
Specifying Behavior and Semantic Meaning
in an Unmodified Layered Drawing Package

James Fogarty†, Jodi Forlizzi†*, and Scott E. Hudson†

HCI Institute† and School of Design*

Carnegie Mellon University
Pittsburgh, PA 15213

{ jfogarty, forlizzi, scott.hudson }@ cs.cmu.edu

ABSTRACT
In order to create and use rich custom appearances,
designers are often forced to introduce an unnatural gap
into the design process. For example, a designer creating a
skin for a music player must separately specify the
appearance of the elements in the music player skin and the
mapping between these visual elements and the
functionality provided by the music player. This gap
between appearance and semantic meaning creates a
number of problems. We present a set of techniques that
allows designers to use their preferred drawing tool to
specify both appearance and semantic meaning. We
demonstrate our techniques in an unmodified version of
Adobe Photoshop®, but our techniques are general and
adaptable to nearly any layered drawing package.

KEYWORDS: Visual specification, visual design tools,
prototyping.

INTRODUCTION AND MOTIVATION
In order to create and use rich custom appearances,
designers are often forced to introduce an unnatural gap
into the design process. At one end of this gap, custom
visual elements are often created by designers using a
powerful layered drawing package, such as Adobe
Photoshop or Adobe Illustrator®. These software packages
provide designers with powerful tools, including layers and
advanced filters, which allow designers to quickly and
easily create rich custom appearances. At the other end of
this gap, designers generally use a second tool to specify
the relationship between these visual elements and a
system. Common tools include Macromedia Director®,
similar prototyping environments, and configuration files
that are manually edited. For example, a designer creating
a skin for a music player must separately specify the
appearance of the visual elements in the skin and the
mapping between these visual elements and the

functionality provided by the music player. Several
problems are created by this unnatural gap between the
creation of an appearance and the specification of a
corresponding semantic meaning. Most importantly, this
gap means that many visual tasks, such as specifying the
active region of a button, must take place in non-visual
environments, such as with the Lingo® scripting language
used in Macromedia Director. Further, this gap creates the
requirement that designers learn the additional tools needed
for specifying the desired semantic meaning.

Some tools, including Microsoft Visual Basic® and tools
with similar functionality, support the specification of both
visual appearance and semantic meaning. However, these
tools place fundamental limits on designers. Because the
creators of these tools often have neither the will nor the
resources to duplicate the functionality of powerful layered
drawing packages, designers find themselves working with
drawing tools that are significantly less capable than those
they prefer. These tools typically make it easy to create
standard widget-based interfaces, but very difficult to
create rich custom appearances. These limitations can
undermine creative expression and may discourage
designers from using these systems.

This paper presents a set of general techniques that allows
designers to use their preferred layered drawing package,
such as Adobe Photoshop, to associate behavior and
semantic meaning with visual elements. SLICE, or
Semantic Labeling in Convenient Environments, allows
designers to work in an environment where they are
comfortable and effective. These techniques support such
tasks as the creation of a music player skin entirely within a
layered drawing package. The techniques are extensible,
do not require non-standard data in image files, do not
require extra files be kept synchronized with image files,
and support the association of arbitrary code with visual
elements. We demonstrate our techniques in an
unmodified version of Adobe Photoshop 6.0, but it is
important to note that our techniques are general and
adaptable to nearly any layered drawing program.



Figure 1 presents an example of using SLICE to create a
music player skin. This simple skin provides access to the
play, pause, and stop functionality of the music player. It
also specifies where to display the title of the current song,
the artist of the current song, the current playback time, and
the total length of the current song. Creating a music
player skin entirely within Adobe Photoshop is an
improvement on existing methods. Designers currently
develop these skins by creating some number of image files
and then manually editing a configuration file that links the
functionality of the music player with these image files.
This tedious task of cutting images into files and creating a
matching configuration file is exactly the problem
identified above, that designers must leave a visual working
environment to specify the relationship between the image
files and the music player.

This example demonstrates many of the basic ideas behind
SLICE. Several markers are included in the layered image.
These markers, which are visually similar to the marker
shown in Figure 3, represent semantically meaningful
objects. Using a natural interaction technique that is
reminiscent of using a rubber stamp, markers are painted
directly into the layered image document and exist as pixels
in the layered image document. Each marker has several
fields that have been provided. For example, the Text
Display Region marker in the bottom-center has the value
“Time Display” provided for a field named Name. Directly to
the right of that marker, a Font Parameter marker has the
value “Monospaced” provided for a field named Font, the
value “10” provided for a field named Point, a checkbox
field checked to indicate that the text should be centered,
and a blue color painted into the box provided for a field

named Color. Markers are also associated with regions,
which are layers in the image document used to define
areas to which markers apply. In this example, white
regions have been used to mask the areas where text should
be displayed in the skin. The black lines drawn between
markers and regions are connectors, an advanced concept
used here to specify relationships between markers and
regions. This example also includes a demonstration of the
use of spatial position to indicate relationships among
markers. The document contains two groups, which each
contains three markers. Within these spatial groupings, the
Font Parameter markers indicate how text will be displayed
in the Text Display Region markers. So this skin specifies
that the current playback time and the length of the current
song will be displayed with a blue 10 point font, while the
artist and the title will be displayed with a white 12 point
font. The light blue background, the purple display area,
and the various buttons are all examples of visual elements
that appear in the skin. For the sake of clarity, the markers
that define buttons in this skin are currently not visible.

Figure 2 shows a music player using the skin created in
Figure 1. The player, constructed with jlGui [8], responds
and provides playback information to the markers in the

Figure 1. Using SLICE to create a music player skin.

Figure 2. A music player using the skin in Figure 1.



document. For example, any Button marker named Play will
start the music player. A Text Display Region named Time
Display will be updated to display the current playback time.
The music player accounts for a variety of markers and
interacts appropriately with the markers that are present,
ignoring the absence of any markers that were not used.

Music players also often provide an API for supporting
visualizations of spectrum analyzer output. Our player
supports any number of markers that inherit from a
Spectrum Analyzer marker. The player provides each of these
markers with spectrum analysis information as a song is
played. Consider, for example, a visualization that flashes
lights as the music plays. The marker for this visualization
uses a region and two color fields. The creator of the skin
specifies the region and paints the two colors into the
marker. When playing, the marker paints the region a color
that varies between the two provided colors according to
the spectrum analysis information. This approach allows
visualizations to be configured visually and allows new
visualizations to be created as new markers.

In the next section, we will present an overview of SLICE
documents. We will then present our document
interpretation architecture and discuss our approaches to
some of the problems encountered in interpreting SLICE
documents. This is followed by a discussion of two more
distinct uses for SLICE documents: the specification
of aesthetic templates for the Kandinsky system [3] and a
method of specifying animations. We then discuss some
initial feedback gathered from sessions with designers.
Finally, we compare SLICE to some related work and offer
a short conclusion.

SLICE DOCUMENTS
A driving concern in our design of SLICE is the desire to
remain entirely within a layered drawing package. This
means that all necessary information needs to be stored in
the pixels of an image and extracted from the image when
needed. This also means that feedback and guidance are
limited to what can be provided within the interface of the
drawing package. Given these requirements, three major
principles have guided the design of SLICE.

First, individual layers in SLICE documents can be reliably
interpreted with very simple image processing techniques.
By avoiding a need for complex gesture recognition and
computer vision techniques, we minimize the opportunity
for recognition errors. Simple image processing techniques
are sufficient for several reasons. One important reason is
that the alpha mask of each layer provides us with free and
reliable segregation between the background and
foreground of the layer. A second important reason is that
we use several semi-structured interaction techniques.
Semi-structured interactions techniques, which are much
more flexible than tradition structured interactions, guide
input in order to simplify recognition [1]. A third important
reason is that we make extensive use of knowledge about

the context in which we are interpreting a particular portion
of the image. Using knowledge of context in recognition
both allows for simpler recognition and allows identical
arrangements of pixels to be interpreted differently
according to their context [5].

Second, SLICE documents are always organized from the
top of a document to the bottom of the document. In other
words, any given layer in a document refers to, modifies, or
labels only layers that are lower in the document. Creation
is simplified because the person creating a document can
use this general principle to decide where to place parts of
the document. Interpretation is simplified because this
organization removes many of the ambiguities that can
exist when a given layer might refer to both layers above
and below it.

Third, SLICE documents dedicate a substantial number of
pixels to ensuring that the document is human-readable.
This allows human use of documents to be based in
recognition, rather than relying on recall. Because we
cannot provide tooltips or other interface exploration
devices inside the interface of a drawing package, the
desired information is presented in the document. This is in
contrast to an approach that minimizes the number of pixels
used in specifying semantic relationships. We are
comfortable with the use of extra pixels because the
usability gain appears to be significant. Further, layered
image documents allow entire sets of pixels to be made
invisible when not needed.

Basic Types in SLICE Documents
We now discuss each of the basic types used in SLICE
documents. As indicated in the introduction, documents are
constructed from three basic types: visual elements,
regions, and markers. Each marker contains several fields,
which can be thought of as parameters to a function. These
basic types are complemented by connectors, which are not
required but are useful in some situations.

Visual elements are sets of pixels that define an appearance.
Visual elements include the light blue background in our
earlier example, the image that should be drawn when a
button is in a pressed state, and a frame in an animation.
Visual elements can also include appearances that are never
actually drawn, such as an image that is used as input for a
tiling or texture generation process.

Figure 3. A marker indicating that several
visual elements and a region represent a button.



Regions are defined by grayscale images that can be
interpreted according to their use. In our earlier example,
regions are used to indicate where the music player should
display text. We can also use regions to specify the opaque
areas of a non-rectangular clipping mask, to indicate where
a click should be interpreted as a button press, and to
indicate the path for an animated object to follow.

Markers define semantic objects and semantic relationships
in a SLICE document. Our previous example includes
markers that indicate regions should be interpreted as areas
to display text. It also includes markers that indicate a font
that should be used when displaying this text. Figure 3
shows a marker that indicates a set of visual elements and a
region should be interpreted as a button. Note that each
marker includes a human-readable type label and provides a
human-readable list of the fields associated with the
marker.

Fields provide a reusable framework for associating
information with markers. Our button marker, for example,
uses a text field to associate a name with the marker, three
visual element fields to associate visual elements with the
marker, and a region field to associate a region with the
marker. Our previous example includes markers that use a
color field, for which a color is specified by painting into
the provided box. Another important field type is the
marker field type, used when a marker references another
marker. Taken together, reusable fields simplify the
creation of new markers and provide a standard look across
markers. They also localize the code for interpreting fields.

In the case of visual elements, regions, and marker field
types, fields need to be associated with referents of the
appropriate type. Because SLICE documents are organized
from the top of the document to the bottom of the
document, appropriate types need to be placed in the layers
below the layer containing the marker. The fields in the
marker are used to indicate the order that the referents
should be placed below the marker. For our button marker
shown in Figure 3, the first visual element below the button
marker is interpreted as the default look of the button. The
next visual element is interpreted as a rollover graphic and
a third is interpreted as a presentation of the pressed state.
A region specifies the clickable area of the button.

Fields can be either required or optional. For some field
types, it is obvious whether or not a field has been
provided. For example, if no text has been entered in a text
field or no color has been painted in a color field, that field
has not been provided. For the visual element, region, and
marker field types, however, we use a checkbox to indicate
whether the field has been provided. For required instances
of these field types, the checkbox is already checked when
the marker is placed. This allows the person creating the
document to recognize that they must provide the field.

Connectors are an optional type that are not necessary for
the creation of SLICE documents, but are useful in some
situations. A connector is used when the person creating a
document wants to override the default pairing between a
field and its referent. This connector goes in a layer that is
located between the marker and the referent. For example,
Figure 1 includes a region layer that specifies all four of the
areas where text is displayed. If a region field were paired
with this entire region layer, it would be associated with all
four of these areas. Because we want each display marker
to be associated with only one of these areas, we have
drawn connectors between the fields and the region. Each
marker is associated with the part of the region that is
contiguous with the endpoint of the connector. As a result,
each display marker is paired with the mask for just one
display area. Splitting each display area into its own region
layer and positioning markers appropriately could achieve
this same effect, but connectors allow a more concise
specification and generally make SLICE more flexible.
Multiple connectors can be attached to the same field if
noncontiguous parts of the referent are required.
Connectors in the same layer currently may not intersect,
but this does not limit their descriptive power because any
number of connector layers may be used.

Creating and Managing SLICE Documents
While SLICE documents are normal layered image
documents, some techniques for interacting with these
image documents make SLICE documents easier to create
and manage. We will now discuss some of these
techniques, focusing on how they work in Adobe
Photoshop. It is worth noting that these techniques have
been refined to work with the capabilities provided by
Adobe Photoshop. An important step in the development
of SLICE for use with different layered drawing packages
will be the refinement of these techniques for those layered
drawing packages.

Markers are painted into documents using custom brushes.
Selecting a brush and clicking in the image paints the
marker at the clicked location. Markers are defined as
monochrome masks, and this technique should work for
any drawing package that supports arbitrary custom
brushes. If a drawing package cannot support arbitrary
custom brushes, a simple copy and paste approach to
marker placement would also be sufficient. Adobe
Photoshop provides a simple mechanism for loading and
unloading groups of brushes. This allows us to group
related markers as a set of brushes that can be loaded and
unloaded as needed. For example, a designer working on
creating skins for a music player would load the appropriate
set of custom brushes, while a designer working on
specifying animations would load a different set of brushes.
Adobe Photoshop also provides a simple mechanism for the
creator of a brush to indicate how much the brush must be
dragged before it creates a second print of the brush. This
allows us to prevent designers from accidentally smearing a
marker.



A related issue is how to edit the value of a field after a
value has been provided. It is very straightforward to edit
many types of fields. A color field, for example, can be
edited by just painting a new color into the field. The
behavior of the paint bucket tool gives the desired effect.
For some field types, however, it could be difficult to
restore the marker to the state it was in before the field was
provided. Checkbox fields, in particular, are difficult to
clear if they are filled with the color black. Doing so would
required selecting and deleting the filled area of the
checkbox without deleting the border that makes the
checkbox behave appropriately when the paint bucket tool
is applied. A useful strategy here is to fill the checkbox
with a different color, such as gray or even purple. The
filled area can then be easily selected for deletion without
deleting the border of the checkbox. In the worst case, it is
easy enough to just delete the entire marker, paint in a new
marker, and provide the new desired field values.

Text fields also raise an interesting issue. Adobe
Photoshop makes a distinction between text layers, which
can still be edited with the text tool, and rendered text,
which exists as pixels. Our document interpreter, therefore,
allows either form of text to be used in a text field.
Rendered text can be merged into the same layer as the
marker, assuring that it will move with the marker and will
always be positioned correctly. If left in a text layer, text
can be positioned over a text field of a marker. In this
form, the designer can more easily experiment with
different values for the text field.

The ability to create groups of layers, referred to as layer
sets in Adobe Photoshop, is helpful when managing large
SLICE documents. As an example, consider the process of
creating a button and exploring different positions for the
button in an interface. The layers for the button, including
the marker, the region, and any provided visual elements,
can be placed inside a single layer set. All of these layers
except one visual element can then be made invisible. The
appearance of the button in the drawing package is then the
same as the appearance of the button in the interface.
Moving the layer set containing the button will maintain all
of the appropriate relationships, and the designer can avoid
the clutter that might arise from keeping all layers visible.

DOCUMENT INTERPRETER ARCHITECTURE
A document interpreter examines the pixels in a SLICE
document and extracts the desired relationships among
visual elements and markers. The document interpreter is
currently implemented as an automation plugin for an
unmodified off-the-shelf version of Adobe Photoshop.
Using an automation plugin allows us to include a
command to interpret a SLICE document in the main menu
bar. It also allows us to automatically save the document
before we begin, automatically flatten complex layers, and
revert the document to its original state when we finish
interpreting it. Our document interpreter uses the Adobe
Photoshop automation API to access the pixels in each

layer of the document and then manipulates the layers as
collections of pixels. As such, all of our recognition and
interpretation code is completely independent of Adobe
Photoshop. If adapting SLICE to a layered drawing
package that does not support the functionality needed for
our current automation approach, it would be sufficient to
use a second program that either interpreted exported layer
images or extracted layer information from the file format
used by the drawing package. We now present each step in
the document interpretation process.

Marker Recognition
Markers are recognized in a two-step process. They are
first located and then identified. They are located by
searching in an image for a pixel pattern that is unlikely to
appear for any other reason (the next section indicates how
to handle the case where this pixel pattern is used for some
other reason). At fixed offsets from the location of this
pattern, a set of regions is examined to determine which are
active. Our current patterns are presented in Figure 4.
These regions are part of the marker brush and are filled in
when the marker is created, not each time the marker is
used. Knowing which regions are active provides us with a
unique identifier of the marker type. We currently use 15
regions, giving us 32,768 possible types of markers. This is
much more than we currently need and very simple
extensions would allow the number of markers to be made
arbitrarily large without requiring any change to existing
markers.

Once a marker has been located and identified, the identity
of the marker is used to access the marker specification.
These marker specifications are installed together with the
corresponding marker brushes. This marker specification
lists the fields in the marker, the type of each field, the
offset from the marker location to the pixels to be
interpreted for that field, and any additional information
needed to interpret the field.

With this field offset information available, the parsing of
individual fields is delegated to a class for the field type.
Checkbox fields determine if they have been checked, color
fields extract the provided color, and text fields use an OCR
engine [18] to recognize text rendered into the marker.
Fields with references do not yet find their referents. These
references are resolved in a second pass through the
document discussed below.

Figure 4. Our current marker locator pattern and
identifier pattern. Bits three and fifteen are active.



Layer Type Recognition
Layer types can be explicitly set with a prefix at the
beginning of the layer name. Any characters before a colon
in the name of a layer are considered a prefix. For
example, a layer that is named “Visual Element: GrnBtn”,
“Visual: GrnBtn”, or “V: GrnBtn” will be interpreted as a
visual element regardless of the contents of the layer. This
allows layers that look like they contain markers to be
treated otherwise. Prefixes are recognized for each layer
type, and a special “Ignore” or “I” prefix can be used to
indicate that the document interpreter should completely
ignore a layer. We also support the use of an ignore prefix
on a layer set, indicating the every layer in the set should be
ignored.

If a layer prefix is not provided, the contents of a layer are
examined in order to heuristically determine the layer type.
Our current heuristics are very simple. If a layer contains
any markers, it is labeled as a marker layer. Non-marker
layers that contain color are labeled as visual elements. If
an image contains neither markers nor color, the document
interpreter applies our connector recognition techniques to
determine if the active pixels in the layer are consistent
with a connector layer. If the active pixels are not
consistent with a connector layer, the layer is labeled as a
region. These heuristics seem to work well in practice. We
have only found it necessary to explicitly label grayscale
visual elements.

Connector Recognition
A connector layer consists of non-intersecting straight lines.
Lines are currently extracted by finding the two most
distant points in each connected set of active pixels. If a set
of connected active pixels forms a line, the resulting pair of
points will be the endpoints of the line. We check that a
line drawn between the two points would account for all of
the pixels in the connected set. If the layer has been
explicitly labeled as a connector layer, we accept the
endpoints regardless of whether the line accounts for every
pixel in the set. If no explicit labeling has been provided,
the failure of the line to account for the active pixels in the
set indicates that the layer is not a connector layer.

An important parameter to this process is the width of the
line that is used when determining if a line accounts for the
pixels in the set. If the line is too narrow, some connected
sets that form lines will be rejected because they are wider
than the line being used. If the line is too wide, small oval
and rectangular regions will be misidentified as connector
lines. We currently use a line width of five pixels, which is
relatively narrow. We have opted for a narrow line because
connectors are an advanced feature in SLICE documents.
Requiring that people experienced with SLICE sometimes
explicitly label their connector layers is preferable to people
just beginning with SLICE documents being unable to
determine why their small regions are being misidentified.

It is also worth noting that our line extraction technique is
much less complex than typical advanced computer vision
techniques. It is, however, preferable for the situation in
which we are using it. Because the alpha mask of the layer
provides us with perfect segregation between the pixels in
the line and pixels not in the line, our problem is only to fit
a line to these pixels. For example, a standard Hough
Transform [6] is inappropriate because we require the
endpoints of the line. We experimented with a Progressive
Probabilistic Hough Transform [14], but found that it often
incorrectly recognized long narrow lines as several shorter
lines. Increasing the minimum line length parameter to the
algorithm resulted in the algorithm missing short lines. We
are interested in exploring other techniques that may allow
us to permit intersecting connector lines, but are generally
satisfied with our current solution.

Pairing Markers with References
After the pixel contents of each layer have been recognized,
a second pass is made through the document to pair
markers with their referents. This straightforward process
is based on the use of connectors and the proximity of the
appropriate types to the marker.

In the absence of connectors, visual elements and regions
are paired with fields according to the result of a search
through the layers below a marker. The first visual element
layer encountered is paired with the first visual element
field in the marker. Additional visual elements are found
by searching the layers below that visual element. The
same process is followed for regions for which a connector
has not been provided. This pairing process does not
require that visual elements or regions be paired with only a
single marker. In fact, it is common for multiple markers to
reference the same visual element or region. This pairing
process also explicitly allows some looseness in the
placement of regions and visuals elements used by a
marker. For example, our button marker expects up to
three visual elements followed by a region. Our pairing
process will work correctly if this region is instead placed
before the visual elements or even between two of the
visual elements.

Markers that refer to other markers without using
connectors are paired according to a very similar approach.
The first difference is that markers can appear in the same
layer as the marker to which they refer. The second
difference is that more than one marker can appear in a
given layer. Given these differences, the search is
performed in much the same way as for visual elements and
regions. If there is more than one marker of the desired
type in the layer found by the search, the document
interpreter selects the marker whose (X, Y) location is
closest to the field with which the marker is being paired.
As an example, Figure 1 contains Text Display Region
markers that are paired with Font Parameter markers in the
same layer according to their spatial proximity.



Connectors override the pairing approach just described.
The document interpreter instead searches the layers above
the connector for the first field that one end of the
connector points to. It uses the type of the field at that end
of the connector, called the origin end of the connector, to
search the layers below the other end of the connector,
called the target end of the connector, for the first valid
target. In the case of a region or visual element, this
downward search ends at the first appropriately typed layer
with a nonzero alpha value at the target end of the
connector. The search yields the set of connected pixels
with nonzero alpha values. If multiple connectors are
associated with the same region or visual element field, the
pixels that each of the connectors point to are combined. In
the case of a connector used to indicate a pairing with a
marker, the downward search ends at the first appropriately
typed marker located at the target end of the connector.

An advanced aspect of marker pairing is our support for
marker inheritance. Marker type specifications can include
a list of marker types from which the type inherits. The
marker can then replace any of those marker types as a field
in another marker. Marker inheritance is useful in a variety
of situations. For example, windowing systems usually
include a Frame type that inherits from a Window type. We
have created a Window Drag Region marker type that allows a
user to move a window by holding the mouse down within
the region and dragging the window. Because our Frame
marker type inherits from our Window marker type, a
Window Drag Region marker also works with a Frame marker.
Marker inheritance also proves useful when a marker
requires many fields to completely specify. A Font marker
type, for example, requires a number of parameters to
completely specify. It is often sufficient, however, to
provide only a font name, point size, and color. A
Simple Font marker type inherited from the basic Font marker
type allows default values to be automatically provided for
the values that are only occasionally changed.

Exporting SLICE Documents
Once the document interpreter has interpreted a SLICE
document, it is exported as an XML document and a set of
accompanying image files. This XML document includes
the markers found in the document, the fields associated
with each marker, and the necessary information for
accessing the exported images. This interpreted form is
intended for deploying a SLICE document in a runtime
environment, and it is completely independent of the
layered image document from which it is generated. As
such, this interpreted form can be moved or deleted with no
impact on the SLICE document used to generate it.

We have created a small toolkit, implemented in Java, for
loading, displaying, and interacting with interpreted SLICE
documents. This toolkit centers on a document class that
reads an XML file, instantiates the marker types specified
in the XML file, and provides each marker with its fields.
The document class provides mechanisms for markers to

listen to interface events and for applications to listen for
events generated by markers. As illustrated with our music
player example, this toolkit provides a simple mechanism
for connecting markers. Applications can interact with
semantically meaningful objects, such as responding to
button click events generated by a Button marker or setting
the text displayed in a Text Display marker.

EXAMPLES
This section presents two uses of SLICE documents that are
distinct from our earlier music player skin example. We
first present the use of SLICE documents to create aesthetic
templates for use with the Kandinsky system. We then
demonstrate techniques for creating an animated image that
displays a series of frames as it moves along a path.

Kandinsky Aesthetic Templates
Figure 5 shows a simple aesthetic information collage
generated by the Kandinsky system [3]. Aesthetic information
collages provide an aesthetic contribution to the space in
which they are displayed, but also convey information. As
such, they share many of the motivations presented in [17].
Kandinsky generates aesthetic information collages by
combining an aesthetic template, which is an image-based
expression of an artistic intent, with images selected to
represent information. Aesthetic templates specify both
visual elements of a collage and criteria used to guide
placement of images in the collage. In this simple example,
the aesthetic template is based on an image of five paint
bottles, each a different color. The aesthetic template
identifies each bottle as a region into which collage images
can be placed. It also provides criteria that guide the
placement of images into these regions. In this example,
images are placed into regions so that they match the color
of the paint bottle. They are also arranged in a ‘V’ shape
that complements the arrangement of the paint bottles. A
detailed discussion of this template and the process for
generating aesthetic information collages is provided in [3].

Figure 5. A simple aesthetic information collage
generated by the Kandinsky system.



Figure 6 presents two views of the SLICE document used
to create this aesthetic template. The portion of the SLICE
document that is shown in the top view specifies the collage
generation criteria for three of the five bottle areas in this
aesthetic template. The most important markers used are
the Image Region markers, which are in the layer named
Markers. The Image Region marker in the bottom-right
corner specifies that Kandinsky should place a collage
image in the area corresponding to the green bottle.
Directly above this marker is an Image Region Color Criteria
marker. A green color has been painted into the color field
of the marker, indicating that the collage image region will
attract green images during the collage generation process.
The spatial positioning of markers is used to indicate the
desired pairing between Image Region Color Criteria markers
and the appropriate Image Region markers. Placed in the
layer named Balance Point Markers are Image Region Balance
Criteria markers used to specify the ‘V’ shape desired when
images are placed into the collage image regions. The
Balance Point Region fields of these markers are paired with
the small circular regions located in the layer below the
markers. As with the Image Region Color Criteria markers,
spatial positioning is used to indicate the desired pairing
between Image Region Marker fields and the appropriate
Image Region markers. The layers named Gray Backdrop are
provided only to allow visibility of the balance point region
in this printed document, and the “I” prefix on the layer
names indicates that the document interpreter should ignore
these layers.

Note that the collage image regions for the other two bottles
are also defined in this same SLICE document, in the layer
sets named Purple Bottle and Blue Bottle. The second view of
this document shows the layers in Purple Bottle. They are
arranged in the same order as the layers in the top view,
with the exception that only one bottle region is defined in
the region layer and connectors are not used. Note that all
five of the paint bottle image regions in this template could
be specified in this way, allowing a beginning user of
SLICE documents to construct this document without using
connectors. Further, the purple and blue paint bottle
regions intersect. Because these regions intersect,
connectors could not be used to distinguish between them if
they were in the same layer. For this case, these regions
need to be specified in different layers.

Specifying Animations
Our final example demonstrates a technique for creating
simple animations. An Animation marker is placed in the
document. The marker contains a Name field, a Start Time
field, and a Duration field. A designer can specify that an
animated object should cycle through a series of images by
adding any number of Animation Frame markers. A designer
can similarly specify that the animated object move along a
path by drawing the path and using an Animation Path marker
to associate the path with the Animation marker.

Figure 6. Two views of using SLICE to create a
simple aesthetic template for the Kandinsky system.



Figure 7 illustrates this approach to creating simple
animations. This is a simple animation that moves a
pulsating yellow ball along a curved path. The pulsating
effect is achieved by toggling between two frames every
500 milliseconds. The path animation is achieved by
creating a region layer containing the desired path. Another
region is used to indicate which end of the path is the
starting end. The Animation object is moved along this path
by translating the graphics context in which the Animation is
drawn. Although a default linear timing function is used in
this example, different timing functions are available. For
example, a slow-in, slow-out timing function is often useful
[10]. Custom timing functions can also be defined by
using a marker that takes the location of a (0, 0) coordinate,
the location of a (1, 1) coordinate, and a line defining a
function from (0, 0) to (1, 1) [7].

The details of this example are less important than the
marker creation strategy that it illustrates. We have already
presented inheritance as a mechanism for managing large or
complex markers. This example illustrates another
approach for managing complex markers, one that is based
on the Decorator design pattern [4]. The Animation marker
itself has very little functionality, but provides a central
object to which many other markers can be attached. This
strategy for creating related sets of markers allows sets of
simple markers to be created instead of large and complex
markers. As new functionality is desired, new markers can
be added to the set. We could, for example, loop our
animation by adding an Animation Loop marker.

DESIGNER FEEDBACK
In order to inform the continuing development of SLICE,
we informally presented SLICE to some designers that use
Adobe Photoshop on a regular basis. We discussed the
ideas behind SLICE, explained how SLICE documents
work, and showed them the document for the music player
skin shown in our introduction. We then had each designer
create a skin that was at least as complex as our example
skin, allowing them to use our example skin as a reference.

By the end of this ninety-minute session, the designers
understood and were comfortable with SLICE documents.
They could place markers, provide values for fields, and
create relationships between markers, visual elements, and
regions without guidance and without using our example
skin as a reference. They found our guiding organizational
principle, that any given layer in a document refers to,
modifies, or labels only layers that are lower in the
document, to be helpful in understanding the layout of a
SLICE document. While none of the designers had
previous experience creating a skin for a music player, they
all drew connections between this task and other tasks
requiring the combined used of Adobe Photoshop and
another tool. They appreciated the ability to complete the
task in a single tool, and we observed them integrating
SLICE into their existing techniques for managing Adobe
Photoshop image documents. For example, designers often

create multiple instances of similar objects by creating one
instance, duplicating it as needed, and then making the
desired changes. We observed them using this same
technique to create similar SLICE objects, as in the case of
multiple buttons with a similar appearance. The designers
felt that the successful use of SLICE documents requires
strategies for managing layers, such as grouping related
layers into layer sets and giving meaningful names to
layers. They also felt that this was true of any large Adobe
Photoshop document and not limited to SLICE documents.
We are pleased with these initial responses to SLICE.

RELATED WORK
Our work shares some of the same motivations as sketching
based specification systems such as SILK [9] and DENIM
[12]. Though we take very different approaches to the
problem, both SLICE and these systems are interested in
making it easier for designers to create and explore
prototypes in a more natural environment. Specifically,
SLICE is designed for use at a later point in the design
process than SILK and DENIM. SLICE supports the
creation of high-quality, finished appearances, and is not

Figure 7. Specifying a simple animation sequence.



intended to replace sketching. Similarly, we share some of
the same motivations as DEMAIS, which uses multimedia
storyboards to enable designers to explore multimedia
applications [2].

A recent enhancement to SILK and DENIM allows the
definition of reusable components in a sketching
environment [13]. These components are limited to the
storyboarding approach taken by these systems. Unlike our
markers, they do not support arbitrary functionality. While
well suited to the sketching context in which they are used,
they differ substantially from our approach.

Pierce and Pausch present a technique for identifying active
parts of a 3D model by using painted images similar to the
images used to assign texture to a 3D model [16]. This
relates to our ideas on specifying appearance and semantic
meaning in the same environment. However, they present a
very limited case and require a separate indication of what
behavior should be associated with a painted region.

CONCLUSION
We have presented SLICE, a set of general techniques that
allow designers to specify both visual appearance and
semantic meaning in their preferred layered drawing
package. The techniques used by SLICE are extensible, do
not require non-standard data in image files, do not require
extra files be kept synchronized with image files, and
support the association of arbitrary code with visual
elements. Currently implemented in an unmodified version
of Adobe Photoshop 6.0, our techniques are general and
adaptable to nearly any layered drawing package.

ACKNOWLEDGMENTS
We would like to thank designers Matthew Mowczko,
Emma van Niekerk, and Arie Stavchansky for their
feedback. We would also like to acknowledge libpng, zlib,
jlGui, and the Open Source Computer Vision Library, all of
which have been used in our document interpreter or our
examples. This work was funded in part by the National
Science Foundation under Grant IIS-0121560 and the first
author’s NSF Graduate Research Fellowship. All
trademarks are the property of their respective owners.

REFERENCES
1. Avrahami, D., Hudson, S., Moran, T. P., and Williams,

B., “Guided Gesture Support in the Paper PDA”,
Proceedings of the 2001 ACM Symposium on User
Interface Software and Technology (UIST 2001).

2. Bailey, B. P., Konstan, J. A., and Carlis J. V.,
“DEMAIS: Designing Multimedia Applications with
Interactive Storyboards”, Proceedings of the 2001
ACM Conference on Multimedia (Multimedia 2001).

3. Fogarty, J., Forlizzi, J., and Hudson, S., “Aesthetic
Information Collages: Generating Decorative Displays
that Contain Information”, Proceedings of the 2001
ACM Symposium on User Interface Software and
Technology (UIST 2001).

4. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, 1995.

5. Gross, M., and Do, E.Y.-L., “Demonstrating the
Electronic Cocktail Napkin: A Paper-Like Interface
for Early Design”, CHI Letters: Proceedings of the
1996 SIGCHI Conference on Human Factors in
Computing Systems (CHI 1996).

6. Hough, P. V. C., “Methods and Means for Recognising
Complex Patterns”, U.S. Patent 3 069 654, Dec 1962.

7. Hudson, S., and Stasko, J. T., “Animation Support in a
User Interface Toolkit: Flexible, Robust, and Reusable
Abstractions”, Proceedings of the 1993 ACM
Symposium on User Interface Software and Technlogy
(UIST 1993).

8. jlGui - Java Music Player, Web Page:
http://www.javazoom.net/jlgui/jlgui.html.

9. Landay, J. A. and Myers, B. A., “Sketching Intefaces:
Toward More Human Interface Design”, in IEEE
Computer, 34(3), March 2001, pp. 56-64.

10. Lasseter, J., “Principles of Traditional Animation
Applied to 3D Computer Animation”, Proceedings of
the 1987 SIGGRAPH Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH
1987).

11. libpng, Web page: http://www.libpng.org.

12. Lin, J., Newman, M. W., Hong, J. I., and Landay, J. A.,
“DENIM: Finding a Tighter Fit Between Tools and
Practice for Web Site Design”, CHI Letters:
Proceedings of the 2000 SIGCHI Conference on
Human Factors in Computing Systems (CHI 2000).

13. Lin, J., Thomsen, M., and Landay, J. A., “A Visual
Language for Sketching Large and Complex
Interactive Designs”, to appear in CHI Letters:
Proceedings of the 2002 SIGCHI Conference on
Human Factors in Computing Systems (CHI 2002).

14. Matas, J., Galambos, C., Kittler, J., “Robust Detection
of Lines using Progressive Probabilistic Hough
Transform”, in Computer Vision and Image
Understanding, 78(1), April 2000, pp. 119-137.

15. Open Source Computer Vision Library, Web Page:
http://www.intel.com/research/mrl/research/openv/.

16. Pierce, J. S., and Pausch, R., “Specifying Interaction
Surfaces Using Interaction Maps”, Technical Report,
CMU-CS-01-100, January 2001.

17. Redström, J., Skog, T., and Hallnäs, L., “Informative
Art: Using Amplified Artworks as Information
Displays”, Proceedings of Designing Augmented
Reality Environments (DARE 2000).

18. Textract, Web page:
http://www.structurise.com/textract/.

19. zlib, Web page: http://www.zlib.org.


