
c©Copyright 2014

Tom Bergan

Avoiding State-Space Explosion in Multithreaded Programs with
Input-Covering Schedules and Symbolic Execution

Tom Bergan

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2014

Reading Committee:

Luis Ceze, Chair

Daniel Grossman, Chair

Michael Ernst

Program Authorized to Offer Degree:
Department of Computer Science & Engineering, University of Washington

University of Washington

Abstract

Avoiding State-Space Explosion in Multithreaded Programs with Input-Covering
Schedules and Symbolic Execution

Tom Bergan

Co-Chairs of the Supervisory Committee:
Associate Professor Luis Ceze

Department of Computer Science & Engineering

Associate Professor Daniel Grossman
Department of Computer Science & Engineering

This dissertation makes two high-level contributions:

First, we propose an algorithm to perform symbolic execution of multithreaded programs

from arbitrary program contexts. We argue that this can enable more efficient symbolic

exploration of deep code paths in multithreaded programs by allowing the symbolic engine

to jump directly to program contexts of interest. We are the first to attack this problem.

Second, we propose constraining multithreaded executions to small sets of input-covering

schedules, which are defined as follows: given a program P, we say that a set of schedules Σ

covers all inputs of program P if, when given any input, P’s execution can be constrained

to some schedule in Σ and still produce a semantically valid result. Our approach is to first

compute a small Σ for a given program P, and then, at runtime, constrain P’s execution

to always follow some schedule in Σ, and never deviate. This approach has the follow-

ing advantage: because all possible runtime schedules are known a priori, we can seek to

validate the program by thoroughly verifying each schedule in Σ, in isolation, without need-

ing to reason about the huge space of thread interleavings that arises due to conventional

nondeterministic execution.

To tie both contributions together, we show how our symbolic execution techniques can

be used to speed the search for input-covering schedules.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . iv

Chapter 1: Overview . 1

1.1 Shared-Memory Multithreading . 2

1.2 The Dark Side of Nondeterminism . 4

1.3 Reasoning about Multithreaded Programs with Symbolic Execution 6

1.4 Restricting the Schedule Space with Input-Covering Schedules 7

1.5 Outline . 9

Chapter 2: Symbolic Execution from Arbitrary Program Contexts 10

2.1 Problem Statement and Overview . 10

2.2 Applications . 13

2.3 A Simple Imperative Language . 15

2.4 Adding Pointers . 20

2.5 Adding Threads and Synchronization . 29

2.6 The Big Picture . 39

2.7 Soundness and Completeness . 47

2.8 Implementation . 48

2.9 Evaluation . 49

Chapter 3: Input-Covering Schedules . 52

3.1 System Overview . 53

3.2 Representing Schedules . 56

3.3 Finding Input-Covering Schedules . 60

3.4 Avoiding Combinatorial Explosion . 66

3.5 Forming Efficient Bounded Epochs . 72

3.6 Implementation . 73

i

3.7 Discussion of Guarantees . 77

3.8 Evaluation . 79

Chapter 4: Related Work . 90

4.1 Symbolic Execution . 90

4.2 Constrained Execution . 95

4.3 Constructing Abstract Schedule Graphs . 99

4.4 Verifying Multithreaded Programs by Reduction to Sequential Programs . . . 100

Chapter 5: Conclusions and Future Opportunities 102

5.1 Summary of Conclusions . 102

5.2 Limitations . 103

5.3 Future Opportunities . 104

Bibliography . 106

Appendix A: Concrete Semantics of SimpThreads 115

A.1 Program state in the concrete semantics . 115

A.2 Auxiliary Functions . 115

A.3 Statement evaluation rules . 116

Appendix B: Soundness and Completeness of the Symbolic Semantics 119

ii

LIST OF FIGURES

Figure Number Page

1.1 Examples of happens-before graphs. 3

1.2 Examples of concurrency bugs that manifest nondeterministically in multi-
threaded programs. 5

2.1 A simple multithreaded program that illustrates the challenges of beginning
symbolic execution at an arbitrary program context. 12

2.2 Syntax of Simp. 15

2.3 Symbolic state for Simp. 16

2.4 Interface to the off-the-shelf SMT solver. 18

2.5 Syntax additions for SimpHeaps. 21

2.6 Symbolic state additions for SimpHeaps. 22

2.7 Symbolic heap interface. 22

2.8 The
mem
==⇒ relation in the symbolic heap semantics. 23

2.9 Interface to the off-the-shelf static points-to analysis. 25

2.10 Operations that manipulate the aliasable objects list. 26

2.11 New statements for SimpThreads. 29

2.12 Pseudocode demonstrating how pthreads’ mutexes might be implemented in
SimpThreads. 30

2.13 Symbolic state modifications for SimpThreads. 32

2.14 Full syntax of SimpThreads . 40

2.15 Symbolic execution algorithm. 40

2.16 The step function. 41

2.17 Flow function for reaching definitions. 45

3.1 A simple example of input-covering schedules. 54

3.2 Algorithm to place epoch markers . 61

3.3 How precondition slicing handles branches . 63

3.4 Enumerating schedules within a single epoch 64

3.5 Exploring all reachable epochs . 66

3.6 Key components of our runtime system. 75

iii

LIST OF TABLES

Table Number Page

2.1 Evaluation of infeasible paths enumerated during symbolic execution. 50

2.2 Evaluation of symbolic execution performance. 51

3.1 Evaluation of our input-covering schedules enumeration algorithm. 81

3.2 Runtime of our input-covering schedules enumeration algorithm. 81

3.3 Cost of disabling epoch marker optimizations. 82

3.4 Cost of disabling other optimizations. 82

3.5 Runtime system characterization. 87

3.6 Symbolic execution characterization. 88

iv

ACKNOWLEDGMENTS

Although the work described herein was performed primarily by myself, I did not work

in a vacuum. Much of my work grew directly from collaborations with others, and in

recognition of those collaborations, I will use the pronoun “we” throughout the main body

of this document.

I am indebted to my advisors: Luis Ceze brought enthusiasm and a non-stop deluge of

ideas. He balanced my inner cynicism with optimism, and helped me find the good ideas

in my work, especially when I thought there weren’t any good ideas to find. Steve Gribble

brought a similar sense of optimism and encouragement. Dan Grossman brought a knack

for devising concise explanations of complex topics: many of the organizational strategies,

turns of phrase, and formal semantics that I use in this document are based directly on his

suggestions. Mike Ernst’s pointed questions during practice talks helped me learn to chose

words carefully, and also helped me view my work from a different perspective. Eddie Kohler

got me started in computer science research: he provided an encouraging environment that

was intellectually stimulating and fun, and my experience working in his research group

convinced me that getting a Ph.D. would be enjoyable.

I am particularly grateful to have had the opportunity to dabble in multiple subfields of

computer science: computer architecture, operating systems, distributed systems, compilers,

and program analysis. This diversity of experience has been the most intellectually fulfilling

part of graduate school and it is a direct result of the open culture of UW CSE combined

with the flexibility and open-mindedness of the advisors that I’ve been lucky to work with.

My fellow graduate students at UW have made my time here more rewarding. I’m

grateful for support from UW’s SAMPA and PLSE groups. Much of my work has grown

directly from conversations and debates with Joe Devietti, and his feedback and ideas have

greatly improved my projects. Owen Anderson showed me the ropes in LLVM. It was fun

v

to code with Nicholas Hunt, who helped with much of the coding in dOS [14] (a major

project that is not the subject of this dissertation). My officemate Brandon Lucia was

a constant source of constructive feedback, encouragement, and fun technical discussions.

Jacob Nelson provided a wealth of random technical and historical knowledge, and worked

almost single-handedly to keep our lab’s machines running. Adrian Sampson, Ben Wood,

and Colin Gordon sat through many practice talks and helped edit many paper drafts.

Just as research ideas do not spring from a void, neither do research artifacts. I’ve

made use of many publicly available tools and libraries that were released by very generous

people. I especially want to acknowledge the authors of LLVM [68], klee [27], Cloud9 [24],

STP [46], and DSA [67]—these tools are used directly in my dissertation work—and I also

want to acknowledge the authors of the benchmark suites Splash2 [95] and Parsec [16],

as benchmark creation is an extremely important but largely thankless endeavor.

Lastly, to all of you who’ve made my life enjoyable outside of work and school: thank

you! This includes, but is not limited to, my parents and sisters, my extended family, and

my friends in and around Seattle, especially Molly Douglas. Through good jokes, dumb

jokes, outdoorsy adventures, and camaraderie, you keep me sane.

vi

1

Chapter 1
OVERVIEW

Multithreaded programs are notoriously difficult to test and verify. In addition to the

already daunting task of reasoning about program behavior over all possible inputs, testing

and verification tools must reason about a large number of possible thread interleavings

for each input, as the number of possible interleavings grows exponentially with the length

of a program’s execution. Tools can systematically explore the thread interleaving space

in part, but in practice, the interleaving space is so massive that it cannot be explored

exhaustively [25, 77].

How can we reason about the behavior of multithreaded programs when the thread

interleaving space is so enormous? Many researchers have proposed partial answers to this

question. This dissertation proposes two entirely new approaches. Our new approaches are

not perfect (no approach is), but they provide unique benefits. To summarize:

• Our first approach is to perform symbolic execution of multithreaded programs start-

ing from arbitrary program contexts. We argue that this can enable more efficient

symbolic exploration of deep code paths in multithreaded programs by allowing the

symbolic engine to jump directly to program contexts of interest.

• Our second approach is to constrain execution to small sets of input-covering schedules.

By constraining execution to small sets of schedules, the problems of testing and

verification become simpler, as testing and verification tools no longer need to reason

about an enormous interleaving space.

Our two approaches are complementary to each other and to prior approaches. Notably,

we show how our symbolic execution techniques enable our algorithm for enumerating input-

covering schedules. Our work in this dissertation focuses on multithreaded programs that

2

are written in the C language using the POSIX threads library (pthreads) [54]—we chose

to focus on this combination of language and library due to its ubiquity—although many of

our techniques can be applied more generally.

The remainder of this chapter provides context for the rest of this dissertation. First,

we provide a brief background on the multithreaded programming model (Section 1.1 and

Section 1.2). Then, we summarize our contributions (Section 1.3 and Section 1.4) and give

an outline for the rest of this dissertation (Section 1.5).

1.1 Shared-Memory Multithreading

This dissertation focuses on shared-memory multithreaded programs written in the C lan-

guage. In this programming model, each program is composed of multiple threads of control.

Each thread executes its own instruction sequence, and threads communicate by reading

and writing values from and to a shared memory space.

The multithreading programming model has two primary uses. First, by mapping differ-

ent threads to different hardware CPUs, many threads can execute simultaneously, leading

to faster overall execution. This is known as parallelism. Second, even when only one hard-

ware CPU is available, a programmer might assign logically simultaneous tasks to separate

threads. For example, a database server might spawn a separate thread for each request,

where those threads use shared memory to coordinate updates to the database. This is

known as concurrency. Shared-memory multithreading is not the only programming model

for parallelism and concurrency (cf. [2, 3, 7, 91]), but it is a popular model that is supported

by many widely-used programming languages, including C, C++, Java, and C#.

Abstractly, we model shared memory as a map from locations to values, and we model

each thread’s execution as a sequence of reads and writes that operate on shared memory.

Globally, operations from multiple threads are interleaved in some way. The challenge is

that this interleaving is nondeterministic. For example, suppose location X = 0 in shared

memory, and suppose that thread T1 writes the value 42 to location X while thread T2 reads

location X. Which value is read by T2 depends on the interleaving of these threads, which

in turn depends on low-level timing variations in the hardware and the operating system

(OS), such as the relative clock rate of each CPU, scheduling decisions made by the cache

3

global int X = 0

global bool ready = false

global lock L

Thread 1 Thread 2

lock(L) lock(L)

x = 42 while (!ready) {

ready = true unlock(L)

unlock(L) lock(L)

}

print(X)

unlock(L)

Thread 1: Thread 2:

lock(L)

x = 42

ready = true

unlock(L)
lock(L)

print(X)

unlock(L)

while (!ready)

(a)

Thread 1: Thread 2:

lock(L)

x = 42

ready = true

unlock(L)

lock(L)

while (!ready)

unlock(L)

lock(L)

print(X)

unlock(L)

while (!ready)

(b)

Figure 1.1: Examples of happens-before graphs, demonstrating that programs can execute
with nondeterministic interleavings even when they produce deterministic results. Happens-
before graphs (a) and (b) illustrate two possible executions of the program at the top of
this figure. In each graph, there are implicit program order edges connecting the adjacent
nodes in each thread (e.g., there is an implicit edge from lock(L) to x=42 in thread T1).
No matter which schedule is chosen, the program always prints “42”.

4

hardware, and scheduling decisions made by the OS. Hence, if the program is executed

repeatedly, T2 can read the value 0 in some executions and 42 in other executions.

The programmer can restrict interleavings by using language-provided synchronization

primitives such as locks, barriers, and condition variables. Figure 1.1 shows how locks can be

used to ensure that T2 always reads 42. In this example, because T2 reads the value written

by T1, we say that T1’s write “happens before” T2’s read. This derives from the happens-

before relation [65], which is the irreflexive transitive closure of program order (the single-

threaded order in which operations statically appear in the program) and synchronization

order (the order imposed by synchronization during an execution). We often draw the

happens-before relation as a directed graph in which operation A happens-before B iff

there exists a directed path from A to B in the happens-before graph. In this dissertation,

we sometimes refer to happens-before graphs as schedules.

Even though the program in Figure 1.1 produces a deterministic final state, operations

are still interleaved nondeterministically during execution. This is demonstrated by Figure

1.1(a) and Figure 1.1(b), which illustrate two possible happens-before graphs that can result

from different executions of this program.

The set of possible interleavings is further restricted by the language’s memory model.

The simplest model is sequential consistency [66], in which operations from all threads are

serialized into some total order. Since all work in this dissertation targets the C language,

we adhere to the memory model specified for C [17, 55]. Briefly, C ensures sequentially

consistent execution for data race free programs (defined below), but provides undefined

semantics for programs with data races.

1.2 The Dark Side of Nondeterminism

We have seen that multithreaded programs execute nondeterministically. Unfortunately,

this nondeterminism leads to a variety of insidious bugs. The most notorious is a data race,

which occurs when two threads access the same location, where the accesses are concurrent

(neither happens-before the other) and at least one access is a write. We consider every

data race an error in C [19, 20].

Figure 1.2 illustrates a data race: the accesses of X in thread T1 are not ordered with

5

Data Race
Thread 1 Thread 2

tmp = X

X = 42

X = tmp+1

Atomicity Violation
Thread 1 Thread 2

lock(L)

tmp = X

unlock(L) lock(L)

X = 42

lock(L) unlock(L)

X = tmp+1

unlock(L)

Deadlock
Thread 1 Thread 2

lock(A)

lock(B)

lock(B) lock(A)

Assertion Failure
Thread 1 Thread 2

lock(L)

assert(X%2!=0)

lock(L) unlock(L)

if (X%2==0)

X++

unlock(L)

Figure 1.2: Examples of concurrency bugs that manifest nondeterministically in multi-
threaded programs. The relative spacing of statements describes interleavings under which
each bugs manifests. The assertion failure example is buggy when X is initially even.

the write of X in thread T2 due to the lack of synchronization. Hence, T1 will not correctly

increment X if T2’s write happens to interleave between T1’s two statements. This race can

be removed by guarding each statement with a lock—although such use of locks technically

avoids the data race, it does not fix the underlying defect as the buggy interleaving is still

possible, this time as an atomicity violation. Figure 1.2 illustrates this atomicity violation,

and also illustrates two other kinds of bugs that are common in multithreaded programs: a

deadlock and an ordering-dependent assertion failure.

The Challenge. Ideally, we would use thorough testing and verification to either find all

data races, atomicity violations, deadlocks, and assertion failures, or prove their absence.

Unfortunately, each of these bugs is triggered on some subset of executions, only. For

example, in Figure 1.2, if T2 happens to execute entirely before or entirely after T1, then the

atomicity violation is quietly avoided. Thus, the atomicity violation in Figure 1.2 manifests

only on a specific, unlucky choice of schedule. Further, each schedule might manifest a

bug—it is difficult to tell whether or not a schedule manifests a bug without analyzing the

schedule directly. Given a program with n threads, where each thread uses an average of

k synchronization operations per execution, there are O(n! · k!) possible schedules, and any

6

of them can be buggy. With so many possible schedules, how can multithreaded programs

be thoroughly tested and verified?

1.3 Reasoning about Multithreaded Programs with Symbolic Execution

The most näıve way to analyze a multithreaded program is to perform a brute-force ex-

ploration of all feasible thread schedules and execution paths. Symbolic execution performs

this brute-force exploration systematically. The idea is to execute programs with symbolic

rather than concrete inputs and use an SMT (SAT Modulo Theory) solver to prune infeasi-

ble paths. On branches with more than one feasible resolution, the symbolic state is forked

and all feasible resolutions are explored. The key advantage of this approach is precision—

unlike techniques such as abstract interpretation [33], symbolic execution is generally free of

false positives because its semantics are fully precise up to the limits of the underlying SMT

solver. Recent advances in SMT solving have made symbolic execution faster and more

practical [46, 76], paving the way for recent systems that have used symbolic execution with

great success [24, 27, 30, 49, 50, 60, 92].

The chief difficulty is path explosion: the number of feasible execution paths is generally

exponential in the length of an execution, and this number grows even larger when symbolic

execution is applied to multithreaded programs [24, 60]. As described above, multithreaded

programs suffer from an explosion of possible thread interleavings in addition to the explo-

sion of single-threaded paths. Prior work has dealt with path explosion with a variety of

approaches that we detail in Section 4.1.

Our approach is to limit path explosion by symbolically executing relatively small frag-

ments of a program in isolation—this reduces path length, which in turn reduces the poten-

tial for path explosion. Prior work has largely assumed that symbolic execution will begin

at one of a few natural starting points, such as program entry (for whole-program testing) or

a function call (for single-threaded unit testing). We do not make such an assumption—we

allow program fragments to begin anywhere—so our main challenge is to perform symbolic

execution of multithreaded programs from arbitrary program contexts.

Problem Statement. Specifically, we address the following problem: given an ini-

tial program context, which we define to be a set of threads and their program counters,

7

how do we efficiently perform symbolic execution starting from that context while soundly

accounting for all possible concrete memory states at that initial program context?

Solution Overview. We solve this problem in two parts. First, we use a context-

specific dataflow analysis to construct an over-approximation of the initial state for the

given program context. Second, we integrate that analysis with a novel symbolic execution

semantics that can execute forward from an abstract initial state, even when precise infor-

mation about pointers and synchronization is not available. Our solution makes a tradeoff:

approximating the initial state results in some loss of precision, but enables high-coverage

analysis in deep program paths that were previously unreachable.

Contributions. We are the first to attack this problem. Additionally, our contributions

include:

• An algorithm for performing symbolic execution from arbitrary program contexts. The

novel features of this algorithm include: (a) a way to integrate conservative dataflow

analyses with symbolic execution to increase symbolic precision at arbitrary program

contexts, and (b) a novel semantics for reasoning symbolically about concurrency.

• An implementation of that algorithm and an empirical evaluation of our implemen-

tation on a range of realistic programs. Our implementation supports C programs

that use pthreads. We find that our integration of dataflow analysis and symbolic

execution is vital for preserving a reasonable level of precision.

1.4 Restricting the Schedule Space with Input-Covering Schedules

Our approach to symbolic execution limits path explosion by focusing on small fragments

of execution. However, it does not attack the most fundamental problem: multithreaded

programs can still execute under an enormous number of thread schedules.

Do we actually need all of those schedules? We believe the answer is no. Hence, we pro-

pose constraining multithreaded execution to small sets of input-covering schedules. Given

a program P, we say that a set of schedules Σ covers the program’s inputs if, for all inputs,

there exists some schedule S ∈ Σ such that P’s execution can be constrained to S and still

produce a semantically valid result.

8

Our Approach. We propose the following deployment strategy. First, given a program

P, we enumerate a set of input-covering schedules Σ for program P using an algorithm based

on symbolic execution. Each schedule in Σ is paired with an input constraint that describes

the set of inputs under which the schedule can be followed. Each schedule is specified as

a partial order of dynamic instances of synchronization statements, i.e., each schedule is a

happens-before graph.

Second, we deploy P along with a custom runtime system that constrains execution of

P to follow schedules in Σ only. Our custom runtime system captures the program’s inputs,

find a pair (I,S) ∈ Σ such that the program’s inputs satisfy input constraint I, and then

constrain execution to S, ensuring that execution never deviates from S. Finally, and most

importantly, given that all executions of P will be constrained to schedules in Σ, testing

and verification becomes simpler—the input-covering set Σ contains the complete set of

schedules that might be followed at runtime, and as a result, testing and verification tools

can focus on schedules in Σ only, avoiding the need to reason about the massive space of

possible interleavings.

Crucially, our approach assumes that it is possible to enumerate small sets of input-

covering schedules to begin with. It is not obvious that small sets of input-covering schedules

should exist for realistic multithreaded programs. The key word is small—an input-covering

set Σ is of no help when it is so intractably large that it cannot be enumerated in a reasonable

time. An important contribution of this work is defining Σ in a way that makes the problem

more tractable. Notably, programs that run for unbounded periods of time can require

unboundedly many schedules, making the set Σ intractably large. We avoid this problem

by partitioning execution into bounded epochs—we find input-covering schedules for each

epoch in isolation, and then piece those schedules together at runtime. Bounded epochs

themselves introduce technical complexities, and it is exactly these complexities where our

new symbolic execution techniques will become useful.

Contributions. We are the first to propose the concept of input-covering schedules,

and the first to propose a framework for exploiting them. Additionally, our contributions

include:

9

• An algorithm for enumerating input-covering schedules.

• An implementation of that algorithm, along with an empirical evaluation of the imple-

mentation on a range of realistic programs. Our implementation supports C programs

that use pthreads. Our evaluation characterizes cases in which the algorithm works

well, as well as cases in which it does not work well.

• An implementation of a runtime system for constraining execution to a set of input-

covering schedules. In this work, we aim for a proof-of-concept rather than fully-

optimized implementation.

• A simple deadlock checker that exploits input-covering schedules. In this work, we

aim to demonstrate how input-covering schedules can simplify the process of building

such a checker—we do not aim to produce a feature-complete checker.

1.5 Outline

Chapter 2 presents our approach to symbolic execution of multithreaded programs from

arbitrary program contexts. We describe our dataflow semantics, our symbolic execution

semantics, our implementation, and our empirical evaluation. Proofs of soundness and

completeness are given in appendices at the end of this dissertation.

Chapter 3 presents our algorithm for enumerating a set of input-covering schedules. We

also describe our implementation, a proof-of-concept runtime system and deadlock checker,

and our empirical evaluation.

Chapters 2 and 3 are updated and expanded versions of papers originally published in

other venues [11, 13]. Chapter 4 surveys related work. Chapter 5 gives concluding remarks

and discusses the potential for future work.

10

Chapter 2
SYMBOLIC EXECUTION FROM ARBITRARY PROGRAM CONTEXTS

This chapter describes an analysis that can perform symbolic execution of a multi-

threaded program starting from an arbitrary program context. We start by restating the

problem and summarizing our solution (Section 2.1). We further motivate our work in this

chapter by describing ways in which our analysis is useful (Section 2.2).

Next, we explain the mechanics of our approach. Our goal is to analyze multithreaded

C programs, so we define our analysis over a simple core language called SimpThreads that

maintains the features of C that make our analysis challenging. Notably, our core language

includes explicit threads and synchronization, shared memory, and pointers that can refer

to the interior of an object via pointer arithmetic. To simplify the exposition, we organize

our explanation by language feature. We start with a simple, single-threaded subset of

SimpThreads that has no pointers (Section 2.3). We then add pointers (Section 2.4) and

threads (Section 2.5). At each step, we explain how we overcome the challenges introduced

by each additional language feature. After giving this exposition, we give a summarized

and cohesive description of our approach (Section 2.6).

Next, we state soundness and completeness theorems (Section 2.7). We have imple-

mented our analysis on top of Cloud9 [24], which is a symbolic execution engine for C

programs that was developed by other researchers. Cloud9 is in turn based on the widely-

used klee [27]. We discuss our implementation (Section 2.8) and end by discussing an

empirical evaluation of that implementation (Section 2.9).

2.1 Problem Statement and Overview

Our goal is scalable symbolic execution of multithreaded programs written in the C lan-

guage and its derivatives. Our approach is to limit path explosion by symbolically execut-

11

ing relatively small fragments of a program in isolation—this reduces path length, which

in turn reduces the potential for path explosion. Rather than exploring ways that pro-

gram fragments might be selected, our work focuses on a more basic question: how do we

symbolically execute a fragment of a multithreaded program in isolation, soundly and effi-

ciently? Prior work has largely assumed that symbolic execution will begin at one of a few

natural starting points, such as program entry (for whole-program testing) or a function

call (for single-threaded unit testing). We do not make such an assumption—we assume

that program fragments can begin anywhere—so our main challenge is to perform symbolic

execution of multithreaded programs from arbitrary program contexts.

Specifically, we address the following problem: given an initial program context, which we

define to be a set of threads and their program counters, how do we efficiently perform sym-

bolic execution starting from that context while soundly accounting for all possible concrete

initial states? We solve this problem in two parts. First, we use a context-specific dataflow

analysis to construct an over-approximation of the initial state for the given program con-

text. Second, we integrate that dataflow analysis with a novel symbolic execution semantics

that can execute forward from an abstract initial state, even when precise information about

pointers and synchronization is not available.

Constructing an Initial State. The most precise strategy is to symbolically execute

all paths from program entry to the initial context, and then use path merging [52] to

construct an initial state. This is not scalable—it suffers from exactly the sort of path

explosion problems we are trying to avoid. Instead, we must approximate the initial state.

The least precise approximation is to leave the initial state completely unconstrained, for

example by assigning a fresh symbolic variable to every memory location. This is too

conservative—it covers many memory states that never occur during any actual execution—

and as a result, symbolic execution would investigate many infeasible paths.

Our solution represents a middle ground between the above two extremes: we use a

context-specific dataflow analysis to construct a sound over-approximation of the initial

state. We use an over-approximation to ensure that all feasible concrete initial states are

included. Our dataflow analysis infers constraints on the initial memory state as well as

constraints on synchronization, such as locksets, that together help symbolic execution avoid

12

1 global int X,Y

2 global struct Node { Lock lock, int data } nodes[]

3
4 Thread 1 Thread 2

5 void RunA() { void RunB() {

6 i = ... k = ...

7 Foo(&nodes[i]) Bar(&nodes[k])

8 } }

9 void Foo(Node *a) { void Bar(Node *b) {

10 for (x in 1..X) { lock(b->lock)

11 ⇒ lock(a->lock) ⇒ for (y in 1..Y)

12

Figure 2.1: A simple multithreaded program that illustrates the challenges of beginning
symbolic execution at an arbitrary program context. Especially notable are challenges that
arise from explicit synchronization and from C-like pointers.

infeasible paths.

To illustrate, suppose we are asked to begin symbolic execution from the program context

marked by arrows in Figure 2.1. This context includes two threads, each of which is about

to execute line 11. Can lines 11 and 12 of Foo execute concurrently with lines 11 and 12

of Bar? To answer this question, we must first answer a different question: does thread t2

hold any locks at the beginning of the program context (i.e., at line 11)? Here we examine

the locksets embedded in our initial state and learn that t2 holds lock b->lock. Next, we

ask a second question: does a==b? Suppose our dataflow analysis determines that i==k at

line 6, and that Foo and Bar are called from RunA and RunB only. In this case, we know that

a==b, which means that line 11 of Foo cannot execute concurrently with line 11 of Bar.

Symbolic Execution Semantics. The input to symbolic execution is an abstract

initial state constructed by our dataflow analysis. The output is a set of pairs (path, C),

where path is a path of execution and C describes a path constraint such that when C is

satisfied on the initial state, the path can be followed. To support multithreaded programs,

we make each path a serialized (sequentially consistent) trace of a multithreaded execution.

The key novelty of our symbolic semantics is the way it integrates with our dataflow

analysis. For example, we exploit locksets, as described above, along with other invariants to

improve the precision of various symbolic synchronization primitives. We reason about the

13

initial values of local variables by exploiting reaching definitions that our dataflow analysis

computes. We additionally exploit a static points-to analysis to help reason about aliasing

relationships between pairs of symbolic pointers. Notably, our semantics can reason about

symbolic pointers that may refer to the interior bytes of an object.

However, our dataflow analysis is necessarily conservative. It may leave portions of the

memory state unconstrained, leaving us unable to precisely answer simple questions such

as “which object does pointer X refer to?” in all cases. For example, suppose our dataflow

analysis cannot determine if i==k at line 6. In this case, we must investigate two paths

during symbolic execution: one in which a==b, and another in which a!=b. For this reason,

the set of paths explored by symbolic execution may be a superset of the set of paths that

are actually feasible.

Soundness and Completeness. Our symbolic semantics are sound and complete up to

the limits of the underlying SMT solver. By sound, we mean that if our symbolic execution

outputs a pair (path, C), then, from every concrete initial state that satisfies constraint C,

concrete execution must follow path as long as context switches are made just as in path.

By complete, we mean that symbolic execution outputs a set of pairs (path, C) sufficient to

cover all possible concrete initial states that may arise during any valid execution of the

program.

SMT solvers are incomplete in practice—they may timeout on a difficult query, or they

may not support all kinds of expressions available in the target language. Hence, our

symbolic semantics are incomplete in practice. Further, even if a complete SMT solver

were available, our implementation is still incomplete in practice as there may be too many

feasible paths—the number of feasible paths typically grows exponentially with the length of

execution, so any large, realistic program may have too many feasible paths to be practicably

enumerable in any reasonable time.

2.2 Applications

The analysis presented in this chapter has a variety of promising applications:

Focused Testing of Program Fragments. We can test an important parallel loop

in the context of a larger program. Classic symbolic execution techniques require executing

14

deep code paths from program entry to reach the loop in the first place, where these deep

paths may include complex initialization code or prior parallel phases. Our techniques

enable testing the loop directly, using a fast and scalable dataflow analysis to summarize

the initial deep paths.

Testing Libraries. We would ideally test a concurrent library over all inputs and

calling contexts, but as this is often infeasible, we instead might want to prioritize the

specific contexts a library is called from by a specific program. One such prioritization

strategy is to enumerate all pairs of calls into the library that may run concurrently, then

treat each pair as a program context that can be symbolically executed using our techniques.

Then do the same for every triple of concurrent calls, every quadruple, and so on.

Piecewise Program Testing. Rather than testing a whole program with one long

symbolic execution, we can break the program into adjacent fragments and test each frag-

ment in isolation. Such a piecewise testing scheme might enumerate fragments dynamically

by queuing the next fragments found to be reachable from the current fragment. Fragments

might end at loop backedges, for loops with input-dependent iteration counts, producing

a set of fragments that are each short and largely acyclic. The key potential advantage

is that we can explore fragments in parallel, as they are enumerated, enabling us to more

quickly reach a variety of deep paths in the program’s execution. The trade-off we make is

a potential loss of precision, as our dataflow analysis may make conservative assumptions

when constructing a fragment’s initial abstract state.

Execution Reconstruction. We can record an execution with periodic lightweight

checkpoints that include call stacks and little else. Then, on a crash, we can symbolically

execute from a checkpoint onwards to reconstruct the bug. Variants of this approach include

bbr [29] and RES [101]. However, bbr does not work for multithreaded programs, and both

systems have less powerful support for pointers than does our semantics.

Input-Covering Schedules. In Chapter 3, we show how the analysis described in

this chapter can be used as a subroutine in an algorithm for enumerating input-covering

schedules. That chapter includes a futher empirical evaluation of the symbolic execution

techniques that we present here.

15

r ∈Var (local variables)
x, y ∈ SymbolicConst (symbolic constants)
f ∈FName (function names)
i∈Z (integers)

v ∈Value ::= f | i
e∈Expr ::= v | r | x | e ∧ e | e ∨ e | e < e | ...

γ ∈ StmtLabel
s∈ Stmt ::= r ← e(e∗)

| br e, γt, γf
| return e

Func ::= func f(r∗){ (γ : s;)∗ }

Figure 2.2: Syntax of Simp. Asterisks (∗) denote repetition.

2.3 A Simple Imperative Language

Figure 2.2 gives the syntax of Simp, a simple imperative language that we use as a starting

point. A program in this language contains a set of functions, including a distinguished main

function for program entry. The language includes function calls, conditional branching,

mutable local variables, and a set of standard arithmetic and boolean expressions (only

partially shown). We separate side-effect-free expressions from statements. This simple

language does not include pointers, dynamic memory allocation, or threads—those language

features will be added in Sections 2.4 and 2.5, respectively.

The concrete semantics follow the standard pattern for imperative, lexically-scoped, call-

by-value languages.1 Note that we use r to refer to local variables (or “registers”), while the

metavariables x and y do not appear in the actual concrete language. Instead, x and y are

used to name symbolic constants that represent unknown values during symbolic execution,

as described below. Simp is intentionally left untyped—this conservatively models our

implementation (Section 2.8), which operates over a low-level language (LLVM bitcode [68])

that has very weak and limited types.

1 A complete listing of the concrete semantics for the fully-featured core language, SimpThreads, is given
in Appendix A. Simp is a strict subset of SimpThreads.

16

Y : Stack of (Var→ Expr) (local variables)
CallCtx : Stack of StmtLabel (calling context)

path : List of StmtLabel (execution trace)
C : Expr (path constraint)

Figure 2.3: Symbolic state for Simp.

Challenges. Although this language is simple, it reveals two ways in which symbolic

execution from arbitrary contexts can be imprecise. Specifically, we use this language to

demonstrate imprecision due to unknown calling contexts (Section 2.3.2) and unknown val-

ues of local variables (Section 2.3.3). We also use this language to present basic frameworks

that we will reuse in the rest of this chapter.

2.3.1 Symbolic Semantics Overview

We now describe an analysis to perform symbolic execution of Simp programs. Our analysis

operates over symbolic states that contain the domains illustrated in Figure 2.3:

• Y, which is a stack of local variable bindings. A new stack frame is pushed by each

function call and popped by the matching return. Variables are bound to either

function arguments, for formal parameters, or the result of a function call, as in the

statement r ← f().

• CallCtx , which names the current calling context, where the youngest stack label is

the current program counter and older labels are return addresses. We use γcurr to

refer to the current program counter.

• path, which records an execution trace.

• C , an expression that records the current path constraint.

Constructing an Initial State. Recall from Section 2.1 that our job is to perform

symbolic execution from an arbitrary program context that is specified by a set of program

17

counters, one for each thread. As Simp is single-threaded, the initial program context for

Simp programs contains just one program counter, γ0.

Given γ0, where γ0 is a statement in function f0, we must construct an initial symbolic

state, Sinit, from which we can begin symbolic execution. A simple approach is: pathinit =

empty; Cinit = true; CallCtxinit = {γ0} (but see Section 2.3.2 for a caveat); and Yinit contains

one stack frame that maps each ri ∈ f0 to a distinct symbolic constant xi. This simple

approach is clearly correct, as it constructs an initial symbolic state that over-approximates

all possible concrete initial states. However, this simple approach is very imprecise. We

describe a more precise approach in Section 2.3.3.

Correspondence of Concrete and Symbolic States. Note that we use symbolic

constants, such as xi, above, to represent unknown parts of a symbolic state. This allows

each symbolic state to represent a set of concrete states. Specifically, the set of concrete

states represented by Sinit can be found by enumerating the total set of assignments of

symbolic constants xi to values vi—each such assignment corresponds to a concrete state

in which xi = vi.

Symbolic Execution. At a high level, symbolic execution is straightforward. We

begin from the initial state, Sinit. We execute one statement at a time using step, which

is defined below. At branches, we use an SMT solver to determine which branch edges are

feasible and we fork as necessary. We repeatedly execute step on non-terminated states

until all states have terminated or until a user-defined resource budget has been exceeded.

We define step as follows, and we also make use of an auxiliary function eval to evaluate

side-effect-free expressions:

• step : State→ Set of State

Evaluates a single statement under an initial state and produces a set of states, as

we may fork execution at control flow statements to separately evaluate each feasible

branch. The type of each State is given by Figure 2.3. Each invocation of step eval-

uates the statement referenced by current program counter, γcurr, then appends γcurr

to the path and advances the program counter.

18

isSat(C, e) = true iff e is satisfiable under C
mayBeTrue(C, e) = isSat(C, e)
mustBeTrue(C, e) = ¬mayBeTrue(C,¬e)

read(A, eoff) = A(eoff)
write(A, eoff, evalue) = A[eoff 7→ eval]

Figure 2.4: Interface to the off-the-shelf SMT solver.

• eval : ((Var→ Expr)× Expr)→ Expr

Given eval(Y, e), we evaluate expression e under binding Y, where Y represents a single

stack frame. We expect that Y has a binding for every local variable referenced in

expression e (non-existent bindings are a runtime error). Note that eval returns an

Expr rather than a Value, as we cannot completely reduce expressions that contain

symbolic constants.

The final result of our symbolic analysis is a set of States from which we can extract

(path,C) pairs that represent our final output. For each such pair, C is an expression that

constrains the initial symbolic state, Sinit, such that when C is satisfied, program execution

must follow the corresponding path.

SMT Solver Interface. Our symbolic semantics relies on an SMT solver that must

support, at minimum, basic integer arithmetic and the theory of arrays. We query that

solver using the interface shown in Figure 2.4. The function isSat(C, e) determines if there

exists a binding from symbolic constants to values such that boolean expression e is satisfi-

able under the constraints given by expression C, where C is a conjunction of assumptions.

In addition to isSat , we use mayBeTrue and mustBeTrue as syntactic sugar. The functions

read and write are standard constructors from the theory of arrays (e.g., see [46]).

If a query isSat(C, e) cannot be solved, then our symbolic execution becomes incomplete.

In this case, we concretize enough subexpressions of e so the query becomes solvable and we

can make forward progress, similarly to Pasareanu et al. [83]. For example, suppose isSat

cannot reason about modulo arithmetic, but we are given the expression x%y < z: in this

case, we select concrete values ix and iy for x and y such that isSat(C, x = ix ∧ y = iy),

where C is the current path constraint, and then we append x = ix ∧ y = iy to the path

constraint so that x and y are effectively concretized on all paths that follow.

19

2.3.2 Dealing with an Underspecified CallCtx

Recall that the initial program context is simply a single program counter, γ0. If γ0 is not

a statement in the main function, then the initial state Sinit does not have a complete call

stack. How do we reconstruct a complete call stack?

We could start with a single stack frame and then lazily expand older frames, forking

as necessary to explore all paths through the static call graph. However, we consider this

overkill for our anticipated applications, and instead opt to exit the program when the initial

stack frame returns. Our rationale is that, for each application listed in Section 2.2, either

the program fragment of interest will be lexically scoped, in which case we never return

from the initial stack frames anyway, or complete call stacks will be provided, which we

can use directly (e.g., we expect that complete call stacks will be available during execution

reconstruction, as in bbr [29], and also during input-covering schedule enumeration, as

described in Chapter 3).

2.3.3 Initializing Local Variables with Reaching Definitions

The simple approach for constructing Sinit, as described above, is imprecise. Specifically,

the simple approach assigns each local variable a unique symbolic constant, xi, effectively

assuming that each local variable can start with any initial value. This is often not the

case. For example, consider thread t1 in Figure 2.1. In this example, assuming that RunA is

the only caller of Foo, the value of local variable a is known precisely. Even when the initial

value of a variable cannot be determined precisely, we can often define its initial value as a

symbolic function over other variables.

Our approach is to initialize Yinit using an interprocedural dataflow analysis that com-

putes reaching definitions for all local variables. We use a standard iterative dataflow

analysis framework with function summaries for scalability, and we make the framework

context-specific as follows: First, we combine a static call graph with each function’s control-

flow graph to produce an interprocedural control-flow graph, CFG . Then, we run a forwards

dataflow analysis over CFG that starts from main and summarizes all interprocedural paths

between program entry and the initial program counter, γ0.

20

Our dataflow analysis computes assignments that must-reach the initial program context.

Specifically, we compute a set of pairs Rlocal = {(ri, ei)}, where each ri is a local variable in

Yinit such that the assignment ri ← ei must-reach the statement γ0. That is, for each pair

(ri, ei) ∈ Rlocal, ri’s value at the initial program context must match expression ei.

After computing Rlocal for the initial program context, we initialize Yinit as follows: for

each pair (ri, ei) ∈ Rlocal, we assign ei to ri in Yinit. Some variables may not have a must-

reach assignment—these variables, rk, do not appear in Rlocal, and they are assigned a

unique symbolic constant xk in Yinit, as before.

We save a formal description of our reaching definitions analysis for later in this chapter,

in Section 2.6.2, at which point we formally describe how our reaching definitions analysis

applies to the full SimpThreads language.

Must-Reach vs. May-Reach. Must-reach definitions provide a sound over-approximation

of Yinit, as any variable not included in the must-reach set may have any initial value. More

precision could be achieved through may-reach definitions; however, this would result in

a symbolic state with many large disjunctions that are expensive to solve in current SMT

solvers [52, 61].

2.4 Adding Pointers

Figure 2.5 shows the syntax of SimpHeaps, which adds pointers and dynamic memory

allocation to Simp. As a convention, we use p to range over expressions that should evaluate

to pointers.

Memory Interface. We represent pointers as pairs ptr(l, i), where l is the base address

of a heap object and i is a non-negative integer offset into that object. Pointers may also be

null. Pointer arithmetic is supported with the ptradd(p, e) expression, which is evaluated

as follows in the concrete language:

eval(Y, p) = ptr(l, i) eval(Y, e) = i′

eval(Y, ptradd(p, e)) = ptr(l, i+ i′)

The heap is a mapping from locations to objects, and each object includes a sequence

21

l ∈Loc (heap locations)

v ∈Value ::= ... | null | ptr(l, i)
e, p∈Expr ::= ... | ptr(l, e) | ptradd(p, e)

s∈ Stmt ::= ... | r ← load p | store p, e
| r ← malloc(e) | free(p)

Figure 2.5: Syntax additions for SimpHeaps.

of fields. Our notion of a field encompasses the common notions of array elements and

structure fields. To simplify the semantics, we assume that each field has a uniform size

that is big enough to store any value. Following that assumption, we define i to be the

offset of the (i+1)th field (making 0 the offset of the first field), and we define the size of an

object to be its number of fields. Our implementation (Section 2.8) relaxes this assumption

to support variable-sized fields at byte-granular offsets. Heap objects are allocated with

malloc, which returns ptr(l, 0) with a fresh location l, and they are deallocated with free.

Memory Errors. Out-of-bounds memory accesses, uninitialized memory reads, and

other memory errors have undefined behavior in C [55]. We treat these as runtime errors

in our semantics to simplify the notions of soundness and completeness of symbolic execu-

tion. The problem of constructing dynamic detectors for these errors is well researched and

orthogonal to the novelties in this dissertation, so we do not address that problem in detail.

Challenges. In the concrete language, load and store statements always operate on

values of the form ptr(l, i). The symbolic semantics must consider three additional kinds

of pointer expressions: ptr(l, e), in which the offset e is symbolic; and x and ptradd(x, e),

in which the heap location is symbolic as well.

2.4.1 Symbolic Semantics

We now extend our symbolic execution analysis for SimpHeaps. As shown in Figure 2.6,

we add two fields to the symbolic state: a heap, H, which maps concrete locations to

dynamically allocated heap objects, and a list A, which tracks aliasing information that is

used to resolve symbolic pointers. Rules for the semantics described in this section are given

in Figures 2.7, 2.8, and 2.10. The core rules involve the
mem
==⇒ relation, which is used by step

22

H : Loc→ {fields : (Expr→ Expr), } (heap)
A : List of {x : SymbolicConst, primary : Loc, n : PtrNode} (aliasable objects)

Figure 2.6: Symbolic state additions for SimpHeaps.

heapGet : (Heap× PtrExpr)→ Expr
heapPut : (Heap× PtrExpr× Bool× Expr)→ Heap

(l, {fields}) ∈ H

read(fields, eoff) = e

heapGet(H, ptr(l, eoff)) = e

(l, {fields}) ∈ H read(fields, eoff) = eold

eval = econd ? enew : eold

write(fields, eoff, eval) = fields′ H′ = H[l 7→ {fields′}]
heapPut(H, ptr(l, eoff), econd, enew) = H′

Figure 2.7: Symbolic heap interface, including conditional put.

to evaluate memory statements. (Note that memory operations never fork execution in the

absence of memory errors, and since we elide error-checking details from this dissertation,

the
mem
==⇒ relation does not need to fork.)

Accessing Concrete Locations. We first consider accessing pointers of the form

ptr(l, e). In this case, l uniquely names the heap object being accessed, so we simply

construct an expression in the theory of arrays to load from or store to offset e of that

object’s fields array.

Accessing Symbolic Locations. Now we consider accessing pointers of the form

x and ptradd(x, e). This case is more challenging since the pointer x may refer to an

unknown object. Following [29], our approach is to assign each symbolic pointer x a unique

primary object in the heap, then use aliasing constraints to allow multiple pointers to refer

to the same object. This effectively encodes multiple concrete memory graphs into a single

symbolic heap. We allocate the primary object for x lazily, the first time x is accessed. In

this way, we lazily expand the symbolic heap and are able to efficiently encode heaps with

unboundedly many objects.

Stores to x update x’s primary object, lx, and also conditionally update all other objects

that x may-alias. For example, suppose pointers x and y may point to the same object. To

23

H;Y; C;A; Stmt
mem
==⇒ H′;Y′; C′;A′

Load/store of a concrete location:

eval(Y, p) = ptr(l, eoff)
heapGet(H, ptr(l, eoff)) = e

H;Y; C;A; r ← load p
mem
==⇒ H;Y[r 7→ e]; C;A

eval(Y, p) = ptr(l, eoff) eval(Y, e) = e′

heapPut(H, ptr(l, eoff), true, e′) = H′

H;Y; C;A; store p, e
mem
==⇒ H′;Y; C;A

Load/store of a symbolic location:

eval(Y, p) = ptradd(x, eoff)
addPrimary(H,C,A, x) = (H′,C′,A′, ptr(lx, xoff))

heapGet(H′, ptr(lx, xoff + eoff)) = e

H;Y; C;A; r ← load p
mem
==⇒ H′;Y[r 7→ e]; C′;A′

eval(Y, p) = ptradd(x, eoff) eval(Y, e) = e′

addPrimary(H,C,A, x) = (H′,C′,A′, ptr(lx, xoff))
lookupAliases(A′, x) = {l1...ln}

heapPut(H′, ptr(lx, xoff + eoff),true, e′) = H′′0
heapPut(H′′0 , ptr(l1, xoff + eoff),(x = ptr(l1, xoff)),e′) = H′′1

· · ·
heapPut(H′′n−1,ptr(ln, xoff + eoff),(x = ptr(ln, xoff)),e′) = H′′n

H;Y; C;A; store p, e
mem
==⇒ H′′n;Y; C′;A′

Allocate and free:

l = fresh loc H′ = H[l 7→ {λi.undef}]
H;Y; C;A; r ← malloc(esize)

mem
==⇒ H′;Y[r 7→ ptr(l, 0)]; C;A

true

H;Y; C;A; free(p)
mem
==⇒ H;Y; C;A

Figure 2.8: The
mem
==⇒ relation in the symbolic heap semantics. In these rules, Y refers to

the current stack frame (namely, the youngest stack frame in Y).

24

write value v to pointer x, we first update lx by writing v to address ptr(lx, xoff), and we

then update ly by writing the expression (x = ptr(ly, xoff)) ? v : eold to address ptr(ly, e),

where eold is the previous value in ly (this makes the update conditional) and xoff is a

symbolic offset that will be described shortly. Loads of x access ptr(lx, xoff) directly—since

stores update all aliases, it is unnecessary for loads to access aliases as well.

Figure 2.8 shows the detailed semantics for accessing symbolic pointers of the form

ptradd(x, eoff) (we treat x as ptradd(x, 0)).

Restricting Aliasing with a Points-To Analysis. Recall that symbolic constants

like x represent values that originate in our initial program context. That is, if x is a valid

pointer, then x must point to some object that was allocated before our initial program

context. In the worst case, this set of possible aliases includes all primary objects that have

been previously allocated for other symbolic pointers (in addition to any primary objects

that may be allocated in the future). This list of primary objects is recorded in A (Figure

2.6) and kept up-to-date by addPrimary (Figure 2.10).

In practice, we can narrow the set of aliases using a static points-to analysis. On the

first access to x, we add the record {x, lx, nx} to A, where nx is the representative node for

x in the static points-to graph. The set of objects that x may-alias is found by enumerating

all {y, ly, ny} ∈ A for which ny and nx may point-to the same object according to the static

points-to graph—this search is performed by lookupAliases (Figure 2.10). Note that, in

practice, the search for aliases can be implemented efficiently by exploiting the structure of

the underlying points-to graph.

We use a field-sensitive points-to analysis so we can additionally constrain the offset

being accessed. For each symbolic pointer x, we query the points-to analysis to compute

a range of possible offsets for x, and then construct a fresh symbolic constant xoff that is

constrained to that range. (This is the same xoff used above in the discussion of loads and

stores.) For example, if x is known to point at a specific field, then xoff is fixed to that field.

If a range of offsets cannot be soundly determined, xoff is left unconstrained.

Hence, the points-to analysis must support two kinds of queries, as shown in Figure

2.9. getPtrInfo looks up a pointer x in the static points-to graph: it returns a tuple

(nx, xoff, C), where nx is the representative node for x in the static points-to graph, xoff

25

getPtrInfo : Var→ (PtrNode,Expr,Expr,Expr)
mayAlias : (PtrNode,PtrNode)→ Bool
staticCallTargets : Expr→ Set of FName

Figure 2.9: Interface to the off-the-shelf static points-to analysis.

is a symbolic constant, and C constrains xoff to be a possible offset for x, as described

above. mayAlias(nx, ny) returns true iff the pointers nx and ny may alias. staticCallTargets

returns a set of functions that may be pointed-to by a function pointer expression—later in

this section, we describe how staticCallTargets is used to resolve function pointers.

Constructing a New Primary Object. On the first access of symbolic pointer x,

addPrimary allocates a primary object at lx and appends the record {x, lx, nx} to A. The

fields of lx must be initialized carefully.

Suppose the first access of x is a load, and suppose that x may-alias some other sym-

bolic pointer y. For soundness, we must ensure that every load of x satisfies the following

invariant: x = y =⇒ load(x) = load(y). Making matters more complicated is the fact

that we may have performed stores on y before our first access of x, and we must ensure

that these stores are visible through x as well. Our approach is to define the initial fields

of lx as follows:

Initial fields of lx

≡ (x = ptr(ly, xoff)) ? fieldsy : fresh
(2.1)

where fieldsy is the current fields array of object ly, which is the primary object for y, and

where fresh is a symbolic array that maps each field fresh(i) to a fresh symbolic constant—

this represents the unknown initial values of lx in the case that x and y do not alias. In

general x may have more than one alias, in which case we initialize the fields of lx similarly

to the above, but we use a chain of conditionals that compares x with all possible aliases.

This initialization is performed by getInitialFields (Figure 2.10).

Memory Allocation. Semantics for malloc(esize) are shown in Figure 2.8. Since each

object has its own symbolic fields array, we naturally support allocations of unbounded

symbolic size.

26

getInitialFields : (Heap× Set of Loc×Var× Expr)→ (Expr→ Expr)

{(li, fi) | li ∈ aliases ∧H(li) = {fi}}
f ′1=(x = ptr(l1, xoff) ? f1 : fresh)
f ′2=(x = ptr(l2, xoff) ? f2 : f ′1)

· · ·
f ′n=(x = ptr(l2, xoff) ? fn : f ′n−1)

getInitialFields(H, aliases, x, xoff) = f ′n

addPrimary : (Heap× Expr×AliasableObjects×Var)
→ (Heap×Expr×AliasableObjects×Expr)

{x, , } /∈ A getPtrInfo(x) = (n, xoff,C
′) A′ = {x, lx, n} ·A

lookupAliases(A, x) = aliases getInitialFields(H, aliases, x, xoff) = fields
lx /∈ H H′ = H[lx 7→ {fields}]

C′′ = C ∧ C′ ∧ heapInvariants(x, lx, xoff, aliases)

addPrimary(H,C,A, x) = (H′,C′′,A′, ptr(lx, xoff))

{x, lx, } ∈ A

addPrimary(H,C,A, x) = (H,C,A, ptr(lx, xoff))

lookupAliases : (AliasableObjects×Var)→ Set of Loc

{x, lx, nx} ∈ AliasMap
aliases = {li | { , li, ni} ∈ A ∧ li 6= lx ∧mayAlias(nx, ni)}

lookupAliases(A, x) = aliases

Figure 2.10: Operations that manipulate the aliasable objects list. The function heap-
Invariants accumulates invariants that constrain the initial state of the newly allocated
primary object—the origin of these invariants is described later, in Section 2.4.2.

27

Memory Error Checkers. Since this dissertation elides memory error-checking de-

tails, we treat free(p) as a no-op in Figure 2.8.

Briefly, to detect memory errors, we might add size and isLive attributes to each object

in H. On malloc(e), we would set size = e and isLive = true. On free(p), we would

conditionally free all objects that p may-alias by conditionally setting isLive = false in all

aliases, much in the same way that store(p, e) conditionally writes e to all aliases of p.

Error checkers such as out-of-bounds and use-after-free would then ensure that, for each

access at ptr(l, eoff), 0 ≤ eoff < H(l).size and H(l).isLive = true.

Compound Symbolic Pointer Expressions. Figure 2.8 shows rules for load and

store statements where the pointer p evaluates to an expression of the form ptr(l, e), x,

or ptradd(x, e), but the result of eval(Y, p) can also have the form read(fields, eoff). This

form appears when a pointer is read from the heap, since all heap accesses use the theory

of arrays.

The difficulty is that there may be multiple possible values at eoff. For example, if fields

is write(write(, 1, x), e′off, x
′), then we cannot evaluate this address without first resolving

the symbolic pointers x and x′. Further, the values written by write can contain conditional

expressions due to the conditional store performed by heapPut . So, in general, the fields

array might include a chain of calls as in the following: write(write(, 1, x), e′off, e
′′ ? x′ : x′′).

Our approach is to walk the call chain of writes to build guarded expressions that sum-

marize the possible values at offset eoff. If the value stored by a write is a conditional

expression, we also walk that conditional expression tree while computing the guarded ex-

pressions. This gives each guarded expression the form egrd → p, where each p has the

form x, ptradd(x, e), or ptr(l, e). In the above example, we build guarded expressions

(eoff = e′off ∧ e′′)→ x′, and (eoff = e′off ∧ ¬e′′)→ x′′, and (eoff 6= e′off ∧ eoff = 1)→ x, and so

on down the call chain.

We then execute the memory operation on this set of guarded expressions. For stores,

we evaluate each guarded expression independently: given egrd → p, we evaluate p using the

rules in Figure 2.8, but we include egrd in the condition passed to heapPut . For loads, we

use the rules in Figure 2.8 to map each pair egrd → p to a pair egrd → e, where e is the value

loaded from pointer p. We then collect each egrd → e into a conditional expression tree that

28

represents the final value of the load. Continuing the above example, if the values at x, x′,

and x′′ are v, v′, and v′′, respectively, then a load of the above example address would return

the following conditional expression tree: (eoff = e′off) ? (e′′ ? v′ : v′′) : (eoff = 1 ? x :).

Function Pointers. At indirect calls, we first use staticCallTargets (recall Figure 2.9)

to enumerate a set of functions F that might be called, according to the static points-to

analysis. Then, we use isSat to prune functions from F that cannot be called given the

current path constraint, and finally, we fork for each of the remaining possibilities.

2.4.2 Initializing the Heap with Reaching Definitions

The initial symbolic state (Sinit) actually contains an empty heap that is expanded lazily, as

described above. As the heap graph expands, newly uncovered objects are initially uncon-

strained, as represented by the fresh symbolic array allocated for each primary object (recall

Equation (2.1), above). This approach can be imprecise for the same reasons discussed in

Section 2.3.3. We improve precision using reaching definitions, as follows.

We extend the reaching definition analysis from Section 2.3.3 to also compute a set of

heap writes that must-reach the initial program context. Specifically, we compute a set

of pairs Rheap = {(pi, ei)}, where the heap location referenced by pi must have a value

matching ei in the initial state. We use standard flow functions to compute Rheap and we

use a static points-to analysis to reason about aliasing. A formal description of this analysis

is given in Section 2.6.2.

We exploit Rheap during symbolic execution via heap invariants (recall Figure 2.10).

Specifically, when adding a primary object lx for symbolic pointer x, we invoke heapInvari-

ants to construct an invariant on the initial values of object lx. This invariant, shown below,

is appended to the path constraint (again, recall Figure 2.10):

∧
(ptradd(x,eoff),eval)∈Rheap

read(fresh, xoff + eoff) = eval

That is, we enumerate all pairs (p, eval) ∈ Rheap where p has either the form ptradd(x, eoff)

or the form x (which we treat like ptradd(x, 0)). For each such pair (p, eval), we constrain

fresh(xoff+eoff) = eval, where fresh is the initial symbolic array for lx as shown in Equation

29

s ∈ Stmt ::= ... | threadCreate(ef, earg) | yield()
| wait(p) | notifyOne(p) | notifyAll(p)

synchronization annotations

| acquire(p) | release(p)
| barrierInit(p, e) | barrierArrive(p)

Figure 2.11: New statements for SimpThreads.

(2.1) and Figure 2.10. Essentially, this invariant reflects the fact that the initial value of lx

at offset xoff+eoff must have value eval.

2.5 Adding Threads and Synchronization

Figure 2.11 shows the syntax additions for SimpThreads, which adds shared-memory mul-

tithreading and synchronization to SimpHeaps.

Threads. SimpThreads supports cooperative thread scheduling with yield(), which

nondeterministically selects another thread to run. Cooperative scheduling with yield is

sufficient to model any data race free program, as we can insert a yield at each synchro-

nization operation to model all possible synchronization orderings. As with other memory

errors (recall Section 2.4), data races have undefined behavior in C [17, 55] and are runtime

errors in SimpThreads. Hence, cooperative scheduling is a valid model as we can assume

that all SimpThreads programs are either data race free or will halt before the first race.

New threads are created by threadCreate(ef, earg). This spawns a new thread that exe-

cutes the function call ef(earg), and the new thread will run until ef returns. As SimpThreads

uses cooperative scheduling, the new thread is not scheduled until another thread yields

control.

Synchronization. We build higher-level synchronization objects such as barriers, con-

dition variables, and queued locks using two primitives: cooperative scheduling with yield,

which provides simple atomicity guarantees, and FIFO wait queues, which provide simple

notify/wait operations that are common across a variety of synchronization patterns. Wait

queues support three operations: wait, to yield control and move the current thread onto

a wait queue; notifyOne, to wake the thread on the head of a wait queue; and notifyAll,

30

struct mutex {

int taken; // at offset itaken
}

pthread mutex init(mutex *m) {

store ptradd(m, itaken), 0; // m->taken = 0

}

pthread mutex lock(mutex *m) {

while (load ptradd(m, itaken)) // while (m->taken)

wait(ptradd(m, itaken)); // wait(&m->taken)

store ptradd(m, itaken), 1; // m->taken = 1

acquire(m); // acquire(m)

}

pthread mutex unlock(mutex *m) {

store ptradd(m, itaken), 0; // m->taken = 0

release(m); // release(m)

notifyOne(ptradd(m, itaken)); // notifyOne(&m->taken)

yield(); // yield()

}

Figure 2.12: Pseudocode demonstrating how pthreads’ mutexes might be implemented in
SimpThreads.

to wake all threads on a wait queue.

We use these building blocks to implement standard threading and synchronization

libraries such as POSIX threads (pthreads). To aid our symbolic semantics, we assume syn-

chronization libraries have been instrumented with the annotation functions listed in Figure

2.11. Annotation functions are no-ops that do not actually perform synchronization—they

merely provide higher-level information that we will exploit, as described later (Section

2.5.3, Section 2.5.4). The example in Figure 2.12 demonstrates how to annotate an imple-

mentation of pthreads’ mutexes. We have written the example in a pseudocode that uses

memory operations resembling those in SimpThreads.

Note that wait queues are named by pointers. There is an implicit wait queue associated

with every memory address—no initialization is necessary. For example, Figure 2.12 uses the

implicit wait queue associated with &m->taken. This design is similar to both the futex()

system call in Linux, which can be applied to any adress, and to wait() Java, which can

31

be applied to any object. The reason for naming wait queues by an address rather than an

integer id will become clear in Section 2.5.3.

Challenges. The primary challenge introduced by SimpThreads is the need to reason

about synchronization objects. Our approach includes a semantics for symbolic wait queues

(Section 2.5.2) and a collection of synchronization-specific invariants (Section 2.5.3) that

exploit facts learned from a context-specific dataflow analysis (Section 2.5.4).

2.5.1 Symbolic Semantics

We now extend our symbolic execution semantics for SimpThreads. As illustrated in Figure

2.13, we modify Y and CallCtx to include one call stack per thread, and we modify path to

record a multithreaded trace. We add the following domains to the symbolic state:

• TCurr, which is the id of the thread that is currently executing.

• TE, which is the set of enabled threads, i.e., the set of threads not blocked on syn-

chronization. This includes TCurr.

• WQ , which is a list that represents a global order of all waiting threads. Each entry

of the list is a pair (p, t) signifying that thread t is blocked on the wait queue named

by address p. The initial WQ can either be empty (all threads enabled) or non-empty

(some threads blocked, as described in Section 2.5.2).

• L+, which describes a set of locks that may be held by each thread and is derived

from acquire and release annotations.

• Bcnts, which describes a set of possible arrival counts for each barrier and is derived

from barrierInit annotations.

L+ and Bcnts are both over-approximations. They are initialized as described in Section

2.5.4 and they are used by invariants described in Section 2.5.3.

Symbolic Execution. Our first action during symbolic execution is to fork execution

once for each possible TCurr ∈ TE. This effectively begins symbolic execution with an

32

Y : ThreadId → Stack of (Var→ Expr) (local variables)
CallCtx : ThreadId → Stack of StmtLabel (calling contexts)

path : List of (ThreadId ,StmtLabel) (execution trace)

TCurr : ThreadId (current thread)

TE : Set of ThreadId (enabled threads)
WQ : List of (Expr,ThreadId) (global wait queue)
L+ : ThreadId→ Set of Expr (acquired locksets)

Bcnts : Expr→ Set of Expr (barrier arrival cnts)

Figure 2.13: Symbolic state modifications for SimpThreads, with modifications to Sim-
pHeaps bolded, above the line, and additions shown below.

implicit yield so that each thread has a chance to run first. Note that context switches

(updates to TCurr) occur only either explicitly through yield, or implicitly when the current

thread exits or is disabled through wait. Execution deadlocks when TE is empty while WQ

is non-empty, and execution terminates when both TE and WQ are empty.

2.5.2 Symbolic Wait Queues

We now give symbolic semantics for the three FIFO wait queue operations, wait, notifyOne,

and notifyAll. When a thread t calls wait(p), we remove t from TE and append the pair

(p, t) to WQ . When t is notified, we remove it from WQ and add it to TE. Which threads

are notified is answered as follows:

notifyOne(p). Any thread in WQ with a matching queue address may be notified.

Let (p1, t1) be the first pair in WQ and let (pn, tn) be the last pair. We walk this ordered

list and fork execution up to |WQ|+ 1 times. The possible execution forks are given by the

following list of path constraints:

(1) p1 = p

(2) p1 6= p ∧ p2 = p

...

(n) p1 6= p ∧ p2 6= p ∧ ... ∧ pn = p

(n+1) p1 6= p ∧ p2 6= p ∧ ... ∧ pn 6= p

33

In the first fork, we notify t1, in the second, we notify t2, and so on, until the nth fork,

in which we notify tn. In the final fork, no threads are notified. Only a subset of these

forks may be feasible, so we use isSat to prune forked paths that have an infeasible path

constraint. In particular, if there exists an i where pi=p must be true on the current path,

then all forks from (i+1) onwards are infeasible and will be discarded. Further, as in Section

2.4, we increase precision by using a static points-to analysis to determine when it cannot

be true that pi=p.

notifyAll(p). Any subset of threads in WQ may be notified. We first compute the

powerset of WQ , P(WQ), and then fork execution once for each set S ∈ P(WQ). Specifi-

cally, on the path that is forked for set S, we notify all threads in S and apply the following

path constraint:

∧
(pi,ti)∈WQ

pi = p if (pi, ti) ∈ S

pi 6= p otherwise

This forks execution 2|WQ| ways. As before, we use isSat and a static points-to analysis to

prune infeasible path constraints.

Initial Contexts with a Nonempty WQ. Suppose we want to analyze an initial

program context in which some subset of threads begin in a waiting state, but we do not

know the order in which the threads began waiting. One approach is to fork for each

permutation of the wait order, but this is inefficient. Instead, our approach is to analyze

such contexts by adding timestamp counters. First, we tag each waiting thread with a

timestamp derived from a global counter that is incremented on every call to wait, so that

thread t1 precedes thread t2 in WQ if and only if t1’s timestamp is less than t2’s timestamp.

Then, we set up the program context so that each waiting thread begins with the call to

wait it is waiting in. Before beginning normal symbolic execution, we execute these wait

calls in any order, using the semantics for wait described above, but with one adjustment:

we give each waiting thread ti a symbolic timestamp, represented by the symbol xi, and we

bound each xi < 0 so these waits occur before other calls to wait during normal execution.

34

We say that xi < xk is true in the concrete initial state when ti and tk are waiting on the

same queue and ti precedes tk on that queue.

Next, we update the semantics of notifyOne. If there are n threads in WQ and w of

those threads are initial waiters, meaning they have symbolic timestamps, then notifyOne

uses the following sequence of path constraints, where 1 ≤ i ≤ w:

(i) pi = p ∧

(∧
1≤k≤w,k 6=i

(pk = p)⇒ (xi < xk)

)
(w+1) p1 6= p ∧ p2 6= p ∧ ... ∧ pw 6= p ∧ pw+1 = p

...

(n) p1 6= p ∧ p2 6= p ∧ ... ∧ pn = p

(n+1) p1 6= p ∧ p2 6= p ∧ ... ∧ pn 6= p

The first w constraints handle the cases where an initial waiter is notified. We can no-

tify initial waiter ti if it has a matching queue address, pi=p, and it precedes all other initial

waiters tk with a matching address. The cases for w+1 and above are as before.

2.5.3 Synchronization Invariants

The semantics described above are sound, but the presence of unconstrained symbolic con-

stants can cause our symbolic execution to explore infeasible paths. In an attempt to avoid

infeasible paths, we augment the path constraint with higher-level program invariants.

Specifically, this section proposes a particularly high-value set of synchronization in-

variants. We focus on synchronization invariants here since the novelty of our work is

symbolic exploration of multithreaded programs with symbolic synchronization. More gen-

erally, high-level invariants always help reduce explosion of infeasible paths and we could

easily integrate programmer-specified invariants as well.

We cannot apply synchronization invariants without first identifying synchronization

objects. Ideally we would locate such objects by scanning the heap, but our language

SimpThreads is untyped, so we cannot soundly determine the type of an object by looking

at it. Instead, we apply invariants when synchronization functions are called. For example,

we instrument the implementation of pthread mutex lock(m) to apply invariants to m as

35

the first step before locking the mutex. The rest of this section describes the invariants we

have found most useful.

Locks. As illustrated in Figure 2.12, locks can be modeled by an object with a taken

field that is non-zero when the lock is held and zero when the lock is released. Suppose

a thread attempts to acquire a lock whose taken field is symbolic: execution must fork

into two paths, one in which taken=0, so the lock can be acquired, and another in which

taken6=0, so the thread must wait. One of these paths may be infeasible, as illustrated by

Figure 2.1, so we need to further constrain lock objects to avoid such infeasible paths.

We use locksets to constrain the taken field of a lock object. Given a symbolic state

with locksets L+ and a pointer p to some lock object, the lock’s taken field can be non-zero

only when there exists a thread T and an expression e, where e ∈ L+(T), such that e = p.

This invariant is expressed by the following constraint, where ei ranges over all locks held

by all threads:

(taken = 0) ⇔

(∧
ei∈L+(∗)

ei 6= p

)

Our dataflow analysis computes L+ for the initial symbolic state (Section 2.5.4). We keep

L+ up-to-date during symbolic execution using the acquire and release annotations: on

acquire(p) we add p to L+(TCurr), and on release(p) we remove e from L+(TCurr) where

e must-equal p on the current path.

Barriers. A pthreads barrier can be modeled by two fields, expected and arrived,

and a wait queue, where arrived is the number of threads that have arrived at the barrier,

the barrier triggers when arrived==expected, and the wait queue is used to release threads

when the barrier triggers.

Suppose a program has N threads spin in a loop, where each loop iteration includes

a barrier with expected=N. Now suppose we analyze the program from an initial context

where the barrier is unconstrained. When the first thread arrives at the barrier, execution

forks at the condition arrived==expected. In the true branch we set arrived=0 and notify

the queue, and in the false branch we increment arrived and wait. This repeats for the

36

other threads, and an execution tree unfolds in which we explore O(2N) paths through a

code fragment that has exactly one feasible path.

We compute invariants for both of these fields. Bounds for arrived can be determined by

examining WQ : the number of threads that have arrived at a barrier is exactly the number

of threads that are waiting on the barrier’s wait queue. Let q be the wait queue address used

by the barrier and let C be the current path constraint. We compute conservative lower-

and upper-bounds for arrived. The lower-bound L is the number of pairs (p, t) ∈ WQ

for which mustBeTrue(C, p=q), and the upper-bound H is the number of pairs for which

mayBeTrue(C, p=q). Given these bounds, the invariant is L ≤ arrived ≤ H.

A barrier’s expected count is specified during barrier initialization. In pthreads, this

occurs when pthread barrier init is called. Each symbolic state contains a Bcnts that

maps barrier pointers p to a set of expressions that describes the set of possible expected

counts for all barriers pointed-to by p. So, we can use Bcnts directly to construct an invariant

for expected:

∧
p′∈Bcnts

(∨
e∈Bcnts(p′)

(p′ = p)⇒ (expected = e)

)

The initial Bcnts is computed by our dataflow analysis (Section 2.5.4) and it does not change

during symbolic execution—when pthread barrier init is called during symbolic execu-

tion we write to the barrier’s expected field directly, making Bcnts irrelevant for this case.

Other Types of Synchronization. The invariant described above for a barrier’s

arrived field is more generally stated as an invariant on the size of a given wait queue,

making it applicable to other data structures that use wait queues, such as condition vari-

ables and queued locks.

Why Wait Queues are Named by Address. For standard synchronization objects

such as barriers, condition variables, and queued locks, different objects do not share the

same wait queue. For example, notifying the queue of lock L should not notify threads

waiting at any other lock. By using the address of L to name L’s wait queue, we state this

invariant implicitly.

37

For contrast, suppose we instead named wait queues by an integer id. We would be

forced to add a queueId field to each lock, then state the following invariant: ∀p1, p2 : (p1 =

p2)⇔ (id1 = id2), where p1 and p2 range over the set of pointers to locks, and where id1 and

id2 are the queueId fields in p1 and p2, respectively. Stating this as an axiom would require

enumerating the complete set of pointers to locks, which can be extremely inefficient.

2.5.4 Approximating the Initial State of Synchronization

We update the context-specific dataflow framework introduced in Section 2.3.3 to support

multiple threads. Specifically, we apply the dataflow framework as described in Section

2.3.3 to each thread, separately, and then combine the per-thread results to produce a

multithreaded analysis. We perform the following analyses for SimpThreads:

Reaching Definitions. We update the reaching definitions analysis described in Sec-

tion 2.4.2 to support multiple threads. Importantly, since we analyze each thread in iso-

lation, we must reason about cross-thread interference. Our approach is to label memory

locations in Rheap as either conflict-free or shared. A location is conflict-free if it is provably

thread-local (via an escape analysis) or if all writes to the location must-occur before the first

call to threadCreate—the second case captures a common idiom where the main thread

initializes global data that is kept read-only during parallel execution. Shared locations

may have conflicts—we reason about these conflicts using interference-free regions [41], as

Section 2.6.2 describes in more detail.

Locksets. We use a lockset analysis to compute L+(T), the set of locks that may be held

at thread T ’s initial program counter. Our analysis uses relative locksets as in Relay [94]:

each function summary includes two sets, L+f and L−f , where L+f is the set of locks that

function f may acquire without releasing, and L−f is the set of locks that f always releases

without first acquiring.

The key difference between our implementation and Relay’s is that we compute may-

be-held sets while Relay computes must-be-held sets. This reflects differing motivations:

as a static race detector, Relay wants to know which locks must be held to determine if

accesses are properly guarded, but we want to know which locks may be held to determine

38

when two lock() calls may need to be serialized (as motivated by Figure 2.1). Hence, our

L+ and L− are may-acquire and must-release, while those used by Relay are must-acquire

and may-release.

Barrier Expected Arrivals. To compute Bcnts, we simply enumerate all calls to

barrierInit(p, e) that might be performed on some path from program entry up to the

initial context, and for each such call, we add e to the set Bcnts(p). This can be viewed as

may-reach analysis applied to each barrier’s expected field.

Barrier Matching. A large class of data-parallel algorithms use barriers to execute

threads in lock-step. For example, a program might execute the following loop in N different

threads, where each iteration happens in lock-step:

for (i=0; i < Z; ++i) { barrierArrive(b); ... }

Suppose we are given an initial program context in which each thread begins inside this

loop. In this case, since the loop runs in lock-step, we know that all threads must start

from the same dynamic loop iteration, so we can add a constraint that equates the loop

induction variable, i, across all threads. This constraint is included in the initial path

constraint, Sinit.C.

This is the barrier matching problem: given two threads, must they pass the same

sequence of barriers from program entry up to the initial context? Solutions have been

proposed—we adapt [102], which builds barrier expressions to describe the possible sequence

of barriers each thread might pass through. Two threads are barrier-synchronized if their

barrier expressions are compatible.

The algorithm in [102] does not support our use case directly because it cannot reason

about loops with input-dependent trip counts. So, we extend that algorithm by computing

a symbolic trip count for each loop node in a barrier expression. Two loops match if their

symbolic trips counts must be equal. We compute trip counts using a standard algorithm,

but we discard trip counts that depend on shared memory locations (recall the definition of

shared, from above). To determine if the trip count can be kept, we compute a backwards

slice of the trip count expression and ensure that slice does not depend on any shared

locations.

39

2.6 The Big Picture

The full syntax of SimpThreads is given in Figure 2.14. This combines the syntaxes presented

previously in Figures 2.2, 2.5, and 2.11. We assume a standard set of arithmetic expressions,

in addition to what is illustrated explicitly in Figure 2.14.

The rest of this section provides a cohesive and formal description of a few semantics

details that prior sections explained in prose. Section 2.6.1 formally describes our high-level

algorithm for symbolic execution, and Section 2.6.2 formally specifies our context-specific

reaching definitions analysis.

2.6.1 Symbolic Semantics

Figure 2.15 gives pseudocode for our top-level symbolic execution algorithm. We start with

an InitialState computed by our context-sensitive dataflow analysis. Given this initial state,

our first action is to execute an implicit yield() to allow each thread to run first. We then

repeatedly invoke step until all states have exited or deadlocked. Our final output is a set

of symbolic states, Final, where the paths explored by those states are given by S.path and

S.C for each S ∈ Final. Pseudocode for the step function is shown in Figure 2.16. Our

pseudocode for step uses a few shorthands:

We use append(L, k) to append item k to list L. We use youngest(s) to extract the

youngest (or “top-most”) element from stack s. We use currStmt(S) to extract the cur-

rent statement from symbolic state S, where the current statement is named by the label

youngest(S.CallCtx(S.TCurr)).

setCurrentPC(CallCtx, T, γ), pushPC(CallCtx, T, γ), and popPC(CallCtx, T) return an

updated copy of CallCtx : setCurrentPC changes the youngest label of stack CallCtx(T)

to γ, pushPC pushes γ onto the stack CallCtx(T), and popPC pops the youngest frame

from CallCtx(T). pushFrame(Y, T, f, e) and popFrame(Y, T) return an updated copy of Y:

pushFrame pushes a new stack frame for function f onto Y(T), where f ’s formal parameters

are bound to the values e, and popFrame pops the youngest frame off of Y(T).

40

r ∈Var (local variables)
x, y ∈ SymbolicConst (symbolic constants)
f ∈FName (function names)
l ∈Loc (heap locations)
i∈Z (integers)

v ∈Value ::= f | i | null | ptr(l, i)
e∈Expr ::= v | r | x | e ∧ e | e ∨ e | e < e | ...

| ptr(l, e) | ptradd(p, e)

γ ∈ StmtLabel
s∈ Stmt ::= return e

| br e, γt, γf
| r ← e(e∗)
| r ← load p | store p, e
| r ← malloc(e) | free(p)
| threadCreate(ef, earg) | yield()
| wait(p) | notifyOne(p) | notifyAll(p)

synchronization annotations

| acquire(p) | release(p)
| barrierInit(p, e) | barrierArrive(p)

Func ::= func f(r∗){ (γ : s;)∗ }

Figure 2.14: Full syntax of SimpThreads

Figure 2.15 Symbolic execution algorithm.

Input: An InitialState
Output: A set of states Final
Data: A worklist w

w ← { InitialState with {TCurr ← T} | T ∈ InitialState.TE }
Final← ∅
while w 6= ∅ do

S← pickNext(w)

if S.TE = ∅ then
Final ← Final ∪ {S}

else
w ← (w/S) ∪ step(S)

return Final

41

Figure 2.16 The step function. We write S.X to extract domain X from state S, and we
write S with {X ← ...} to perform a functional update of domain X in state S. We use
yield (as in Python) to return multiple forked states. Not yielding anything is equivalent
to returning an empty set of states (e.g., when the program exits or deadlocks). We use S.Y
as shorthand for the current thread’s youngest stack frame (i.e., youngest(S.Y(S.TCurr))).

Input: A state S
Output: A set of new states that result from evaluating S

match currStmt(S):
case br e, γt, γf :
e′ ← eval(S.Y, e)
if isSat(S.C, e′) then

yield S with { CallCtx ← setCurrentPC(S.CallCtx, S.TCurr, γt)

path ← append(S.path, (S.TCurr, γt))
C ← S.C ∧ e′ }

if isSat(S.C,¬e′) then

yield S with { CallCtx ← setCurrentPC(S.CallCtx, S.TCurr, γf)

path ← append(S.path, (S.TCurr, γf))
C ← S.C ∧ ¬e′ }

case return e:
e′ ← eval(S.Y, e)

newCallCtx← popPC(S.CallCtx,S.TCurr)

if newCallCtx(S.TCurr) = {} then // did thread S.TCurr terminate?

TE
new ← S.TE / {S.TCurr}

foreach T ∈ TE
new do

yield S with { TCurr ← T

TE ← TE
new

Y ← S.Y / {S.TCurr}
CallCtx ← S.CallCtx / {S.TCurr}
path ← append(S.path, (T, youngest(S.CallCtx(T)))) }

else

yield S with { Y ← popFrame(S.Y,S.TCurr)
CallCtx ← newCallCtx

path ← append(S.path, (S.TCurr, youngest(newCallCtx))) }
... (continued)

42

Figure 2.16 The step function (continued.)

...
case x← e(e1):
e′ ← eval(S.Y, e)
e1
′ ← eval(S.Y, e1)

foreach f ∈ staticCallTargets(e′) do
if isSat(S.C, e′=f) then
γ0 ← entryStmt(f)

yield S with { Y ← pushFrame(S.Y, T, f, e1
′)

CallCtx ← pushPC(S.CallCtx, S.TCurr, γ0)

path ← append(S.path, (S.TCurr, γ0))
C ← S.C ∧ e′ = f }

case threadCreate(ef , earg):
e′f ← eval(S.Y, ef)

e′arg ← eval(S.Y, earg)

T ← fresh thread id
foreach f ∈ staticCallTargets(e′f) do

γ0 ← entryStmt(f)

γnext ← youngest(S.CallCtx(S.TCurr)) + 1

yield S with { TE ← S.TE ∪ {T}
Y ← pushFrame(S.Y, T, f, e′arg)

CallCtx ← setCurrentPC(pushPC(S.CallCtx, T, γ0), S.TCurr, γnext)

path ← append(S.path, (S.TCurr, γnext))
C ← S.C ∧ e′f = f }

case yield():

foreach T ∈ S.TE do

γnext ← youngest(S.CallCtx(S.TCurr)) + 1

yield S with { TCurr ← T

CallCtx ← setCurrentPC(S.CallCtx, S.TCurr, γnext)

path ← append(S.path, (S.TCurr, γnext)) }
case wait(p) | notifyOne(p) | notifyAll(p):

evaluate as described in Section 2.5.2
case acquire(p) | release(p) | barrierInit(p) | barrierArrive(p):

evaluate as described in Section 2.5.3
case r ← load p | store p, e | r ← malloc(e) | free(p):

yield the invocation of
mem
==⇒ on state S (recall Section 2.4.1)

end

43

2.6.2 Context-Specific Dataflow Analysis for Reaching Definitions

Recall that for each thread T , where T ’s initial program counter is γT0 , we compute reaching

definitions that summarize all paths from program entry up to γT0 . We use a standard

forward, iterative dataflow analysis that is applied to an interprocedural control-flow graph,

CFG . Reaching definitions is a standard and well-known analysis, so many of the details

presented here should be familiar. However, two aspects of our analysis are non-standard:

our definition of the interprocedural CFG , and our simultaneous treatment of the stack and

the heap. We discuss both aspects below.

Constructing CFG. The interprocedural control-flow graph, CFG , is formed by merg-

ing all function-local control-flow graphs into a single graph, where the function-local sub-

graphs are connected using edges from the program’s static call graph, as follows: At each

node in CFG that represents an function call, we query a static points-to analysis to enu-

merate all functions that might be invoked by that call site. For each such target function

f , we add a few edges to CFG : one edge from the call site to f , and another edge from

each of f ’s return statements back to the call site. Hence, function calls implicitly invoke

a branch (which models the function call) followed by a control-flow merge (which models

the return from multiple potential call targets).

We also include special control-flow edges at threadCreate(ef , earg) statements as fol-

lows: Suppose that ef resolves to a set of functions F . Then, for each f ∈ F , then we add

a control-flow edge from threadCreate(ef , earg) to f . This allows our analysis to connect

expression earg with the argument of function f , and further, it allows our analysis to reason

about values passed on the heap from a creator thread to its child threads. However, we

do not add a control-flow edge from f ’s return statements back to the threadCreate call,

as there is no control-flow in this direction. Note that when the program counter γT0 is not

reachable from function f , the control-flow edge connecting threadCreate to f is essentially

“dead” and will not affect any dataflow facts computed for statement γT0 .

Running the Analysis. Our reaching definitions analysis computes Rlocal and Rheap

for all statements in the program that are reachable from the entry point of CFG , where we

define the entry point of CFG to be the first statement of the main function. After reaching

44

definitions have been computed, we extract RT
local and RT

heap for each thread T , where we

define RT
local and RT

heap to be the values of Rlocal and Rheap at statement γT0 . Essentially,

RT
local and RT

heap represent thread T ’s contribution to the initial symbolic state.

We use RT
local to initialize Yinit(T) as described in Section 2.3.3. Namely, each local

variable rk ∈ Yinit(T) is assigned the value RT
local(rk) if rk ∈ RT

local, and otherwise, rk is

assigned a unique symbolic constant xk.2

We union all RT
heap into a global RG

heap, where RG
heap is the set of reaching definitions used

by heapInvariants during symbolic execution (recall Section 2.4.2). Note that, because of

how we reason about cross-thread interference (see below), a pointer p can exist in both

RT1
heap and RT2

heap only if there is a race on location p—in this case, we discard p from RG
heap.

Flow Functions. Figure 2.17 gives flow functions that define Rlocal and Rheap for each

node in CFG . There are four cases. The first case, for generic assignments, is applied

at function call statements such as r ← e(e): once to assign the values e to the formal

parameters of the callee, and a second time to assign the return value to local variable

r. As we compute the outgoing Rout
local, each assignment of e to r generates a must-reach

definition Rout
local(r) = eval(Rin

local, e). Note that we use eval to reduce expressions. Thus,

given e = r1+5, where Rin
local(r1) = x, we generate the definition Rout

local(r) = x+5 to express

that r and r1 are functions of the same value.

The second case deals with stores to the heap. Here, as is standard, we first kill all

definitions in Rin
heap for locations that may-alias the pointer p. We then add a new definition

to Rout
heap. As for assignments, we use eval to reduce this new definition.

The third case deals with a load from the heap at location p. Here, we check if there

exists a heap assignment Rin
heap(p1) = e1 heap such that p1 must-alias3 the pointer p. If such

an assignment is found, then e1 is used as the value loaded. Otherwise, the value loaded is

unknown, so we assign local variable r a uniquely chosen symbolic constant, xr. We then

memoize the assignment (p, xr) in Rout
heap to implement a form of redundant load elimination:

2 As CFG is interprocedural, Rlocal can collect reaching definitions from multiple functions. We implicitly
assume (without loss of generality) that local variable names are not reused across functions, allowing rk
to name a specific variable in Rlocal.

3 We implement mustAlias(p1, p2) by checking for syntactic equality of the expressions. For example, the
expression ptr(x, 5) is syntactically equivalent to ptr(x, 5), but not to ptr(x, 0) or ptr(y, 5).

45

Flow Functions for Rlocal and Rheap

case assign e to r:
Rout

local = Rin
local[r 7→ eval(Rin

local, e)]

case store p, e:
killset = {pi | pi ∈ Rin

heap ∧mayAlias(pi, p)}
Rout

heap = (Rin
heap/killset)[eval(Rin

local, p) 7→ eval(Rin
local, e)]

case r ← load p:
p′ = eval(Rin

local, p)
if ∃p1 s.t. p1 ∈ Rin

heap ∧mustAlias(p1, p
′):

Rout
local = Rin

local[r 7→ Rin
heap(p1)]

else:
xr = uniqueSymbolicConstantFor(r)
Rout

local = Rin
local[r 7→ xr]

Rout
heap = Rin

heap[p′ 7→ xr]

case merge br1, br2, · · · brn:
Rout

local = R1
local ∩R2

local ∩ · · · ∩Rn
local

Rout
heap = R1

heap ∩R2
heap ∩ · · · ∩Rn

heap

Figure 2.17: Flow function for reaching definitions. This function is applied to each node
in the interprocedural control-flow graph, CFG . The inputs to this function are Rin (or
R1 · · ·Rn for merge nodes), and the outputs are Rout. Inputs come from incoming control-
flow edges, while outputs are emitted onto each outgoing edge. For the entry node of CFG ,
Rin

local and Rin
heap are empty.

For example, if a later statement loads from the same pointer p, without a conflicting store

in the middle, then the later statement will return the memoized value, xr.

The last case deals with merging. This case applies at the usual control-flow merge

points due to branching statements, as well as at implicit control-flow merge points added

to deal with function calls. We define the intersection of two mappings R1 ∩ R1 to be all

pairs (a, b) such that a ∈ R1, a ∈ R2, and R1(a) = R2(a) = b.

Reasoning About Cross-Thread Interference. As described briefly in Section

2.5.4, we reason about cross-thread interference by labelling each memory locations in Rheap

as either conflict-free or shared. A location is conflict-free if it is provably thread-local (as

determined by a static escape analysis) or if all writes to the location must-occur before

46

the first call to threadCreate. The second case captures a common idiom where the main

thread initializes global data that is kept read-only during parallel execution.

Shared locations may have conflicts. We reason about these conflicts using interference-

free regions (IFRs) [41]. The details are beyond the scope of this dissertation. Briefly, the

concept of IFRs derives from the following observation: if a program is assumed to be data

race free,4 then after thread T reads memory location p, the value at location p cannot be

mutated by another thread until T executes certain combinations of synchronization oper-

ations, such as a lock() followed by an unlock(). Hence, during this region of execution

(from the read of p until the unlock()), p is interference-free.

We compute IFRs using the method described by Effinger-Dean [42], then use IFRs to

remove reaching definitions from Rheap when they may become invalid due to cross-thread

inteference. Specifically, given that an access to pointer p has an IFR extending from

statement γ1 to γ2, we remove p from Rout
heap on γ2’s outgoing control-flow edges, as the value

at location p may be mutated by some other thread immediately after statement γ2 has

executed. (This detail is not illustrated in Figure 2.17.)

Function Summaries. We make our dataflow analysis scalable by using function

summaries in an entirely standard way: For each function f , we compute summaries Rf
local

and Rf
heap. Expressions in these summaries use symbolic constants x that represent the

unknown values of f ’s formal parameters, r. To apply a summary at a call site, we substitute

x with the call site’s arguments e. We compute function summaries with a single bottom-

up traversal of the static call graph, and resolve strongly-connected components (recursive

calls) using iteration until convergence. To illustrate the use of function summaries, consider

the following example:

void main() { void foo(r2) { void bar(r2) {

foo(41) ... lock()

foo(42) } ...

bar(5) }

}

Suppose our program context of interest begins with thread T about to execute the lock()

4 Recall from Section 2.5 that we treat data races as errors in SimpThreads, so we can effectively assume
race freedom, making an IFR analysis a valid approach.

47

call in bar. There is one path from program entry up to this initial context: main:foo(41),

main:foo(42), main:bar(5), bar:lock(). When analyzing this path, we use function

summaries to evaluate the calls to foo. However, we cannot use a function summary to

evaluate the call to bar, as bar does not return on this path. Instead, we use the rules from

Figure 2.17: to evaluate the call of bar, we assign r2=5 in Rlocal and advance to the first

statement of bar.

Heuristics and Alternative Designs. We have found it profitable to perform loop

unrolling within our dataflow analysis: we unroll a loop if its trip count is fixed to a

small, constant value. Additionally, although our current implementation uses context-

insensitive function summaries and no path sensitivity other than loop unrolling, more

precise approaches are well-studied and can be substituted [36, 89].

2.7 Soundness and Completeness

Our symbolic execution algorithm is sound, and it is complete except when the SMT solver

uses concretization to make progress through an unsolvable query (recall Section 2.3.1). We

make this claim only for programs with a correctly implemented pthreads library; otherwise,

the invariants from Section 2.5.3 would be incorrect. Further, as the initial symbolic state

SS is a given in the statement of our theorem (below), we implicitly assume correctness of

the dataflow analyses used to construct that initial symbolic state.

Our theorem relies on a notion of correspondence between concrete and symbolic states—

because the heap is expanded lazily in our symbolic semantics, this notion relies on partial

equivalence and is somewhat technical. We give a full definition of partial equivalence and

a proof of the theorem in Appendix B.

Definition 1 (Correspondence of concrete and symbolic states). We say that symbolic

state SS models concrete state SK under constraint C if there exists an assignment Σ that

assigns all symbolic constants in SS to values such that (a) Σ is a valid assignment under the

constraint C, and (b) the application of Σ to SS produces a state that is partially-equivalent

to SK (as defined in Appendix B).

48

Theorem 1 (Soundness and completeness of symbolic execution). Consider an initial pro-

gram context, an initial concrete state SK for that context, and an initial symbolic state

SS:

– Soundness: If symbolic execution from SS outputs a pair (p,C), then for all SK such

that SS models SK under C, concrete execution from SK must follow path p as long

as context switches happen exactly as specified by path p.

– Completeness: If concrete execution from SK follows path p, then for all SS such

that SS models SK under SS .C, symbolic execution from SS will either (a) output a

pair (p,C), for some C, or (b) encounter a query that the SMT solver cannot solve.

2.8 Implementation

We implemented the above algorithms on top of the Cloud9 [24] symbolic execution engine,

which is an extension of Klee [27] that adds support for multithreaded processes. Cloud9

symbolically executes C programs that use pthreads and are compiled to LLVM [68] bitcode

(Cloud9 operates directly on LLVM bitcode). Our modifications added about 4500 lines of

C++ code. Where a points-to analysis is needed, we use DSA [67].

The C language allows casts between pointers and integers. This is not modeled in our

semantics but is partially supported by our implementation. Our approach is to represent

each pointer expression p like any other integer expression. Then, at each memory access, we

analyze p to extract (base, offset) components. For example, our implementation represents

int *p = &a[x*3] as p = a + 4 · (x · 3), and to access p we transform it to ptr(a, 12 · x).

We determine that a is the base address by exploiting LLVM’s simple type system to learn

which terms are used as pointers.

The precise semantics of integer-to-pointer conversions in C are implementation-defined

(§6.3.2.3 of [55]). Our implementation does not support programs that use integer arithmetic

to jump between two separately-allocated objects, such as via the classic “XOR” trick for

doubly-linked lists. Such programs are not amenable to garbage collection for analogous

reasons [18], even though they are supported by some C implementations.

49

2.9 Evaluation

2.9.1 Infeasible Paths

Recall from Section 2.1 that our approach lies on a spectrum between a näıve approach,

which approximates the initial state very conservatively by leaving all memory locations

unconstrained, and a fully precise approach, which constructs a perfectly precise initial

state using an intractably expensive analysis. In this section, we attempt to characterize

how close our approach lies to both ends of this spectrum.

We first compare the näıve approach with our approach: how many fewer infeasible

paths do we explore? We answer this question for a given program context C by exhaus-

tively enumerating all paths reachable from C up to a bounded depth. Any path that is

enumerated by the näıve approach, but not by our approach, must be an infeasible path

that our approach has avoided. We use a bounded depth to make exhaustive exploration

feasible.

Table 2.1 summarizes our results. Each row summarizes experiments for a unique pro-

gram context. We evaluated our implementation using five applications: blackscholes [16],

which uses fork-join parallelism; dedup [16], which uses pipeline parallelism; lu [95] and

streamcluster [16], which use barrier-synchronized loops; and pfscan [44], which uses

task parallelism. These applications were selected because they cover a range of parallelism

styles. For each application, we manually selected one or two program contexts in which

at least two threads begin execution from the middle of a core loop. Column 2 shows the

number of threads used in each initial context, and Column 3 shows the maximum number

of conditional branches executed on each path during bounded-depth exploration.

Columns 4 and 7 show the number of paths explored by our fully optimized approach

(Full) and the näıve approach, respectively. To further characterize our approach, we also

ran our approach with optimizations disabled: -RD disables reaching definitions (recall Sec-

tion 2.3.3, Section 2.4.2, Section 2.5.4, and Section 2.6.2) and -SI disables synchronization

invariants (recall Section 2.5.3 and Section 2.5.4). Our approach explores significantly fewer

infeasible paths compared to the näıve approach, and a comparison across Columns 4–7

shows that each optimization is essential.

50

Program Context Num Paths inf.
thr br Full -RD -SI N pths

blackscholes 4 20 763 1087 765 1087 –
dedup-1 5 10 103 122 863 971 –
dedup-2 5 12 458 550 1811 1904 –
lu-1 4 22 681 1026 1133 1864 625
lu-2 4 18 554 1400 1290 4680 380
pfscan 3 18 246 246 3785 3785 –
streamcluster 3 11 60 617 229 1004 48

Table 2.1: Evaluation of infeasible paths enumerated during symbolic execution. Full
is our fully optimized approach, and N is the näıve approach. -RD and -SI remove the
reaching definitions and synchronization invariants optimizations.

It is difficult to compare our approach with the fully precise approach, as the fully precise

approach is intractable. For lu and streamcluster, we have manually inspected the paths

explored by our approach (Column 4) and estimated, through our best understanding of

the code, how many of those paths are infeasible (Column 8). Sources of infeasible paths

include the following: Both programs assign each thread a unique id parameter (e.g., by

incrementing a global counter), but we are unable prove that these ids are unique across

threads, leading to infeasible paths. In lu, the id is computed by incrementing a global

counter while a lock is held, and in streamcluster, the id is passed to the thread as an

argument to pthread create. We suspect that a similar situation causes infeasible paths

in other applications, but we have not quantified this precisely. Further, they performs calls

of the form pthread join(t[i])—we are unable to prove that each t[i] is a valid thread

id, so we must fork for (infeasible) error cases.

2.9.2 Evaluation: Performance

Now we answer a second question: how does our approach affect the performance of sym-

bolic execution? We answered this question by measuring performance of the exhaustive

explorations done above.

Table 2.2 presents these results. Columns 4–8 show the average number of LLVM instruc-

tions executed per second (IPS), and Columns 9–13 show the percentage of total execution

51

Program Context Avg IPS Exec Time in isSat
thr br WP Full -RD -SI N WP Full -RD -SI N

blackscholes 4 20 927 176 1171 178 1206 75% 93% 65% 93% 65%
dedup-1 5 10 4731 72 49 67 64 3% 30% 62% 36% 51%
dedup-2 5 12 4692 45 26 39 32 5% 35% 64% 30% 59%
lu-1 4 22 3997 93 170 64 107 2% 55% 16% 75% 57%
lu-2 4 18 3860 80 136 105 162 32% 57% 23% 56% 26%
pfscan 3 18 6250 5368 5650 5254 5503 17% 28% 25% 15% 13%
streamcluster 3 11 5382 161 59 7 19 15% 9% 35% 74% 31%

Table 2.2: Evaluation of symbolic execution performance. This uses the same contexts
and configurations as in Table 2.1. WP estimates the performance of an intractable but
fully precise approach.

time devoted to isSat . The two metrics are correlated, as slower isSat times lead to lower

IPS. Full uses more precise constraints than the näıve approach, but this does not necessar-

ily lead to higher IPS for Full . Namely, precise and simple constraints such as x = 5 lead

to high IPS, but precise and complex constraints can lead to low IPS—the latter effect has

been observed previously [52, 61].

To further understand the overheads of our approach, we symbolically executed multiple

whole program paths that each begin at program entry and pass through the initial context

(WP in Columns 4 and 9). Although Full can be an order-of-magnitude slower than WP ,

many paths explored by WP visit 100s of branches before reaching the initial context,

suggesting that exhaustive summarization of all paths from program entry is infeasible—

approximating the initial context is necessary. Further profiling shows that much of our

overhead comes from resolving symbolic pointers: LLVM’s load and store instructions

typically comprised 15% to 50% of total execution time in Full , but < 5% in WP .

Lastly, we tried disabling our use of a points-to analysis to restrict aliasing (Section 2.4.1,

Section 2.5.2). With this optimization disabled, each symbolic pointer was assigned 100s

of aliases, leading to large heap-update expressions and poor solver performance—so slow

that on most benchmarks, throughput decreased to well under 5 IPS. Hence, we consider

this optimization so vital that we left it enabled in all experiments.

52

Chapter 3
INPUT-COVERING SCHEDULES

The previous chapter described a way to limit path explosion in symbolic execution

by focusing on small fragments of execution. This chapter attacks the problem in a more

fundamental way by introducing the notion of input-covering schedules: given a program P,

we say that a set of schedules Σ covers the program’s inputs if, for all inputs, there exists

some schedule S ∈ Σ such that P’s execution can be constrained to S and still produce a

semantically valid result.

This chapter describes, first, an algorithm to enumerate input-covering schedules, and

second, a way to exploit input-covering schedules using a custon runtime system. We start

by overviewing our goals and solutions (Section 3.1). We then dive into the technical details.

We start by describing our representation of schedules—this representation was carefully

designed, as a poor representation makes the problem intractable (Section 3.2). Next,

we describe our algorithm for enumerating input-covering schedules (Section 3.3), and to

further connect this chapter with the prior chapter, we show how our symbolic execution

techniques from the prior chapter are directly applicable in this new context (Section 3.3.3).

We then describe a number of optimizations to our algorithm (Section 3.4 and Section 3.5).

We have implemented our system on the Cloud9 [24] symbolic execution engine, and

further, we have implemented a custom runtime system that constrains execution to input-

covering schedules produced by our algorithm. We have focused our work on the fundamen-

tal problem of enumerating input-covering schedules—our schedule-enumeration algorithm

includes many optimizations, but our custom runtime system is a proof-of-concept that

has not been fully optimized. We describe these implementations (Section 3.6) and then

summarize our system as a whole by giving a formal statement of the guarantees provided

by our system (Section 3.7).

53

We have performed the first empirical evaluation to address the fundamental question:

“How large are sets of input-covering schedules?” We end by discussing this evaluation

(Section 3.8). We organize our evaluation as a set of case studies to carefully characterize the

program analysis challenges inherent to enumerating input-covering schedules for realistic

multithreaded C programs. We show that we are able to enumerate input-covering schedules

for some programs, and for other programs, we characterize the ways in which our analysis

is imperfect.

3.1 System Overview

Our system works as follows: Given a program P, we first enumerate a small input-covering

set Σ using symbolic execution. As stated above, a set of schedules is input-covering if it

contains enough schedules to enable correct program execution. That is, for each possible

input i, there must exist some schedule S ∈ Σ such that, when program P is given input i,

P’s execution can be constrained to S and still produce a semantically valid result.

After enumerating Σ, we attach a custom runtime system to P that constrains execution

to follow only those schedules in Σ. This combination of program and runtime system is

essentially a new program, P′, that accepts all possible inputs and produces semantically

correct behavior, like the original program, but uses fewer schedules. We always run the

constrained program P′ in deployment. The result is that Σ contains the complete set

of schedules that might be encountered during deployment—this simplifies the verification

problem by reducing the number of schedules that must be considered.

It is not obvious that small sets of input-covering schedules should exist for realistic

multithreaded programs. The key word is small—an input-covering set Σ is of no help when

it is so intractably large that it cannot be enumerated in a reasonable time. Moreover, we

ideally want to find the smallest possible set of input-covering schedules to minimize the

amount of work that must be done during program testing and verification. An important

contribution of this work is defining Σ in a way that makes finding small input-covering

sets more tractable. Notably, programs that run for unbounded periods of time can require

unboundedly many schedules, making the set Σ intractably large. We avoid this problem

by partitioning execution into bounded epochs—we find input-covering schedules for each

54

1 input X

2 global Lock A,B

3
4 Thread 1 Thread 2

5 for (i in 1..5) { for (i in 1..5) {

6 if (X == 0) { if (X == 0) {

7 lock(A) lock(A)

8 unlock(A) unlock(A)

9 } else { } else {

10 lock(B) lock(B)

11 unlock(B) unlock(B)

12 } }

13 } }

for X == 0:

Thread 1: lock(A)
unlock(A)

Thread 2:
...

(alternates)

for X != 0:

Thread 1:

Thread 2:

lock(A)
unlock(A)

lock(A)
unlock(A)

lock(A)
unlock(A)

lock(A)
unlock(A)

lock(B)
unlock(B)

...
(alternates)lock(B)

unlock(B)

lock(B)
unlock(B)

lock(B)
unlock(B)

lock(B)
unlock(B)

exit

exit

exit

exit

Figure 3.1: On top is a simple multithreaded program. On the bottom is one set of
input-covering schedules for the program.

epoch in isolation, and then piece those schedules together at runtime.

Hence, our system contains three components: a schedule enumerator, a runtime system,

and a program verification strategy. Below, we summarize each component in slightly more

detail. We give complete descriptions in later sections of this chapter.

Enumerating Σ. We use an algorithm based on symbolic execution to systematically

enumerate input-covering schedules. Figure 3.1 gives a demonstration. On the bottom of

Figure 3.1 is a set of input-covering schedules, Σ, that our algorithm might produce when

given the program on the top. Each schedule in Σ is paired with an input constraint that

describes the set of inputs under which the schedule can be followed. Schedules are specified

as happens-before orderings of dynamic instances of synchronization statements.

55

Runtime System. At runtime, we constrain execution to follow schedules in Σ. We

have implemented a custom runtime system that captures the program’s input, finds a pair

(I,S) ∈ Σ such that the program’s input satisfies input constraint I, and then constrains

execution to S, ensuring that execution never deviates from S.

Verification Strategy. Finally, testing and verification become simpler under the

assumption that programs always execute using our custom runtime system. Given this

assumption, the input-covering set Σ contains the complete set of schedules that might be

followed at runtime, and as a result, verification tools can focus on schedules in Σ only,

avoiding the need to reason about a massive nondeterministic interleaving space.

For a simple example, consider deadlocks. We can determine if a schedule deadlocks

by simply looking at it—if any thread does not terminate with an exit statement, then the

schedule deadlocks. We can perform this check for each schedule in Σ independently. If

a deadlocking schedule is found, we can use the schedule’s associated input constraint to

present the programmer with a concrete input and schedule that leads to deadlock. If no

deadlocking schedules are found, we have proven that we will never encounter a deadlock

when execution is constrained by our runtime system. We have built a simple deadlock

checker that we describe in Section 3.6.3.

More generally, we can reason about each schedule in isolation by serializing the origi-

nal multithreaded program into |Σ| single-threaded programs, where each single-threaded

program Pi is constructed by serializing the original multithreaded program P according to

schedule Si ∈ Σ. This reduces the worst-case number of possible program behaviors from

O(k! · i) to O(|Σ| · i), where k is the length of execution and i is the number of possible

inputs. This approach is called schedule specialization and it has been shown to have real

benefits [96]. For example, consider the following code:

Thread 1 Thread 2

lock(L) lock(L)

if (x%2!=0) if (x%2!=0)

x++ fail()

unlock(L) unlock(L)

There is an assertion failure in T2 when it executes before T1 with an odd value for x.

This bug can be difficult to find in conventional systems because it depends on specific

56

combinations of input (x) and schedule (ordering of lock acquires). Our approach computes

just one schedule for this code snippet (say, T1 before T2), which reduces the verification

problem from a hard thread interleaving problem to a simpler (but still difficult) single-

threaded reachability problem. We refer to Wu et al. [96] and Yang et al. [98] for more

detailed arguments in favor of schedule specialization.

Assumptions. Our schedule enumeration algorithm assumes data race freedom. When

this assumption is broken, we do not compute a true input-covering set—execution may

diverge from the expected schedule after a data race. We make this assumption to simplify

our analysis in a number of important ways that will be mentioned later.

We also assume that each program has a bounded number of live threads at any given

moment. If the number of live threads is input-dependent, we expect the programmer

to supply an upper bound for that input. Bounding the number of threads allows us to

represent each thread explicitly in the schedule, as shown in Figure 3.1.

3.2 Representing Schedules

We represent each schedule as a happens-before graph over a finite execution trace, where

graph nodes are labeled by the triple (program-counter, thread-id, dynamic-counter) and

edges are induced from program order and synchronization in the usual way, such as between

release and acquire operations on the same lock. The program-counter label represents

a synchronization statement in the program, such as a call to pthread mutex lock, and

the pair (thread-id, dynamic-counter) is a Lamport timestamp [65]. Notice that ordinary

memory accesses are not included in the happens-before graph, as we assume data race

freedom.

We return to the example in Figure 3.1. On top is a simple program in which each

thread acquires a different global lock depending on the value of the input X. A conventional

nondeterministic execution might follow one of 240 possible schedules (5! when X==0, and

another 5! when X!=0). However, just two schedules are necessary to cover all inputs for

this program—one schedule for X==0, and another for X!=0. This is illustrated by the

bottom half of Figure 3.1, which shows one possible set of input-covering schedules, Σ.

(The schedules have been abbreviated for space.)

57

Importantly, for each pair (I,S) ∈ Σ, the constraint I should include only those conditions

that affect whether the schedule S can be followed. That is, constraint I should be a weakest

precondition of the schedule S. For example, suppose we modify the program in Figure 3.1

to perform a complex computation in each loop iteration. As long as this computation

does not mutate X or perform synchronization, the set of input-covering schedules shown in

Figure 3.1 will be equally correct for our modified program.

The above representation works well for programs that read their entire input up front

(e.g., from the command-line or a file) and then perform a bounded-length computation on

that input. We now extend our representation of Σ to support more realistic programs that

read dynamic inputs (Section 3.2.1) and execute for an unbounded time (Section 3.2.2).

3.2.1 Programs That Read Inputs Dynamically

For programs that read inputs dynamically, it is not possible to select a complete schedule at

the beginning of execution because some inputs are not yet available. Following Tern [34],

we support such programs by representing Σ using a schedule tree, where each edge of the

tree represents a partial happens-before schedule.

We use the schedule tree during runtime execution as follows. At the beginning of the

program, we select a pair (I,S) from the root of the tree, where I is an input constraint

that matches the input available at program entry, and where S is a partial schedule. We

follow S until the program reads more input, at which point we advance to a child node in

the schedule tree, and select a pair (I’,S’) from that node such that I’ is a constraint that

matches the input that is now available. We continue along the partial schedule S’, and

repeat this process until reaching a leaf of the schedule tree, at which point the program

will either deadlock or exit.

For simplicity and brevity, most of this chapter uses the simplifying assumption that

programs do not read inputs dynamically, since such inputs do not introduce any challenges

beyond those mentioned here. Thus, from here on, the symbol Σ will refer to a simple set

of pairs (I,S), though in practice it is a tree as described above. We will return to dynamic

inputs when describing our runtime system in Section 3.6.2.

58

3.2.2 Bounded Epochs

We support programs of unbounded length by partitioning execution into bounded epochs.

In practice, we care not only about programs of truly unbounded length, but also about

programs that execute for a “very long” time. For example, consider the following simple

program with two threads:

Thread 1 Thread 2

for (i in 1..X) { for (i in 1..Y) {

lock(L) lock(L)

unlock(L) unlock(L)

} }

If X and Y are program inputs, then any set of input-covering schedules must have a unique

schedule for each pair (X,Y). If X and Y are 32-bit integers, there are 264 possible inputs, so

any set of input-covering schedules must contain 264 total schedules. Equally problematic:

the longest of these schedules must contain 264 total synchronization operations.

Our basic idea is to define schedules one loop iteration at a time. We do this by partition-

ing the program into bounded epochs that are separated by epoch markers. We statically

analyze the program to find all loops that may perform synchronization, and then place an

epoch marker at the entry of such loops. The details of this process are explained in Section

3.3.1. In short, the above program would be annotated as follows:

Thread 1 Thread 2

for (i in 1..X) { for (i in 1..Y) {

epochMarker() epochMarker()

lock(L) lock(L)

unlock(L) unlock(L)

} }

Epoch markers act as barriers during program execution, forcing threads to execute in a

bulk-synchronous manner. For example, suppose a program’s threads begin executing from

some initial state. The threads will execute concurrently until each thread is blocked on

synchronization, has terminated, or has reached a future epoch marker (possibly the same

epoch marker the thread started at, e.g., if the thread went back around the same loop).

This quantum of execution corresponds to a single bounded epoch. Execution repeats in

this bulk-synchronous manner until all threads terminate. We include “is blocked” in the

59

end-of-epoch condition to avoid deadlock when thread T1 attempts to acquire a lock that is

held by T2 while T2 is stalled at an epoch marker. Note that, in practice, we can use loop

unrolling to reduce the frequency of epoch markers (see Section 3.5).

We now require a set of input-covering schedules for each bounded epoch. A bounded

epoch E is named by a list of pairs (pci, callstacki), where pci represents the current pro-

gram counter of thread Ti (i.e., the pc of an epoch marker) and callstacki is a list of return

addresses that represents the calling context. Our algorithm, defined in Section 3.3, enumer-

ates all reachable bounded epochs E and computes an input-covering set ΣE for each E ∈ E.

The initial bounded epoch starts at program entry, and its inputs are the program’s inputs.

All other epochs start from a point in the middle of a program’s execution. The “input” to

these epochs is, potentially, the entire state of memory, which introduces challenges for our

runtime system that we will address in Section 3.6.2. (This definition of epochs also hints

at why our techniques from Chapter 2 will become essential.)

3.2.3 Discussion

Bounded epochs make an intractable problem tractable—they limit combinatorial explosion

by bounding both the length of each computed schedule as well as the total number of

schedules—but they introduce necessary approximations, as we will demonstrate in Section

3.3.3. Further, bounded epochs do not eliminate all causes of explosion in the size of Σ.

For example, consider a thread that determines which locks to acquire using a sequence of

conditionals as in the following:

Thread 1

if (X[0]) { if (X[1]) { if (X[n]) {

lock(L[0]) lock(L[1]) ... lock(L[n])

unlock(L[0]) unlock(L[1]) unlock(L[n])

} } }

In this case, the set of locks acquired by thread T1 is uniquely determined by the value of

the bitvector X. If X has 32 bits, any set of input-covering schedules must have 232 unique

schedules. This is a source of explosion in the size of Σ that we can think of no good way to

eliminate. Since our underlying problem is undecidable, anyway, we focus our current work

on programs without such pathological behavior.

60

Challenges. Bounded epochs introduce two challenges that we will address in Section

3.5. First, how can epochs be made performant? Since epochs are runtime barriers, a

concern is imbalance of work across threads.

Second, since schedules terminate at epoch boundaries, how can verification be effec-

tive? We observe the following: any bug that can be detected by examining a single point

of execution can be detected by examining a single epoch in isolation, perhaps by using

schedule specialization on each epoch. Bugs identifiable from a single point of execution in-

clude deadlocks and assertion failures. However, as we will describe shortly, some schedules

may actually be infeasible—leading to false-positives—and some mechanism of detecting

those infeasible schedules is desirable. Other bugs can be detected only by examining se-

quences of instructions. Atomicity violations are one such example. To simplify detection

of these bugs, epochs should be long enough so that most buggy instruction sequences will

be contained within either one epoch or one short sequence of epochs.

3.3 Finding Input-Covering Schedules

Our algorithm for enumerating input-covering schedules is shown in Figures 3.2–3.4. The

input is a program P, and the output is a mapping from epochs E ∈ E to a set of input-

coverings schedules ΣE for each epoch, where E is a set of bounded epochs that may be

reachable.

We first invoke PlaceEpochMarkers to instrument the program with epoch markers. We

then invoke Search to traverse all reachable bounded epochs, starting from an initial epoch

representing the call to main(). For each epoch E, Search invokes SearchInEpoch(E),

which performs a depth-first search to enumerate a set of input-covering schedules for E

along with the set of epochs reachable from E. We describe each function below.

3.3.1 Placing Epoch Markers

The basic constraint for epoch marker placement is the following: we must ensure that

a bounded number of synchronization operations are executed before the program either

reaches another epoch marker or halts. This ensures that schedules cannot grow to an

unbounded length.

61

1 PlaceEpochMarkers(p: Program) {

2 covered = {"epochMarker","pthread_barrier_wait"}

3 workqueue = {all functions that directly perform synchronization}

4 while (!workqueue.empty()) {

5 F = workqueue.popfront()

6 foreach (loop L in F, bottom-up) {

7 if (L may perform synchronization

8 && !IsTrivialLoop(L)

9 && @ epoch marker that must-execute in L)

10 place epoch marker at L.entry

11 }

12 if (∃ epoch marker that must-execute in F)

13 covered.add(F)

14 workqueue.pushback(immediate callers of F)

15 }

16 }

Figure 3.2: Algorithm to place epoch markers

Näıvely, we could satisfy this requirement by placing epoch markers in all loops that may

perform synchronization, including loops that perform synchronization either directly (e.g.,

by calling pthread mutex lock) or indirectly (e.g., by calling a function that transitively

calls pthread mutex lock).1 However, it is important to minimize the number of epoch

markers—a large number of epoch markers can lead to a large number of epochs in E.

Our actual algorithm, PlaceEpochMarkers, is more careful. We use a bottom-up traver-

sal of the call graph starting from functions that directly perform synchronization (lines 3–5

and 14). For each visited function, we place epoch markers in all loops that perform syn-

chronization and are not pruned by one of the following three optimizations:

Ignore trivial loops. We ignore simple loops of the form:

while (!condition)

pthread_cond_wait(cvar, mutex)

This is the common idiom for using pthreads condition variables. We observe that this

loop can execute an unbounded number of synchronization operations only if the condition

1 Our current implementation does not support recursive functions that synchronize. This can be remedied
by transforming recursive functions into equivalent iterative functions, either manually, or automatically
as in [71].

62

variable cvar can be notified an unbounded number of times. So, as long as we ensure that

all loops containing notifications are covered by an epoch marker, we can avoid placing an

epoch marker in the above loop.

Similarly, we ignore loops where the only form of synchronization is a call to pthread create

or pthread join. These loops must be bounded since we assume a bounded number of

threads are live at any given moment (recall Section 3.1).

Don’t Cover the Same Loop Twice. We consider a loop covered when there exists

an epoch marker that must-execute on each iteration of the loop. For example, if loop

A contains loop B where B contains an epoch marker, and if at least one iteration of B

must-execute for each iteration of A, then we can avoid placing an epoch marker in loop A

because that is subsumed by the marker placed in loop B.

We implement this optimization by visiting the loop forest bottom-up (line 6). Then, we

ignore each loop that must-execute a previously placed epoch marker (line 9). The variable

covered contains a set of functions that must execute an epoch marker, so the check at

line 9 is implemented by checking if there must-exist a call to a function in the covered

set—notice that at line 2, we initialize covered to include the epochMarker function.

Barriers are epoch markers. Since epoch boundaries are runtime barriers, we might

as well end epochs at explicit program barriers. So, at line 2, we initialize covered to include

pthread barrier wait so the optimization at line 9 will ignore loops that must-execute a

barrier. In this way, each call to pthread barrier wait is treated as an implicit epoch

marker.

3.3.2 Enumerating Schedules for a Single Epoch

The function SearchInEpoch (Figure 3.4) uses ExecutePath to symbolically execute a single

path from a given initial state. This path completes when all threads have reached an

epoch marker, terminated, or deadlocked. ExecutePath produces a final symbolic state

along with an execution trace. ExecutePath can follow any path and may context switch

between threads arbitrarily, as long as it follows a path that is feasible given the initial

input constraint. If the path did not end in program termination or deadlock, it ended at

63

let hd = thread. slice.head in

if (!Postdominates(hd, branch)

|| WritesLiveVarBetween(branch, hd)

|| SyncOpBetween(branch, hd))

Take(branch)

Figure 3.3: How precondition slicing handles branches (our additions are in italics)

a new bounded epoch that we add to the set of reachable epochs (lines 18–19). EpochId

extracts the epoch identifier (recall from Section 3.2.2 that an epoch is named by the calling

contexts from which each of its threads begins execution).

For each path, we extract the schedule and then compute a conservative weakest precon-

dition of the schedule using precondition slicing [32], where a precondition slice is computed

from an execution trace and includes only those statements from the trace that might affect

whether the final statement was executed. The set of branching statements in a precon-

dition slice combine to form a precondition of the final statement. We have modified the

algorithm from Costa et al. [32] to instead enumerate all statements from the trace that

might affect the set of synchronization operations that would be performed. We call this a

synchronization-preserving slice.

The original algorithm in [32] works much like a standard dynamic backwards slicing

algorithm: it iterates backwards over an execution trace, uses a live set to track data

dependencies, and adds statements to the slice if they modify items in the live set. Branches

are handled as shown in Figure 3.3: a branch is included in the slice if either (a) the current

head-of-slice is control-dependent on the branch (this is the Postdominates check, which

is computed with a standard postdominators analysis), or (b) some other path through

the branch (not taken in the given trace) might modify an item in the live set (this is the

WritesLiveVarBetween check, which is computed with a static alias analysis). We refer to

the paper by Costa et al. for a more complete description of the original algorithm [32].

We make three modifications. First, we include all synchronization statements in the

slice to ensure that all control and data dependencies of synchronization are included in the

slice. Second, we construct a separate slice for each thread so that all control-flow checks

64

1 SearchInEpoch(initState: SymbolicState) {

2 reachableEpochs = {}

3 schedules = {}

4 constraints = {true}
5
6 while (!constraints.empty()) {

7 // Explore a new input constraint

8 state = initState.clone()

9 state.applyConstraint(constraints.remove())

10 (finalState, trace) = ExecutePath(state)
11
12 // Update set of schedules

13 slice = PrecondSlice(trace)
14 schedules.add(MakeConstraint(slice.branches),

15 trace.schedule)

16
17 // Update set of reachable epochs

18 if (!IsTerminatedOrDeadlocked(finalState))

19 reachableEpochs.add(EpochId(finalState))
20
21 // Accumulate unexplored input constraints

22 inputConstraint = true
23 for (b in slice.branches) {

24 c = inputConstraint ∧ ¬b
25 if (c not yet covered)

26 constraints.add(c)

27 inputConstraint = inputConstraint ∧ b

28 }

29 }

30
31 return (schedules, reachableEpochs)

32 }

Figure 3.4: Enumerating schedules within a single epoch

65

in Figure 3.3 remain single-threaded. Finally, we include a branch in the slice if some other

path through the branch (not taken in the given trace) might perform synchronization (this

is the SyncOpBetween check in Figure 3.3). The final addition ensures that a branch is

included in the slice if it may affect synchronization.

Because we assume data race freedom, our slicing algorithm does not need to account for

potentially-racing accesses when computing data dependencies. Relaxing this assumption

would involve a much more complicated implementation of WritesLiveVarBetween that

would require a conservative may-race analysis, as we describe in Section 4.2.

Shortest-Path First. It is correct for ExecutePath to follow any feasible path. How-

ever, it is optimal for ExecutePath to execute the shortest feasible path—longer paths

should be executed only as necessary to cover inputs not covered by the shortest path. De-

termining the true shortest feasible path is not decidable, so at each branch our heuristic is

to select the branch edge with the shortest static distance to a statement that either returns

from the current function or exits the current loop.

3.3.3 Exploring All Reachable Epochs

The function Search enumerates input-covering schedules for all epochs that are uncovered

by SearchInEpoch. In Search, the key is a call to MakeStateForEpoch, which computes,

for a given epoch, an initial symbolic state that will be explored by SearchInEpoch. Each

symbolic state includes a set of calling contexts (one calling context per thread), along with

a set of constraints on memory. The calling contexts are provided directly by the epoch

identifier, but the memory constraints must be computed by MakeStateForEpoch.

How does MakeStateForEpoch compute the initial memory constraints? The answer is

given in Chapter 2 of this dissertation: we use a context-specific dataflow analysis to con-

struct an initial symbolic state that over-approximates all possible concrete initial states.

Then, ExecutePath (see line 10 of Figure 3.4) performs symbolic execution using the sym-

bolic execution semantics described in Chapter 2. As each epoch identifier contains complete

calling contexts for each thread, we do not need to deal with an underspecified calling con-

texts (recall Section 2.3.2).

66

1 Search(p: Program) {

2 worklist = {MakeInitialState(p)}

3 output = {}

4
5 while (!worklist.empty()) {

6 // Explore another bounded epoch

7 state = worklist.remove()

8 (schedules, reachable) = SearchInEpoch(state)
9

10 // Found an input-covering set for this epoch

11 output.add(EpochId(state), schedules)

12
13 // Add unexplored epochs to the worklist

14 for (e in reachable)

15 if (e not yet visited)

16 worklist.add(MakeStateForEpoch(e))
17 }

18
19 return output

20 }

Figure 3.5: Exploring all reachable epochs

3.4 Avoiding Combinatorial Explosion

Avoiding combinatorial explosion is essential. This section describes two categories of opti-

mizations:

First, we define optimizations that exploit redundant schedules (Section 3.4.1). These

optimizations allow us to cover more inputs with fewer schedules. Precondition slicing can

be viewed as one such optimization, but the optimizations in Section 3.4.1 go further by

observing that schedules that are not obviously the same can sometimes be treated as if

they are.

Second, we deal with unbounded loops that contain synchronization using bounded

epochs, but what about unbounded loops that do not contain synchronization? We are

hesitant to place epoch markers in every loop since a large number of epoch markers can

lead to a large number of epochs. Instead, we deal with unbounded synchronization-free

loops using a technique we call input abstraction (Section 3.4.2).

67

3.4.1 Pruning Redundant Schedules

3.4.1.1 Ignoring Prefix Schedules

Programs are often implemented using a defensive coding style: they frequently check for

errors (e.g., via assertions or by checking return codes from system calls) and terminate the

program when a failure is detected. Since we include “thread exit” events in our schedules,

it appears that enumerating a complete set of input-covering schedules requires enumerating

all ways in which the program can exit. In the limit, this requires enumerating all feasible

assertion failures, which is a very hard problem on its own.

We avoid this problem using the concept of prefix schedules. Suppose a thread executes

the following code fragment:

lock(A)

if (X == 0) { abort() }

lock(B)

Concretely, there are two feasible schedules: (1) the thread locks A and then aborts the

process, and (2) the thread locks A and then locks B. We consider the first schedule a

prefix of the second schedule: at runtime, execution can always follow the second schedule,

and then stop early if the abort statement is reached. To support prefix schedules, we

modify ExecutePath and PrecondSlice to ignore branches that exit the process before

performing any synchronization. For the above fragment, our optimized algorithm outputs

just the second schedule, paired with the input-constraint true. We arrive at this output by

ignoring the true branch of if(X==0). Note, however, that we would require two schedules

if there was a call to lock() just before the abort().

3.4.1.2 Ignoring Library Synchronization

Users of our tool can opt to ignore internal synchronization used by library functions such

as printf to ensure consistency of internal library data structures. With this option, our

algorithm produces schedules that do not include internal library synchronization—such

synchronization will be performed nondeterministically at runtime. Our rationale is that

developers are more concerned about testing their own code than library internals, so it is

68

sensible to ignore library internals and construct input-covering schedules for application

code only. This option works especially well with the prefix schedules optimization (Section

3.4.1.1), as programs often call printf just before aborting the program.

3.4.1.3 Symbolic Thread Ids

Redundant schedules can also arise across epoch boundaries. For example, consider a pro-

gram in which N threads each execute the following code:

1 while(X) { epochMarker() ... }

2 ...

3 epochMarker()

If X evaluates differently for each thread, then näıvely, we need one epoch in which all

threads start at the epoch marker at line 1, another in which T1 starts at line 3 while all

other threads start at line 1, another in which just T2 starts at line 3, another in which just

T1 and T2 start at line 3, and so on. Hence, since there are N threads and each thread can

start from one of two statements containing epoch markers (line 1 or line 3), then in total,

there are 2N epochs.

The above combinatorial explosion arises if we assign each thread a concrete thread id

during symbolic execution. We can avoid this problem by instead assigning each thread a

symbolic thread id during symbolic execution. Now, we need to consider just N+1 total

epochs: one epoch in which all threads start at line 1, another epoch in which one thread

starts line 3, another in which two threads start at line 3, and so on. The idea is that the

specific assignment of thread ids to calling contexts does not matter, so the EpochId function

should return a multiset of calling contexts, rather than an ordered list. This optimization

requires some cooperation with our runtime system. Specifically, at each runtime epoch

boundary, we must dynamically map each symbolic thread id to a concrete thread id—we

defer details to Section 3.6.2.

More generally, if we extend the above example to use k epoch markers, then we explore

kN epochs using concrete thread ids, and just
((

k
N

))
epochs using symbolic thread ids, where((

k
N

))
is k-choose-N with repetitions. However, if we further modify the above example so

that each thread Ti executes a unique function fi, where each fi includes k epoch markers,

69

then we must explore kN epochs because there are that many unique combinations of calling

contexts—this sort of combinatorial explosion is fundamental to our definition of epochs, so

it cannot be avoided.

3.4.1.4 Redundancy from Code Duplication

We run our schedule enumeration algorithm after a compiler optimization pass, as this has

been shown to speed-up symbolic execution [27]. However, optimizations can sometimes in-

troduce schedule redundancies by duplicating synchronization. One example is the following

transformation, which is called jump threading in LLVM:

if (X == 0) { f() } if (X == 0)

lock() => { f(); lock(); g() }

if (X == 0) { g() } else { lock() }

Our algorithm starts by executing one path through the optimized code (on the right).

Suppose we execute the false branch. Precondition slicing will notice the lock() call in the

true branch and direct us down that path as well, and the end result is an input-covering

set with two schedules, one for X==0 and X!=0. However, both of these schedules are the

same schedule—the choice of schedule has no real dependency on input X.

Our current approach is to disable all transformations that might duplicate code, but

unfortunately, this is not always possible. Notably, we cannot disable the following loop

transformation because it is fundamental to the way many compilers reason about loops:

while (foo()) { if (foo()) {

... => do { ... } while (foo())

} }

If foo() performs synchronization or contains an epoch marker, duplication of the call to

foo() can lead to redundant schedules that we cannot avoid.

3.4.1.5 Conservative Happens-Before Schedules

Consider the following example, where it is known that B!=C but it is not known whether

A==B or A==C. For this example, assume ExecutePath executes threads T2 and T3 before T1:

70

Thread 1 Thread 2 Thread 3

lock(A) unlock(B) unlock(C)

The precise happens-before schedule depends on whether lock A aliases locks B and C, and in

fact, a complete set of input-covering schedules needs at least three happens-before sched-

ules: one for A==B, one for A==C, and one for A!=B && A!=C.

We can cover the above example with just one schedule by constructing an approximate

happens-before schedule that draws happens-before edges to lock(A) from both unlock(B)

and unlock(C). This results in fewer schedules in Σ at the cost of over-synchronization at

runtime. Interestingly, the authors of Tern [34] observed that some programs perform well

even when all synchronization is serialized, suggesting that this optimization’s cost can be

acceptable.

3.4.2 Abstracting Input Constraints

Unbounded synchronization-free loops can cause an explosion in the number of paths ex-

plored by SearchInEpoch. The following code fragment is a good example:

TreeNode* T = TreeBinarySearch(x)

if (T) { lock(L) ... }

The above code searches for a value in a binary tree using the standard recursive algorithm,

and then performs synchronization if the value is found. Our problem is that symbolic exe-

cution will eagerly enumerate all concrete trees for which the expression T!=NULL evaluates

to true. Specifically, it attempts to enumerate the following infinite set of input constraints:

root->x == x

root->x > x && root->left && root->left->x == x

root->x > x && root->left && root->left->x > x && root->left->left && ...

...

Our approach is a form of abstraction: instead of executing TreeSearch symbolically,

we treat TreeSearch as an uninterpreted function and add TreeSearch(x)!=NULL to the

path constraint. There are two subtleties in this approach:

What Do We Abstract? We abstract all synchronization-free loops and recursive

functions that produce live-out values that might affect synchronization. Notice that we

71

do not abstract loops that contain synchronization, since those loops are already bounded

by epoch markers. We start by assuming that no loops or recursive functions need to be

abstracted. Then, during each call to PrecondSlice (line 13 of Figure 3.4), we check if any

value added to the slice’s live set was defined in a synchronization-free loop L or recursive

function R. If such an L or R is found, it must be abstracted.

How Do We Construct Abstractions? We construct a symbolic function FL(x) =

y, where x is the set of live-ins for loop L and y is the set of live-outs, where x and y can

potentially be constructed with some form of summarization, such as the summarization

algorithms proposed by Godefroid et al. [47, 51] (see Section 4.1.1 for a discussion). However,

this is difficult in general since x and y can each include unboundedly many heap objects.

Due to this difficulty, we currently construct each FL manually. This process is interactive:

we first run our algorithm from Section 3.3; if our algorithm finds a loop L that must be

abstracted, it halts and reports L; we then produce a hand-written abstraction for L and

re-run our algorithm.

During symbolic execution, we execute the abstraction FL in place of the actual loop L.

Each FL should model the terminating behaviors of L. We require each FL to terminate

to ensure that our algorithm terminates as well. Of course, the actual loop L may not

terminate, and we preserve that behavior—when the program is executed with our runtime

system, we execute the actual loop L, not FL.

Each FL is allowed to be an over-approximation of loop L’s terminating behaviors.

This eases construction of FL but adds potential to explore infeasible paths. Producing

each FL is usually not hard in practice, as the loops to abstract are often hidden behind

natural abstraction boundaries. Continuing the above example, suppose the binary tree

interface includes TreeAdd and TreeDelete. These appear difficult to abstract since they

can mutate unboundedly many heap objects (e.g., to rebalance the tree), but as long as all

modifications and traversals are performed behind the Tree* interface, we can conservatively

model TreeAdd and TreeDelete by simply generating a fresh symbolic value that represents

the new root of the tree.

Although the above explanation is phrased in terms of loops, recursive functions can be

abstracted in the same way.

72

3.5 Forming Efficient Bounded Epochs

So far we have assumed that in a given epoch, no thread executes beyond its next epoch

marker. Why might this be inefficient? First, runtime performance is optimal when threads

execute a balanced amount of work per epoch, but näıvely stopping at the next epoch marker

can lead to imbalance. Second, epochs should be long enough so that ordering-dependent

bugs, such as atomicity violations, are usually contained within a single epoch.

It is more efficient to allow each thread to bypass a finite number of epoch markers

within each bounded epoch. Since epoch markers are placed in loops, we consider this is a

form of loop unrolling. This optimization coordinates with our runtime system as follows:

for each epoch marker bypassed by ExecutePath, we add a special node to the current

happens-before schedule so that our runtime system will bypass that marker at runtime.

We use the following heuristics to bypass epoch markers:

Minimum Epoch Length. A large body of prior work has made the empirical obser-

vation that most ordering-dependent bugs occur over a short execution window containing

at most W instructions per thread. For example, the authors of AtomAid [75] estimate

that W is “thousands of instructions” in the worst case, but “hundreds” in the common

case. The authors of ColorSafe [74] estimate W = 3000. Other authors [25, 82] support

this observation but do not give concrete estimates for W , although Burckhardt et al. [25]

observe that many “hard” atomicity violations have the form if(x) compute(x), where W

spans the short window between the condition and the computation. These observations

from prior work suggest the following simple heuristic: each thread should execute a mini-

mum of W instructions per epoch—this ensures that epochs are large enough so that most

concurrency bugs fall within either a single epoch, or two adjacent epochs.

Balanced Epoch Lengths. Each thread should execute approximately the same num-

ber of instructions per epoch. For example, suppose we are about to end an epoch with T1

and T2 stalled at epoch markers. If len(T1) > len(T2) + k, where len(Ti) is the number of

instructions executed by Ti in the current epoch and k is a heuristically-chosen constant,

then we continue executing T2 up to its next epoch marker.

73

3.6 Implementation

3.6.1 Symbolic Execution Engine

We implemented the above algorithms in a version of the Cloud9 [24] symbolic execution

engine extended with the techniques described in Chapter 2. Cloud9 executes multithreaded

C programs that use pthreads and compile to LLVM bitcode. To support unmodified C

programs, Cloud9 includes hand-written symbolic models for the Linux system call layer and

the pthreads library, and it models other C library functions by linking with an actual libc

implementation (uClibc). We have instrumented Cloud9’s pthreads library to dynamically

capture a happens-before schedule during symbolic execution. We attempted to model the

pthreads specification faithfully; for example, our model includes various error paths for

pthreads functions, in addition to the common-case success paths.

Limitations. Our implementation has a few limitations that we consider minor but

list for completeness: async signals, C++ libraries, and floating point arithmetic. First, we

do not support asynchronous delivery of POSIX signals. This has not been a problem so

far. Should it become an issue, we can support asynchronous delivery by buffering signals

until epoch boundaries, similarly to OS-level systems for deterministic execution [14] and

record-and-replay [63]—such a buffering scheme would eliminate the need to reason about

a combinatorial explosion of possible signal delivery points.

Second, Cloud9 ships with a standard C library (uClibc [1]) but not a standard C++

library, and this limits our ability to run C++ programs. Third, our underlying theo-

rem prover, STP [46], does not support floating-point arithmetic. Cloud9 makes progress

through floating point arithmetic by concretizing values, which means the resulting path

constraints will be incomplete for paths that branch on the result of a floating-point com-

putation. This is often not an issue for our algorithm in practice, since many programs

compute floating-point results but do not using floating-point values to decide when to syn-

chronize. However, this does prevent us from analyzing some programs, as we discuss later

in our evaluation (Section 3.8).

Challenges. The effectiveness of precondition slicing is heavily dependent on the pres-

ence of a good whole-program alias analysis. The critical operation is the WritesLiveVar-

74

Between check (Figure 3.3)—alias analysis imprecision can lead to the incorrect belief that

a live variable was written, which results in an overly strong schedule precondition, which

results in the exploration of redundant schedules.

Our implementation uses DSA [67], which, in whole-program mode, degrades to a field-

sensitive Steensgaard (equality-based) analysis. Our experience suggests that an inclusion-

based analysis is vital. The problem intensifies because we link with an entire C library—all

pointer variables passed to library functions are effectively merged in the points-to graph.

We unfortunately could not find a publicly available alias analysis for LLVM that is more

powerful, so we hacked around this problem by dividing pointer variables into two classes:

application code and library code. Variables in the later class are assumed to alias anything,

while variables in the former class are analyzed with DSA.

3.6.2 Compiler Instrumentation and Runtime System

Our symbolic execution engine outputs a database of input-covering schedules that our

runtime system follows faithfully. Recall from Section 3.3 that this database maps each

epoch E ∈ E to an input-covering set ΣE for E.

At a high-level, our runtime system is mostly straightforward. The global variable

currSchedule contains the happens-before schedule for the currently executing epoch. At

the beginning of the program, we compare the current inputs with the database of input

constraints to select the initial schedule. Similarly, epoch markers are turned into barriers,

and when all threads reach an epoch barrier, a single thread is selected (arbitrarily) to

update currSchedule for the next epoch. Then, at each synchronization statement, the

runtime system inspects the calling thread’s current happens-before node, waits until all

incoming happens-before dependencies are satisfied, and then advances to the next node.

A more detailed view is given in Figure 3.6. We map each epoch E to a schedule selector

function FE for each epoch. Schedules contain a list of happens-before nodes for each

thread. There are three technical challenges: At each epoch barrier, how do we efficiently

determine the next epoch id E? How do schedule selector functions check input constraints?

And, how do we deal with dynamic inputs?

75

Global state
struct ScheduleFragment {

nextSelectorId: int

schedule: map (threadId, list of H-B-Node)

}

selectors: map(int, (void)->ScheduleFragment*)

currCallstacks: map(threadId, int)

currSchedule: list of ScheduleFragment*

Schedule selection at epochs

EpochBarrier() {

isLast = barrier.arrive()

if (isLast) { // last thread?

epochId = hash(sort(currCallstacks.values))

currSchedule.clear()

currSchedule.append(selectors[epochId]())

barrier.release()

} else {

barrier.wait()

}

}

Figure 3.6: Key components of our runtime system.

Determining the Next Epoch. Each epoch id E is defined by a multiset of per-thread

call stacks (recall Section 3.4.1.3). We instrument the program to record each thread’s call

stack in a globally-visible location. Then, the last thread to arrive at an epoch barrier can

compute the next epoch id E by sorting this list of call stacks (note that a multiset can be

represented by a sorted list). The sorting operation is made efficient by representing call

stacks using hash values as in PCC [22]. The algorithm used by PCC has only probabilistic

guarantees that each calling context is given a unique hash value, but since we know the

complete set of epoch ids, we can ensure a priori that a unique hash value is computed for

each epoch.

Schedule Selector Functions. When invoked, the selector FE looks for a pair (I,S)

∈ ΣE such that constraint I matches the current input, then it return S. This is implemented

by compiling ΣE into a decision tree. Our current implementation selects each schedule as

a deterministic function of the given input, though this could easily be changed to select

76

schedules nondeterministically when multiple options are available.

Recall that an epoch’s input can include the state of memory. The difficulty is that

the choice of schedule can depend on thread-local variables, where thread-local variables

include stack-allocated variables as well as statically-allocated variables declared with gcc’s

thread attribute. Since FE is executed by one thread only, how does it reason about

state local to other threads? Our solution is to instrument the program to maintain a

globally-visible shadow copy of each thread-local variable that is used in input constraints.

In practice this is a very small percentage of all variables, as we demonstrate in Section

3.8.2. Note that we must also make shadow copies of variables that are needed to reach

heap objects used in input constraints. For example, if a constraint depends on the value of

x->next->data, where x is a thread-local variable, then we must maintain a shadow copy

of x to ensure that the data field is globally reachable.

Supporting Dynamic Inputs. As hinted in Section 3.2.1, we represent schedules as

a tree of schedule fragments. At the beginning of an epoch, each thread follows the initial

fragment, represented in Figure 3.6 as currSchedule[0]. Each fragment f ends in one of

three ways: at program exit, at an epoch boundary, or at a new input read by thread T .

In the latter case, thread T invokes the selector function named by f->nextSelectorId,

then appends the selected fragment to currSchedule. As other threads arrive at the end of

fragment f , they must wait for T to select the next fragment before proceeding. We ignore

inputs that are pruned by precondition slicing (Section 3.3.2), so updates to currSchedule

occur only after the arrival of inputs that can affect synchronization.

Dynamic inputs introduce a further challenge, best illustrated by the following sequence

of events:

1 EpochBarrier()

2 z += 5

3 ReadInput(&x)

4 if (x == z && y == w) { lock() }

The selector function invoked at line 3 will evaluate the term x == z0+5, where z0 is the

value of z at the beginning of the epoch. This value has been lost due to the update at line

2, so we need to snapshot z at line 1. Note, however, that we do not necessarily need to

77

snapshot y or w—the condition y==w does not depend on input x, so it can be lifted into

the epoch’s selector function that is invoked at line 1.

Chances for Further Optimization. Runtime system optimization has not been

our focus. We see at least three potential improvements: (1) we can apply a transitive

reduction [97] on each happens-before schedule to reduce cross-thread synchronization; (2)

for each term evaluated by selector function FE , we can memoize the value of that term as

computed by FE to avoid recomputation during actual program execution; and (3) we can

parallelize FE to avoid serializing FE at each epoch boundary (this last proposed improve-

ment is perhaps the most complex).

3.6.3 Verifying Deadlock Freedom

We already check for deadlocks during our search for input-covering schedules (see Figure

3.4, line 18). So, in a sense, we get deadlock checking for “free.” Our algorithm either out-

puts a set of non-deadlocking schedules, in which case we are guaranteed to never deadlock

at runtime, or its output will include at least one pair (I,S) where schedule S deadlocks, in

which case we may deadlock at runtime. In the later case, we cannot prove that deadlock

will actually occur at runtime because input constraint I may be infeasible (recall Section

3.3.3). In this way, our deadlock checker is imperfect. Currently, we manually inspect

deadlocking schedules to determine if they are actually feasible, but we hope to use more

sophisticated strategies for removing infeasible paths in future work to make these manual

checks unnecessary.

3.7 Discussion of Guarantees

Given a program P, our schedule enumeration algorithm outputs a set of bounded epochs

E along with a set of input-covering schedules ΣE for each epoch E ∈ E. Our schedule

enumeration algorithm and runtime system combine to provide the following guarantees,

which we state without proof:

Property 1 (Completeness of ΣE0). Suppose execution begins from program entry with

initial memory state M0, where M0 contains nothing except the program’s inputs. If ΣE0

78

is the set of input-covering schedules for E0, the epoch at program entry, then for all valid

M0, there must exist a pair (I, S) ∈ ΣE0 such that M0 satisfies constraint I.

Property 2 (Soundness and Completeness of E and all ΣE). Suppose execution begins from

a program context that corresponds to some epoch E ∈ E, and suppose the initial memory

state is M .

Then, for all pairs (I, S) ∈ ΣE where M satisfies constraint I, if our runtime system

forces execution to follow S, then either: (a) execution will encounter a data race; or (b)

execution will follow schedule S without deviation. In case (b), schedule S must terminate

at program exit, at a deadlock, or at some subsequent epoch E′ ∈ E. If schedule S terminates

at epoch E′, then execution must arrive at E′ with a memory state M ′ such that there exists

a pair (I ′, S′) ∈ ΣE′ where M ′ satisfies constraint I ′.

Properties 1 and 2 establish that our system is both sound and complete for race free

programs. By sound, we mean that for any epoch E ∈ E and any pair (I, S) ∈ ΣE , it must be

possible for execution to follow schedule S when given an appropriate initial memory state.

By complete, we mean that, for all possible program inputs, execution will proceed through

a (possibly nonterminating) sequence of epochs E0, E1, E2, · · · , where each Ei exists in E,

and as execution arrives at each epoch Ei, there must exist a schedule Si ∈ ΣEi such that

execution can be constrained to Si within that epoch. Soundness is established by Property

2, and completeness is established by Property 1 combined with inductive application of

Property 2.

The important consequence of Properties 1 and 2 is that verification tools can reason

soundly and completely even when they consider only those schedules contained in Σ. Of

course, these properties hold only when the program’s execution is constrained by our

runtime system—when execution does not use our runtime system, Σ under-approximates

the set of schedules that might be followed and our verification guarantees are voided. This

is why we intend to use our runtime system in all executions of a given program.

Additionally, our system is subject to two categories of limitations:

Fundamental Assumptions. As stated in Section 3.1, our approach fundamentally

assumes, first, that programs are data race free, and second, that programs have a bounded

79

number of live threads at any moment. When the first assumption is broken, our schedule

enumeration algorithm is unsound and execution can diverge from the expected schedule at

runtime. When the second assumption is broken, our schedule enumeration algorithm will

not terminate.

Limitations of our Implementation. As stated in Section 3.6.1, our implementation

has limited support for async signals, C++ libraries, and floating point arithmetic. As stated

in footnote 1 in Section 3.3.1, our implementation does not support recursive functions that

synchronize. Properties 1 and 2 do not hold for programs that exceed these limitations.

However, these limitations are specific to our implementation and are not fundamental to

our approach.

Full proofs of Properties 1 and 2 are beyond the scope of this dissertation. Full proofs

would require a model of execution, a model of the runtime constraint system, and either

assuming correct or proving correct our slicing algorithm (based on precondition slicing,

which was described without a formal proof of correctness [32]), our underlying symbolic

execution engine [24], and our underlying SMT solver [46].

3.8 Evaluation

Our evaluation is organized in three parts. We start with a set of case studies (Section

3.8.1) that evaluate the effectiveness of our schedule enumeration algorithm on a range of

applications. Our case studies include selections from the Splash2 and Parsec benchmark

suites, as well as pfscan, a parallel implementation of grep. Along with each case study,

we include a characterization of the effectiveness of our optimizations—this helps character-

ize the program analysis challenges inherent to enumerating input-covering schedules. We

then evaluate our runtime system (Section 3.8.2). We end by evaluating how well our sym-

bolic execution techniques described in the previous chapter aid the schedule enumeration

algorithm described in this chapter (Section 3.8.3).

We ran all experiments on a 4-core 2.4 GHz Intel Xeon E5462 with 10GB RAM. Each

core had 2-way hyper-threading enabled, resulting in a total of 8 hardware contexts. For each

application, we marked all command-line parameters as input, with the exception of each

application’s “num threads” parameter, which we fix to values such as 2, 4, and 8 to reveal

80

how our analysis and our runtime system scale with increasing thread counts. Capturing

command-line inputs required a minor code change of about 10 lines per application. Other

inputs derive from values returned by system calls, which include values read from files—

these inputs are captured automatically. Two applications required additional minor code

changes that we describe later (see Sections 3.8.1.2 and 3.8.1.4).

We attempted to analyze most programs that were analyzed by the related schedule

memoization system Peregrine [35], but occasionally ran into limitations of our imple-

mentation (recall Section 3.6.1 and footnote 1). Specifically, we could not run: barnes and

ffm from Splash2, which perform synchronization in recursive functions; pbzip, which

uses C++ libraries; and ocean, fluidanimate, and streamcluster, which use floating-

point arithmetic to control synchronization.

3.8.1 Case Studies

For each case study, we address the following major questions: Is a set of input-covering

schedules enumerable in a reasonable amount of time? And if so, how large is E, how large

is each ΣE , and how large is the total set of schedules (Σ)? We also attempt to characterize

how many of those schedules are infeasible.

Overall results for our fully optimized algorithm are summarized in Tables 3.1 and 3.2.2

In Table 3.1, Column 2 gives the maximum number of threads live at any given instant.

This is a function of the application’s “num threads” parameter, which we fix to 2, 4, and 8

for all benchmarks except pfscan, where we fix this parameter to 1, 2, and 3. Columns 3–9

summarize our algorithm’s final output: Column 3 is the number of reachable epochs (|E|);

Columns 4–6 give statistics that summarize the number of schedules per epoch (|ΣE |); and

Columns 7–9 give statistics that summarize schedules across all epochs (|Σ|), including the

total number of infeasible schedules and deadlocking schedules. For all but one program,

we proved that Σ was deadlock-free. We determined the number of infeasible schedules

through manual inspection of Σ. For pfscan, the schedules were too numerous for manual

inspection, so we give a lower bound in Table 3.1.

2 These tables contain data updated relative to our paper from OOPSLA 2013 [11], reflecting bug fixes
that have been made since that original publication.

81

|ΣE | Summary of Schedules (|Σ|)
App #thr |E| min max avg Total Infeasible Deadlocked

blackscholes 3,5,9 1 1 1 1 1 0 0
swaptions 3,5,9 1 1 1 1 1 0 0

fft 2,4,8 1 2 2 2 2 0 0
lu∗ 2,4,8 2 1 2 1.5 3 0 0

radix∗ 2 3 1 2 1.1 6 1 1
radix∗ 4 3 1 4 1.8 9 4 4
radix∗ 8 3 1 16 3.2 22 17 17

pfscan∗† 2 15 2 127 25.1 455 49+unk. 49
pfscan∗† 3 47 2 1209 110.7 7297 411+unk. 411
pfscan∗† 4 50+ 2 3792 404.8 26000+ 6000+unk. 6000+

Table 3.1: Evaluation of our input-covering schedules enumeration algorithm. This is
the fully-optimized algorithm. Applications marked with ∗ use a “join on all threads”
optimization (see Section 3.8.1.2), and applications marked with † use manually-constructed
input abstractions (recall Section 3.4.2, and see further discussion in Section 3.8.1.4).

Analysis
App #thr Runtime

blackscholes 3,5,9 5 s, 6 s, 14 s
swaptions 3,5,9 4 s, 9 s, 65 s

fft 2,4,8 7 s, 306 s, 90 m
lu 2,4,8 6 s, 7 s, 11 s

radix 2 9 s
radix 4 10 s
radix 8 53 s

pfscan 2 24 s
pfscan 3 54 m
pfscan 4 10+ h (dnf)

Table 3.2: Runtime of our input-covering schedules enumeration algorithm. This is the
fully-optimized algorithm. We set a time limit of 10 hours, and the one application that
could not be analyzed within this time limit is marked did-not-finish (dnf).

82

epoch markers
App #thr w/ §3.3.1 no §3.3.1

blackscholes 9 0 2
lu 8 0 2
radix 8 2 4
pfscan 3 3 7

Table 3.3: Cost of disabling epoch marker optimizations.

no §3.4.1.1 no §3.4.1.3 no §3.4.1.4
App #thr |E| |Σ| time |E| |Σ| time |E| |Σ| time

blackscholes 9 1 3 6 s — — — — — —
lu 8 1+ ∞ dnf 5 9 22 s 4 7 18 s
radix 8 3 86 53 s 42 622 619 s — — —
pfscan 3 30 3356 350 s 50 4772 405 s — — —

Table 3.4: Cost of disabling other optimizations. Compare bold values in columns labeled
|E| and |Σ| with Columns 3 and 7 in Table 3.1, respectively. Futher, compare bold values
in “time” columns with values in Table 3.2. We mark columns with a dash (—) when the
corresponding optimization has no effect.

Table 3.2 evaluates the runtime of our fully-optimized schedule enumeration algorithm.

Column 2 gives the maximum number of threads live at any given instant, as in Table 3.1,

and Column 3 gives our algorithm’s runtime in seconds (s), minutes (m), hours (h), or dnf

when our algorithm did not finish within 10 hours. Our algorithm completed in a reasonable

period of time for most applications, with the the exception being pfscan, which we discuss

in Section 3.8.1.4.

Optimizations. Tables 3.3 and 3.4 characterize the benefits of our optimizations over

a representative subset of applications. We are particularly interested in how our optimiza-

tions affect the size of our algorithm’s output (|E| and |Σ|) and our algorithm’s runtime.

In Table 3.3, Columns 3 and 4 give the number of epoch markers added by PlaceEpochMarkers,

both with and without the optimizations described in Section 3.3.1. Our optimizations re-

duce the number of epoch markers, often by 50%. Fewer epoch markers means fewer epochs,

which means less combinatorial explosion and a more scalable algorithm. Hence, we consider

these optimizations essential.

In Table 3.4, Columns 3–11 show the results of running our schedule enumeration algo-

83

rithm with specific optimizations disabled. Optimizations are named by the section in which

they are described. In each group of columns, |E| is the number of enumerated epochs (as

in Column 3 of Table 3.1), |Σ| is the total number of enumerated schedules (summed across

all epochs, as in Column 7 of Table 3.1), and time is the analysis runtime (as in Table 3.2).

Most of our optimizations are essential. For example, without the prefix schedules optimiza-

tion enabled (Section 3.4.1.1), our algorithm explores an essentially unbounded number of

failure paths in lu and never escapes the first epoch. (The number of failure paths could

be bounded by applying input abstraction to two loops in lu, but the key point is that lu

does not require input abstraction when the prefix schedules optimization is enabled.)

Further, after disabling the symbolic thread ids optimization (Section 3.4.1.3), we ob-

served a significant increase in |Σ|, by as much as two orders of magnitude. We consider

this optimization essential, as well. The optimization to avoid code duplication (Section

3.4.1.4) improved lu only. However, as described later, in Section 3.8.1.4, our algorithm

enumerates redundant schedules in pfscan as a result of a form of code duplication that

our code-duplication optimization could not eliminate.

We unfortunately could not meaningfully evaluate the effectiveness of our optimiza-

tion to ignore library synchronization (Section 3.4.1.2). The root of the problem is that

our points-to analysis treats library code very conservatively (recall Section 3.6.1): as a

result, preconditioning is extremely imprecise when operating on library code, leading to

an explosion in redundant schedules. We consider this an artifact of our implementation,

and specifically an artifact of our choice of points-to analysis, rather than a fundamental

property of our system, and we believe that the optimization from Section 3.4.1.2 could be

meaningfully disabled if a stronger points-to analysis was available.

3.8.1.1 The Trivial Case: Fork-Join Parallelism

blackscholes (from Parsec) uses fork-join parallelism with no other synchronization. It

is so simple that we consider it the “hello world” of synchronization analysis. swaptions

(also from Parsec) is equally simple. Our algorithm easily infers that these applications

need exactly one schedule for a given thread count.

84

3.8.1.2 Case Study: Barrier-Synchronized Parallelism

fft (from Splash2) uses fork-join parallelism with a static number of barriers. Our algo-

rithm infers that fft needs just two schedules for a given thread count. The high analysis

runtime is due to the presence of long sequences of conditionals that use division and modulo

arithmetic in a way that our SMT solver (STP) finds challenging.

lu (from Splash2) synchronizes using a dynamic number of barriers. Our algorithm

divides lu’s schedules into two epochs: one that begins at program entry (E1), and one that

begins within lu’s main parallel loop (E2). We need just one schedule for epoch E1 and two

schedules for epoch E2. In epoch E2, one schedule traverses one lock-step iteration of the

parallel loop, and the other exits the program.

lu introduces two program analysis challenges. First, we must infer that all threads

execute the main parallel loop in lockstep. Failure to infer this fact results in infeasible

schedules, as we will demonstrate when evaluating our symbolic execution techniques in

Section 3.8.3.

Second, lu makes calls of the form pthread join(t[i]) that are deceptively difficult to

analyze. We are unable to uniquely identify each t[i], so we must analyze three paths per

call: one in which t[i] is an invalid thread id, another in which t[i] refers to a thread that

has already exited, and another in which t[i] refers to a thread that has not yet exited. In

total, to join with N threads, we analyze 3N paths, even though just one of those paths is

feasible. We avoid this difficulty by replacing calls to pthread join with a high-level “join

on all threads” operation that is easy to analyze. Each application marked with an asterisk

in Table 3.1 was modified to use this operation in place of pthread join.

3.8.1.3 Case Study: Barriers and Semaphores

radix (from Splash2) is barrier-synchronized like lu, but with the addition of two parallel

phases that use semaphores to coordinate a tree-based reduction. These semaphores present

the major difficulty—as shown in Table 3.1, we explore a number of infeasible schedules.

The following example demonstrates the problem:

1 Thread 1 Thread 2

85

2 for (...) { for (...) {

3 epochMarker() epochMarker()

4 sem_wait(&s) sem_post(&s)

5

MakeStateForEpoch (Section 3.3.3) cannot prove that s.count==0 at the beginning of the

epoch. (In the actual code, this is difficult because each &s is selected from an array.) As

a result, we explore an infeasible schedule in which T1 does not block at line 4 because it

assumes that s.count>0. This schedule incorrectly synchronizes T1 and T2, which can lead

to the (incorrect) conclusion that the program contains data races.

It is actually quite easy to prove that the above schedule is infeasible. Our insight is to

exploit Σ, which pairs each schedule with an input constraint I. For the above schedule, I

is s.count>0. Let E be the epoch containing that schedule. Our job is to show that each

schedule Si ∈ Σ that terminates at epoch E always terminates with ¬I resolving to true.

This is easy to show using rely-guarantee reasoning: we add ¬(s.count>0) as an assertion

to the end of each Si; we add ¬(s.count>0) as an assumption to the beginning of epoch E;

and then we symbolically execute each epoch in E to ensure that the assertions are always

satisfied. Note that the assumption is necessary because epoch E contains a schedule that

“loops back” to itself.

It would be possible to automatically discharge the necessary verification conditions. We

have not implemented this feature, but we have applied this approach to radix by manually

annotating the program with assumption and assertion annotations to drive the verification

procedure. We verified that the 17 schedules listed as “infeasible” in Table 3.1 are truly

infeasible.

Why were we able to prove infeasibility so easily both in the above example and for

radix’s 17 infeasible schedules? The reason is that each input constraint I happens to be a

function of synchronization state only. If some I was instead a function of arbitrary program

state, we would need to consider all paths that terminate at epoch E, rather than just all

schedules. The interesting novelty in our proof is that, since we had a small number of

schedules to consider, we could reason about each schedule in isolation by reusing sequential

rely-guarantee reasoning techniques.

86

3.8.1.4 Case Study: Task Queues and Locks

pfscan uses task parallelism with one producer thread and multiple worker threads, and

it uses locks to guard shared data. The queue is implemented with locks and condition

variables. pfscan has the following high-level structure:

1 Producer Consumers

2 for (f in files) while (dequeue(&f))

3 enqueue(f) scanfile(f)

scanfile implements string matching. We had to abstract one loop (in scanfile) using

the technique described in Section 3.4.2. This loop computes the next matching substring:

the loop’s live-ins include a string buffer and a current position, and the loop’s live-out is

the position of the next match. With 4 threads, were unable to enumerate a complete set

of input-covering schedules within a ten hour time limit.

Interestingly, the prefix schedules optimization (no Section 3.4.1.1 in Table 3.4) does

not help pfscan much at all. The reason is that pfscan acquires a lock on almost every

failure path to perform logging. In fact, the majority of schedules enumerated for pfscan

are needed to handle these failure paths: with 4 threads, at least one thread executed a

failure path on about two-thirds of all enumerated schedules. Since all failure paths acquire

the same lock, they could conceivably be merged into one schedule—this is an interesting

direction for future research.

For pfscan, our algorithm produces a set Σ that includes deadlocking schedules. These

deadlocks are all infeasible. The deadlocks include two scenarios: (1) the producer believes

the queue is full while the consumers have already exited, and (2) the consumers believe

the producer has exited without first setting the “done” flag. We enumerate these false

deadlocks because our implementation of MakeStateForEpoch is not powerful enough to

produce constraints that precisely relate the queue’s capacity, count, and done fields.

We also explore redundant schedules that arise from code duplication. Recall from

Section 3.4.1.4 that compilers transform while loops to an if-then-do-while form. This

transformation duplicates the dequeue call made by each consumer thread in line 2 of the

above code snippet. If this transformation could be disabled, we would reduce the number

of enumerated schedules by about half.

87

#var DTree Size Norm. Exec Time
App IPE instrum max avg 2thr 4thr 8thr

blackscholes all 0 0 0 1.0 1.0 1.0
fft all 0 1 1 1.0 1.0 1.0
lu 200M 1 4 1.75 1.0 1.0 1.0
radix 1B 4 6 2.95 1.0 1.05 1.05
pfscan 6K 7 24 2.2 1.6 — —

Table 3.5: Runtime system characterization. IPE is avg. instructions per epoch, and LI is
local variables instrumented.

3.8.2 Runtime System Characterization

Table 3.5 characterizes our runtime system in three ways, as described below. All numbers in

Table 3.5 are based on executions of the final instrumented program which is linked with our

custom runtime system. These executions are constrained to the input-covering schedules

summarized in Table 3.1, and, except where otherwise mentioned, the “num threads” was

set to 4 for all benchmarks except pfscan, where it was set to 2 (resulting in 3 live threads).

In Table 3.5, Column 2 reports the average number of instructions executed per thread

in a single epoch (IPE). We counted instructions by instrumenting LLVM bytecode, so the

actual number of x86 instructions executed may differ slightly. As discussed in Section 3.5,

IPE should ideally be large enough to span most ordering bugs. Our average IPE is well

over the window of 3K instructions that was suggested by Lucia et al. in [74]. Although

the averages are generally much higher than 3K, we noticed some variability. For example,

IPE for radix fluctuated between 30K instructions and 1 billion instructions, depending on

which of two alternating phases was being executed.

Columns 3–5 characterize the amount of work performed to compute a new schedule.

Column 3 states the number of local variables instrumented to maintain shadow copies,

and Columns 4 and 5 state the maximum and average number of arithmetic and boolean

operators used by schedule selector decision trees (recall Section 3.6.2).

Columns 6–8 characterize our runtime overheads. Each column states the execution

time of the final instrumented program (linked with our runtime system) normalized to

88

Program |Σ| / AnalysisRunningTime
thr Full -RD -SI N

fft 2 2/ 9s 2/12s 2/ 10s 2/ 11s
lu 4 3/ 6s 23/14s 1550/396s 1976/202s
pfscan 2 455/24s 455/28s 2245/ 78s 2273/ 80s

Table 3.6: Symbolic execution characterization. Full , -RD , -SI , and N are as described
in Section 2.9.

nondeterministic execution with the same number of threads. A value of 2.0 means “twice

as long.” For benchmark applications, we used standard benchmark workloads, and for

pfscan, we performed a search in a directory containing 50 files. For barrier-synchronized

applications, overhead is minimal—the programs are already designed to execute in a bulk-

synchronous fashion. For pfscan, we were unable to measure how well our runtime scales

with increasing threads, since we were unable to enumerate input-covering schedules for

more threads within our time limit.

3.8.3 Symbolic Execution Characterization

Recall from Section 3.3.3 that our schedule enumeration algorithm uses the same symbolic

execution techniques described in Chapter 2 of this dissertation. In particular, MakeStateForEpoch

uses a context-specific dataflow analysis to construct each symbolic state, and ExecutePath

performs symbolic execution using the algorithm from Figure 2.15.

We evaluated how well our schedule enumeration algorithm benefits from those symbolic

execution techniques. Specifically, we ran our schedule enumeration algorithm using our

symbolic execution techniques at various optimization levels. These results are shown in

Table 3.6. For each optimization level, we give the number of schedules enumerated (|Σ|) and

the total analysis runtime. We expect to enumerate more schedules at lower optimization

levels (due to more infeasible paths).

Column 3 restates results for the fully optimized symbolic execution—this duplicates

Column 7 of Table 3.1 and Column 3 of Table 3.2. Columns 4–6 show results when some

optimizations are disabled. As in Section 2.9, -RD disables reaching definitions, -SI disables

89

synchronization invariants, and N uses a näıve approach. Similarly to the infeasible paths

evaluation in Section 2.9, if a schedule is enumerated with the näıve approach, but not the

fully-optimized approach, then it must be an infeasible schedule. The results show, again,

that our symbolic execution techniques are essential: the näıve approach suffers from slower

algorithm runtimes and more infeasible schedules.

90

Chapter 4
RELATED WORK

We discuss related work in four sections. The first section summarizes prior work on

symbolic execution, giving special attention to techniques that our work exploits or extends

(Section 4.1). The next three sections summarize prior work related to input-covering

schedules, including other work on constraining multithreaded execution (Section 4.2), work

on summarizing multithreaded schedules (Section 4.3), and closely-related work on verifying

multithreaded programs (Section 4.4).

4.1 Symbolic Execution

There has been much prior work on symbolic execution—too much to be completely surveyed

here. In this section, we summarize prior work that is most relevant to our approaches. First,

the goal of starting symbolic execution from arbitrary program contexts is to avoid path

explosion, so we start by surveying other ways to avoid path explosion (Section 4.1.1). All

of these approaches are complementary to each other and to our new techniques. Second, a

major component of our symbolic execution algorithm is a novel model of the heap, so we

survey symbolic heap models used by prior work (Section 4.1.2). We are not aware of any

prior work that integrates a dataflow analysis with symbolic execution to the extent of our

semantics as described in Chapter 2.

4.1.1 Approaches to Avoiding Path Explosion

Search heuristics are simple and effective. For example, one popular heuristic is to bias

symbolic execution towards paths that are likely to by “most different” from paths that were

already explored. This heuristic relies on a notion of “coverage”, and many such notions have

been explored: one approach is to measure coverage of individual branch edges or program

91

statements [27]; another approach is to measure coverage of path subsequences [69]; a third

approach is to avoid visiting the same symbolic state more than once, if said state happens

to be reachable via multiple paths [60]; and a fourth approach extends the third approach by

using future read and write sets to more precisely determine when two symbolic states are

equivalent [23]. For multithreaded programs, a popular heuristic is to search the schedule

space using iterative context bounding [24, 78].

Another common approach is summarization, in which a fragment of code is replaced by

a symbolic summary of its behavior. This approach has been applied to summarize loop it-

erations [51] and procedure bodies [6, 47, 84, 93]. Some systems construct summarizes using

an automatic analysis [47, 51, 84], while others rely on programmers to encode summaries

manually [6, 93].

For multithreaded programs specifically, various partial-order reductions have been pro-

posed [31, 45, 59]. The idea is to recognize, proactively, that some not-yet-explored schedule

S describes the same partial order as some other previously-explored schedule S′—since both

schedules have the same partial order, execution will produce the same result in both cases

and schedule S can be pruned.

A final technique is path merging [52]. Path merging algorithms execute all paths con-

necting control-flow points A and B, then merge the resulting states at B. This reduces

the size of the search space by a multiplicative factor. Specifically, if there are n paths

connecting points A and B, and m paths following B, the search space reduces to n + m

paths with path merging compared to n ·m paths without. However, when path merging

is applied indiscriminately, the merged states become increasingly difficult to analyze. In

practice, heuristics are needed to determine whether path merging will be more profitable

than costly [61].

Our symbolic semantics (Chapter 2) uses a dataflow analysis to construct the initial

symbolic state. Path merging might be considered a replacement for this analysis, but such

a system would either suffer from path explosion (if all paths between program entry and the

initial context are enumerated) or unsoundness (if some sample of those paths are enumer-

ated). Prior work on path merging observed that the presence of large disjunctions creates

SMT queries that current solvers find difficult to solve [52]—this observation motivated

92

our use of must-reach definitions, which generate few disjunctions, rather than may-reach

definitions, which generate many disjunctions (recall Section 2.3.3).

Comparison with Input-Covering Schedules Enumeration. In developing our

algorithm to enumerate input-covering schedules, we faced three main technical challenges:

infeasible paths (Section 3.3.3), redundant schedules (Section 3.4.1), and unbounded loops

(Section 3.2 and Section 3.4.2). Each challenge represents a specific instance of symbolic

execution’s path explosion problem. For example, our optimizations to avoid schedule re-

dundancies are reminiscent of the partial-order reductions described above, though that

prior work identifies schedule redundancies given a fixed input, while we identify redundan-

cies across inputs (cf. Section 3.4.1.1).

Further, in Section 3.4.2 we observed that some form of input abstraction is necessary

to achieve good scalability of symbolic execution. Other authors have made the same

observation, most notably Anand et al. [6] and Godefroid [48]. Anand et al. [6] propose

using manually-written abstractions (as we do), and they propose a methodology for writing

those abstractions. Such a methodology could be applied in our context.

Finally, one can view our use of bounded epochs as a form of path merging, where

epoch boundaries represent path merge-points. Classical path merging algorithms execute

all paths connecting two control-flow points A and B, then merge the resulting states at

B. This is made feasible by keeping the distance between A and B short. Our algorithm

does not execute all paths within each epoch, making it more challenging to construct

initial states for middle-of-program epochs, so we rely on the symbolic execution techniques

described in Chapter 2.

4.1.2 Symbolic Models of the Heap

A key property of any static analysis is its heap model. In the C language, each pointer has

two components: a base, which specifies the base address of a heap object, and an offset,

which specifies the specific interior byte of an object being pointed to. We survey heap

models in two dimensions.

93

How powerful is the heap model? All symbolic heap models support symbolic

pointer offsets, which allows reasoning about terms like x[i] where x is a known (con-

crete) location but i has an unknown (symbolic) value. A key differentiating factor is how

completely a model supports symbolic base locations (x in the prior example). Many sys-

tems support execution from program entry only, enabling the assumption that memory

objects always exist at concrete base locations. This approach is taken by Dart [49] and

Sage [43, 50].

Other systems support symbolic base locations to some degree. Cute [90] performs

symbolic unit testing of C programs. Each unit test analyzes a single function with un-

known (symbolic) values for arguments, where the function’s arguments can include point-

ers. However, Cute has very limited support for aliasing—two symbolic pointers p1 and

p2 are allowed to alias only if the program contains an explicit comparison between the two

pointers, such as a statement if(p1==p2){...}. Java Path Finder (JPF) performs unit

testing of Java programs and supports symbolic base locations with arbitrary aliasing [60].

JPF supports aliasing by aggressively forking symbolic execution to explore all concrete

heap graphs. For example, given two symbolic references p1 and p2, JPF forks into two

symbolic states: one in which p1 and p2 point to different concrete objects (p1!=p2), and

another in which p1 and p2 point to the same concrete object (p1==p2). The number of

forked symbolic states grows exponentially with the number of symbolic pointers, making

this approach expensive in practice—in fact, we originally implemented this approach and

found it unacceptably slow. Pex [92], klee [27], and bbr [29] all support symbolic base

locations and can encode multiple heap locations in a single symbolic state, with varying

degrees of efficiency, as described shortly.

How is the heap model implemented? A natural approach, taken by all modern

analyses based on SMT solvers, is to represent the heap using the theory of arrays [46].

Reads and writes in the theory of arrays correspond directly to loads and stores of memory.

A differentiating factor is how many arrays are used to represent the heap. Program verifiers

often use just one array for the entire heap. For example, Havoc represents the heap as

a simple mapping from integers to integers [28]. Other program verifiers follow Burtstall’s

memory model, which separates fields by name in a two-dimensional array [26]—this has

94

been shown to be more efficient than the single-array approach [21, 87]. Pex follows the two-

dimensional approach but adds constraints to disallow aliasing between objects of different

types—this is sound because Pex operates over a type-safe bytecode [92].

In contrast, some systems use a separate array for each memory object. The authors of

klee observed that symbolic execution engines often send many small queries to the SMT

solver that can be resolved efficiently using caching [27]. For example, klee executes one

solver query at every conditional branch statement. This contrasts with program verifiers,

which summarize each program with a single large expression that is sent to an SMT solver

just once. klee’s key insight is that, by assigning each memory object its own array,

symbolic expressions can avoid mentioning irrelevant parts of the heap, making caching

more effective. To clarify, consider the following example:

if (z) { *y = 5; }

if (*x) ...

Two paths reach the statement if(*x). If we can prove that the value of *x is the same

on both paths, we can cache the result of isSat(*x) for reuse on the second path. klee

and Cloud9 both implement this optimization, and Cadar et al. showed that this sort of

caching optimization is vital for symbolic execution scalability [27]. Proving that *x has

the same value on both paths is difficult when using a single global array for memory, as

in this case, *x is read(write(global, yoff, 5), xoff) on one path, but read(global, xoff) on the

other path. However, proving that *x has the same value on both paths can be trivial when

the objects pointed to by x and y are represented with different symbolic arrays, Ax and

Ay, as in this case, *x will be read(Ax, 0) on both paths. Hence, to enable this caching

optimization, our symbolic semantics (Section 2.4) assigns separates symbolic arrays to x

and y when a points-to analysis can prove that x!=y.

bbr also uses a separate array per object [29]. However, klee and bbr use different

approaches to resolve aliasing. To dereference a symbolic pointer p, klee opts to fork for

each possible concrete base location, much like JPF, although klee performs this forking

more lazily. In contrast, bbr uses guarded expressions to encode multiple concrete heap

graphs into a single symbolic state. This approach is more efficient than klee’s approach

95

because it results in less forking, but results in more complexity. Dillig et al. [39] describe

a heap model very similar to the one described by bbr, except that Dillig et al. developed

their model in the context of a flow-sensitive, context-sensitive analysis rather than a path-

sensitive symbolic execution. Our approach is most similar to that of bbr and Dillig et

al.

4.2 Constrained Execution

Other systems have proposed ways to constrain multithreaded execution. Each of these

systems has the same high-level goal as our work on input-covering schedules: to reduce the

space of possible thread schedules. In this section, we contrast prior work in this area with

our input-covering schedules based approach.

Schedule Memoization. The most closely related systems are Tern [34] and Pere-

grine [35]. These systems operate similarly to each other: First, they select some set of

inputs which will be used to test program P. Second, they run P with each test input and

record an execution trace. Third, they replay each execution trace in a symbolic execution

engine to extract a schedule, S, and an approximate weakest precondition, I, where I is a

constraint that describes a set of inputs that must be executable under schedule S. The

final output is a database containing memoized pairs (I,S). At runtime, given input i, both

systems search for a pair (I,S) such that i satisfies constraint I—if such a pair is found,

execution is constrained to S, and otherwise, execution is unconstrained.

Tern computes weakest preconditions näıvely based on user annotations. Peregrine

computes weakest preconditions with an algorithm based on precondition slicing [32], sim-

ilarly to our work (Section 3.3.2). Both Tern and Peregrine have limited support for

bug avoidance. Given an execution trace for input i, they run a simple race detector to find

data races on that trace. If any races are found, the memoized schedule is discarded.

Our system generalizes ideas introduced by Tern and Peregrine. Specifically, Tern

and Peregrine memoize schedules from a few tested inputs, so they provide best-effort

schedule memoization only, while our system enumerates a complete input-covering set.

Computing input-covering sets is a more difficult analysis problem, since it introduces the

need to reason about all possible program behaviors, while Tern and Peregrine reason

96

about behaviors on a few selected inputs only. The advantage of our approach over best-

effort schedule memoization is clear: given set of input-covering that has been thoroughly

tested, we can constrain execution in a way that always avoids executing untested schedules.

At a technical level, there are a few additional similarities. First, our notion of bounded

epochs is related to Tern’s idea of windowing, which handles a specific kind of unboundedness—

event loops in server programs. Tern’s windowing requires programmer annotations, but

our system introduces epoch boundaries automatically.

Second, our system uses a weakest precondition computation similar Peregrine’s. The

main difference is that Peregrine’s algorithm does not assume data race freedom. Instead,

Peregrine uses a static may-race analysis to find memory access pairs that may-race and

then adds a happens-before edge to the schedule for each such pair. Adopting this approach

in our setting would result in a more complex analysis and more symbolic path explosion

due to the need to consider many possible may-race pairs. Note that path explosion is not

a problem in Peregrine’s setting, where slicing is used to compute an input constraint for

tested paths only, but not to select more symbolic paths.

Deterministic Execution. Recently there has been a flurry of research on determinis-

tic execution [8, 10, 14, 15, 37, 38, 53, 70, 72, 81]. These systems constrain execution so that

the resulting thread schedule is always a deterministic function of the program’s input. Sys-

tems that enforce deterministic execution can be broadly classified in two categories. First,

systems like Kendo [81] enforce a deterministic order on synchronization only, resulting in

weak determinism. The Kendo algorithm can be implemented very efficiently in software,

but it provides few guarantees for programs with data races—such programs may execute

nondeterministically. Second, systems like DMP [37] enforce a deterministic order on all

memory accesses, resulting in strong determinism. Strong determinism is attractive because

it guarantees determinism even in the presence of data races. Unfortunately, strong deter-

minism cannot be acheived on commodity hardware without imposing prohibitive overhead

(empirical evaluations have observed overheads of up to 10× [8, 10, 14, 70]).

Our runtime system selects schedules deterministically for each input (Section 3.6.2).

Since we assume data race freedom, we provide weak determinism as in Kendo. However,

our primary goal is not determinism per se—we could just as easily map each input to

97

schedules in Σ and randomly select from those schedules at runtime.1 This added flexibility

increases schedule diversity, which has potential benefits for security, fault-tolerance, and

performance [12].

Most importantly, our approach significantly improves the testability and verifiability

of multithreaded programs in comparison to deterministic execution. One of the original

arguments in favor of deterministic execution was improved testability [37]. However, this

claim is largely unproven and has been called into question [12, 98]. We summarize that

counter-argument below:

Consider the problem of finding a concurrency bug, such as an atomicty violation, in

some program P. With conventional nondeterministic execution, the bug will manifest under

some set of triggering inputs T and set of schedules S. With deterministic execution, the

bug will manifest under inputs T′ = {i | i ∈ T ∧Det(i) ∈ S}, where Det is the deterministic

scheduler function. Observe that deterministic execution can actually hide the bug—in the

worst case, Det produces a different schedule for each input i and the bug will manifest on a

specific input only. Finding a specific input i ∈ T′ is a very difficult problem. Further, with

conventional nondeterminism, it is often the case that bugs manifest under many inputs

and schedules [25, 77], meaning that |T| and |S| can be reasonably large in practice. Hence,

it is not clear that concurrency bugs are any easier to find when execution is deterministic,

than nondeterministic.

In contrast, concurrency bugs are significantly easier to find when execution is con-

strained to a small set of input-covering schedules. For a simple illustration, suppose the

set of bug-triggering inputs T includes all possible inputs. With deterministic execution, we

might need to test every input i ∈ T to find a manifestation of the bug. With our system,

we need to test just one input for each pair (I,S) ∈ Σ.2 When |Σ| is small, it is obviously

much simpler to test the program just |Σ| times rather than once for every possible input.

Constraining Pairs of Accesses. Whereas schedule memoization and deterministic

1 To give a concrete input i multiple mappings in Σ, we can add two pairs (I,S) and (I’,S’) to Σ such that
input i satisfies both constraint I and constraint I’.

2 Of course, we may need to test more than one input for each pair (I,S) ∈ Σ when T does not include
all possible inputs. The example described here is a “best case”.

98

execution both constrain entire schedules, other approaches constrain specific instruction

pairs only. One approach is to enumerate predecessor sets (PSets) for each memory access

instruction [99]. The PSet for instruction op, named by PSet(op), is the set of remote

instructions that op is allowed to depend on. For example, if op is a load instruction, then

execution should be constrained so that op always reads a value written either (a) by the

current thread, or (b) by a remote thread via one of the store instructions in PSet(op). Yu

et al. proposed two hardware architectures for enforcing PSets: one that used delays with

occasional checkpoint/rollback [99], and another that used transactional memory [100]. To

reduce the chance some PSet contains a buggy interleaving, Yu et al. derive PSets from

successful executions of test suites.

PSets define a whitelist of thread interleavings. The dual approach, taken by Aviso [73],

is to define a blacklist of interleavings. Aviso derives its blacklist from interleavings that

are known to be buggy, and it uses similar delay-based techniques to enforce interleaving

constraints.

Our approach has a significant advantage over both PSets and Aviso: completeness.

The system proposed by Yu et al., cannot prove that the PSets collected during testing

are sufficient to enable execution of all program inputs, so their hardware must necessarily

resort to unconstrained execution in some cases. In Aviso, interleavings are constrained

only after a bug is found, so unlike Yu et al.’s system, Aviso cannot help avoid bugs that

have not been located. Further, Aviso’s delay-based implementation gives only probabilistic

guarantees of bug avoidance. In contrast, our system enumerates a complete input-covering

set of schedules—so it does not suffer from the incompleteness of PSets—and our deployed

system executes tested schedules only—so it does not suffer from the blindness of Aviso.

Automatically Avoiding Concurrency Bugs. Other systems take bug-specific ap-

proaches to constrained execution. For example, Atom-Aid [75] reduces the likelihood of

triggering atomicity violations by executing large chunks of code transactionally. ISOLA-

TOR [86] and ToleRace [88] use data replication to ensure isolation of critical sections, which

avoids some data races. Dimmunix [58] and Communix [57] provide automated deadlock

immunity for Java programs.

These systems are effective and usually have low overhead. However, their bug-specific

99

nature limits their usefulness. It is difficult to imagine deploying many of these systems

simultaneously. Further, some approaches (notably, Atom-Aid) are probabilistic—they re-

duce, but do not eliminate, the chance of encounting a buggy schedule. In contrast, through

thorough testing of each schedule in the input-covering set Σ, our system provides bug avoid-

ance for a range of bugs by constraining execution to tested schedules only.

4.3 Constructing Abstract Schedule Graphs

This section summarizes algorithms for constructing abstract schedule graphs, where a

schedule graph abstracts a multithreaded program’s set of possible runtime schedules much

in the same way that a control-flow graph abstracts a single-threaded program’s set of

possible runtime paths.

Barrier Matching. In certain restricted cases, if a program is composed of barriers and

no other kind of synchronization, it is possible to construct a set of input-covering schedules

for the program using relatively simple algorithms. Jeremiassen and Eggers made an initial

attempt at this problem [56]. Aiken and Gay gave a nice solution comprised of a simple

bottom-up traversal over the syntax tree [5]. Zhang and Duesterwald extended Aiken’s

algorithm to support more kinds of loops and conditional statements [102]. Conceptually,

these algorithms output a barrier sequence graph in which nodes are barrier operations

and edges represent the happens-before relation. The graph may have cycles to denote

loops. A given barrier graph can be viewed as a precise, compact representation of a set of

input-covering schedules.

Although these algorithms give precise output, their domain is limited: they cannot rea-

son about certain nontrivial loops or conditional statements, especially loops involving linked

structures; they assume that barriers apply to all active threads, not some potentially input-

dependent subset of threads; and, of course, they cannot produce input-covering schedules

for programs that use synchronization other than barriers. In contrast, our approach sup-

ports any kind of synchronization operation that can be described with a happens-before

relation, and further, our approach exploits the full power of symbolic execution to reason

about a range of complex path conditions.

May-Happen-In-Parallel Analysis. This analysis is focused primarily on synchro-

100

nization operations that can be classified as either a notify or a wait, such as explicit

notify/wait operations on condition variables or exit/join operations on threads. The idea

is to match each notify statement N with the set of wait statements WN that may be

notified by N. Given these mappings, we can construct a concurrent flow graph that com-

bines each thread-local control flow graph with cross-thread edges that connect N with

WN. The precise form of this graph varies by algorithm, and many algorithms have been

proposed [4, 9, 40, 79, 80].

We can view the output of may-happen-in-parallel (MHP) analysis as an approximation

of all possible happens-before graphs. So, in a sense, MHP analysis computes an approx-

imate set of input-covering schedules. However, MHP analyses are path-insenstive, which

makes them cheap to compute but extremely approximate relative to our fully path-sensitive

algorithm for enumerating input-convering schedules.

4.4 Verifying Multithreaded Programs by Reduction to Sequential Programs

There has been much prior work on the verification of multithreaded programs—too much

to survey here. An emerging idea is to analyze a multithreaded program by first reducing

it to an equivalent sequential program. Prior techniques in this space are incomplete, in the

sense that they do not analyze all possible schedules—in order to make the transformation

from multithreaded program to sequential program feasible, they must pick some subset of

possible schedules to seed the transformation. Two approaches have been proposed:

Reduction Under a Preemption Bound. A schedule is preemption bounded to

depth k if the schedule includes no more than k preemmptions. Qadeer and Wu showed

how to reduce a multithreaded program into a sequential program given a fixed k [85].

Subsequent authors have developed more advanced transformations [62, 64]. It has been

shown empirically that many concurrency bugs can be found with k ≤ 2, making this

approach practical. For example, Qadeer and Wu used this technique to find data race bugs

in Windows device drivers.

Reduction Given a Specific Schedule. An alternate approach, known as schedule

specialization, considers one schedule at a time. The algorithm given by Wu et al. [96] takes

as input a multithreaded program P along with a schedule S, represented as a total order of

101

synchronization operations, and then outputs a program P′ specialized to schedule S. The

specialized program P′ converts cross-thread use-def relations that are fixed by the given

schedule into explicit communication. In experiments performed by Wu et al., schedule

specialization reduced the false positive rate of a static race detector by 69%.

Applicability to Input-Covering Schedules. Both of the above reductions are

incomplete in practice—preemption bounding is incomplete unless k ≈ ∞, and schedule

specialization is incomplete unless all schedules are available. By constraining execution to

a small set of input-covering schedules, our approach can make these promising reductions

complete. Specifically, the approach to schedule specialization taken by Wu et al. [96] can

be directly applied to our system by producing a specialized program for each schedule in

Σ.

102

Chapter 5
CONCLUSIONS AND FUTURE OPPORTUNITIES

This dissertation described two ways to reason about multithreaded programs in the face

of an enormous thread interleaving space. Our first approach is to symbolically execute small

fragments of a program in isolation, rather than the entire program at once, by jumping

directly to program contexts of interests. Our second approach is to constrain execution to

small sets of input-covering schedules, avoiding that enormous interleaving space entirely.

In developing these approaches, we introduced two new research problems:

The “symbolic execution from arbitrary contexts” problem: Given an initial

program context, which we define to be a set of threads and their program counters, how

do we efficiently perform symbolic execution starting from that context while soundly ac-

counting for all possible concrete initial states? We proposed a solution to this problem in

Chapter 2.

The “input-covering schedules” problem: What is the most efficient way to find

and exploit sets of input-covering schedules? We proposed a solution to this problem in

Chapter 3. As defined in that chapter, we say that a set of schedules Σ is input-covering for

a given program P if, for each possible input i, there exists some schedule S ∈ Σ such that,

when program P is given input i, P’s execution can be constrained to S and still produce a

semantically valid result.

5.1 Summary of Conclusions

Broadly, we draw the following conclusions:

First, when solving the “symbolic execution from arbitrary contexts” problem, we found

it profitable to integrate dataflow analyses with symbolic execution. Specifically, our em-

pirical evaluations in Section 2.9 and Section 3.8.3 showed that two classes of dataflow

103

analyses are particularly profitable: reaching definitions, to summarize the state of memory

in a general way, and synchronization invariants, such as locksets, to summarize the state

of synchronization objects in a specific way. In broader terms, we believe that practical

solutions to the “symbolic execution from arbitrary contexts” problem must construct the

initial symbolic state using a scalable analysis of some sort, and we have shown that scalable

dataflow analyses can be a good fit.

Second, when solving the “input-covering schedules” problem, we found it necessary to

enumerate input-covering schedules for bounded-length fragments of the program, rather

than for the program as a whole. This strategy ensures that each input-covering set has a

bounded size, preventing unbounded combinatorial explosion. In our system, such bounded-

length fragments are called bounded epochs. In fact, the idea to analyze small fragments of

a program in isolation, rather than analyzing the entire program as a whole, is a central

concept in this dissertation that plays a key role in the core technical contributions of

Chapters 2 and 3.

Third, we demonstrated the feasibility of building an end-to-end system for exploiting

input-covering schedules. We implemented an algorithm to enumerate sets of input-covering

schedules, we implemented a runtime system to constrain execution to those schedules, and

we built a simple deadlock checker to look for deadlocks in those schedules. Our empirical

evaluation in Section 3.8 demonstrated that it is possible to enumerate a complete set of

deadlock-free input-covering schedules for at least some realistic programs.

5.2 Limitations

Our solutions to the above problems are not perfect. We summarize the most important

limitations below:

Related to Symbolic Execution. We trade scalability for precision. A perfect so-

lution would summarize all paths from program entry up to the initial context to compute

a very precise initial state. Unfortunately, we believe this is not tractable in practice, so

our approach is to compute an over-approximation of the initial state. This results in an

analysis that is scalable but not fully precise. Hence, unlike classic approaches to symbolic

execution, which are fully precise because they explore feasible paths only, our approach is

104

imprecise and can explore infeasible paths—this can lead to false positives in verification

tools, testing tools, and other analyses that build on our symbolic execution techniques.

Related to Input-Covering Schedules. Our approach to enumerating input-covering

schedules assumes data race freedom. We make this assumption to simplify our analysis.

However, when this assumption is broken, we do not compute a true set of input-covering

schedules, and executions that use our runtime system may diverge from the expected

schedule after a data race.

Further, our system produces sets of input-covering schedules that can contain infea-

sible schedules—this happens because our schedule enumeration algorithm is built on the

symbolic execution techniques mentioned above. As a result, verification tools that analyze

input-covering schedules may report false positives. We observed this effect in practice:

as described in Section 3.8.1, our deadlock checker reported infeasible deadlocks for two

applications.

Finally, our schedule enumeration algorithm can suffer from combinatorial explosion,

making it impractical for some programs. We observed severe combinatorial explosion for

one benchmark application, as described in Section 3.8.1.4.

5.3 Future Opportunities

Looking forward, this dissertation opens a number of new research directions that we sum-

marize below:

Exploiting symbolic execution from arbitrary contexts. This dissertation showed one use

case for symbolic execution from arbitrary contexts—to aid an algorithm for enumerating

input-covering schedules (as described in Section 3.3.3)—but the same techniques are useful

in other settings. For example, our techniques can enable execution reconstruction, in which

the goal is to use very little recorded information (such as a crash dump and little else) to

reconstruct the multithreaded path that led to an observed software failure. Other promising

applications are described in Section 2.2.

Combining dataflow analyses with symbolic execution. This dissertation demonstrated

the benefits of combining dataflow analyses with symbolic execution, specifically towards

solving the “symbolic execution from arbitrary contexts” problem. We evaluated two

105

dataflow analyses, but many dataflow analyses have been proposed and there is room to

study which dataflow analyses are most profitable in this setting. There is also the potential

to combine dataflow analyses and symbolic execution in other ways. For example, rather

than using dataflow analyses to summarize code at program entry, we might use dataflow

analyses to summarize code in the middle of a symbolic execution, such as to summarize

the effects of a system call or a library call. This potential integration strategy has not yet

been explored.

Exploiting input-covering schedules for testing and verification. This dissertation de-

scribed a deadlock checker that exploited input-covering schedules very simple way. We

believe that other, more powerful checkers, testing tools, and verification tools can be built

to exploit input-covering schedules. One path forward is suggested by the related work

summarized in Section 4.4.

Defining “schedules” for input-covering schedules. Finally, it is unfortunate that our

schedule enumeration algorithm suffers from combinatorial explosion in some applications.

How can this be avoided? One path forward is to change the definition of schedules. For

example, rather than defining schedules as happens-before graphs, as we did throughout this

dissertation, we might instead define schedules as constraints on pairs of accesses, similarly

to systems like PSets [99] (see Section 4.2 for a discussion). Such an alternate definition

may lead the way towards a more scalable system.

106

BIBLIOGRAPHY

[1] µclibc: an Open-Source C Library. http://www.uclibc.org/.

[2] NVidia’s CUDA Language. http://developer.nvidia.com/cuda.

[3] OpenMP 4.0 Application Program Interface. http://www.openmp.org/

mp-documents/OpenMP4.0.0.pdf, 2013.

[4] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K. Shyamasundar.

May-Happen-in-Parallel Analysis of X10 Programs. In PPoPP, 2007.

[5] Alexander Aiken and David Gay. Barrier Inference. In POPL, 1998.

[6] Saswat Anand, Corina S. Păsăreanu, and Willem Visser. Symbolic Execution with

Abstract Subsumption Checking. In SPIN, 2006.

[7] Joe Armstrong. The Development of Erlang. In ICFP, 1997.

[8] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient System-Enforced

Deterministic Parallelism. In OSDI, 2010.

[9] Rajkishore Barik. Efficient Computation of May-Happen-in-Parallel Information for

Concurrent Java Programs. In Proceedings of the 18th international conference on

Languages and Compilers for Parallel Computing (LCPC), 2006.

[10] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. Core-

Det: A Compiler and Runtime System for Deterministic Multithreaded Execution. In

ASPLOS, 2010.

[11] Tom Bergan, Luis Ceze, and Dan Grossman. Input-Covering Schedules for Multi-

threaded Programs. In OOPSLA, 2013.

http://www.uclibc.org/
http://developer.nvidia.com/cuda
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

107

[12] Tom Bergan, Joseph Devietti, Nicholas Hunt, and Luis Ceze. The Deterministic

Execution Hammer: How Well Does it Actually Pound Nails? In Workshop on

Determinism and Correctness in Parallel Programming (WoDet), 2011.

[13] Tom Bergan, Dan Grossman, and Luis Ceze. Symbolic Execution of Multithreaded

Programs from Arbitrary Program Contexts. Technical Report UW-CSE-13-08-01,

Univ. of Washington.

[14] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steve Gribble. Deterministic Process

Groups in dOS. In OSDI, 2010.

[15] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: Safe and

Efficient Concurrent Programming. In OOPSLA, 2009.

[16] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite: Char-

acterization and Architectural Implications. In PACT, 2008.

[17] H.-J. Boehm and S. Adve. Foundations of the C++ Concurrency Memory Model. In

PLDI, 2008.

[18] Hans-J. Boehm. Simple Garbage-Collector-Safety. In PLDI, 1996.

[19] Hans-J. Boehm. Position Paper: Nondeterminism is Unavoidable, but Data Races are

Pure Evil. In RACES, 2008.

[20] Hans-J. Boehm. How to Miscompile Programs with “Benign” Data Races. In HotPar,

2011.

[21] Sascha Böhme and Micha lMoskal. Heaps and Data Structures: A Challenge for Au-

tomated Provers. In Proceedings of the 23rd International Conference on Automated

Deduction, 2011.

[22] Michael D. Bond and Kathryn S. McKinley. Probabilistic Calling Context. In OOP-

SLA, 2007.

[23] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. RWset: Attacking Path

Explosion in Constraint-Based Test Generation. In TACAS, 2008.

108

[24] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. Parallel Symbolic

Execution for Automated Real-World Software Testing. In EuroSys, 2011.

[25] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Na-

garakatte. A Randomized Scheduler with Probabilistic Guarantees of Finding Bugs.

In ASPLOS, 2010.

[26] R. M. Burstall. Some Techniques for Proving Correctness of Programs which Alter

Data Structures. Machine Intelligence, 7:23–50, 1972.

[27] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and Auto-

matic Generation of High-Coverage Tests for Complex Systems Programs. In OSDI,

2008.

[28] Shaunak Chatterjee, Shuvendu K. Lahiri, Shaz Qadeer, and Zvonimir Rakamaric. A

Reachability Predicate for Analyzing Low-Level Software. In TACAS, 2007.

[29] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Partial Replay of Long-

Running Applications. In FSE, 2011.

[30] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2E: A Platform for

In Vivo Multi-Path Analysis of Software Systems. In ASPLOS, 2011.

[31] Katherine E. Coons, Madanlal Musuvathi, and Kathryn S. McKinley. Bounded

Partial-Order Reduction. In OOPSLA, 2013.

[32] Manuel Costa, Miguel Castro, Lidong Zhou, Lintao Zhang, and Marcus Peinado.

Bouncer: Securing Software by Blocking Bad Input. In SOSP, 2007.

[33] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model

for Static Analysis of Programs by Construction or Approximation of Fixpoints. In

POPL, 1977.

[34] Heming Cui, Jingyue Wu, Chia che Tsai, and Junfeng Yang. Stable Deterministic

Multithreading Through Schedule Memoization. In OSDI, 2010.

109

[35] Heming Cui, Jingyue Wu, John Gallagher, Huayang Guo, and Junfeng Yang. Efficient

Deterministic Multithreading through Schedule Relaxation. In SOSP, 2011.

[36] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-Sensitive Program Verifica-

tion in Polynomial Time. In PLDI, 2002.

[37] Joseph Devietti, Brandon Lucia, Luis Ceze, and Mark Oskin. DMP: Deterministic

Shared Memory Multiprocessing. In ASPLOS, 2009.

[38] Jospeh Devietti, Jacob Nelson, Tom Bergan, Luis Ceze, and Dan Grossman. RCDC:

A Relaxed Consistency Deterministic Computer. In ASPLOS, 2011.

[39] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and Compact Modular

Procedure Summaries for Heap Manipulating Programs. In PLDI, 2011.

[40] Matthew B. Dwyer and Lori A. Clarke. Data Flow Analysis for Verifying Properties

of Concurrent Programs. In FSE, 1994.

[41] Laura Effinger-Dean, Hans-Jeurgen Boehm, Pramod Joisha, and Dhruva Chakrabarti.

Extended Sequential Reasoning for Data-Race-Free Programs. In Workshop on Mem-

ory Systems Performance and Correctness (MSPC), 2011.

[42] Laura Effingernger-Dean. Interference-Free Regions and Their Application to Com-

piler Optimization and Data-Race Detection. PhD thesis, Computer Science and En-

gineering, University of Washington, 2012.

[43] Bassem Elkarablieh, Patrice Godefroid, and Michael Y. Levin. Precise Pointer Rea-

soning for Dynamic Test Generation. In ISSTA, 2009.

[44] Peter Ericsson. pfscan: a parallel file scanner. http://ostatic.com/pfscan.

[45] Cormac Flanagan and Patrice Godefroid. Dynamic Partial-Order Reduction for Model

Checking Software. In POPL, 2005.

[46] Vijay Ganesh and David L. Dill. A Decision Procedure for Bit-vectors and Arrays. In

CAV, 2007.

http://ostatic.com/pfscan

110

[47] Patrice Godefroid. Compositional Dynamic Test Generation. In POPL, 2007.

[48] Patrice Godefroid. Higher-Order Test Generation. In PLDI, 2011.

[49] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated

Random Testing. In PLDI, 2005.

[50] Patrice Godefroid, Michael Y. Levin, and David Molnar. Automated Whitebox Fuzz

Testing. In Network and Distributed System Security Symposium, 2008.

[51] Patrice Godefroid and Daniel Luchaup. Automatic Partial Loop Summarization in

Dynamic Test Generation. In ISSTA, 2011.

[52] T. Hansen, P. Schachte, and H. Sondergaard. State Joining and Splitting for the

Symbolic Execution of Binaries. In Intl. Conf. on Runtime Verification (RV), 2009.

[53] D. Hower, P. Dudnik, D. Wood, and M. Hill. Calvin: Deterministic or Not? Free Will

to Choose. In HPCA, 2011.

[54] IEEE and The Open Group. IEEE Standard 1003.1-2001. 2001.

[55] ISO. C Language Standard, ISO/IEC 9899:2011. 2011.

[56] Tor E. Jeremiassen and Susan J. Eggers. Static Analysis of Barrier Synchronization

in Explicitly Parallel Programs. In PACT, 1994.

[57] Horatiu Jula, Pinar Tozun, and George Candea. Communix: A Framework for Col-

laborative Deadlock Immunity. In DSN, 2011.

[58] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. Deadlock

Immunity: Enabling Systems to Defend Against Deadlocks. In OSDI, 2008.

[59] Vineet Kahlon, Chao Wang, and Aarti Gupta. Monotonic Partial Order Reduction:

An Optimal Symbolic Partial Order Reduction Technique. In CAV, 2007.

[60] Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized Symbolic

Execution for Model Checking and Testing. In TACAS, 2003.

111

[61] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Candea. Efficient

State Merging in Symbolic Execution. In PLDI, 2012.

[62] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Reducing Context-

Bounded Concurrent Reachability to Sequential Reachability. In CAV, 2009.

[63] Oren Laadan, Nicolas Viennot, and Jason Nieh. Transparent, Lightweight Application

Execution Replay on Commodity Multiprocessor Operating Systems. In SIGMET-

RICS, 2010.

[64] Akash Lal and Thomas Reps. Reducing Concurrent Analysis Under a Context Bound

to Sequential Analysis. In CAV, 2008.

[65] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM, 21(7), July 1978.

[66] Leslie Lamport. How to Make a Multiprocessor Computer that Correctly Executes

Multiprocess Programs. IEEE Trans. Computers, 28(9), 1979.

[67] Chris Lattner. Macroscopic Data Structure Analysis and Optimization. PhD thesis,

Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL,

May 2005.

[68] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis and Transformation. In CGO, 2004.

[69] You Li, Zhendong Su, Lingzhang Wang, and Xuandong Li. Steering Symbolic Execu-

tion to Less Traveled Paths. In OOPSLA, 2013.

[70] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. Dthreads: Efficient Deter-

ministic Multithreading. In SOSP, 2011.

[71] Yanhonh A. Liu and Scott D. Stoller. From Recursion to Iteration: What are the

Optimizations? In PEPM, 1999.

[72] Kai Lu, Xu Zhou, Tom Bergan, and Xiaoping Wang. Efficient Deterministic Multi-

threading Without Global Barriers. In PPoPP, 2014.

112

[73] Brandon Lucia and Luis Ceze. Cooperative Empirical Failure Avoidance for Multi-

threaded Programs. In ASPLOS, 2013.

[74] Brandon Lucia, Luis Ceze, and Karin Strauss. ColorSafe: Architectural Support for

Debugging and Dynamically Avoiding Multi-Variable Atomicity Violations. In ISCA,

2010.

[75] Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. Atom-Aid: Detecting

and Surviving Atomicity Violations. In ISCA, 2008.

[76] Leonardo De Moura and Nikolaj Bjrner. Z3: An Efficient SMT Solver. In TACAS,

2008.

[77] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding

and Reproducing Heisenbugs in Concurrent Programs. In OSDI, 2008.

[78] Madanlal Musuvathi and Shaz Qadeer. Iterative Context Bounding for Systematic

Testing of Multithreaded Programs. In PLDI, 2007.

[79] Gleb Naumovich and George S. Avrunin. A Conservative Data Flow Algorithm for

Detecting All Pairs of Statements That May Happen in Parallel. In FSE, 1998.

[80] Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. An Efficient Algorithm for

Computing MHP Information for Concurrent Java Programs. In FSE, 1999.

[81] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient Deterministic Multi-

threading in Software. In ASPLOS, 2009.

[82] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: Exposing Atomicity Violation

Bugs from their Hiding Places. In ASPLOS, 2009.

[83] Corina S. Pasareanu, Neha Rungta, and Willem Visser. Symbolic Execution with

Mixed Concrete-Symbolic Solving. In ISSTA, 2011.

[84] Shaz Qadeer, Sriram K. Rajamani, and Jakob Rehof. Summarizing Procedures in

Concurrent Programs. In POPL, 2004.

113

[85] Shaz Qadeer and Dinghao Wu. KISS: Keep It Simple and Sequential. In PLDI, 2005.

[86] Sriram Rajamani, G. Ramalingam, Venkatesh Prasad Ranganath, and Kapil Vaswani.

ISOLATOR: Dynamically Ensuring Isolation in Concurrent Programs. In ASPLOS,

2009.

[87] Zvonimir Rakamarić and Alan J. Hu. A Scalable Memory Model for Low-Level Code.

In Proceedings of the 10th International Conference on Verification, Model Checking,

and Abstract Interpretation (VMCAI), 2009.

[88] Paruj Ratanaworabhan, Martin Burtscher, Darko Kirovski, Rahul Nagpal, Karthik

Pattabiraman, and Benjamin Zorn. Detecting and Tolerating Asymmetric Races. In

PPoPP, 2009.

[89] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise Interprocedural Dataflow

Analysis via Graph Reachability. In POPL, 1995.

[90] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a Concolic Unit Testing Engine

for C. In FSE, 2005.

[91] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt: A Lan-

guage for Streaming Applications. In CC, 2002.

[92] Nikolai Tillmann and Jonathan de Halleux. Pex - White Box Test Generation for

.NET. In Tests and Proofs (TAP), 2008.

[93] Sam Tobin-Hochstadt and David Van Horn. Higher-Order Symbolic Execution via

Contracts. In OOPSLA, 2012.

[94] Jan Voung, Ranjit Jhala, and Sorin Lerner. RELAY: Static Race Detection on Millions

of Lines of Code. In FSE, 2007.

[95] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 Programs:

Characterization and Methodological Considerations. In ISCA, 1995.

[96] Jingyue Wu, Yang Tang, Gang Hu, Heming Cui, and Junfeng Yang. Sound and Precise

Analysis of Parallel Programs through Schedule Specialization. In PLDI, 2012.

114

[97] M. Xu, M. Hill, and R. Bodik. A Regulated Transitive Reduction for Longer Memory

Race Recording. In ASPLOS, 2006.

[98] Junfeng Yang, Heming Cui, and Jingyue Wu. Determinism Is Overrated: What Really

Makes Multithreaded Programs Hard to Get Right and What Can Be Done About

It. In HotPar, 2013.

[99] Jie Yu and Satish Narayanasamy. A Case for an Interleaving Constrained Shared-

Memory Multi-Processor. In ISCA, 2009.

[100] Jie Yu and Satish Narayanasamy. Tolerating Concurrency Bugs Using Transactions

as Lifeguards. In Micro, 2010.

[101] Cristian Zamfir, Baris Kasikci, Johannes Kinder, Edouard Bugnion, and George Can-

dea. Automated Debugging for Arbitrarily Long Executions. In HotOS, 2013.

[102] Yuan Zhang and Evelyn Duesterwald. Barrier Matching for Programs With Textually

Unaligned Barriers. In PPoPP, 2007.

115

Appendix A
CONCRETE SEMANTICS OF SimpThreads

A.1 Program state in the concrete semantics

H : Loc→ {fields : (Z→ Value)} (heap)

Y : ThreadId→ Stack of (Var→ Value) (local variables)
CallCtx : ThreadId→ Stack of StmtLabel (calling contexts)

TCurr : ThreadId (current thread)

TE : Set of ThreadId (enabled threads)
WQ : List of (Value,ThreadId) (global wait queue)
L+ : ThreadId→ Set of Value (acquired locksets)

A.2 Auxiliary Functions

eval : ((Var→ Value)× Expr)→ Value

This is just as in the symbolic semantics (Section 2.3.1), except that all expressions

can be reduced to values as symbolic constants do not appear in the concrete language.

wqGetOne : (WaitQueue,Value)→ (ThreadId,WaitQueue)

Given wqGetOne(WQ, v), we walk the global queue WQ and return the first thread

(t) waiting on the queue at address v. If found, we return a pair (t,WQ′), where WQ′

is WQ with t dequeued. If the queue at address v is empty, we return ε.

wqGetAll : (WaitQueue,Value)→ (Set of ThreadId,WaitQueue)

As above, except we dequeue all threads waiting on the queue at address v. If that

queue is empty, we return (ε,WQ).

wqAppend : (WaitQueue,Value,ThreadId)→WaitQueue

Given wqGetOne(WQ, v, t), we append the pair (v, t) to WQ .

116

A.3 Statement evaluation rules

The =⇒ relation, defined below, is equivalent to step in the symbolic semantics except

that =⇒ never forks the concrete state. We do not include semantics for the annotations

barrierInit and barrierArrive, as these are no-ops during symbolic execution. We

include a few shorthands for brevity: We elide a domain from a rule if the domain is not

used or updated by the rule. We use Y (without the overline) to refer to the current stack

frame (namely, the youngest stack frame of Y(TCurr)). We write M [k 7→ v] to assign k = v

in map M , and we write M/k to remove the pair k 7→ M(k) from map M . We also elide

rules that check for memory errors such as out-of-bounds accesses and data races, as the

details of these checkers are orthogonal to this dissertation.

H;Y; CallCtx; TCurr; TE; WQ; L+; Bcnts|Stmt =⇒ H′;Y
′
; CallCtx′; TCurr

new ; TE
new; WQ′; L+new; Bcntsnew

size(CallCtx(TCurr)) > 1 Y
′
= Y[TCurr 7→ pop(Y(TCurr))]

CallCtx′ = CallCtx[TCurr 7→ pop(CallCtx(TCurr))] γ′ = top(CallCtx′(TCurr))

Stmts(γ′) = r ← ef (e∗a) eval(Y, e) = v Y′ = top(Y
′
(TCurr))[r 7→ v]

Y; CallCtx; TCurr; TE|return e =⇒ Y
′
[TCurr 7→ replaceTop(Y

′
(TCurr),Y′)]; CallCtx′; TCurr; TE

size(CallCtx(TCurr)) = 1 TCurr
new ∈ TE TCurr

new 6= TCurr

Y; CallCtx; TCurr; TE; L+|return e =⇒ Y[TCurr → ε]; CallCtx[TCurr → ε]; TCurr
new ; TE/TCurr; L+[TCurr → ε]

size(CallCtx(TCurr)) = 1 TE = {TCurr}

Y; CallCtx; TCurr; TE; L+|return e =⇒ ε; ε; ε; ε; ε

eval(Y, e) = i γ = ((i 6= 0) ? γt : γf)

Y; CallCtx; TCurr|br e, γt, γf =⇒ Y; goto(CallCtx,TCurr, γ); TCurr

117

eval(Y, ef) = f eval(Y, ei) = vi

Funcs(f) = func f(ri∗){γ0 : . . .} Y
′
= Y[TCurr 7→ push(Y(TCurr), {ri → vi})]

CallCtx′ = CallCtx[TCurr 7→ push(CallCtx(TCurr), γ0)]; TCurr

Y; CallCtx; TCurr|r ← ef (e∗i) =⇒ Y
′
; CallCtx′; TCurr

eval(Y, p) = ptr(l, i)

(l, {fields}) ∈ H

H;Y|r ← load p =⇒ H;Y[r 7→ fields(i)]

eval(Y, p) = ptr(l, i)

eval(Y, e) = e′ (l, {fields}) ∈ H

H;Y|store p, e =⇒ H[l 7→ {fields[i 7→ e′]}];Y

l = fresh loc

H;Y|r ← malloc(e) =⇒ H[l 7→ {λi.undef}];Y[r 7→ ptr(l, 0)]

true

H;Y|free(p) =⇒ H;Y

eval(Y, ef) = f

eval(Y, earg) = v Funcs(f) = func f(r){γ0 : . . .} Tnew = fresh id

Y; CallCtx; TE|threadCreate(ef, earg) =⇒ Y[Tnew 7→ {{r → v}}]; CallCtx[Tnew 7→ γ0]; TE ∪ {Tnew}

TCurr
new ∈ TE

TCurr; TE|yield() =⇒ TCurr
new ; TE

eval(Y, p) = v wqAppend(WQ, v,TCurr) = WQ′ TE = {TCurr}

Y; TCurr; TE; WQ|wait(p) =⇒ Y; ε; {}; WQ′

eval(Y, p) = v wqAppend(WQ, v,TCurr) = WQ′ TCurr
new ∈ TE TCurr

new 6= TCurr

Y; TCurr; TE; WQ|wait(p) =⇒ Y; TCurr
new ; TE/{TCurr}; WQ′

eval(Y, p) = v wqGetOne(WQ, v) = ε

Y; TE; WQ|notifyOne(p) =⇒ Y; TE; WQ

eval(Y, p) = v wqGetOne(WQ, v) = (hd,WQ′)

Y; TE; WQ|notifyOne(p) =⇒ Y; TE ∪ {hd}; WQ′

118

eval(Y, p) = v wqGetAll(WQ, v) = {Twoke,WQ′}

Y; TE; WQ|notifyAll(p) =⇒ Y; TE ∪ {Twoke}; WQ′

eval(Y, p) = v

Y; TCurr|acquire(p) =⇒ Y; TCurr; L+[TCurr 7→ L+(TCurr) ∪ {v}]

eval(Y, p) = v

Y; TCurr; L+|release(p) =⇒ Y; TCurr; L+[TCurr 7→ L+(TCurr)/{v}]

119

Appendix B
SOUNDNESS AND COMPLETENESS OF THE SYMBOLIC SEMANTICS

We restate and expand on Definition 1 and then restate and give a proof for Theorem

1. These were first stated in Section 2.7.

Definition 1 (Correspondence of concrete and symbolic states). We say that symbolic

state SS models concrete state SK under constraint C if there exists an assignment Σ that

assigns all symbolic constants in SS to values such that (a) Σ is a valid assignment under

the constraint C, and (b) the application of Σ to SS produces a state S′S that is partially-

equivalent to SK (as defined below).

The above definition relies on a notion of partial equivalence between S′S and SK , rather

than true equivalence, because we expand the symbolic memory graph lazily (recall Section

2.4.1). Thus, the symbolic heap may contain a subset of the objects contained in the

concrete heap. Our notion of partial equivalence considers only this overlapping subset of

S′S and SK . Hence, to determine whether S′S and SK are partially equivalent, we must

construct a mapping, λ, that maps locations lS in S′S to isomorphic locations lK in SK .

This is actually a many-to-one mapping as multiple locations in the symbolic heap can alias

a single location in the concrete heap, due to our representation of aliasing in SS .H (again,

recall Section 2.4.1).

We give a complete definition of partial equivalence below:

Definition 2 (Partial equivalence of states). Given a symbolic state SS, an assignment Σ,

and a concrete state SK , let S′S be the state produced when Σ is applied to SS. We assume,

without loss of generality, that the set of locations used by values in S′S is disjoint from the

set of locations used by values in SK .

We check if the memory graph in S′S is isomorphic to a subset of the memory graph

120

in SK , where each memory graph is defined relative to the pointer roots in Y. If no such

isomorphism exists, then S′S and SK are not partially equivalent.

Specifically, we must find a correspondence λ(lS) = lK between heap locations lS from

S′S and lK from SK such that λ satisfies the following conditions. We say that S′S and SK

are partially equivalent if and only if such a λ exits.

• ∀lS ∈ S′S, lS ∈ λ. That is, if location lS is used by any value in S′S (not just in S′S .H),

then it must have a mapping in λ.

• ∀lK ∈ SK .H, if there does not exist an lS such that λ(lS) = lK and lS ∈ S′S .H, then

it should be possible to “expand” some symbolic pointer in S′S to reach such an lS.

Specifically, there should exist an x such that Σ(x) = ptr(l′S , i) and λ(l′S) = l′K (but

l′S /∈ S′S .H, as x should be unexpanded), where either (a) l′K = lK , or (b) l′K 6= lK , but

lK is reachable from l′K in SK .H. In case (a), we expand x directly to a heap object lS

(where λ(lS) = lK), and in case (b), we expand x to some heap object l′S from which

object lS is transitively reachable.

• ∀lS ∈ S′S .H, the heap object at S′S .H(lS) matches the heap object at SK .H(λ(lS)).

We say that two values vS and vK “match” if either vS = vK or if vS = ptr(lS , iS)

and vK = ptr(lK , iK) where λ(lS) = lK and iS = iK .

• T ∈ S′S .Y if and only if T ∈ SK .Y, and further, ∀T ∈ S′S .Y, the stack S′S .Y(T) matches

the youngest stack frames in SK .Y(T). This definition allows SK to have deeper stack

frames than S′S, as the call stacks in S′S may be underspecified (recall Section 2.3.2).

• T ∈ S′S .CallCtx if and only if T ∈ SK .CallCtx, and further, ∀T ∈ S′S .CallCtx, the

stack S′S .CallCtx(T) matches the youngest stack frames in SK .CallCtx(T). As above,

this definition allows SK to have deeper stack frames than S′S.

• TCurr and TE match exactly in S′S and SK .

121

• WQ matches exactly in S′S and SK . If the symbolic WQ uses initial waiter timestamps

{x0, x1, · · · } (recall Section 2.5.2), then those initial entries of S′S .WQ are ordered by

the concrete values of their respective timestamps as assigned by Σ.

• T ∈ S′S .L+ if and only if T ∈ SK .L+, and further, ∀T ∈ S′S .L+, SK .L
+(T) ⊆ S′S .L+(T).

This definition allows S′S .L
+ to be a conservative over-approximation of SK .L

+.

Theorem 1 (Soundness and completeness of symbolic execution). Consider an initial pro-

gram context, an initial concrete state SK for that context, and an initial symbolic state SS:

– Soundness: If symbolic execution from SS outputs a pair (p,C), then for all SK such

that SS models SK under C, concrete execution from SK must follow path p as long

as context switches happen exactly as specified by path p.

– Completeness: If concrete execution from SK follows path p, then for all SS such

that SS models SK under SS .C, symbolic execution from SS will either (a) output a

pair (p,C), for some C, or (b) encounter a query that the SMT solver cannot solve.

Proof. First, we state our assumptions. We assume the underlying points-to analysis is

sound. We assume that isSat is sound, though not necessarily complete. We assume that

synchronization libraries are correctly implemented, as otherwise, the invariants described

in Section 2.5.3 would be incorrect. Note that the initial symbolic state SS is a given in the

statement of the theorem, thus our theorem implicitly assumes correctness of the dataflow

analyses used to construct that initial symbolic state. Finally, our completeness proof is

valid only for paths p in which no thread continues executing after returning from its initial

stack frame (recall from Section 2.3.2 that symbolic execution does not continue beyond

this point). We now prove the theorem:

Soundness. The proof proceeds by induction over the length of an execution trace,

with symbolic and concrete executions proceeding in lockstep. The base case is given. In

the inductive cases, symbolic execution from SS and concrete execution from SK take the

122

next action on path p, resulting in states S′S and S′K , respectively, and we show that the

inductive hypothesis is maintained (i.e., that S′S models S′K under C).

Importantly, our proof must demonstrate that, whenever the symbolic execution makes

a choice (such as at branch statements), the path constraint S′S .C and execution trace

S′S .path must be updated in such a way that the concrete execution is forced to make the

same choice. That is, the concrete execution cannot make a different choice unless it is not

true that SS models SK under C .

In this proof, as a shorthand, we say that an expression in the symbolic state is consistent

with a value in the concrete state if there exists a valid assignment Σ such that, if Σ is applied

to the symbolic expression, then the resulting value matches the concrete value. (This is

merely an application of Definition 1.)

We give one case for each possible program statement:

• return stmt “return e”: The symbolic and concrete executions pop call stacks in the

same mechanical way, hence their updates will be consistent. The consistency of return

value e in the symbolic and concrete executions follows from the inductive hypothesis.

If the current thread T is returning from its final stack frame in SS .CallCtx, then

there are three special cases: (1) T is the only thread in TE, in which case symbolic

execution halts and the path completes; otherwise (2) |SK .CallCtx| = 1 and T exits

from both the symbolic and concrete executions; or (3) |SK .CallCtx| > 1, in which case

the call stacks are underspecified and symbolic execution will not schedule T again

(recall Section 2.3.2). In case (3), on a technical point, to maintain the inductive

hypothesis, we must ensure that T ∈ SS .Y if and only if T ∈ SK .Y (recall Definition

2)—we do this by not removing T from Y or CallCtx when T exits (e.g., see the second

rule for return in the concrete semantics).

• call stmt “r ← ef (e∗)”: The symbolic and concrete executions push call stacks in

the same mechanical way, hence their updates will be consistent. The consistency of

values e∗ in the symbolic and concrete executions follows from the inductive hypoth-

esis. At indirect calls, if the symbolic execution invokes function f , it updates the

123

path constraint to C′ = (C ∧ ef = f). By the inductive hypothesis, the concrete exe-

cution must derefence a function pointer ef that is consistent with C′ in the symbolic

execution. Thus, the concrete execution must invoke the same function.

• branch stmt “br e, γt, γf”: When symbolic execution takes the branch to γt, it

updates the path constraint to C′ = C∧ e (similarly, to C′ = C∧¬e for γf). This con-

straint is sufficiently narrow to force the concrete execution to take the same branch.

• the first access of symbolic pointer x: Suppose the symbolic execution is about

to access pointer x for the first time. In this case, there does not yet exist a record

{x, lx, nx} ∈ SS .A. Such a record will be appended and a new primary object lx

will be allocated. We must show that this update is performed in such a way that

the resulting symbolic state will be consistent with the concrete state. Specifically,

consider all pairs (lS , i) such that Σ(x) = ptr(lS , i), where Σ is a valid assignment

as in Definition 1. We first show that, for all such pairs (lS , i), x = ptr(lS , i) =⇒

SS .H(lS).fields = SS .H(lx).fields. This is ensured by Equation (2.1), which ensures

that lx has an initial state that matches all possible aliases. (Note that this argument

implicitly assumes that the set of aliases is soundly chosen—this follows from our

assumption that our underlying static points-to analysis is sound.) We next show

that, for any lK in the concrete heap that corresponds to one possible lS , the objects

at lK and lS are consistent. This follows directly from the inductive hypothesis when

lS 6= lx, and otherwise, it follows from the fact that we assign each new symbolic heap

object a fresh symbolic array (recall Equation (2.1)).

• memory access stmt “r ←load(p) or store(p, e)”: First we assume that the access

does not have a memory error. By the inductive hypothesis, the pointer p and value

e are consistent in the symbolic and concrete executions. We consider three cases:

(1) p has the form ptr(l, eoff) in the symbolic state. Note that this case can arise

only if l was allocated by a call to malloc during symbolic execution. That is, l cannot

alias any symbolic pointer x in SS , and we do not need to consider the correctness of

124

aliases. Thus, for this case, loads and stores perform the same mechanical action in

both semantics, and we conclude that the resulting states are consistent.

(2) p has the form x or ptradd(x, eoff) in the symbolic state and the action is a

load. Suppose that Σ(x) = ptr(lS , i), where Σ satisfies Definition 1. We must show

that the symbolic and concrete executions read consistent values. By the inductive

hypothesis combined with the above case for the “first access of x,” location lS in the

symbolic heap must be consistent with some corresponding location lK in the concrete

heap. Thus, we conclude that the concrete and symbolic loads will return consistent

values.

(3) p has the form x or ptradd(x, eoff) in the symbolic state and the action is a

store. Suppose again that Σ(x) = ptr(lS , i). By the inductive hypothesis combined

with the above case for the “first access of x,” location lS in the symbolic heap must

be consistent with some corresponding location lK in the concrete heap. We must

show that lS and lK are updated in a consistent manner. This follows from, first, the

fact that symbolic execution updates all l ∈ SS .lookupAliases(x), and second, from

the assumption that our static points-to analysis is sound, which implies that the set

of aliases in SS .A soundly covers all possible aliases in the symbolic heap. Thus, we

conclude that the concrete and symbolic heaps are updated in a consistent manner.

As we do not give detailed semantics for memory errors in this disseration, our

proof will not discuss memory errors in detail. Briefly, at each access of p, the symbolic

execution forks into two states—one with a memory error and one without—and

updates the path constraint C in each state to describe each case. For soundness, the

constraints must be narrow enough so that, if the symbolic execution does (or does

not) follow a path with a memory error, then the concrete execution must (or must

not) follow a path with the same memory error.

• allocator stmt “malloc(e) or free(p)”: Again, as we do not discuss memory errors

in detail in this dissertation, these cases are trivial as the concrete and symbolic

executions both perform the same mechanical action.

125

• threadCreate stmt: The consistency of values ef and earg in the symbolic and

concrete executions follows from the inductive hypothesis. Hence, as this statement

has the same mechanical action in both semantics, the resulting states are consistent.

• yield stmt: By the inductive hypothesis, SS .T
E = SK .T

E. Hence, whichever next

TCurr is selected in the symbolic execution can also be selected by the concrete execu-

tion. Further, we conclude that the same next TCurr will be selected by the concrete

execution, as our inductive hypothesis assumes that context switches in the concrete

execution are dictated precisely by the path output by the symbolic execution.

• wait stmt “wait(p)”: The consistency of value p in the symbolic and concrete exe-

cutions follows from the inductive hypothesis. Hence, WQ is updated the same way

in both executions. Further, as with yield, the next TCurr selected by the symbolic

execution will also be selected by the concrete execution.

• notify stmt “notifyOne(p) or notifyAll(p)”: By the inductive hypothesis, the wait

queues WQ are consistent in both the symbolic and concrete states. Suppose the

symbolic execution wakes a set of threads Twoke (which includes at most one thread for

notifyOne). We submit that the constraints described in Section 2.5.2 are sufficiently

narrow to force the concrete execution to wake the exact same set of threads, Twoke.

• annotation “acquire(p) or release(p)”: By the inductive hypothesis, L+ is consistent

in both the symbolic and concrete states. On acquire, L+ is updated in mechanically

the same way in both the symbolic and concrete semantics (recall Section 2.5.3). On

release, the symbolic semantics removes p from L+(TCurr) only if there exists a lock

in L+(TCurr) that must-equal p given the current path constraint. This makes the

symbolic L+ an over-approximation of the concrete L+, which is allowed by Definition

2.

Completeness. The theorem trivially holds when isSat encounters an unsolvable query.

Thus, in the remainder of this proof, we assume that isSat will soundly resolve any query

it is given.

126

As above, the proof proceeds by induction over the length of an execution trace, with

symbolic and concrete executions proceeding in lockstep. The base case is given. In the

inductive cases, symbolic execution from SS and concrete execution from SK take the next

action on path p, resulting in states S′S and S′K , respectively, and we show that the inductive

hypothesis is maintained (i.e., that S′S models S′K under S′S .C). While the soundness proof

required constraints to be sufficiently narrow to force concrete execution down a specific

path, here we require constraints to be sufficiently wide so that the symbolic execution can

cover all paths that might be followed during the concrete execution.

We again have one case for each possible program statement:

• call stmt “r ← ef (e∗)”: As before, we argue that the symbolic and concrete ex-

ecutions push call stacks in the same mechanical way, hence their updates will be

consistent. At indirect calls, if the concrete execution invokes function f , then the

symbolic execution must cover a path that invokes function f . This follows, first, from

the inductive hypothesis (the expression ef in the symbolic state is consistent with f),

and second, from the assumed soundness of our static points-to analysis that selects

the set of possible target functions for this call site.

• branch stmt “br e, γt, γf”: When symbolic execution takes the branch to γt, it

updates the path constraint to C′ = C∧e (similarly, to C′ = C∧¬e for γf). These two

constraints are sufficiently wide to cover all possible paths that the concrete execution

may take.

• memory access stmt or allocator stmt: In the absence of memory errors, we can

reuse the same argument from the soundness proof to argue that the resulting states

are consistent. In the case of memory errors, recall again that at each access of p,

the symbolic execution forks into two states—one with a memory error (S′S) and one

without (S′′S). For completeness, if the concrete execution encounters a memory error,

then the updated path constraints in S′S .C must be wide enough so that, as execution

proceeds from S′S , the symbolic execution will encounter the same memory error.

127

• yield stmt: By the inductive hypothesis, SS .T
E = SK .T

E. Hence, whichever next

TCurr is selected in the concrete execution can also be selected by the symbolic exe-

cution.

• notify stmt: By the inductive hypothesis, the wait queues WQ are consistent in

both the symbolic and concrete states. Suppose the concrete execution wakes a set of

threads Twoke (which includes at most one thread for notifyOne). We submit that

the constraints described in Section 2.5.2 are sufficiently wide so that, in at least one

forked state, the symbolic execution will explore a path in which the exact same set

of threads, Twoke, is woken.

• return stmt, threadCreate stmt, wait stmt, or annotation: In these cases, the

concrete and symbolic semantics perform essentially the same mechanical updates.

Hence, similarly to the proof cases stated above under soundness, the theorem holds

for these statements. (Further, for wait(p), we observe that, as for yield(), any next

TCurr chosen by the concrete execution can also be chosen in the symbolic execution.)

	List of Figures
	List of Tables
	Overview
	Shared-Memory Multithreading
	The Dark Side of Nondeterminism
	Reasoning about Multithreaded Programs with Symbolic Execution
	Restricting the Schedule Space with Input-Covering Schedules
	Outline

	Symbolic Execution from Arbitrary Program Contexts
	Problem Statement and Overview
	Applications
	A Simple Imperative Language
	Adding Pointers
	Adding Threads and Synchronization
	The Big Picture
	Soundness and Completeness
	Implementation
	Evaluation

	Input-Covering Schedules
	System Overview
	Representing Schedules
	Finding Input-Covering Schedules
	Avoiding Combinatorial Explosion
	Forming Efficient Bounded Epochs
	Implementation
	Discussion of Guarantees
	Evaluation

	Related Work
	Symbolic Execution
	Constrained Execution
	Constructing Abstract Schedule Graphs
	Verifying Multithreaded Programs by Reduction to Sequential Programs

	Conclusions and Future Opportunities
	Summary of Conclusions
	Limitations
	Future Opportunities

	Bibliography
	Concrete Semantics of SimpThreads
	Program state in the concrete semantics
	Auxiliary Functions
	Statement evaluation rules

	Soundness and Completeness of the Symbolic Semantics

