may include computation higher up the
call stack than the location of the thread creation.

To do this, we added stack copying thread creation to the OCaml
thread library, as a function called fork.6 This function is called
by a thread and creates a copy of the calling thread, like Unix’s
process-level fork. It returns twice, once in the parent thread and
once in the new child thread, where each thread is the same except
for the return value of the function. Implementing fork requires
copying the thread data structure in the OCaml scheduler. In addi-
tion, we copy the entire thread stack for the duplicated thread.

TE Haskell solved a similar problem without adding new thread
creation primitives to the runtime. Instead, they use a continuation

6 The existing OCaml function Thread.create creates threads with an
empty stack and so is inappropriate for our needs.

passing style (CPS) search, where explicit continuations are used
rather than the program call stack. This allows them to spawn
search threads using Haskell’s forkIO, which is not stack copying.

Such a CPS search is not possible for us due to the compli-
cations presented by nested calls to sync, which is discussed in
Sections 3.5 and 4. A CPS implementation must be able to get an
explicit continuation for every call to an event inside a call to sync.
However, nested syncs are in arbitrary code in thenEvts. On re-
turning from the call to sync, this code should continue running:
the continuation that would be needed is the current Caml contin-
uation. Stack copying fork allows the desired behavior. (First-class
continuations would also suffice.)

7.4 Thread Scheduling
While a transaction is accessing and modifying a first-class heap, a
regular program thread could potentially modify the regular OCaml
heap in a conflicting way. To prevent this, we do not interleave
program threads and search threads. A call to sync creates an initial
search thread, which is scheduled; henceforth, only search threads
are scheduled until a committable set is found or all search threads
have blocked. We can then kill all search threads and schedule
program threads again. The next time a sync is called, any initial
search threads created by calls to syncs that have not yet completed
are recreated using the current heap, along with the new search
thread created by sync. This scheduling method ensures that all
calls to sync that participate in the same communication see the
same initial heap, and no program threads modify the heap while a
transaction executes.

However, such a solution allows search threads to starve pro-
gram threads if a function in a thenEvt does not terminate. In this
case, the search for a committable set of threads would never fail,
but would not terminate. To avoid this, we only let the set of search
threads run for a given total time before killing the search. In this
case, the implementation will re-run the search later for more time,
exponentially increasing the time on each iteration. To maintain
fairness, we also run program threads for an increased amount of
time before re-running the search threads.

7.5 Future Work
Several aspects of our implementation could be optimized.

First, it is important to minimize how many search heaps get
created. Because most chunks do not actually mutate memory, it
should be possible to avoid increasing the size of the search-heap
pool in the common case.

Second, our prototype checks on every read in a transaction
whether the value should be read from a first-class heap or the
regular heap. However, only mutable values may be written to, so,
since our heaps are lazy, only mutable values will ever be in a first-
class heap. Mutability information is known statically via the type
system. By propagating this information to the code generator, we
could use different bytecodes for reading mutable data. Only these
reads would need to check the first-class heap.

Third, we could use a representation for first-class heaps more
sophisticated than simple association lists.

Finally, our stack copying thread creation is inefficient. It is
unnecessary to copy the entire stack. Search threads never return
past the call to sync that generated them. We could copy only that
far back, essentially using a delimited continuation.

In addition to these efficiency improvements, we could add sup-
port for more side effects, particularly I/O, in transactional events.
As mentioned in Section 3.5, some transactional memory systems
allow some forms of I/O via buffering. While similar techniques
should work with TE, a crucial difference of our system is that a
successful transaction consists of multiple threads. We believe that
adding I/O to our TE implementation would involve treating I/O

buffers the same way we treat first-class heaps: chunking accesses
to buffers and passing first-class buffers among search threads.

8. Related Work
While our work has extended transactional events (Donnelly and
Fluet 2006) to support a mutable heap and nested synchronizations,
it is also related to the design and implementation of other CML-
style systems. Moreover, our approach of starting with message-
passing and giving semantics to shared-memory accesses is in
contrast to work that starts with shared-memory transactions and
allows communication within transactions.

CML-style systems In addition to Reppy’s original implementa-
tion (Reppy 1999) for Standard ML, CML or similar synchronous
message-passing systems have been used in Haskell (Russell 2001),
Scheme (Flatt and Findler 2004) and Caml (Leroy 2007), with
the Scheme system supporting a modular way to kill threads. Re-
cent work on implementing CML more efficiently has focused on
static analysis of communication protocols (Reppy and Xiao 2007)
and support for multiprocessors (Reppy and Xiao 2008). Stabiliz-
ers (Ziarek et al. 2006) provide checkpointing for CML programs
even in the presence of inter-thread communication and updates to
shared memory.

Our formal semantics follows the TE work (Donnelly and Fluet
2008) with the contributions of supporting ML’s impurities and
using Coq to formalize the correctness proof. One pleasing aspect
of the TE combinators is that they form a monad-with-plus whereas
prior work on semantics for CML-style languages (Panangaden and
Reppy 1997; Jeffrey 1995; Russell 2001) demonstrated that CML
does not obey the monad laws.

Transactions Starting with Harris and Fraser (2003), much recent
work has considered making shared-memory concurrency easier by
enriching programming languages with transactions, i.e., a primi-
tive for executing multiple memory operations atomically. Designs
and implementations for Caml (Ringenburg and Grossman 2005),
Haskell (Harris et al. 2005a,b), and Scheme (Kimball and Gross-
man 2007) have been proposed. Our chunking mechanism is pow-
erful enough to encode a transaction though it is not an efficient
approach. It is also possible to build a shared-memory transactions
library on top of TE (Donnelly and Fluet 2006).

While shared-memory and message-passing systems are diffi-
cult to compare, some recent work allowing inter-thread communi-
cation within shared-memory transactions is relevant because, like
our work, it combines the two paradigms. One approach breaks the
isolation of transactions to allow communication for idioms such
as barriers (Smaragdakis et al. 2007). Another approach allows
parallelism within shared-memory transactions by letting multiple
threads communicate via CML while still forbidding communica-
tion outside the transactions (Ziarek and Jagannathan 2008).

9. Conclusion
We designed, formally specified, and implemented transactional
events for ML. This work brings the power of extending CML with
the thenEvt combinator to a language with side effects. The key to
the semantics is allowing thread interleavings only when messages
are exchanged. We proved our search-based low-level semantics
correct with respect to our high-level semantics and implemented it
with a few key extensions to the Objective Caml run-time system.

Acknowledgments
The anonymous reviewers and the WASP group at the University
of Washington provided excellent feedback on this paper’s presen-
tation. Matthew Fluet provided invaluable help, particularly for un-
derstanding the equivalence proof for TE Haskell.

References
Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Con-

current Programming in Erlang. Prentice-Hall, 2nd edition, 1996.
Kevin Donnelly and Matthew Fluet. Transactional events. The Journal of

Functional Programming, 2008. To appear.
Kevin Donnelly and Matthew Fluet. Transactional events. In 11th ACM

International Conference on Functional Programming, 2006.
Matthew Flatt and Robert Bruce Findler. Kill-safe synchronization abstrac-

tions. In ACM Conference on Programming Language Design and Im-
plementation, 2004.

Tim Harris and Keir Fraser. Language support for lightweight transactions.
In ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2003.

Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy.
Composable memory transactions. In ACM Symposium on Principles
and Practice of Parallel Programming, 2005a.

Tim Harris, Simon Marlow, and Simon Peyton Jones. Haskell on a shared-
memory multiprocessor. In Proceedings of the 2005 ACM SIGPLAN
Workshop on Haskell, 2005b.

C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21
(8), 1978.

Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony L. Hosking. A
transactional object calculus. Science of Computer Programming, 57(2),
2005.

Alan Jeffrey. A fully abstract semantics for a concurrent functional lan-
guage with monadic types. In The Symposium on Logic in Computer
Science, 1995.

Aaron Kimball and Dan Grossman. Software transactions meet first-class
continuations. In 8th Annual Workshop on Scheme and Functional
Programming, 2007.

Xavier Leroy. The Objective Caml system release 3.10, Event module,
2007. http://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html.

Katherine F. Moore and Dan Grossman. High-level small-step operational
semantics for transactions. In 35th ACM Symposium on Principles of
Programming Languages, 2008.

Prakash Panangaden and John Reppy. The essence of Concurrent ML.
In Flemming Nielson, editor, ML with Concurrency: Design, Analysis,
Implementation, and Application, Springer Monographs in Computer
Science. Springer-Verlag, 1997.

John Reppy. Concurrent Programming in ML. Cambridge University Press,
1999.

John Reppy and Yingqi Xiao. Specialization of CML message-passing
primitives. In 34th ACM Symposium on Principles of Programming
Languages, 2007.

John Reppy and Yinqi Xiao. Toward a parallel implementation of Concur-
rent ML. In Workshop on Declarative Aspects of Multicore Program-
ming, 2008.

Michael F. Ringenburg and Dan Grossman. AtomCaml: First-class atomic-
ity via rollback. In 10th ACM International Conference on Functional
Programming, 2005.

George Russell. Events in Haskell, and how to implement them. In 6th
ACM International Conference on Functional Programming, 2001.

Yannis Smaragdakis, Anthony Kay, Reimer Behrends, and Michal Young.
Transactions with isolation and cooperation. In ACM Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
2007.

Lukasz Ziarek and Suresh Jagannathan. Memoizing multi-threaded transac-
tions. In Workshop on Declarative Aspects of Multicore Programming,
2008.

Lukasz Ziarek, Philip Schatz, and Suresh Jagannathan. Stabilizers: A
modular checkpointing abstraction for concurrent functional programs.
In 11th ACM International Conference on Functional Programming,
2006.

