
Quantified Types in a
Safe C-Level Language

CMU POP Seminar
26 January 2005

Dan Grossman
University of Washington

Context: Why Cyclone?

26 January 2005 Dan Grossman, CMU POP Seminar 2

A type-safe language at the C-level of abstraction
• Type-safe: Memory safety, abstract types, …
• C-level: explicit pointers, data representation,

memory management. Semi-portable.
• Niche: Robust/extensible systems code

– Looks like, acts like, and interfaces easily with C
– Used in several research projects
– Doesn’t “fix” non-safety issues (syntax, switch, …)

• Modern: patterns, tuples, exceptions, …

www.research.att.com/projects/cyclone

Context: Why quantified types?

26 January 2005 Dan Grossman, CMU POP Seminar 3

• The usual reasons:
– Code reuse, container types, abstraction, …
– Phantom types, iterators, …
– Parametricity

• Because low-level
– Implement closures with existentials
– Pass environment fields to functions

• For other kinds of invariants
– Memory regions, array-lengths, locks
– Same theory and more important in practice
– But focus on types today

Context: Why novel?

26 January 2005 Dan Grossman, CMU POP Seminar 4

• Left vs. right expressions and the & operator

• Aggregate assignment (record copy)

• First-class existential types in an imperative language

• Types of unknown size

And any new combination of effects, aliasing, and
polymorphism invites trouble…

Getting burned… decent company

26 January 2005 Dan Grossman, CMU POP Seminar 5

To: sml-list@cs.cmu.edu
From: Harper and Lillibridge
Sent: 08 Jul 91
Subject: Subject: ML with callcc is
unsound

The Standard ML of New Jersey
implementation of callcc is not type
safe, as the following counterexample
illustrates:… Making callcc weakly
polymorphic … rules out the
counterexample

Getting burned… decent company

26 January 2005 Dan Grossman, CMU POP Seminar 6

From: Alan Jeffrey
Sent: 17 Dec 2001
To: Types List
Subject: Generic Java type inference is
unsound

The core of the type checking system was
shown to be safe… but the type inference
system for generic method calls was not
subjected to formal proof. In fact, it is
unsound … This problem has been verified
by the JSR14 committee, who are working
on a revised langauge specification…

Getting burned… decent company

26 January 2005 Dan Grossman, CMU POP Seminar 7

From: Xavier Leroy
Sent: 30 Jul 2002
To: John Prevost
Cc: Caml-list
Subject: Re: [Caml-list] Serious
typechecking error involving new
polymorphism (crash)
…
Yes, this is a serious bug with
polymorphic methods and fields. Expect a
3.06 release as soon as it is fixed.
…

Getting burned…I’m in the club

26 January 2005 Dan Grossman, CMU POP Seminar 8

From: Dan Grossman
Sent: Thursday 02 Aug 2001
To: Gregory Morrisett
Subject: Unsoundness Discovered!

In the spirit of recent worms and
viruses, please compile the
code below and run it. Yet another
interesting combination of polymorphism,
mutation, and aliasing. The best fix I
can think of for now is
…

The plan from here

26 January 2005 Dan Grossman, CMU POP Seminar 9

• Brief tour of Cyclone polymorphism
• C-level polymorphic references

– Formal model with “left” and “right”
– Comparison with actual languages

• C-level existential types
– Description of “new” soundness issue
– Some non-problems

• C-level type sizes
– Not a soundness issue

26 January 2005 Dan Grossman, CMU POP Seminar 10

“Change void* to alpha”

struct L {
void* hd;
struct L* tl;

};
typedef
struct L* l_t;

l_t
map(void* f(void*),

l_t);

l_t
append(l_t,

l_t);

struct L<`a> {
`a hd;
struct L<`a>* tl;

};
typedef
struct L<`a>* l_t<`a>;

l_t<`b>
map<`a,`b>(`b f(`a),

l_t<`a>);

l_t<`a>
append<`a>(l_t<`a>,

l_t<`a>);

Not much new here

26 January 2005 Dan Grossman, CMU POP Seminar 11

• struct Lst is a recursive type constructor:
L = λα. { α hd; (L α) * tl; }

• The functions are polymorphic:
map : ∀α, β. (α→β, L α) → (L β)

• Closer to C than ML
– less type inference allows first-class polymorphism

and polymorphic recursion
– data representation restricts `a to pointers, int

(why not structs? why not float? why int?)

• Not C++ templates

Existential types

26 January 2005 Dan Grossman, CMU POP Seminar 12

• Programs need a way for “call-back” types:
struct T {

int (*f)(int,void*);
void* env;

};

• We use an existential type (simplified):
struct T { <`a>
int (*f)(int,`a);
`a env;

};

more C-level than baked-in closures/objects

Existential types cont’d

26 January 2005 Dan Grossman, CMU POP Seminar 13

struct T { <`a>
int (*f)(int,`a);
`a env;

};

• creation requires a
“consistent witness”

• type is just struct T

• use requires an explicit “unpack” or “open”:

int apply(struct T pkg, int arg) {
let T{<`b> .f=fp, .env=ev} = pkg;
return fp(arg,ev);

}

Sizes

26 January 2005 Dan Grossman, CMU POP Seminar 14

Types have known or unknown size (a kind distinction)
• As in C, unknown-size types can’t be used for fields,

variables, etc.: must use pointers to them
• Unlike C, we allow last-field-unknown-size:

struct T1 {
struct T1* tl;
char data[1];
};
struct T2 {
int len;
int arr[1];

};
3 5

Sizes

26 January 2005 Dan Grossman, CMU POP Seminar 15

Types have known or unknown size (a kind distinction)
• As in C, unknown-size types can’t be used for fields,

variables, etc.: must use pointers to them
• Unlike C, we allow last-field-unknown-size:

struct T1<`a::A> {
struct T1<`a>* tl;
`a data;

};
struct T2<`i::I> {
tag_t<`i> len;
int arr[valueof(`i)];

};

struct T1 {
struct T1* tl;
char data[1];

};
struct T2 {
int len;
int arr[1];

};

The plan from here

26 January 2005 Dan Grossman, CMU POP Seminar 16

• Brief tour of Cyclone polymorphism
• C-level polymorphic references

– Formal model with “left” and “right”
– Comparison with actual languages

• C-level existential types
– Description of “new” soundness issue
– Some non-problems

• C-level type sizes
– Not a soundness issue

Mutation

26 January 2005 Dan Grossman, CMU POP Seminar 17

•e1=e2 means:
– Left-evaluate e1 to a location
– Right-evaluate e2 to a value
– Change the location to hold the value

• Locations are “left values”: x.f1.f2…fn
• Values are “right values”, include &x.f1.f2…fn

(a pointer to a location)
• Having interdependent left/right evaluation is not a

problem

Left vs. Right Syntax

τ ::= int | τ × τ | τ → τ | τ∗
e ::= x | i | e=e | &e | ∗e | (e, e) | e.i | λx : τ. e | e(e)

v ::= i | &` | (v, v) | λx : τ. e

` ::= x | `.i

H ::= · | H, x 7→ v

P ::= H; e

Everything is mutable heap-allocated (ignore memory management)

In C, functions are top-level and closed, but it doesn’t matter

Allow aggregate assignment (can assign to x.i1 . . . in even if

x.i1 . . . in has a pair type)

26 January 2005 Dan Grossman, CMU POP Seminar 18

Small-Step Semantics

• Two forms of evaluation context

• Auxiliary judgment for aggregate assignment

R ::= [·]r | L=e | `=R | &L | ∗R | (R, e) | (v, R)

| R.i | R(e) | v(R)

L ::= [·]l | L.i | ∗R

H; e
l→H′; e′

H; R[e]l → H′; R[e′]l

H; e
r→H′; e′

H; R[e]r → H′; R[e′]r

H; ∗&`
l→ H; ` H; ∗&`

r→ H; `
H; x r→ H; H(x)

H; (v1, v2).i
r→ H; vi

H; ` = v
r→ . . .

H; (λx : τ. e)(v) r→ H, x 7→ v; e

26 January 2005 Dan Grossman, CMU POP Seminar 19

Typing

Completely normal (Γ ` e : τ) except:

Left-expressions (e in e=e′ and &e) must satisfy syntactic restrictions

l̀val x l̀val ∗e
l̀val e

l̀val e.i

(With an effect system, it’s more convenient to have interdependent

typing judgments just as we did for evaluation.)

26 January 2005 Dan Grossman, CMU POP Seminar 20

Polymorphism

Adding universal types is completely standard:

τ ::= . . . | α | ∀α.τ

e ::= . . . | Λα.e | e[τ]

Polymorphic abstractions are values.

This is what the polymorphic reference problem looks like (with sugar):

let id : ∀α.α → α = Λα.λ x:α. x;

let i : int = 0;

let p : int* = &i;

id [int] = λ x:int. x + 17;

p = (id [int*]) (p) (* p mutated to "p + 17" *)

What went wrong?

26 January 2005 Dan Grossman, CMU POP Seminar 21

The Bottom Line

The key to soundness: 6 l̀vale[τ]

• Really, that’s it.

• More justification: It is sound for (∀α.τ1) ≤ (∀α.τ1)[τ2], but

not sound to make subsumption a left expression.

Non-problem: Pointers to “top”

If p has type (∀α.α)∗, then we can only update ∗p to (still) hold top.

Semi-problem: Polymorphic pointers

If q has type ∀α.(α∗), then ∗(q[τ]) is allowed.

• But q could never hold a pointer into the heap.

• If q holds a value for which ∗(q[τ]) is stuck (e.g., NULL), then

that’s life (and we’re memory safe).

26 January 2005 Dan Grossman, CMU POP Seminar 22

What we learned

26 January 2005 Dan Grossman, CMU POP Seminar 23

• Left vs. right formalizes just fine
• Instantiation as left-expression is unsound

– And banning it suffices
• Difference between “∀α. (α *)” and “(∀α. α) *”

– Clear in TAL too

• Now:
Does this shed any light on Cyclone or ML?

Cyclone got “lucky”

26 January 2005 Dan Grossman, CMU POP Seminar 24

Hindsight is 20/20; here’s what really happens:

• Restrict type syntax to “∀α1 ∀α2...∀αn(τ → τ)”
• As in C, variables cannot hold functions

– Function pointers hold pointers to functions
• As in C, functions are immutable (not left-expressions)

So: No (mutable) location ever holds a polymorphic value
– Instantiation-as-left-expression a non-issue

Sometimes fact is stranger than fiction

The plan from here

26 January 2005 Dan Grossman, CMU POP Seminar 27

• Brief tour of Cyclone polymorphism
• C-level polymorphic references

– Formal model with “left” and “right”
– Comparison with actual languages

• C-level existential types
– Description of “new” soundness issue
– Some non-problems

• C-level type sizes
– Not a soundness issue

26 January 2005 Dan Grossman, CMU POP Seminar 28

C Meets ∃

• Existential types in a safe low-level language
– why (again)
– features (mutation, aliasing)

• The problem

• The solutions

• Some non-problems

• Related work (why it’s new)

26 January 2005 Dan Grossman, CMU POP Seminar 29

Low-level languages want ∃

• Major goal: expose data representation (no hidden
fields, tags, environments, ...)

• Languages need data-hiding constructs
• Don’t provide closures/objects

struct T { <`a>
int (*f)(int,`a);

`a env;
};

C “call-backs” use void*; we use ∃

26 January 2005 Dan Grossman, CMU POP Seminar 30

Normal ∃ feature: Introduction

int add (int a, int b) {return a+b; }
int addp(int a, char* b) {return a+*b;}
struct T x1 = T(add, 37);
struct T x2 = T(addp,"a");

• Compile-time: check for appropriate witness type
• Type is just struct T
• Run-time: create / initialize (no witness type)

struct T { <`a>
int (*f)(int,`a);
`a env;

};

26 January 2005 Dan Grossman, CMU POP Seminar 31

Normal ∃ feature: Elimination
struct T { <`a>
int (*f)(int,`a);
`a env;

};

Destruction via pattern matching:

void apply(struct T x) {
let T{<`b> .f=fn, .env=ev} = x;
// ev : `b, fn : int(*f)(int,`b)
fn(42,ev);

}

Clients use the data without knowing the type

Low-level feature: Mutation

26 January 2005 Dan Grossman, CMU POP Seminar 32

• Mutation, changing witness type

struct T fn1 = f();
struct T fn2 = g();
fn1 = fn2; // record-copy

• Orthogonality and abstraction encourage this feature
• Useful for registering new call-backs without

allocating new memory
• Now memory words are not type-invariant!

Low-level feature: Address-of field

26 January 2005 Dan Grossman, CMU POP Seminar 33

• Let client update fields of an existential package
– access only through pattern-matching
– variable pattern copies fields

• A reference pattern binds to the field’s address:

void apply2(struct T x) {
let T{<`b> .f=fn, .env=*ev} = x;
// ev : `b*, fn : int(*f)(int,`b)
fn(42,*ev);

}

C uses &x.env; we use a reference pattern

More on reference patterns

26 January 2005 Dan Grossman, CMU POP Seminar 34

• Orthogonality: already allowed in Cyclone’s other
patterns (e.g., tagged-union fields)

• Can be useful for existential types:

struct Pr {<`a> `a fst; `a snd; };

void swap<`a>(`a* x, `a* y);

void swapPr(struct Pr pr) {
let Pr{<`b> .fst=*a, .snd=*b} = pr;
swap(a,b);

}

Summary of features

26 January 2005 Dan Grossman, CMU POP Seminar 35

• struct definition can bind existential type variables

• construction, destruction traditional

• mutation via struct assignment

• reference patterns for aliasing

A nice adaptation to a “safe C” setting?

Explaining the problem

26 January 2005 Dan Grossman, CMU POP Seminar 36

• Violation of type safety

• Two solutions (restrictions)

• Some non-problems

Oops!

26 January 2005 Dan Grossman, CMU POP Seminar 37

struct T {<`a> void (*f)(int,`a); `a env;};

void ignore(int x, int y) {}
void assign(int x, int* p) { *p = x; }

void g(int* ptr) {
struct T pkg1 = T(ignore, 0xBAD); //α=int
struct T pkg2 = T(assign, ptr); //α=int*
let T{<`b> .f=fn, .env=*ev} = pkg2; //alias
pkg2 = pkg1; //mutation
fn(37, *ev); //write 37 to 0xBAD

}

With pictures…

26 January 2005 Dan Grossman, CMU POP Seminar 38

assignpkg1 pkg2ignore 0xABCD

let T{<`b> .f=fn, .env=*ev} = pkg2; //alias

assignpkg1 pkg2ignore 0xABCD

assignfn ev

With pictures…

26 January 2005 Dan Grossman, CMU POP Seminar 39

assignpkg1 pkg2ignore 0xABCD

pkg2 = pkg1; //mutation

assign evfn

pkg2ignore ignore0xABCD 0xABCD

assignfn ev

pkg1

With pictures…

26 January 2005 Dan Grossman, CMU POP Seminar 40

pkg1 pkg2ignore 0xABCD ignore 0xABCD

assign evfn

fn(37, *ev); //write 37 to 0xABCD

call assign with 0xABCD for p:

void assign(int x, int* p) {*p = x;}

What happened?

26 January 2005 Dan Grossman, CMU POP Seminar 41

let T{<`b> .f=fn, .env=*ev} = pkg2; //alias
pkg2 = pkg1; //mutation
fn(37, *ev); //write 37 to 0xABCD

1. Type`b establishes a compile-time equality relating
types of fn (void(*f)(int,`b)) and ev (`b*)

2. Mutation makes this equality false
3. Safety of call needs the equality

We must rule out this program…

Two solutions

26 January 2005 Dan Grossman, CMU POP Seminar 42

• Solution #1:
Reference patterns do not match against fields of
existential packages
Note: Other reference patterns still allowed
⇒ cannot create the type equality

• Solution #2:
Type of assignment cannot be an existential type (or
have a field of existential type)

Note: pointers to existentials are no problem
⇒ restores memory type-invariance

Independent and easy

26 January 2005 Dan Grossman, CMU POP Seminar 43

• Either solution is easy to implement

• They are independent: A language can have two
styles of existential types, one for each restriction

• Cyclone takes solution #1 (no reference patterns for
existential fields), making it a safe language without
type-invariance of memory!

Are the solutions sufficient (correct)?

26 January 2005 Dan Grossman, CMU POP Seminar 44

• Small formal language proves type safety

• Highlights:
– Left vs. right distinction
– Both solutions
– Memory invariant (necessarily) includes:

“if a reference pattern is used for a location, then
that location never changes type”

Nonproblem: Pointers to witnesses

26 January 2005 Dan Grossman, CMU POP Seminar 45

struct T2 {<`a>
void (*f)(int, `a);
`a* env;

};
…
let T2{<`b> .f=fn, .env=ev} = pkg2;
pkg2 = pkg1;
…

pkg2 assign

assignfn ev

Nonproblem: Pointers to packages

26 January 2005 Dan Grossman, CMU POP Seminar 46

struct T * p = &pkg1;
p = &pkg2;

assignpkg1 pkg2ignore 0xABCD

p

Aliases are fine.
Aliases of pkg1 at the “unpacked type” are not.

Problem appears new

26 January 2005 Dan Grossman, CMU POP Seminar 47

• Existential types:
– seminal use [Mitchell/Plotkin 1985]
– closure/object encodings [Bruce et al, Minimade et al, …]
– first-class types in Haskell [Läufer]
None incorporate mutation

• Safe low-level languages with ∃
– Typed Assembly Language [Morrisett et al]
– Xanadu [Xi], uses ∃ over ints
None have reference patterns or similar

• Linear types, e.g. Vault [DeLine, Fähndrich]
No aliases, destruction destroys the package

Duals?

26 January 2005 Dan Grossman, CMU POP Seminar 48

• Two problems with α, mutation, and aliasing
– One used ∀, one used ∃
– So are they the same problem?

• Conjecture: Similar, but not true duals

• Fact: Thinking dually hasn’t helped me

The plan from here

26 January 2005 Dan Grossman, CMU POP Seminar 49

• Brief tour of Cyclone polymorphism
• C-level polymorphic references

– Formal model with “left” and “right”
– Comparison with actual languages

• C-level existential types
– Description of “new” soundness issue
– Some non-problems

• C-level type sizes
– Not a soundness issue

Size in C

26 January 2005 Dan Grossman, CMU POP Seminar 50

C has abstract types (not just void*):
struct T1;
struct T2 {
int len;
int arr[*];//C99, much better than [1]
};

And rules on their use that make sense at the C-level:*
E.g., variables, fields, and assignment targets cannot
have type struct T1.

* Key corollary: C hackers don’t mind the restrictions

Size in Cyclone

26 January 2005 Dan Grossman, CMU POP Seminar 51

• Kind distinction among:
1. B “pointer size” <
2. M “known size” <
3. A “unknown size”

(Really not much different than TAL)
• Killer app: Cyclone interface to C functions
void mem_copy<`a>(`a*,`a*, sizeof_t<`a>);

Should we be worried about soundness?

Why is size an issue in C?

26 January 2005 Dan Grossman, CMU POP Seminar 52

“Only” reason C restricts types of unknown size:
Efficient and transparent implementation:

– No run-time size passing
– Statically known field and stack offsets

This is important for translation, but has nothing to do
with soundness

Indeed, our formal model is “too high level” to motivate
the kind distinction

Formal (Non)-Example

Illegal-but-useful code:

let memCopy : ∀α:A. λ x:α. x

In formalism, works fine:

let y : int = memCopy [int] 10

let z : int × int = memCopy [int × int] (11,81)

First call allocates an int, second a pair:

H; (λx : τ. e)(v) r→ H, x 7→ v; e

Also works fine with “stack allocation” (or de Bruijn indices or

substition or ...)

What we hid is that function arguments of unknown size cannot easily

be passed.

26 January 2005 Dan Grossman, CMU POP Seminar 53

The plan from here

26 January 2005 Dan Grossman, CMU POP Seminar 54

• Brief tour of Cyclone polymorphism
• C-level polymorphic references

– Formal model with “left” and “right”
– Comparison with actual languages

• C-level existential types
– Description of “new” soundness issue
– Some non-problems

• C-level type sizes
– Not a soundness issue

• Conclusions

Polymorphism everywhere!

26 January 2005 Dan Grossman, CMU POP Seminar 55

• Cyclone uses type variables for “everything” (regions,
locks, array-lengths, union-tags, …)

• So type variables are very common
– Any function taking a pointer
– Bounds-checked arrays
– …

• With an effects system, left vs. right extends nicely
– &x does not “access” x

• “Dan’s unsoundness” has come up > n times
– Have (and use) datatypes with the “other” solution

Conclusions

26 January 2005 Dan Grossman, CMU POP Seminar 56

If you see an α near an assignment statement:
• Remain vigilant
• Do not expect parametricity
• Do not be afraid of C-level thinking

• Surprisingly:
– This work has really guided the design and

implementation of Cyclone
– The design space of imperative, polymorphic

languages is not fully explored

26 January 2005 Dan Grossman, CMU POP Seminar 57

[The presentation ends here. Some auxiliary
slides follow.]

Less obvious occurrences

26 January 2005 Dan Grossman, CMU POP Seminar 58

struct T { <`i::I>
tag_t<`i> tag;
union U {
`i==1: int* p;
`i==2: int x;
} u;

};

• Tagged unions (ML datatypes) are existentials

• If they’re mutable and you can alias their fields, the
problem is identical

ML?

26 January 2005 Dan Grossman, CMU POP Seminar 25

val x :(∀α...) = ref NONE
val _ = x[int] := SOME 3
val (SOME y):string = !(x[string])
val _ = y ^ "crash"

• Conventional wisdom blames type inference for
giving x the type “∀α.(α option ref)”

• It is a bad idea for a type (cf. ∀α. (α *))
• And “(∀α. α option)ref” is not an ML type

Revisionist history?

26 January 2005 Dan Grossman, CMU POP Seminar 26

• The type-checker is told ref has an ML signature

type α ref;
ref : ∀α. α → (α ref)
:= : ∀α. (α ref) → α → unit
! : ∀α. (α ref) → α

• Value restriction makes ref “not special” by banning
generalization on all function applications

• A simpler type system, but exposing mutability to the
type/signature system is certainly practical

What now?

26 January 2005 Dan Grossman, CMU POP Seminar 59

• Cyclone
– A real module language (CLAMP)
– Availability

• Compiler construction
– Error messages via search

• Concurrency: atomic { s }
– Slick Caml uniprocessor implementation
– OO implementations
– Simpler multiprocessor implementations

Atomic (coming ICFP submission)

26 January 2005 Dan Grossman, CMU POP Seminar 60

Atomic: (Behave as if) no interleaved execution

An easier concurrency primitive:
• Compositional (nests trivially)
• Post-hoc synchronization
• Deadlock-free
• Common intent (see Qadeer, et al)

Clever implementation (own scheduler, code-gen):
• Non-atomic code runs no slower
• Logging and rollback for atomic-writes
• Fair scheduling

	Quantified Types in a Safe C-Level Language
	Context: Why Cyclone?
	Context: Why quantified types?
	Context: Why novel?
	Getting burned… decent company
	Getting burned… decent company
	Getting burned… decent company
	Getting burned…I’m in the club
	The plan from here
	“Change void* to alpha”
	Not much new here
	Existential types
	Existential types cont’d
	Sizes
	Sizes
	The plan from here
	Mutation
	
	
	
	
	
	What we learned
	Cyclone got “lucky”
	ML?
	Revisionist history?
	The plan from here
	C Meets
	Low-level languages want
	Normal feature: Introduction
	Normal feature: Elimination
	Low-level feature: Mutation
	Low-level feature: Address-of field
	More on reference patterns
	Summary of features
	Explaining the problem
	Oops!
	With pictures…
	With pictures…
	With pictures…
	What happened?
	Two solutions
	Independent and easy
	Are the solutions sufficient (correct)?
	Nonproblem: Pointers to witnesses
	Nonproblem: Pointers to packages
	Problem appears new
	Duals?
	The plan from here
	Size in C
	Size in Cyclone
	Why is size an issue in C?
	
	The plan from here
	Polymorphism everywhere!
	Conclusions
	
	Less obvious occurrences
	What now?
	Atomic (coming ICFP submission)

