
Abstract 
Intelligent systems will often need to collect input from 
users, to provide labels for training data or to correct 
mistakes the system makes. One interesting avenue of 
research is how to formulate the questions an intelligent 
system asks a user, in order to obtain the most accurate 
responses. In this paper, we study the impact of varying 
5 dimensions of questions on response accuracy: indi-
cating uncertainty, amount of context, level of context, 
suggesting an answer and asking for supplemental in-
formation. In a study of an email sorting task, we show 
that there is a combination that results in higher levels 
of accuracy than other combinations and validate this 
combination in a comparison to questions that a panel 
of HCI and email experts chose. The contributions of 
the paper are the approach to determine the best combi-
nation of dimensions, the validated combination, and a 
demonstration of how this type of question interaction 
can improve intelligent systems.  

1 Introduction 
There has been a lot of research on active learning systems, 
in which intelligent systems choose data that they are most 
uncertain about and need labels for, and ask users to provide 
those labels. Active learning is commonly used when there 
is lots of available data, but labeling this data is very expen-
sive. Using active learning can reduce the number of exam-
ples that the intelligent system needs to produce an effective 
learning system. While much of the work in active learning 
has focused on selecting the appropriate examples to ask the 
user about, there has been considerably less attention paid to 
the manner in which these questions are asked.  
 In particular, we are interested in understanding whether 
we can determine the content of questions, in order to im-
prove the accuracy of user responses. Correct labels are es-
sential for drawing correct conclusions from observed data. 
Inaccurately labeled data results in poorer accuracy of a 
machine learner, which may believe it predicts labels cor-
rectly, but really does not. For example, a physical activity 
coach may predict that a user is lazy and not moving when 
he is really running. If the coach reports the activity data to 
the user’s doctor, the doctor would have incorrect informa-
tion with which to diagnose or may draw incorrect conclu-
sions about the cause of an illness. 
 We are interested in how a computer can help elicit labels 
from users for data to automate the process of labeling data, 

as is often done with experience sampling [Larson and Csik-
szentmihalyi, 1983]. More specifically, we want to 
maximize the proportion of correct labels users provide so 
that data is as accurate as possible (e.g., [Hoffmann, et. al., 
2009]). Knowledge elicitation techniques such as interviews 
and scenario simulation can be used to acquire very accurate 
labels from people, and even obtain supplemental informa-
tion about the data, like rules or generalizations for how 
classify similar observations [Shadbolt and Burton, 1990]. 
These techniques have been traditionally performed by peo-
ple, but recent work has shown that a computerized knowl-
edge elicitor (KE) can collect labels from users when it ex-
plains scenarios about what it wants labeled [Stumpf et al., 
2007]. However, this work does not focus on maximizing 
the accuracy of the labels.  

The focus of our work is to understand how varying a 
knowledge elicitor’s questions affects the accuracy of users’ 
responses. We vary the elicitor’s questions across five di-
mensions taken from the HCI literature and incorporate both 
dimensions for contextual information and usability tech-
niques: explaining that the active learner is uncertain, the 
amount of identifying context to provide, the level of that 
context, whether the learner predicts an answer to the ques-
tion, and whether it asks for additional input. We apply this 
approach to an email sorting task and using the results of the 
study, we contribute a set of guidelines for how a knowl-
edge elicitor should formulate questions to optimize the 
accuracy of users’ responses. We validate those results 
against HCI community advice about how to ask questions 
and show that our guidelines are better than the community 
advice. Next, we discuss related work on computerized 
knowledge elicitation.  

2 Related Work 
The interpretation and understanding of language has been 
of interest to the social psychology and human-computer 
interaction (HCI) research communities for years. Differ-
ences in understanding between a researcher and respon-
dents can affect the validity and reliability of surveys and 
questionnaires and the usability of interfaces [Presser, 
2004]. The social psychology and HCI communities have 
developed guidelines on how to write survey questions and 
techniques like focus groups, interviews, cognitive 
walkthrough, and pretests to help researchers iterate on and 
improve their surveys and user interfaces [Jeffries et al., 
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1991].  
We focus on the active elicitation of classifications from 

users for learning, although other techniques like implicit 
learning and critiquing have also been shown to be effective 
for learning [Steinfeld, et. al., 2006; Gajos and Weld, 2005]. 
The goal of our work is to present guidelines for designing 
understandable questions that intelligent systems can ask 
users to improve their learning and reasoning abilities. We 
draw the content of these questions from data that an intelli-
gent system already collects and reasons about, namely un-
certainty, context, prediction, and feature selection. These 
dimensions have been examined in previous HCI work on 
personalized interfaces, but their effects on how humans 
respond have not been widely studied. We now discuss why 
these 5 dimensions are relevant to questions asked by intel-
ligent systems.  

1) Uncertainty: Intelligent systems must calculate their 
uncertainty in order to decide when to ask for help. Studies 
on context-aware, expert, and recommender systems all 
show that providing users with the level of uncertainty in a 
system’s predictions improves its overall usability (e.g., 
[Antifakos et al., 2004; Banbury et al., 1998]). Additionally, 
in one task where users had to remember a set of numbers 
given an imperfect memory aid, users showed improved 
recall when they were given the uncertainty/confidence in-
formation compared to the same display without the uncer-
tainty information [Antifakos et al., 2004]. An intelligent 
system that tells the user that it is uncertain may not only 
improve its usability but also user accuracy in responding to 
questions.  

2) Context Amount and 3) Context Level: In order for in-
telligent systems to interact with the environment, they re-
ceive sensor data from their environment or interface. If 
they are uncertain of how to act, they can obtain assistance 
from the user and then learn to associate their current con-
text (state) with the new action. Additionally, the user may 
require the intelligent system’s contextual information to 
understand what the system is referencing in its question. 
Studies have shown that when a human and robot share a 
common frame of reference in the environment, they can 
communicate more effectively (e.g., [Torrance, 1994; Topp 
et al., 2006; Steel, 2003]). However, it is unclear how much 
contextual information is needed to answer questions accu-
rately and how much is too much when a user starts finding 
the explanation annoying. Similarly, it is unclear whether 
low-level context or sensor data is more beneficial than in-
ferred or high-level context. 

4) Prediction: When an intelligent system asks a user for 
help, it requires additional effort on the part of the user to 
understand what is being asked, limiting the user’s produc-
tivity (e.g., [Shiomi et al., 2008]). In HCI, there has been an 
effort for agents to proactively provide predictions of the 
next action to take and warnings that errors are about to 
occur in order to reduce the cognitive load of humans who 
are assisting them (e.g., [Shiomi et al., 2008; Stumpf et al., 
2005]). The idea is that confirming an answer is easier than 

generating an answer reducing the amount of work the user 
has to do and possibly increasing the accuracy of the re-
sponse.  

5) Feature Selection: Intelligent systems may collect a lot 
of sensor data, but may only process some of it for complet-
ing a certain task. If they have picked the wrong features of 
the data to process, this may affect the system’s ability to 
complete the task correctly or may require that the system 
ask for help more often. If the system asks whether the fea-
tures it selected are correct, it could confirm or change the 
features as necessary, possibly reducing the number of fu-
ture questions. Although the extra question takes more time 
initially to answer, recent work in classifying email has 
demonstrated that a human may be more willing to give 
more time to provide the feedback as they are already inter-
rupted, if it may decrease the possibility of additional inter-
ruptions [Stumpf et al., 2007; Stumpf et al., 2008].  

We vary whether the intelligent system can provide dif-
ferent combinations of these dimensions in the questions it 
poses to users, and study the effects on the answers. We 
study all dimensions together to find dependencies and cor-
relations between them and provide guidelines on the con-
tent of intelligent systems’ questions to maximize the accu-
racy of the users’ responses. We present a systematic analy-
sis of these five dimensions below. 
3 Method 
We conducted a study to test the correctness of users’ re-
sponses to an intelligent systems questions, based on varia-
tions in the content of those questions. In this case, the intel-
ligent system was an email sorting system, attempting to 
classify all the email into distinct categories, and sort the 
email based on those categories. Email it could not sort was 
placed in the “Unsorted” folder and used to solicit input 
from users.  

Thirty-seven participants (ages ranging from 18-61) were 
provided with a traditional email interface containing email 
about tasks for planning an upcoming academic conference. 
Participants were recruited from a popular experiment web-
site through the university, but only half them were stu-
dents. All of the participants were computer literate and had 
no trouble using Microsoft Excel, none of the participants 
had experience with writing machine learning algorithms, 
but half reported they helped a system learn – most from 
Gmail “reporting spam” and training speech recognition 
software. They were given the primary task of reading the 
email and consolidating all the changes that needed to be 
made to the conference schedule and website, using a pro-
vided spreadsheet. They were told that the application had 
already sorted most of the emails into folders based on the 
type of changes that needed to be made to the planning 
spreadsheet, and that it would ask them for help in sorting 
the rest, as they performed their planning task. Participants 
were given a limited amount of time to perform their task 
and were told that they could ignore these questions if they 
delayed their progress on the primary task. They were given 



the incentive to respond to questions, by being told that they 
would complete the task a second time, and that any feed-
back they provided to the learning system would be used in 
their second trial, helping them complete this latter trial 
more quickly. By making the labeling task secondary, we 
allow more users to help when they can without requiring 
full commitment to making contributions all the time 
[Hoffmann et. al., 2009].  

The emails and task were selected and modified from the 
RADAR experiments dataset [Steinfeld et al., 2006]. Each 
email in the dataset was labeled with a folder, used in this 
study. Additionally, we labeled each email with two "low 
level" keyword fields (one for sufficient and one for extra 
context) and two "high level" summary fields. The email 
interface was built with Adobe Flex. The email sorting ap-
plication was Wizard-of-Oz’ed and questions from the ap-
plication were automatically triggered when subjects clicked 
on "Unsorted" emails. The questions appeared in a pop-up, 
froze the rest of the interface, and would not disappear until 
users answered whether they were willing to answer the 
learner's question. Although users could read the subject 
line without being asked the questions, many subject lines 
did not provide enough information to classify the email 
before reading the email body. Additionally, subjects were 
allowed to read the text of the email while the question was 
up, but the rest of the email text was filler and did not pro-
vide any additional clues. This design ensured all partici-
pants were asked the same questions when they clicked on 
the same email.  

3.1 Question Wording Dimensions  
The five dimensions we use to formulate the KE's questions 
have been used in the previous work presented in the Re-
lated Work section, namely indicating uncertainty, provid-
ing context, high/low level context, suggesting an answer, 
and requesting supplemental information. We examine all 
dimensions at once to find dependencies and correlations 
between them. The content of the questions varied along 
these 5 dimensions for a 2x3x2x2x2 design, between sub-
jects as follows:  
1. Indicating Uncertainty: Whether the KE notifies a 

human that the active learner is uncertain of what to do 
or not (e.g., [Antifakos et al., 2004]). Half the subjects 
were told that the sorting system could not sort the 
email, while the other half were given no information 
about uncertainty. 

2. High/Low Level Context: Whether the KE gives either 
low (e.g., sensor) level context or high (e.g., activity) 
level context (e.g., [Salton and Buckley, 1990]). In the 
email talk, the low level context are keywords taken di-
rectly from the email while the high level context is a 
summary of the email. We ensured that the summary 
covered all keywords so that both conditions received 
the same context, just in different forms. 

3. Providing Context: The amount of contextual or iden-
tifying information the KE should provide a user before 

asking for a label, namely none, sufficient, and extra in-
formation (e.g., [Stumpf et al., 2007]). In the email 
task, we vary the number (0, 2, or 4) of keywords or the 
length (0, 1, or 2 sentences) of the summary. Sufficient 
context is enough for a user to determine the folder 
without any other information, while extra context is 
twice as much information. 

4. Suggesting an Answer: Whether the KE tells the hu-
man what the active learner predicts the answer to the 
question is (e.g., [Stumpf et al., 2005]). Half of the us-
ers received a correct prediction from the system about 
which folder the email should be sorted, and half re-
ceived no prediction. 

5. Requesting Supplemental Information: Whether the 
KE asks the human for additional input to generalize 
their response to other similar problems (e.g., [Stump et 
al., 2005]). For example, half the users were asked why 
they thought an email they provided a label for should 
be sorted in a particular folder. 

Putting it Together 
When the KE combines all dimensions above, it might ask a 
user the following question about an email being read: 

Activity Recognizer: "Cannot determine how to sort 
this email. It is about an emergency and the author is 
not available Wednesday. What folder does this belong 
in? Prediction: Schedule Changes." 
Human: Answers 
Activity Recognizer Follow Up: "How can this folder 
be detected in the future?" 
Human: Answers e.g., “It contains the words “talk” 
“change” or “reschedule” and a day of the week. 

Each sentence in the interaction above is based on one of the 
dimensions above. Based on the KE's capability to provide 
information on the dimensions (i.e., conditions of the study), 
the corresponding sentence can be removed or changed. For 
example, if the KE cannot provide high level information, 
cannot ask for additional information, cannot indicate uncer-
tainty, and can only provide sufficient context, it might in-
stead ask:  

Activity Recognizer: “The author is John Doe, the 
subject is “Change Talk Time”, and the email contains 
keywords “emergency” and “any day but Wednesday”. 
What folder does this belong in? Prediction: Schedule 
Changes." 
Human: Answers, with no follow up 

Each participant experienced one of the 36 possible types of 
questions from the 2x3x2x2x2 design space for each do-
main, removing the conditions for high/low level context 
when participant receives the “no context” condition for the 
providing context dimension.  

3.2 Measures 
Because an active learner would benefit more from correct 
answers to questions rather than incorrect ones, we assessed 



the user responses to the questions primarily based on cor-
rectness, but also on the quality of supplemental information 
when available. We also gave subjects surveys about their 
opinions of the applications asking questions including 
whether they found them annoying. 

Correctness: Users responses were classified as correct 
answers if their last answer (some users changed their 
minds) was correct and incorrect otherwise [Hoffmann, et. 
al., 2009]. For example, if a subject disagreed with the sug-
gestion, but gave an equally correct reference, it was classi-
fied as correct.  

Supplemental Information: If a user received a request 
for additional information, their response was coded based 
on how much additional information was provided. A value 
of 0 was given to a response that provided no additional 
information (e.g., "I don't know"). Every piece of valid in-
formation increased the value by 1.  

Qualitative: After completing the task, participants were 
given questionnaires on their experiences with each tech-
nology. They were asked whether they thought the applica-
tion’s questions were annoying and whether they found each 
of the five dimensions particularly useful. Answers were 
coded as either "Yes" or "No" to each of the six questions.  
Participants were also asked the difficulty of answering the 
questions on a Likert scale from 1 (very easy) to 5 (very 
hard).  

4 Results  
All five dimensions had an impact on the accuracy of user 
responses to questions. The McNemar test with the Chi-
Square statistic were used to analyze the significance of the 
categorical response (correctness) against the categorical 
independent variables (our five dimensions). T-tests and 
One-way ANOVAs were used to analyze the significance of 
the secondary continuous response (quality of supplemental 
information) against the independent variables (our five 
dimensions). Based on the set of results for each domain, we 
define a set of guidelines that a KE should use when plan-
ning the wording of scenarios and questions to present to 
users. We validate those guidelines against advice we re-
ceived from HCI experts on how to present and request in-
formation from users.  

We analyzed the effects of each individual dimension 
first on the proportion of correct answers the KE received. 
Subjects answered a statistically significant larger propor-
tion of questions correctly when given low level context 

(63%) versus high level context (54%)%) (χ2[2,2] = 10.57, 
p<.01). No other single dimension was significant. 

In order to understand how the remaining dimensions af-
fected user performance, we then analyzed the effects of 
combining them with the significant dimensions and each 
other. Figure 3a shows the percentage of questions correctly 
answered for the different choices of context. We can see 
that there is an effect of context on accuracy. Subjects had 
significantly fewer correct answers when they received no 
context (53%) or extra context (48%) compared to subjects 
who received sufficient context (60%) and this effect is 
heightened when combined with the level of context 
(χ2[4,2] = 11.04, p<.01). Subjects also provided a statisti-
cally significant greater proportion of correct answers when 
they received a prediction with sufficient context (78%) 
compared to when they did not (50%) or when they received 
other amounts of context (55%) (χ2[2,2] = 7.72 p<.01). 
However, we found a significant paired effect of amount of 
context with predictions. When subjects received no sugges-
tions, they provide more correct answers with extra context 
(71%) compared with sufficient context (35%), but when 
they receive suggestions, they provide more correct answers 
with sufficient context (90%) compared to extra context 
(50%) (χ2[4,2] = 7.82 p<.05). 

We found that if we provide sufficient context, indicate 
uncertainty increases the proportion of correct answers 
significantly from 46% to 70% (χ2[4,4] = 11.56 p<.01). We 
found a significant paired effect of prediction with uncer-
tainty (χ2[2,2] = 8.70 p<.01). Finally, we found that request-
ing additional information resulted in an increase from 
30% to 90% in correct answers when paired with uncer-
tainty but a decrease from 87% to 45% when no uncertainty 
information is provided (χ2[2,2] = 12.21 p<.02). 

We analyzed the survey responses to understand how use-
ful subjects felt the questions were and more specifically 
how useful they felt each dimension was. We found that 
50% of subjects thought the email questions were useful to 
them when performing their task while 41% found answer-
ing the questions annoying. When we look at the perception 
of usefulness for each dimension, a majority of subjects who 
saw each dimension thought they were useful. 90% of sub-
jects found context useful when they received at least suffi-
cient context, and 100% of subjects who were given sugges-
tions by the KE found them useful. Additionally, 78% of 
subjects who were asked to give supplemental information 

     
           (a) Subjects’ Correctness by Amount of Context                    (b) Subjects’ Correctness by Suggestion             (c) Subjects’ Correctness by Level of Context 

Figure 3: Using results from our study, we developed guidelines along our five dimensions for how a KE should ask questions. 



found it useful and 71% of participants who received uncer-
tainty information found it useful. 

Based on these results, we conclude that the KE should 
use the following guideline when asking questions: indicate 
uncertainty, provide sufficient low-level context, suggest 
an answer, and request supplemental information.  

5 Validation  
We asked for advice from 3 members of the HCI commu-
nity who conduct research in email sorting systems about 
how the KE should formulate questions along our dimen-
sions. The community members understood both the techni-
cal data that could be collected from the domains and the 
usability requirements necessary for effective communica-
tion to users. We validate that our guidelines are at least as 
good as, if not better than, the community advice based on 
the proportion of correct answers and user opinions. 

We explained each dimension to a group of HCI re-
searchers and gave examples of how we combined the di-
mensions together. The researchers discussed the dimen-
sions together and then reported their consensus about what 
combination they thought would elicit the most correct an-
swers from users for the email task. The consensus reached 
was different then the results of our study in two ways (with 
differences shown in bold): 

indicate uncertainty, provide low-level extra context, 
suggest an answer, and do not request supplemental in-
formation 

5.1 Validation Method  
We conducted a within-subject study in order to validate 
that our guidelines improve the proportion of correct an-
swers that people give the KE compared to the community 
input. Subjects were told that they would be testing two 
different ways the technology learns from asking them ques-
tions. Similar to the first study, participants were told that 
they would complete both "learning" tasks to teach both 
applications first and then later they would complete per-
formance tasks to test how well each learned from them. 
The order of the two conditions was randomized for each 
study, and the technologies were Wizard-of-Oz’ed for con-
sistency in asking questions. Each "learning" task was 12 
minutes long and the subjects were given surveys after each 
task. Then they were told they did not have time to complete 
the performance tasks. We scored participants' answers and 
collected qualitative measures through surveys. 

5.2 Validation Results  
T-tests used to analyze the significance of the categorical 
response (correctness) against the two types of questions 
(our guidelines and the community advice). We found a 
significant effect of the type of question on the proportion of 
correct responses (t[2,250] = 2.48, p<.01). Subjects who 
received our guidelines were correct 100% of the time, 
while those two received the community advice were cor-
rect 94%. A majority (8/11) people preferred the community 

advice but (7/11) people thought that our guidelines were 
learning more. When we analyze the dimensions where our 
guidelines and the community advice differed, more people 
preferred our context (58% vs. 40%) and suggestions (63% 
vs. 40%) to the community advice. 

6 Discussion  
We present two main contributions in this work, which we 
now discuss in detail. First, we have presented an approach 
to testing a knowledge elicitor’s questions. This approach is 
thorough in its evaluation of our dimensions and can be 
used to investigate other dimensions and other domains. We 
have shown that by using our approach of testing a KE’s 
questions, we can identify guidelines that provide users with 
clear enough content that they provide significantly more 
correct or higher quality responses than other questions 
(along our chosen dimensions).  

Second, we have validated these guidelines against ques-
tions generated from community advice and show that for 
our email sorting application, our guidelines perform better 
and are preferred by users. 

6.1 Approach  
We present an approach to understanding how users’ re-
sponses are affected by a knowledge elicitor’s questions 
based on five dimensions. It requires we enumerate all pos-
sible combinations of those 5 dimensions to test the impact 
of each one and additionally all the dependencies between 
them. If we had only tested combinations of dimensions that 
were closely linked to the community advice, we would not 
have found our guidelines. While this technique ensures that 
we do not leave out any combination that may be the best, it 
can be expensive to use.  

5.2 Determining the Best Guidelines 
We expected to find significant effects of the dimensions in 
order to help us determine “best” guidelines. Some of our 
results show not only statistically significant but large ef-
fects of dimensions, especially pairs of dimensions. For ex-
ample, when we paired the dimensions with sufficient con-
text, we find that participants increased their proportion of 
correct answers by almost 30% between high- and low-level 
context and participants increased their proportion of correct 
answers from 36% to 82% when they were given sugges-
tions. For results like these, it is easy to see what effect this 
difference could have on the accuracy of a machine learning 
system that used this labeled data. A system would have a 
much higher chance of finding the right boundaries to dis-
tinguish different labels if it had a lot more accurately la-
beled data. If these boundaries are not identified correctly, 
the machine learning system will produce inaccurate predic-
tions or classifications.  

Additionally, our final validation result found a statisti-
cally significant difference between the two conditions of 
6%.  Although this difference seems insignificant when cor-
rect classification rates are 94% and 100%, the 6% differ-



ence could drastically change a classification boundary for a 
learning algorithm and as a result drastically increase the 
error rate of the predictions. Users would much prefer a 
spam filter, for example, that was close to 100% accurate, 
rather than 94% accurate, where it was mis-classifying 6 out 
of every 100 emails incorrectly. Any amount of incorrectly 
labeled data, depending on the learning algorithm, could 
increase error rates so it is critical to optimize the accuracy 
of the users’ responses as much as possible. 

7 Summary  
Researchers often instrument an interface or the environ-
ment with sensors to collect observational data but it can be 
difficult to label that data accurately. To automate the proc-
ess of collecting the most accurate labels possible, we use a 
knowledge elicitor to ask users questions. This is a prime 
example of how HCI expertise can be used to improve the 
intelligence of systems. By improving the accuracy of la-
beled information, intelligent systems can be more accurate 
and provide better service to their users. 

The contribution of our work presented here is two-fold. 
First, we present an approach for understanding how a 
knowledge elicitor can formulate questions to ask users 
about labeling data. We show that this approach success-
fully identifies questions that users respond well to along 
each dimension in order to provide correct labels. 

Second, we describe a set of guidelines derived from the 
results of our study and validate our guidelines against HCI 
community advice in the relevant domains to prove that they 
are better, along the dimensions of response accuracy and 
usability. Based on additional tests we conducted in other 
domains (not reported here), we believe these guidelines are 
applicable far beyond the single email sorting task we inves-
tigated and could be used today without further validation 
when users have domain knowledge about the task or data 
they are working with. 

This work focuses on a specific set of dimensions for 
classification problems. Additional work is needed to pro-
vide guidelines and validation for other types of questions a 
knowledge elicitor may ask and other dimensions that may 
affect how humans understand and answer questions. In 
addition, we would like to see how well our existing guide-
lines apply to other domains and tasks. Our work also does 
not focus on every possible domain or type of task. Addi-
tionally, future work is needed to test these guidelines in 
long-term data collections and active learning applications.  
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