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________________________________________________________________________ 

 
A person seeking another person’s attention is normally able to quickly assess how interruptible the other 

person currently is.  Such assessments allow behavior that we consider natural, socially appropriate, or simply 
polite.  This is in sharp contrast to current computer and communication systems, which are largely unaware of 

the social situations surrounding their usage and the impact that their actions have on these situations.  If 

systems could model human interruptibility, they could use this information to negotiate interruptions at 
appropriate times, thus improving human computer interaction.   

 

This paper presents a series of studies that quantitatively demonstrate that simple sensors can support the 
construction of models that estimate human interruptibility as well as people.  These models can be constructed 

without using complex sensors, such as vision-based techniques, and their use in everyday office environments 

is therefore both practical and affordable.  Although currently based on a demographically limited sample, our 
results indicate a substantial opportunity for future research to validate these results over larger groups of office 

workers.  Our results also motivate the development of systems that use these models to negotiate interruptions 

at socially appropriate times. 

 
Categories and Subject Descriptors: H5.2 [Information Interfaces and Presentation]: User Interfaces; H5.3 
[Group and Organization Interfaces]: Collaborative Computing; H1.2 [Models and Principles]: 

User/Machine Systems; I2.6 [Artificial Intelligence]: Learning. 

General Terms: Design, Measurement, Experimentation, Human Factors. 
Additional Key Words and Phrases: Situationally appropriate interaction, managing human attention, 

context-aware computing, sensor-based interfaces, machine learning. 

________________________________________________________________________ 
 

 

1. INTRODUCTION  

People have developed a variety of conventions that define what behavior is socially 

appropriate in different situations [1].  In office working environments, social 

conventions dictate when it is appropriate for one person to interrupt another.  These 

conventions, together with the reaction of the person who has been interrupted, allow an 

evaluation of whether or not an interruption was appropriate.  Social conventions around 

interruptions also allow the development of an a priori expectation of whether or not an 

interruption would be appropriate [20].     

Current computer and communication systems are largely unaware of the social 

conventions defining appropriate behavior, of the social situations surrounding them, and 

the impact that their actions have on social situations.  Whether a mobile phone rings 

while its owner is in a meeting with a supervisor or a laptop interrupts an important 

presentation to announce that the battery is fully charged, current computer and 

communication systems frequently create socially awkward interruptions or unduly 
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demand attention because they have no way to determine whether it is appropriate to 

interrupt.  It is impossible for these systems to develop informed a priori expectations 

about the impact their interruptions will have on users and the social situations 

surrounding usage.  As computing and telecommunications systems have become more 

ubiquitous and more portable, the problem has become more troublesome. 

People who design or use computer and communication systems can currently adopt 

two strategies for managing the damage caused by inappropriate interruptions.  One 

strategy is to avoid building or using proactive systems, forcing systems to be silent and 

wait passively until a user initiates interaction.  Although this approach is reasonable for 

many applications in a desktop computing environment, many applications in intelligent 

spaces and other mobile or ubiquitous computing environments could benefit from a 

system being able to initiate interactions [22].  A second strategy is to design and use 

systems that can be temporarily disabled during potentially inappropriate time intervals.  

However, this approach can be self-defeating.  Turning off a mobile phone prevents 

unimportant interruptions, but it also prevents interruptions that could have conveyed 

critically important information.  Because systems do not have a mechanism for weighing 

the importance of information against the appropriateness of an interruption, people are 

forced into extremes of either allowing all interruptions or forbidding all interruptions.  

This problem is amplified because people forget to re-enable systems after a potentially 

inappropriate time interval has passed [34].   

If we could develop relatively robust models of human interruptibility, they might 

support a variety of significant advances in human computer interaction and computer 

mediated communication.  Such models do not need to deprive people of control.  For 

example, mobile phones could automatically inform a caller that the person being called 

appears to be busy, allowing the caller to consider the importance of the call in deciding 

whether to interrupt the apparently busy person or instead leave a message [40].  Email 

and messaging applications might delay potentially disruptive auditory notifications for 

less important messages, but never prevent delivery of the information.  Information 

displays might choose between several methods of conveying information according the 

current appropriateness of each method of communication.  Many specific applications 

could be designed for different domains.  For example, information about interruptibility 

might be combined with information on expertise and other relevant factors to 

automatically route incoming technical support requests to the most appropriate member 

of a technical support staff. 
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McFarlane tested four known methods for deciding when to interrupt people [32, 33].  

Although his results have implications for structuring appropriate interactions, no single 

method emerged as best across all performance measures.  Czerwinski et al studied 

interruptions created by instant messages and the effect of these interruptions on different 

computer tasks [7, 8, 9].  Importantly, they found that an instant messaging notification is 

disruptive to task performance even when it is ignored.  These studies focused on very 

specific computer tasks, and leave open questions related to the effect of interruptions on 

the social situations surrounding computer usage.  Voida et al discuss such social 

situations while analyzing tensions in instant messaging related to uncertainty about the 

level of attention being given by a remote person [42]. They suggest that instant 

messaging applications might benefit from providing better indications of the availability 

of a remote person.  Begole et al present temporal analyses of activity logs from an 

awareness application for distributed workgroups [2, 3].  They find that certain patterns 

may indicate when a person will become available for communication, but note that only 

information related to computer usage is available for their analyses. 

Horvitz et al have shown that models can be used to infer goals and provide 

appropriate assistance [24].  Observing low-level mouse and keyboard events, their 

Lumière prototype modeled tasks that a person might be performing and used its 

interpretation to provide assistance.  Oliver et al’s SEER system uses models to recognize 

a set of human activities from computer activity, ambient audio, and a video stream [36].  

These activities are a phone conversation, a presentation, a face-to-face conversation, 

engagement in some other activity, conversation outside the field of view of the camera, 

and not present.  The activities SEER models may relate to interruptibility, but they are 

examined only in a controlled environment and cannot directly estimate interruptibility. 

Horvitz et al present methods for estimating the importance of a potential interruption 

in their discussion of the Priorities prototype [25].  Although they focus on using a text 

classification strategy to identify important emails, they note that the methods they 

present can apply to other classes of notifications.  These types of methods will be 

important to creating systems that balance interruptibility against the importance of 

potential interruptions. 

Hudson et al used an experience sampling technique to explore the perceptions that 

managers in a research environment had about interruptions [26].  They found that there 

was a tension between desiring uninterrupted working time and the helpful information 

sometimes obtained from an interruption.  In a result similar to that discussed by Perlow 
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[37], Hudson et al found that people sometimes isolate themselves from potential 

interruptions by ignoring notifications or moving to a different physical location.  We 

point out that this strategy demonstrates the problem we previously discussed, that people 

forbid all interruptions because the systems they use cannot determine whether a potential 

interruption is appropriate.  Hudson et al proposes that researchers focus on making 

interruptions more effective and suggests socially translucent systems [12] as an 

approach.  Bellotti and Edwards express a similar concern that context-aware systems will not 

always get it right, and need to be designed such that they defer to people in an accessible 

and useful manner [4]. 

This paper describes work to develop and quantitatively evaluate sensor-based 

statistical models of human interruptibility.  Because people use social conventions and 

externally visible cues to estimate interruptibility, rather than relying on invisible internal 

phenomena like cognitive state, it should be possible to develop such models empirically.  

One approach would be the top-down creation, deployment, and evaluation of various 

combinations of models and sensors.  However, the uncertainty surrounding the 

usefulness of various sensors makes it very likely that significant time and resources 

would be spent building and evaluating sensors ill-suited or sub-optimal for the task.  

This work is instead based on a bottom-up approach, in which we collected and analyzed 

more than 600 hours of audio and video recordings from the actual working 

environments of four subjects with no prior relationship to our research group.  We 

simultaneously collected self-reports of the interruptibility of these subjects.  Using these 

recordings, we have examined human estimates of the interruptibility of the people in the 

recordings.  We have also created models of interruptibility based on the assumption that 

changes in behavior or context are indicative of interruptibility.  These models use sensor 

values that were manually simulated by human coding from the recordings, using a 

Wizard of Oz technique [10, 31].     

This paper shows that models of interruptibility based on simple sensors can provide 

estimates of interruptibility that are as good as or better than the estimates provided by 

people watching audio and video recordings of an environment.  More specifically, we 

present a study demonstrating that people viewing the audio and video recordings can 

distinguish between “Highly Non-Interruptible” situations and other situations with an 

accuracy of 76.9%.  A model based on manually simulated sensors makes this same 

distinction with an accuracy of 82.4%.  Both of these accuracies are relative to a chance 

accuracy of 68% that could be obtained by always estimating that a situation was not 
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“Highly Non-Interruptible.”  These types of models can be built using only a handful of 

very simple sensors.  While this study is based on a limited demographic and will need to 

be validated for different groups of office workers, this result is still very promising.  The 

favorable comparison between human judgment and our models indicates an opportunity 

for using interruptibility estimates in computer and communication systems. 

In the following section, we introduce our subjects, the collection of audio and video 

recordings in their work environments, and the specifics of their interruptibility 

self-reports.  Afterwards, we present an overview of this collected data, as described by 

the interruptibility self-reports and our set of manually simulated sensors.  This is 

followed by a presentation of our first study, examining human estimates of 

interruptibility based on the recordings.  We then move to our second study, discussing 

models of interruptibility based on manually simulated sensors, including an analysis of 

the usefulness of various sensors and a comparison of these models to human estimates.  

We next present models based on limited automated analyses of the recordings.  Finally, 

we offer a short conclusion and discuss opportunities for future work. 

2. DATA COLLECTION 

The recordings discussed in this paper were collected in the actual working environments 

of four subjects with no prior relationship to our research group.  To increase uniformity 

for this exploratory work, we selected four subjects with similar working environments 

and tasks.  Each subject serves in a high-level staff position in our university, with 

significant responsibilities for day-to-day administration of a large university department 

and/or graduate program.  The subjects have private offices with closable doors, but their 

responsibilities require them to interact with many different people and they generally do 

not have full control over their time.  They usually worked with their doors open and 

responded to a variety of “walk in” requests.  Because they almost never closed their 

office doors, it is likely that the absence of this explicit indication of non-interruptibility 

makes it more difficult to estimate their interruptibility. 

Recordings were collected using a computer with an 80 GB disk and an audio/video 

capture card connected to a small camera and microphone.  Subjects could disable 

recording for thirty minutes by pressing the space bar.  The computers had speakers, used 

for informing subjects that recording had been disabled, to advise them recording was 

about to resume, and to request interruptibility self-reports.  They did not have displays.  

Signs were posted to alert guests to the presence of a recording device, and the subjects 
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were encouraged to disable recording if they or a guest was uncomfortable.  We also 

provided subjects with a mechanism for retroactively requesting recordings be destroyed. 

Grayscale cameras with wide-angle lenses were mounted in the office such that both 

the primary working area and the door were visible.  Figure 1 shows images from two of 

the cameras.  Video was captured at approximately 6 frames per second, at a resolution of 

320x240.  Audio was captured at 11 KHz, with 8-bit samples.  The machines were 

deployed for between 14 and 22 workdays for each subject, recording from 7am to 6pm 

on workdays.  Our setup worked well except in one case where a week of data was lost 

because an undetected improper compression setting caused the disk fill prematurely.  

For this subject, we collected an additional 10 days of data at a later date.  A total of 602 

hours of recordings was collected from the offices of these four subjects.   

Subjects were prompted for interruptibility self-reports at random, but controlled, 

intervals averaging two prompts per hour.  This is an experience-sampling technique, or 

alternatively a beeper study [13].  To minimize compliance problems, we asked a single 

question on a five-point scale.  Subjects could answer verbally or by holding up fingers 

on one hand, but almost all responses were verbal.  Subjects were asked to “rate your 

current interruptibility” on a five-point scale, with 1 corresponding to “Highly 

Interruptible” and 5 to “Highly Non-Interruptible.”  A sign on the recording machine 

reminded the subject which value corresponded to which end of the scale.  Subjects were 

present for a total of 672 of these prompts. 

3. DATA OVERVIEW 

This section characterizes the data collected from our subjects.  The overall distribution 

of interruptibility self-reports is shown in Figure 2.  The distributions for individual 

subjects are shown in Table 1.  For 54 of these 672 samples, the subject was present and 

clearly heard the prompt, but did not respond within 30 seconds.  We examined these 

  
 

Figure 1 – Representative frames from the recordings. 
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individually and determined that the subject was either on the phone or with a guest for 

the vast majority of the 54 cases.  Results in the literature suggest that these activities are 

highly correlated with non-interruptibility, and this expectation is validated in the 

remainder of our data.  To simplify analysis and model building, we have placed these 54 

cases in the “Highly Non-Interruptible” category. 

While there are clearly differences in the self-report distributions for the individual 

subjects, it is especially important to note that subjects self-reported “Highly 

Non-Interruptible” for 215 prompts, or approximately 32% of the data.  An informal 

inspection found that responses of “Highly Non-Interruptible” were sometimes given 

calmly and other times curtly by agitated subjects.  For many of the analyses in this 

paper, we will examine this distinction and evaluate the ability of estimators to 

distinguish “Highly Non-Interruptible” situations from other situations. 

Table 2 presents how often particular events occur in the recordings.  These values are 

based on manually simulated sensors that will be discussed later in this paper.  They are 

also based on the periods for which the subject was present, as opposed to the entirety of 

the recordings.  As previously mentioned, these subjects almost always had their doors 

open.  The lack of the explicit non-interruptibility cue provided by a closed door probably 

makes it more difficult to estimate their interruptibility.  The subjects spent most of the 
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Figure 2 – Interruptibility self-report distribution. 

 

 Highly Interruptible  Highly Non-Interruptible 

 1 2 3 4 5 

Subject 1 
9 

6.6% 
14 

10.2% 
40 

29.2% 
18 

13.1% 
56 

40.9% 

Subject 2 
17 

10.2% 

21 

12.7% 

58 

34.9% 

27 

16.3% 

43 

25.9% 

Subject 3 
52 

31.5% 

26 

15.8% 

20 

12.1% 

10 

6.1% 

57 

34.5% 

Subject 4 
14 

6.9% 

25 

12.3% 

45 

22.1% 

61 

29.9% 

59 

28.9% 

All 
92 

13.7% 

86 

12.8% 

163 

24.3% 

116 

17.3% 

215 

32.0% 

 

Table 1 – Individual subject self-report distributions. 
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day sitting, and most of that time sitting at their desks.  A guest was present 

approximately 25% of the time that the subjects were present, but there was very rarely 

more than one guest present.  While subjects frequently interacted with a computer, they 

also spent a significant amount of time handling papers or talking.   

4. HUMAN ESTIMATION 

In order to evaluate the difficulty of estimating interruptibility and establish an important 

comparison point for our models, we conducted an experiment examining human 

estimation of interruptibility.  Subjects that we will refer to as estimator subjects were 

shown portions of the recordings collected from the original subjects, which we will refer 

to as video subjects.  Using the same scale as the video subjects, the estimator subjects 

estimated the interruptibility of the video subjects.  The estimator subjects distinguished 

“Highly Non-Interruptible” situations from other situations with an accuracy of 76.9%. 

4.1 Methodology 

Using a website that advertises experiments conducted at our university, we recruited 40 

estimator subjects, each of which was paid for a session that was scheduled for one hour.  

A majority of our estimator subjects were students at our university or at another 

university within walking distance.  To protect the video subjects, the estimator subjects 

were shown still images of the video subjects and asked if they recognized any of the 

video subjects.  They were only shown recordings of video subjects they did not 

recognize.   

Each session started with an explanation of the task.  Estimator subjects were told to 

evaluate the recordings as if they were walking into that situation and needed to decide 

how interruptible the video subject was prior to deciding whether to interrupt the video 

subject.  A practice portion was started, and the experimenter introduced the estimator 

subject to the interface in Figure 3.  The interface presented five initially unchecked radio 

Door Open 98.6%  Door Close 0.7% 

Occupant Sit 88.9%  Occupant Stand 13.1% 

Occupant at Desk 74.0%  Occupant at Table 21.2% 

Occupant Keyboard 22.6%  Occupant Mouse 19.6% 

Occupant Monitor 46.8%  Occupant File Cabinet 1.0% 

Occupant Papers 28.0%  Occupant Write 5.5% 

Occupant Drink 1.0%  Occupant Food 1.4% 

Occupant Talk 32.6%  Occupant on Telephone 12.7% 

One or More Guests Present 24.1%  Two or More Guests Present 3.0% 

One or More Guests Sit 9.3%  Two or More Guests Sit 1.5% 

One or More Guests Stand 14.2%  Two or More Guests Stand 0.8% 

One or More Guests Talk 20.7%  Two or More Guests Talk 1.7% 

One or More Guests Touch 0.5%  Two or More Guests Touch 0.0% 

 

Table 2 – Frequency of events during times when the office occupant was present. 
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buttons for each estimate.  Estimator subjects were told that they could watch the video 

more than once, and they were advised that they should be as accurate as possible without 

worrying about speed.  The estimator subject then used the interface to estimate the 

interruptibility of a video subject for 6 randomly selected practice self-reports.  This was 

followed by the main portion, in which the estimator subject estimated the interruptibility 

of video subjects for 60 self-reports.  The main portion self-reports were selected 

randomly without replacement between estimator subjects, ensuring that every self-report 

would be used once before any self-report was used twice.  After the main portion was 

completed, estimator subjects provided information about their general strategies during 

the main portion and their specific strategies for making estimates from particular 

recordings.  We will not further discuss their strategies, but informally note that subjects 

reported strategies consistent with our intuition and the available literature indicating that 

social and task engagement are important [41].  We finally collected answers to two 

seven-point Likert scales discussed later in this section.  The sessions were not timed, but 

none lasted longer than the scheduled hour. 

During both the practice and main portions, the interface alternated between showing 

15 or 30 seconds of the recordings from immediately before a self-report.  Half of the 

estimator subjects started with 15 seconds, and half started with 30 seconds.  We chose to 

use 15 seconds of the recordings because people naturally make these estimates very 

quickly.  A person glancing in an open office door can usually decide whether it is 

appropriate to interrupt.  We felt that showing too much of the recordings for each 

estimate might affect how estimator subjects made their decisions.  While it would 

normally be considered inappropriate to look in an open office door for 15 seconds, we 

felt that the additional temporal information presented in 15 seconds should help to 

 
 

Figure 3 – The interface used by estimator subjects for human estimation. 
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correct for differences between normal circumstances and our recordings.  The 30 

seconds condition was included to determine whether additional time improved accuracy.  

As we will discuss later in this section, our estimator subjects felt 15 seconds was 

sufficient and their performance did not improve with the longer recordings. 

Of the original 672 interruptibility self-reports, recordings for 587 self-reports were 

used with the estimator subjects.  The others were not used because they were potentially 

sensitive or because a technological artifact, such as a gap in the video shortly before a 

prompt, might have been distracting to the estimator subject.  As 40 subjects provided 

estimates for 60 self-reports selected randomly without replacement, each of the 587 

self-reports had four or five estimates generated for it, including at least two based on 15 

seconds of the recordings and at least two based on 30 seconds. 

4.3 Experiment Results 

Table 3 presents the human estimates in the form of a confusion matrix.  Rows 

correspond to the values reported by the video subjects, and columns correspond to the 

values from the estimator subjects.  The unshaded diagonal represents instances when the 

estimator subject correctly estimated the same value given by the video subject.  

Summing the diagonal, we can see that estimator subjects were correct for 738 instances, 

or approximately 30.7% of the data.  Because “Highly Non-Interruptible” is the most 

common value, always estimating that value establishes a baseline chance accuracy of 

706 correct, or 29.4%.  Our estimator subjects performed only slightly better than chance, 

a difference which is not significant (χ
2
(1, 4800) = 1.01, p > .31).  This indicates that 

interruptibility estimation, as posed, is difficult. 

We note that the mistakes made by the estimator subjects appear to include a certain 

amount of bias, perhaps related to self-interest.  If the mistakes were random, we might 

  Estimator Subject Value 

  Highly 

Interruptible 
 

Highly 

Non-Interruptible 

 

 1 2 3 4 5 

1 
172 

7.2% 

92 

3.8% 

41 

1.7% 

31 

1.3% 

10 

0.4% 

2 
94 

3.9% 
110 
4.6% 

72 
3.0% 

36 
1.5% 

5 
0.2% 

3 
150 

6.3% 

204 

8.5% 

133 

5.5% 

79 

3.3% 

45 

1.9% 

4 
82 

3.4% 

110 

4.6% 

116 

4.8% 

73 

3.0% 

39 

1.6% 
V
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u
b
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5 
89 

3.7% 
121 
5.0% 

101 
4.2% 

145 
6.0% 

250 
10.4% 

  Overall Accuracy:  30.7%  Accuracy Within 1:  65.8% 

 

Table 3 – Confusion matrix for human estimates of interruptibility. 
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expect approximately the same number of entries in the upper right half of the confusion 

matrix as in the lower left half.  This would mean estimator subjects were equally likely 

to confuse video subjects for being more interruptible as they were to confuse video 

subjects for being less interruptible.  Instead, there are 450 entries in the upper right half, 

approximately 18.7% of the data, and 1212 entries in the lower left half, approximately 

50.5% of the data.  Aggregating for each estimator subject, estimator subjects reported 

significantly lower values than the video subjects (t(39) = -8.79, p < .001).  This may 

imply a systematic bias towards viewing another person as interruptible when we are 

interested in making an interruption. 

Figure 4 illustrates a transformation that reduces the problem to distinguishing 

between “Highly Non-Interruptible” responses and other responses.  Because this 

reduced form will be used throughout this paper, it is worth clarifying that the bottom 

right cell represents instances when both the video subject and the estimator subject 

responded with “Highly Non-Interruptible.”  The upper left cell represents instances in 

which both the video subject and the estimator subject responded with any other value. 

The other two cells represent instances when either the video subject or the estimator 

subject responded with “Highly Non-Interruptible,” but the other did not.  For this 

problem, the estimator subjects have an overall accuracy of 76.9%, significantly better 

than a chance performance of 70.6% (χ
2
(1, 4800) = 24.5, p < .001).   

While an accuracy of 76.9% may seem low for a task very similar to everyday tasks, 

we find this level of accuracy believable because of the context in which people normally 

make interruptibility estimates.  People do not typically make an initial estimate and then 

blindly proceed.  Instead, the evaluation of interruptibility is an early step in a negotiated 

process [18].  An initial determination that a person is not interruptible allows an early 

exit from negotiation, but other cues allow a person to decide against interrupting despite 

an initial evaluation that they could.  Other cues can include eye contact avoidance and 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

  

⇒ 

 Estimator Subject 

Video 
Subject 

Other 
Values 

Highly 
Non 

Other 
Values 

1595 
66.5% 

 

99 
4.1% 

 Highly 
Non 

456 
19.0% 

 

250 
10.4% 

 
 Accuracy:  76.9%  

Figure 4 – Transforming the 5 choice problem into a 2 choice problem 
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the continuation of a task that would be interrupted.  In designing systems to use 

interruptibility estimates, it will be important to support a negotiated entry, rather than 

assuming that interruptibility estimates provides absolute guidance. 

4.4 Estimator Subject Confidence 

The validity of our human estimation results is strengthened by confidence data collected 

from the estimator subjects.  The first Likert scale in the experiment stated “I am 

confident in the accuracy of my judgments.”  Each estimator subject responded on a 

seven-point scale ranging from “Strongly Disagree,” which we will refer to as 1, to 

“Strongly Agree,” which we will refer to as 7.  Given the results for this scale, as shown 

in Figure 5, it is clear that our estimator subjects were confident in the accuracy of their 

estimates.  We believe these confidence levels indicate the recordings provided enough 

information for estimator subjects to make estimates with which they were comfortable. 

Interestingly, the subjects who were most confident in their estimates did not perform 

better.  In the 5 choice problem, subjects responding with a 6 or 7 actually did slightly 

worse than subjects responding with a 4 or 5, though this difference is not significant 

(χ
2
(1, 2400) = 1.94, p > .15).  They also performed slightly worse in the 2 choice 

problem, but this difference was also not significant (χ
2
(1, 2400) = 0.83, p > .36).     

4.5 Recording Duration 

As discussed in introducing this experiment, we felt 15 seconds of the recordings would 

be sufficient for estimating interruptibility, and we included cases with 30 seconds to 

determine whether the additional time was helpful.  This section presents evidence 

supporting our initial belief that 15 seconds of the recordings was sufficient.   

The second Likert scale in the experiment stated “The 15 second videos were long 

enough for making judgments.”  Figure 6 shows the estimator subject responses, which 

indicate that the estimator subjects generally found 15 seconds to be sufficient.  Subjects 
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Strongly
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Strongly
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Figure 5 – “I am confident in the accuracy of my judgments.” 
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who indicated a confidence level of 6 or 7 using 15 seconds of the recordings did slightly 

worse in both the 5 choice problem and the 2 choice problem than subjects who indicated 

a lower confidence level, though these differences are not significant (χ
2
(1, 1200) = 2.59, 

p > .10, χ
2
(1, 1200) = 0.07, p > .78).  These results show that estimator subjects generally 

felt 15 seconds of the recordings was sufficient and that the estimator subjects who 

desired more information did not do any worse than estimator subjects who were 

comfortable with the amount of information available. 

Further evidence that 15 seconds of the recordings was sufficient is seen in the lack of 

an improvement when 30 seconds were available.  In the 5 choice problem, the overall 

accuracy of estimates based on 30 seconds of the recordings is slightly worse than that of 

estimates based on 15 seconds, but this difference is not significant (χ
2
(1, 2400) = 1.76, 

p > .18).  In the 2 choice problem, estimates based on 30 seconds of the recordings were 

better than estimates based on 15 seconds, but not significantly better (χ
2
(1, 2400) = 0.06, 

p > .80).  These results indicate that the extra information available in 30 seconds of the 

recordings did not improve accuracy, which is consistent with human ability to make 

these decisions very quickly in everyday environments.   

4.6 Discussion 

This section has presented an experiment to explore human estimation of interruptibility.  

This experiment showed that human estimators performed only slightly better than 

chance when asked to estimate interruptibility on a 5 point scale from “Highly 

Interruptible” to “Highly Non-Interruptible”.  These human estimators appear to have 

systematically interpreted the video subjects as being more interruptible than the video 

subjects reported.  By reducing the problem to distinguishing between “Highly 

Non-Interruptible” conditions and other conditions, we establish a human estimator 

accuracy of 76.9%.   
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Figure 6 - “The 15 second videos were long enough for making judgments.” 
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Taken as a whole, these results seem to indicate that automatic estimates of human 

interruptibility can be based on short periods of time immediately preceding a potential 

interruption.  Because human estimators had difficulty accurately estimating the 

interruptibility of a video subject on a 5 point scale, it seems that it might be reasonable 

for automatic estimators to focus on recognizing “Highly Non-Interruptible” conditions.  

Automatic estimators could identify extremely inappropriate times for interruptions and 

allow systems to avoid them while using negotiated approaches during other times.  This 

strategy appears to work well in human interaction [18] and also seems worth pursuing as 

an approach to human computer interaction. 

5. MODELS BASED ON WIZARD OF OZ SIMULATED SENSORS 

While people regularly estimate interruptibility during everyday tasks, we are interested 

in whether models based on practical sensors can automatically provide these estimates.  

This section presents sensors simulated using a Wizard of Oz technique [10, 31].  As 

discussed in our introduction, the decision to use simulated sensors allows us to consider 

a variety of sensors without requiring that we first build them.  We can thus limit the time 

and resources spent on sensors that are ill-suited or sub-optimal for predicting 

interruptibility.  After discussing our simulated sensors, this section presents and analyzes 

models based on these simulated sensors.  This section partially duplicates preliminary 

results discussed in a previous paper [27], but significantly adds to the sensors, models, 

and analyses presented in that paper.   

 
 

Figure 7 – Custom interface used for Wizard of Oz sensor simulation. 
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5.1 Manual Sensor Simulation 

The sensors discussed in this section were manually simulated using a custom interface 

shown in Figure 7.  The interface presents recordings in 15 second segments.  A coder 

could playback the recordings at normal speed or double speed, at their option.  At the 

end of each segment, a coder could go to the next segment or watch the current segment 

again.  This interface, and the set of sensors it is used to simulate, was developed after an 

initial exploratory coding of data from our first subject.  Data from all four subjects was 

coded after the procedures were finalized.  Coders began their work training for 

consistency.   We evaluated agreement among coders by recoding a randomly selected 

5% of the recordings and found 93.4% agreement at a granularity of 15 second intervals.  

In order to minimize coding time, and because we believe information in close temporal 

proximity will be most useful in predicting interruptibility, we have only coded the 5 

minutes preceding each self-report, for a total of 56 hours of coded recordings. 

Using a total of four passes, our coding of the recordings identified the 24 events or 

situations included in Table 4.  This set of manually simulated sensors was chosen 

because we had an a priori belief that they might relate to interruptibility, because we 

believed that a sensor could plausibly be built to detect them, and because they could be 

observed in our recordings.  While we believe that information like what applications are 

running on a computer could be useful, we could not directly observe such information in 

our recordings.  Some sensors would be easier to build than others, and we have included 

sensors that would be difficult to build because knowing they are useful might justify the 

effort necessary to develop them. 

Using these simulated sensor values, we computed a number of derivative sensors to 

capture recency, density, and change effects.  These are shown in Table 5, and were 

computed for time intervals of 30 seconds, 1 minute, 2 minutes, and 5 minutes.  We will 

Occupant 

Related 
• Occupant presence. 

• Speaking, writing, sitting, standing, or on the phone. 

• Touch of, or interaction with:  desk (primary work surface), table (large flat surface 

other than the primary work surface), file cabinet, food, drink, keyboard, mouse, 
monitor (gaze at), and papers (including books, newspapers, and loose paper). 

Guest 

Related 
• Number of guests present. 

• For each guest:  sitting, standing, talking, or touching (any physical contact or very 
close physical proximity with occupant, including handing occupant an object). 

Environment • Time of day (hour only). 

• Door open, closed. 

Aggregate • Anybody talk (combines occupant and guest talk values). 

 

Table 4 – Wizard of Oz simulated sensors for each 15 second segment. 
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use the names in the left column to refer to derivatives of sensors, and so “Occupant Talk 

(Any-300)” refers to the Any derivative of the Occupant Talk sensor over a 5 minute 

interval.   

5.2 Predictiveness of Individual Features 

Based on the literature and our own intuitions, we expect that the strongest indicators of 

non-interruptibility would be related to task engagement and social engagement [41].  We 

informally note it is almost always considered rude to interrupt a person who is talking.  

It is also particularly inappropriate to interrupt a person who is speaking on a telephone, 

perhaps because the remote party cannot participate in the subtle non-verbal negotiation 

of the interruption. 

While we felt that these types of activities would need to be detected to produce good 

estimates of interruptibility, it was not clear exactly which sensors would be the most 

helpful.  It was also not clear which easily-built sensors might work almost as well as 

sensors that would be very difficult to build.  To gain some insight into these issues, we 

examined the predictive power of individual features using an information gain metric 

[35].   

Described simply, information gain is based on sorting a set of observations according 

to the value of a feature associated with each observation.  This sorting removes the 

entropy associated with variations in that feature.  This reduction in entropy provides an 

estimate of the predictiveness of that feature.  The absolute value of this difference is not 

particularly interesting, only the relative values for the features.  Further, information 

gain only indicates potential usefulness in prediction, and cannot by itself indicate 

whether a feature indicates interruptibility or non-interruptibility.  Finally, the notion of 

predictiveness measured by information gain includes sensitivity to frequency, and so an 

event that always indicates interruptibility but almost never occurs would not be highly 

ranked. 

Imm Whether the event occurred in the 15 second interval containing the self-report sample. 

All-N Whether event occurred in every 15 second interval during N seconds prior to the sample. 

Any-N Whether event occurred in any 15 second interval during N seconds prior to the sample. 

Count-N The number of times the event occurred during intervals in N seconds prior to the sample. 

Change-N The number of consecutive intervals for which the event occurred in one and did not 
occur in the other during N seconds prior to the sample. 

Net-N The difference in the sensor between the first interval in N seconds prior to the sample and 

the sensor in the interval containing the sample. 

 

Table 5 – Derivations applied to manually computed sensors. 
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Table 6 presents an ordered list of the 30 most predictive individual features, as 

indicated by information gain when distinguishing between “Highly Non-Interruptible” 

self-reports and other self-reports.  This number of features was selected arbitrarily, and 

is only intended to allow an examination of the most predictive individual features.  

Although we had expected talking and the telephone to be important indicators, it is very 

interesting to note that all 30 of the top individual features are related to either the 

telephone or talking.  This metric does not consider the redundancy between the features 

in this chart.  While sensors for talking and the telephone will be important throughout 

this paper, the models discussed in the rest of this paper will also examine what 

additional features can complement the information gained from talking and telephone 

sensors.  This metric shows that, if allowed to use only one sensor, a sensor related to 

talking or the telephone is the most useful.   

5.3 Correlation-Based Feature Selection 

As we begin to examine multiple features, we note that the combination of manually 

simulated sensors and sensor derivations yields a very large number of possible features.  

Using all of these features to build models could have very negative effects.  In a 

phenomenon known as overfitting, a model mistakenly interprets minor details or quirks 

in data as representative of data it will be asked to evaluate in the future.  The overall 

accuracy of its future estimates is then lower than it should be, because it is confused by 

differences in the minor details that it previously mistook for important.  Overfitting is 

very similar to degree-of-freedom problems found in models with excessive parameters. 

In order to prevent overfitting, we applied a correlation-based feature selection 

technique [19] as implemented in the Weka machine learning software package [43].  

This technique uses correlations between different features and the value that will be 

estimated to select a set of features according to the criterion that “Good feature subsets 

contain features highly correlated with the (value to be estimated), yet uncorrelated with 

each other” [19].  Table 7 lists the 24 features selected for distinguishing between 

1 Any Talk (Count-30)  11 Telephone (Count-30)  21 Telephone (All-60) 

2 Any Talk (Imm)  12 Occupant Talk (Count-120)  22 Telephone (Count-120) 

3 Occupant Talk (Imm)  13 Occupant Talk (Any-60)  23 Telephone (Count-300) 

4 Occupant Talk (Count-30)  14 Occupant Talk (Change-60)  24 Any Talk (Count-300) 

5 Any Talk (Count-60)  15 Any Talk (Any-60)  25 Occupant Talk (Count-300) 

6 Any Talk (Any-30)  16 Telephone (Imm)  26 Any Talk (All-60) 

7 Occupant Talk (Any-30)  17 Telephone (All-30)  27 Telephone (Change-60) 

8 Occupant Talk (Change-30)  18 Telephone (Count-60)  28 Telephone (Any-30) 

9 Occupant Talk (Count-60)  19 Any Talk (All-30)  29 Telephone (Change-30) 

10 Any Talk (Count-120)  20 Occupant Talk (All-30)  30 Occupant Talk (Change-120) 

 

Table 6 – Information gain ordering of the 30 most predictive individual features. 
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“Highly Non-Interruptible” conditions and other conditions, in the order of their 

selection.  Unlike in Table 6, the number of features selected here is not arbitrary.  The 

correlation-based feature selection technique indicates the point at which it believes 

additional features are redundant and may lead to overfitting, which in this case is after 

the (Count-300) derivative of the Table feature.   

In the next subsection, we will create models of human interruptibility based on the 

features selected in this subsection.  While we will revisit feature selection in a later 

subsection, the feature selection technique used here has some good qualities.  First, this 

technique is computationally very cheap compared to the feature selection techniques we 

use later.  In a deployed system, the feature selection techniques used here could 

regularly examine a huge number of possibly interesting features and quickly select an 

appropriate subset.  Second, this technique is independent of the models that will be 

created from the selected features.  As such, the selected features are appropriate for use 

with a variety of modeling techniques.   

5.4 Initial Model Construction 

This subsection presents models constructed using several standard machine learning 

techniques.  Specifically, we will be using decision trees [38] and naïve Bayes predictors 

[11, 29].  We have obtained similar results with support vector machines [5] and 

AdaBoost with decision stumps [17], but will not discuss them here for the sake of 

brevity.  We will also not attempt to fully describe each of these techniques here.  

Instead, interested readers are encouraged to consult the original references or a machine 

learning text, such as [35].  All of our models were constructed using the Weka machine 

learning software package [43], a widely available open source software package. 

Confusion matrices for models constructed from the features in Table 7 are presented 

in Table 8.  Remember that chance is an accuracy of 68.0%, which could be obtained by 

always predicting “Other Values”.  The results in this section have all been obtained 

using a standard cross-validation approach involving multiple trials of model 

construction.  In each of 10 trials, 90% of the data is used to train, and the remaining 10% 

1 Telephone (Count-30)  9 Monitor (Count-300)  17 Any Talk (Net-300) 

2 Any Talk (Imm)  10 Telephone (All-300)  18 Telephone (All-30) 

3 Any Talk (Count-60)  11 Guests Sit (Net-60)  19 Mouse (Count-120) 

4 Telephone (Imm)  12 Telephone (Net-120)  20 Any Talk (All-120) 

5 Mouse (Count-60)  13 Telephone (Count-300)  21 Food (Count-300) 

6 Any Talk (Count-300)  14 Any Talk (Count-30)  22 Table (Change-30) 

7 Telephone (All-60)  15 Writing (Change-30)  23 Guests Sit (All-300) 

8 Occupant Talk (Imm)  16 Stand (Change-300)  24 Table (Count-300) 

 

Table 7 – Features selected with a correlation-based feature selection technique. 
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is used for testing.  Each instance is used to train 9 trials and to test 1 trial.  The values 

reported are sums from the 10 trials.   

These results show that models based on manually simulated sensors with features 

selected according to a correlation-based feature selection technique can estimate human 

interruptibility as well as our estimator subjects.  Both models perform significantly 

better than the 68.0% chance (Naïve Bayes: χ
2
(1, 1344) = 16.41, p < .001, Decision Tree: 

χ
2
(1, 1344) = 12.50, p < .001) and neither is significantly different than the 76.9% 

performance of our estimator subjects (Naïve Bayes: χ
2
(1, 3072) = 0.27, p > .60, Decision 

Tree: χ
2
(1, 3072) = 0.02, p > .89).  The difference between the models is also not 

significant (χ
2
(1, 1344) = 0.27, p > .60).  Given that we used a feature selection technique 

that is independent of the modeling technique and reproduced the results with distinct 

learning techniques, these results make us quite hopeful that models with accuracies in 

the range of 75% to 80% can be driven by sensors. 

5.5 Wrapper-Based Feature Selection and Model Construction 

While the correlation-based feature selection technique used earlier has several good 

properties, it is a heuristic and we cannot be sure the features it selects are optimal.  This 

subsection presents an alternative feature selection technique that chooses features 

according to their usefulness in a particular model.  It is based on slowly adding features 

to a model until additional features do not improve accuracy, and is known as a wrapper 

technique because it can theoretically be wrapped around any model [28].  Because this 

technique requires the repeated application of a machine learning technique, it is 

computationally much more expensive than techniques like correlation-based feature 

selection.  The results presented here were obtained in conjunction with a feature search 

strategy that starts with an empty set of features and adds or removes features from the 

set until there is no change that results in an improvement.  This approach is limited by 

the fact that it selects features appropriate to the particular model used during feature 

  Naïve Bayes  Decision Tree 

Video 
Subject  

Other 
Values 

Highly 
Non 

 Other 
Values 

Highly 
Non 

Other 
Values 

 
380 

56.5% 

 

77 
11.5% 

 

 415 
61.8% 

 

42 
6.3% 

 Highly 
Non 

 
72 

10.7% 

 

143 
21.3% 

 

 115 
17.1% 

 

100 
14.9% 

 
  Accuracy:  77.8%  Accuracy:  76.6% 

 

Table 8 – Accuracy of models built from the correlation-based features in Table 7. 
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selection.  Used with a naïve Bayes model, for example, this method will not select 

locally predictive features that could be useful to a decision tree model.   

Table 9 presents the results of applying a wrapper-based feature selection technique 

with a naïve Bayes classifier.  The 10 features shown here were selected as good features 

for the naïve Bayes classifier.  They yield a model with an accuracy of 81.25%, 

significantly better than the 68.0% chance (χ
2
(1, 1344) = 31.13, p < .001), significantly 

better than the estimator subjects (χ
2
(1, 3072) = 5.82, p < .05), and better than the naïve 

Bayes classifier built with the correlation-based feature selection, though this difference 

is not significant (χ
2
(1, 1344) = 2.42, p > .11).  Table 10 presents similar results obtained 

with a decision tree classifier.  Coincidentally, 10 features are also selected in this case, 

though they are different than the features selected for use with the naïve Bayes classifier.  

The selected features yield a decision tree classifier with an accuracy of 82.4%, 

significantly better than chance (χ
2
(1, 1344) = 37.56, p < .001), significantly better than 

the estimator subjects (χ
2
(1, 3072) = 9.51, p < .01), and significantly better than the 

decision tree classifier built with the correlation-based feature selection (χ
2
(1, 3072) = 

9.51, p < .01).  The difference between the decision tree model and the naïve Bayes 

model built here is not significant (χ
2
(1, 1344) = 0.32, p > .57).   

1 Any Talk (Imm) 

2 Drink (Any-30) 

3 Desk (Change-300) 

4 Telephone (Imm) 

5 Time of Day (Hour Only) 

6 Stand (Any-120) 

7 Stand (Net-120) 

8 Guests Sit (Net-30) 

9 Desk (Net-60) 

10 Drink (Count-300)  

 Naïve Bayes 

Video 
Subject 

Other 
Values 

Highly 
Non 

Other 
Values 

411 
61.2% 

 

46 
6.8% 

 Highly 
Non 

80 
11.9% 

 

135 
20.1% 

 
 Accuracy:  81.25%  

 

Table 9 – Results using wrapper-based feature selection with a naïve Bayes classifier. 

 
1 Any Talk (Imm) 

2 Telephone (Count-30) 

3 Time of Day (Hour Only) 

4 Desk (Change-120) 

5 Monitor (Any-300) 

6 Occupant Talk (Net-120) 

7 Writing (Count-30) 

8 Writing (Count-60) 

9 Papers (Count-300) 

10 Mouse (All-120)  

 Decision Tree 

Video 
Subject 

Other 
Values 

Highly 
Non 

Other 
Values 

413 
61.5% 

 

44 
6.5% 

 Highly 
Non 

74 
11.0% 

 

141 
21.0% 

 
 Accuracy:  82.4%  

 

Table 10 – Results using wrapper-based feature selection with a decision tree. 
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The models presented in this subsection both distinguish “Highly Non-Interruptible” 

situations from other situations significantly better than the 76.9% accuracy of our 

estimator subjects.  The tradeoff for obtaining these better results is that we have 

expended much more computational resources during model creation and have selected 

features that may be appropriate only with the modeling techniques we used when 

selecting them.  These results, taken with the results in the previous subsection, support 

the view that it should be possible to create robust models of human interruptibility.  

Because the estimates given by our models match and even surpass the accuracy of 

estimates given by our estimator subjects, it should be possible to design systems that 

effectively use these estimates as part of a negotiated interruption process. 

5.6 Model Accuracy and Number of Features 

Given that wrapper-based feature selection chose only 10 features from a possible set of 

almost 500 features, it is interesting to examine how the accuracy of the models is 

improved by each additional feature.  Figure 8 plots the accuracy of the two 

wrapper-based models presented in the previous subsection as a function of the number 

of features.  Both models start at a baseline accuracy of 68% for no features.  They then 

have a very sharp improvement in accuracy when the first feature is added.  In both cases, 

this is the Any Talk (Imm) feature.  The next handful of features yields a small, but 

noticeable, improvement.  After this, very little improvement is associated each feature 

and the feature selection terminates after 10 because no additional feature improves 

accuracy. 

This relationship between the features and the accuracy of the models has important 

implications.  Our data indicates that a single sensor to detect whether anybody in the 

65%

70%

75%

80%

85%

0 1 2 3 4 5 6 7 8 9 10

Naïve Bayes Decision Tree

Figure 8 – Classifier accuracy versus number of features. 



 22 

office is currently speaking can by itself yield an accuracy of 75.9%.  While this is worse 

than the performance of our estimator subjects, the difference is not significant  

(χ
2
(1, 3072) = 0.28, p > .59).  This might seem too simple to be reasonable, but we point 

out that speaking correlates with many other activities that one might wish to recognize 

when estimating interruptibility.  For example, people normally speak when on the 

telephone.  It is also generally expected that people speak to a guest who is currently in 

their office.  This result suggests that it may not be necessary to use expensive sensor 

networks or vision-based systems to estimate interruptibility, but that we might instead 

build much less expensive systems that perform nearly as well as more expensive 

alternatives. 

5.7 An “Easy to Build” Feature Set 

Given the results of the previous subsection, we now consider models using only sensors 

that are readily available or could be easily constructed.  In fact, we originally created the 

Any Talk simulated sensor because it would be easier to build than a sensor that 

differentiated between the occupant of an office talking and guests talking.  This 

proposed sensor could be combined with simple software detecting mouse and keyboard 

activity.  Inexpensive hardware placed between the telephone and the wall can sense 

whether the phone is currently off the hook.  Finally, the time of day is readily available.  

Throughout this section, we will refer to this set of 5 sensors from our manually 

simulated data as “Easy to Build” features. 

1 Any Talk (Imm) 

2 Any Talk (Count-30) 

3 Telephone (All-30) 

4 Mouse (Imm) 

5 Mouse (Change-30) 

6 Telephone (All-120) 

7 Mouse (All-120) 

8 Mouse (Net-60)  

 Naïve Bayes 

Video 
Subject 

Other 
Values 

Highly 
Non 

Other 
Values 

396 
58.9% 

 

61 
9.1% 

 Highly 
Non 

81 
12.1% 

 

134 
19.9% 

 
 Accuracy:  78.9%  

 

Table 11 – Results with “Easy to Build” features and a naïve Bayes model. 

 

1 Any Talk (Imm) 

2 Telephone (Count-30) 

3 Time of Day (Hour Only) 

4 Any Talk (Net-120)  

 Decision Tree 

Video 

Subject 

Other 

Values 

Highly 

Non 

Other 

Values 

396 

58.9% 

 

61 

9.1% 

 Highly 

Non 

79 

11.8% 

 

136 

20.2% 

 
 Accuracy:  79.2%  

 

Table 12 – Results with “Easy to Build” features and a decision tree model. 
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Table 11 and Table 12 present the features and models resulting from a wrapper-based 

feature selection with the “Easy to Build” features.  The naïve Bayes result of 78.9% 

overall accuracy is better than the 76.9% accuracy of our estimator subjects, though not 

significantly (χ
2
(1, 3072) = 1.19, p > .27), and worse than the 81.25% accuracy of the 

model in Table 9 that was built from the full set of sensors, but not significantly (χ
2
(1, 

1344) = 1.19, p > .27).  The decision tree model accuracy of 79.2% is also better than our 

estimator subject accuracy, but the difference is not significant (χ
2
(1, 3072) = 1.58, 

p > .20).  It is worse than the 82.4% accuracy of the model in Table 10 that was built 

from the full set of sensors, but not significantly (χ
2
(1, 1344) = 2.32, p > .12). 

These results for the “Easy to Build” sensors are very promising because they indicate 

that models of human interruptibility can be based on technology that is already available 

or easily built.  This implies that we do not need to solve hard computer vision problems 

or hard artificial intelligence problems before proceeding with creating systems that use 

models of human interruptibility. 

5.8 Models of the 5 Choice Problem 

Up until this point, we have focused on models to distinguish “Highly Non-Interruptible” 

situations from other situations.  This subsection presents models of the full 5 point scale 

and discusses how these models can support a level of flexibility that is not available with 

models of the 2 choice problem.  It is important to note that the techniques used here do 

not have any notion that our five possible values represent a scale.  As far as the 

techniques are concerned, the five values are completely unrelated.  While there are 

techniques that support values in a scale, informal experimentation with some of these 

techniques did not yield an improvement over the results presented here. 

Table 13 presents the results of wrapper-based feature selection for the 5 choice 

problem with a naïve Bayes classifier.  The 47.6% overall accuracy of this model is 

significantly better than our estimator subjects 30.7% performance (χ
2
(1, 3072) = 66.17,  

p < .001).  Table 14 presents the results from a decision tree model.  Its 51.5% overall 

accuracy is significantly better than the estimator subjects (χ
2
(1, 3072) = 98.88, p < .001) 

and better than the naïve Bayes model, though this difference is not significant (χ
2
(1, 

1344) = 2.01, p > .15).   

Models of the 5 choice problem allow systems to provide an additional level of 

flexibility.  People who feel they are being interrupted too often could use the system’s 

interface to request that they be interrupted less frequently.  Instead of initiating a 
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negotiated interruption for a value of 4 or lower, the system could then only negotiate 

interruptions when its model estimates a value of 3 or lower.  Alternatively, systems 

could use the value of the estimate to decide how subtly to initiate an interruption.  

Estimates of 3 or 4 could be used by a system to decide to initiate a negotiated 

interruption with an ambient information display [14, 21, 39], while estimates of 1 or 2 

could be used by the system to decide to initiate with a more direct method.  

5.9 Discussion 

This section has presented a variety of statistical models of human interruptibility.  We 

first demonstrated that models based on manually simulated sensors can differentiate 

“Highly Non-Interruptible” situations from other situations with an accuracy as high as 

82.4%, significantly better than the 76.9% performance of our human estimator subjects.  

This initial result is made more interesting by the observation that the Any Talk simulated 

1 Occupant Talk (Any-30) 

2 Sit (All-30) 

3 Table (Count-60) 

4 Food (Any-120) 

5 File Cabinet (Any-300) 

6 Door Close (Any-300)  

  Naïve Bayes 

 
 Highly 

Interruptible 
 

Highly 
Non-Interruptible 

  1 2 3 4 5 

1 
33 

4.9% 

6 

0.9% 

27 

4.0% 

0 

0.0% 

26 

3.9% 

2 
12 

1.8% 
12 

1.8% 
39 

5.8% 
4 

0.6% 
19 

2.8% 

3 
11 

1.6% 

2 

0.3% 

106 

15.8 

7 

1.0% 

37 

5.5% 

4 
7 

1.0% 

1 

0.1% 

55 

8.2% 

23 

3.4% 

30 

4.5% 
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5 
11 

1.6% 

5 

0.7% 

42 

6.3% 

11 

1.6% 

146 

21.7% 

 
 Overall Accuracy:  47.6%  

Accuracy Within 1:  71.7%  
 

Table 13 – Results of wrapper-based feature selection with a naïve Bayes classifier. 

 

1 Occupant Talk (Any-30) 

2 Sit (All-30) 

3 Desk (Any-120) 

4 Telephone (Imm) 

5 Occupant Talk (Net-30) 

6 Food (Any-300) 

7 Drink (Any-300) 

8 Stand (All-120) 

9 Any Talk (Any-30) 

10 Present (Count-120) 

11 Papers (Net-30) 

12 Present (All-120) 

13 Door Open (All-60)  

  Decision Tree 

 
 Highly 

Interruptible 
 

Highly 

Non-Interruptible 

  1 2 3 4 5 

1 
40 

6.0% 
4 

0.6% 
25 

3.7% 
2 

0.3% 
21 

3.1% 

2 
18 

2.7% 

13 

1.9% 

39 

5.8% 

1 

0.1% 

15 

2.2% 

3 
9 

1.3% 

4 

0.6% 

113 

16.8% 

8 

1.2% 

29 

4.3% 
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1.3% 
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0.3% 
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7.9% 
28 
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5 
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1.8% 

5 

0.7% 

37 

5.5% 

9 

1.3% 

152 

22.6% 

 
 Overall Accuracy:  51.5%  

Accuracy Within 1:  75.1%  
 

Table 14 – Results of wrapper-based feature selection with a decision tree. 
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sensor can alone provide an accuracy of 75.9% and that a set of sensors we consider easy 

to build can provide an accuracy as high as 79.2%.  This set of sensors does not require 

any vision-based techniques, and could be built and used for a very low cost. 

If used in conjunction with models of the importance of different interruptions and 

systems designed to allow negotiated entry into an interruption, the models presented in 

this section could support significant advances in human computer interaction and 

computer mediated communication.  While this work has not attempted to solve the hard 

artificial intelligence problems related to truly understanding human behavior, we have 

quantitatively demonstrated that simple sensors can effectively estimate human 

interruptibility.  By using passive sensors instead of requiring that people create and 

maintain calendars or otherwise explicitly indicate their interruptibility, our approach 

helps to make interruptibility estimation practical for use in everyday systems. 

6. AUTOMATED ANALYSIS OF THE RECORDINGS 

While we did not initially intend to automatically analyze our recordings, the results of 

our manually simulated sensor analysis made the possibility interesting.  Specifically, the 

significance of the Any Talk simulated sensor makes it worth examining whether the 

audio we collected from a single microphone placed in the corner of an office allows us 

to approximate the Any Talk simulated sensor sufficiently well to support models of 

human interruptibility. 

Because we recorded audio with a microphone placed beside the computer used for 

recording, our recordings include a significant amount of fan noise from the recording 

computer.  There are many situations where the combined audio and video recordings 

make it clear that a person is talking and the manually simulated Any Talk sensor has a 

value of true, but only a faint murmur is actually audible over the fan noise in the audio.  

It is much more difficult to identify these instances without video, and we would expect 

automated techniques to encounter difficulties.   

6.1 Silence Detection 

As an approximation of the Any Talk manually simulated sensor, we decided to use the 

silence segmentation functionality of the Sphinx speech recognition package [6].  For 

each recording configuration, the silence segmentation software was calibrated with a 

short bit of “silent” audio.  For these calibrations, we used recordings from early in the 

morning before the subject arrived.  These recordings contained fan noise created by our 

recording machine, but did not contain any other activity.  After calibrating, we used the 

silence segmentation with 4 different threshold configurations, designed at one extreme 
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to identify only the loudest activity and at the other extreme to identify activity even 

slightly above the silence calibration.  For each threshold, we built a set of features 

representing how much of a time interval was not silent. 

To determine if these features could reasonably approximate our Any Talk simulated 

sensor, we used the features from the 15 seconds before each interruption to attempt to 

predict the value of the Any Talk (Imm) simulated sensor value.  This is intended only as 

a rough estimate of the usefulness of these features, as there are some problems related to 

using the 15 seconds before the interruption versus the 15 seconds that were the basis for 

the manually simulated sensor value.  Given this qualification, we built a naïve Bayes 

model that predicted our Any Talk (Imm) simulated sensor with an accuracy of 79.2% 

and a decision tree with an accuracy of 80.1%, both significantly better than the 70.4% 

chance accuracy that could be obtained by always predicting “Not Talking” (Naïve 

Bayes: χ
2
(1, 1344) = 13.73, p < .001, Decision Tree: χ

2
(1, 1344) = 16.87, p < .001).  This 

indicates that our silence detection features have predictive value, despite difficulties with 

the fan noise. 

6.2 Hybrid Models 

To further evaluate our implementation of the Any Talk sensor, we combined it with time 

of day and our manually simulated sensors for the telephone, keyboard, and mouse.  As 

discussed in our “Easy to Build” section of the manually simulated sensor discussion, 

these sensors are already available or very easily built.  They can also be expected to 

produce very reliable results. 

Table 15 shows a naïve Bayes model built using wrapper-based feature selection.  Its 

overall accuracy of 76.3% is not significantly different from the 76.9% accuracy of our 

human estimator subjects (χ
2
(1, 3072) = 0.08, p > .77).  The decision tree model shown in 

Table 16 has an overall accuracy of 76.9%, which is equivalent to our human estimator 

subjects (χ
2
(1, 3072) = 0.001, p > .97).  The difference between these two models is not 

significant (χ
2
(1, 1344) = 0.07, p > .79). 

This shows that a single microphone in the corner of an office, when combined with 

the time of day, a sensor for whether the phone is in use, and activity information for the 

mouse and keyboard, can provide enough information to estimate human interruptibility 

as well as our human estimators.  This result does not require expensive infrastructure, 

and so it seems very practical for use in everyday systems.  This result also shows that the 

implementation of an Any Talk sensor does not need to be perfect, as our silence detector 
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features only predict our Any Talk sensor with an accuracy of 80%, but are still useful for 

interruptibility estimation. 

7. DISCUSSION AND FUTURE WORK 

Given the results in this paper, there is room for substantial work to validate and build 

upon our results with larger groups of people in a wider range of environments.  There 

are also a variety of issues to consider in other environments, such as the additional noise 

of open-plan offices.  Mobile workers pose a different set of challenges.  One issue of 

particular interest is development of an appropriate Any Talk sensor.  The silence 

detector used here adapts to background noise well enough to work in the office 

environments of our video subjects, but it is not clear whether it is sophisticated enough 

to identify talking in noisier environments.  A substantial body of research on segmenting 

and classifying audio [30] can be applied to this problem.   

The estimator subjects in our study were not personally familiar with the video 

subjects, and it is possible they might have performed better if they were.  However, 

many of the cues that people might use, such as learned patterns of availability, can be 

1 Telephone (Imm) 

2 
Silence Detector  
(Medium Thres-10 Sec Interval) 

3 Telephone (All-30) 

4 Keyboard (Change-60)  

 Naïve Bayes 

Video 
Subject 

Other 
Values 

Highly 
Non 

Other 
Values 

429 
63.8% 

 

28 
4.2% 

 Highly 
Non 

131 
19.5% 

 

84 
12.5% 

 
 Accuracy:  76.3%  

 

Table 15 – Results using a naïve Bayes model with silence detector features. 

 
1 Telephone (Count-30) 

2 
Silence Detector  

(High Thres-300 Sec Interval) 

3 
Silence Detector  
(Medium Thres-5 Sec Interval) 

4 Keyboard (Any-30) 

5 Telephone (Count-300) 

6 Keyboard (Change-120) 

7 Telephone (Any-300) 

8 Keyboard (Change-300) 

9 Keyboard (Net-60) 

10 
Silence Detector  

(Highest Thres-300 Sec Interval) 

11 
Silence Detector  
(Low Thres-300 Sec Interval) 

12 Mouse (All-120) 

13 Telephone (Change-300)  

 Decision Tree 

Video 

Subject 

Other 

Values 

Highly 

Non 

Other 

Values 

435 

64.7% 

 

22 

3.3% 

 Highly 

Non 

133 

19.8% 

 

82 

12.2% 

 
 Accuracy:  76.9%  

 

Table 16 – Results using a decision tree with silence detector features. 
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modeled [2, 3].  There is room to improve our models by examining the strategies people 

use to estimate the interruptibility of colleagues.  We are also interested in the bias our 

estimator subjects had toward estimating video subjects were more interruptible than the 

video subjects reported.  Additional studies might examine whether this bias would be 

removed or reversed if they were told to act as an assistant regulating access.   

In more recent work, we have used the results of this work to inform the deployment 

of real sensors into the offices of ten office workers [15].  We logged the output of these 

sensors and collected interruptibility self-reports.  Analyses of the collected data support 

the results presented in this paper, demonstrate models for a wider variety of office 

workers than was studied in this paper, examine some questions regarding the amount of 

training data required for these models, and explore the potential of different 

combinations of sensors.  Recent work by Horvitz and Apacible examined models of 

interruptibility based on calendar information, computer activity, and real-time analyses 

of audio and video streams [23].  They collected a total 15 hours of audio and video 

recordings from three office workers.  The office workers then viewed the recordings and 

annotated them with a description of their interruptibility.  This work is complimentary to 

ours, but the differences in our data and the data collected by Horvitz and Apacible make 

it inappropriate to directly compare model performance. 

We intend to build systems that use the types of models presented in this paper.  

Functional systems will allow us to continue to evaluate and improve upon these models, 

including examining models that learn the individual nuances of people over time.  

Building systems will also allow us to explore many issues related to application use of 

these models.  These issues include balancing the importance of a piece of information 

with the cost of the interruption required to deliver it.  We are also interested in estimates 

of human interruptibility as one part of a multi-stage negotiation of an interruption.  

There are also a variety of issues to consider around the use of models in awareness and 

communication applications, some of which we have recently examined by building a 

communication client that shares automatically sensed information about a person’s 

context and interruptibility [16].     

We have presented studies that quantitatively demonstrate that models created from 

simple sensors can estimate human interruptibility as well as our human estimator 

subjects could from the recordings.  Because anybody talking in a room is the most 

predictive feature we examined, our models do not require complex sensors, such as 

vision-based techniques, and can instead be built from a single microphone in an office 
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and very simple sensors for telephone, mouse, and keyboard activity.  By using a passive 

approach, instead of requiring people to explicitly indicate interruptibility or create and 

maintain calendars, our approach makes interruptibility estimation feasible for use in 

everyday systems.  Used with models of the importance of potential interruptions and 

system designs that support negotiated interruptions, our models offer to support 

significant advances in human computer interaction. 
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