
Chapter 8

Flow Equivalence and Hierarchical Modelling

8.1. Introduction

The models studied in previous chapters were simple both in their
construction and in the techniques required for their evaluation. Often it
is useful to construct more sophisticated models so that additional details
of the computer system may be represented. In this chapter we discuss a
technique for doing so, hierarchical modeling. Hierarchical modelling is
the process of partitioning a large model into a number of smaller submo-
dels. Each of these submodels then is evaluated, and the individual solu-
tions are combined to obtain the solution of the original model. The
recombination is performed using a special type of service center called a
flow equivalent service center (FEW.

Consider the model shown in Figure 8.1, which represents two single-
CPU systems with a shared I/O subsystem. In the general case, there is
an arbitrarily defined subsystem, called the aggregate, which interacts with
the other service centers in the network, called collectively the comple-
ment or complementary network. The aggregate itself may or may not be
representable as a network of service centers. In the case of this exam-
ple, the complement represents the CPUs, while the aggregate represents
the complex I/O subsystem. A key step in the hierarchical approach is to
replace the entire aggregate by a single service center that mimics its
behavior, thus reducing the size of the network to be solved.

From the perspective of the service centers in the complement, the
aggregate can be thought of as a black box whose behavior is character-
ized by the residence time there (i.e., the time interval from when a cus-
tomer enters the aggregate until that customer departs the aggregate) and
by the rate and pattern by which customers leave the aggregate to return
to the complement (i.e., the departure process of the aggregate). As long
as customers experience an appropriate delay at the aggregate, and the
departure process of the aggregate is correct, the service centers in the
complement are unaffected by the actual construction of the aggregate.
Therefore, any representation of the aggregate that results in appropriate
inter-departure times is sufficient to obtain the solution of the network

152

8.1. Introduction 153

CPUS

Disks

Figure 8.1 - Example Loosely-Coupled Multiprocessor Model

(with respect to the service centers in the complement). In particular,
the performance measures obtained for the complementary network will
be the same regardless of whether the aggregate is represented as a large
number of service centers or as a single service center.

It is this realization that leads to the concept of flow equivalent service
centers. An FESC is a single service center that, from the point of view
of the complementary network, behaves identically to the aggregate itself.
This means that the FESC must (minimally) cause the same average
delay to customers passing through it as those customers would experi-
ence had they actually proceeded through the detailed representation of
the aggregate. (In general, for an FESC to be exact, it must mimic the
actual distribution of interdeparture times from the aggregate, not just the
average. However, such detailed FESCs are too cumbersome to be of
practical use, so we limit ourselves to FESCs that match only average
residence time and throughput.) Since the FESC is a single service
center, while the detailed representation of the aggregate presumably is
much more complex, the use of FESCs is attractive because it leads to
much simpler models.

FESCs are the keys to hierarchical modelling. Hierarchical modelling
(often called hierarchical decomposition) is the process of modelling a sys-
tem using multiple levels of models. The model at the highest level,
level 0, consists of a number of FESCs, each of which represents some
portion of the computer system being modelled. The level below that,

154 General Analytic Techniques: Hierarchical Modelling

level 1, consists of a number of models, each a more detailed representa-
tion of a subsystem represented in level 0 as an FESC. Each of the level
1 models itself may contain FESCs. In general, the characteristics of the
FESCs at level I are determined by solving models at level I+ 1, until
finally some level is reached at which all models are fully detailed, i.e.,
contain no FESCs. Figure 8.2 shows a possible decomposition scheme.
(Notationally, FESCs are distinguished by an arrow through the server,
suggesting variability.)

Level 0

/7-‘-T?
-l-f 1-7

L
L 7s

c
Level 1

L
--? u I3

I3
Level 2 a 13 Figure 8.2 - Model Decomposition

Although the definition of the models normally proceeds from level 0
to level L, the evaluation of the models must occur in the opposite direc-
tion, i.e., from level L to level 0. Eventually the level 0 model is
evaluated, and performance projections for the computer system being
modelled are obtained from its solution.

There are two key requirements in hierarchical modelling beyond the
original need to define the levels of models. The first is to find a suitable
structure for FESCs. Our goal is to create a single service center that can
replace an entire subsystem. Thus, we expect this center to be more
complicated than the service centers we have seen so far, which represent
only single resources. Intimately related to the problem of finding a suit-
able representation for the level 1 FESCs is the problem of obtaining

8.2. Creating Flow Equivalent Service Centers 155

parameter values for them from the submodels at level If 1. These
issues are considered in Sections 8.2 and 8.3.

The second requirement of the hierarchical modelling process is to
evaluate models containing FESCs. As mentioned above, we should
expect FESCs to be more complicated than the types of centers we have
seen so far. Correspondingly, we should expect the solution techniques
required to evaluate models containing them to be more complicated.
This issue is addressed in Section 8.4.

8.2. Creating Flow Equivalent Service Centers

In general, it is not possible to find FESCs that produce exact results
for the complementary network. However, reasonably accurate approxi-
mations can be obtained. Figure 8.3 shows a typical situation in which an
FESC might be used. The enclosed subsystem (the aggregate) would be

FESC.

Figure 8.3 - Example Application of an FESC

The purpose of the FESC is to mimic the behavior of the aggregate.
This behavior, as viewed by the complementary subnetwork, is the flow
of customers out of the aggregate and into the complement. An approxi-
mation for this flow can be obtained by making the decomposability
assumption that the average rate at which customers depart the aggregate
depends only on the state of the aggregate, where the state is defined by
the customer population within the aggregate. Thus, the state is

156 General Analytic Techniques: Hierarchical Modelling

independent of the placement of the customers at the various service
centers. (For example, the state of an aggregate might be (2 class A , 1
class B). The total number of customers of each class is represented, but
information about the location of each customer in the aggregate is
ignored.) An aggregate therefore can be defined completely by a listing
of its throughputs as a function of its possible customer populations.

The assumption that the output rate of the aggregate depends only on
the customers in it implies the assumption that the aggregate achieves
local equilibrium between successive interactions with the complement.
Local equilibrium means that the behavior of the aggregate is indepen-
dent of its starting condition. This situation occurs if, after an arrival to
the aggregate, many transitions of customers between service centers in
the aggregate occur before another arrival from the complement takes
place. Local equilibrium is most likely achieved when the service centers
in the aggregate all have service rates that are considerably faster than the
service rates of the centers in the complement.

It is desirable that the aggregate achieve local equilibrium because in
that case the average departure rate from the aggregate with a given
population in it will be nearly the equilibrium throughput, regardless of
the initial placement of those customers. This is exactly the assumption
made in reducing the aggregate to a single service center whose state is
described entirely by the number of customers present. If the aggregate
did not achieve equilibrium, its output rate would depend on its initial
configuration of customers, and so the single server representation would
be deficient.

Flow equivalent service centers are represented in queueing network
models using load dependent service centers. A load dependent service
center can be thought of as a service center whose service rate (the
reciprocal of its service time) is a function of the customer population in
its queue. For instance, a delay center can be thought of as a load depen-
dent service center that has service rate p with one customer in the
queue, and service rate np with n customers in the queue (in a single
class model). In contrast, a queueing service center is load independent:
it has service rate p regardless of the number of customers in its queue.

An FESC for an aggregate is a load dependent service center with ser-
vice rates pc (3) equal to the throughputs X, (5’) of the aggregate for all
populations R and classes c. (We will discuss methods for obtaining
these rates in Section 8.3.) Because the FESC mimics the behavior of the
aggregate, it can be used to replace the detailed description of the aggre-
gate in the model with little effect on the performance measures obtained.

For single class models, a state of an aggregate is described simply by
the number of customers anywhere within it, since customers are indis-
tinguishable. A flow equivalent service center is formed by calculating

8.2. Creating Flow Equivalent Service Centers 157

throughputs X(n) of the aggregate as a function of the number n of cus-
tomers in the aggregate. These are used to create a load dependent ser-
vice center with service rates p (n > = X(n >.

In the case where the workload is transaction type, a rather subtle
problem can occur with the specification of the FESC. For these models,
there is no limit to the number n of customers that might exist in the
aggregate. Thus, an infinite number of throughput values seem to be
required to specify the FESC. While this is the case in theory, in practice
the situation is less bleak. Because real computer systems do not experi-
ence unbounded numbers of jobs in their queues, only a flnite (and usu-
ally small) number of rates are required even for transaction type classes.
Typically, distinct rates are specified for all n less than some given
number yt” (which depends on the computer system being modelled).
Rates for all larger n are then assumed to be equal to the rate with n*
customers. FESCs that have rates of this sort are said to have limited load
dependent behavior. We will see specific applications of limited load
dependence in Part III of this book.

In applying FESCs to multiple class models, the state of an aggregate
is defined by a vector ?i E (nl , . . . , nc> giving the number of customers
of each class present. Thus, the flow equivalent service center
corresponding to a specific aggregate is the load dependent service center
with output rate for class c, ,LL? (Z), equal to X, (R). Since the output rate
of the FESC for each class must equal that of the aggregate, the
“scheduling discipline” at multiple class FESCs cannot be a traditional
one. (For example, if an FESC were scheduled FCFS, only the class
currently in service at the FESC would exhibit the proper output rate,
since all other classes would have output rates of zero.) Instead, an
artificial scheduling discipline, called composite queueing, is used so that all
classes receive service at once. One can think of the FESC as having C
distinct queues, one for each customer class. These queues are served in
parallel, with the class c queue being served at rate pc (iT> when the
population of the C queues is given by R - (n, , . . . , nc>.

As with single class models, specifying rates for an FESC in a network
that contains transaction type job classes can present problems in theory,
because of the apparently unbounded number of rates required. In prac-
tice, though, FESCs with limited load dependent behavior are sufficient,
and so models with transaction type classes pose no real problems.

A problem associated with multiple class FESCs that does not arise in
the single class case is that the number of populations for which
throughputs must be deteyined grows very quickly with the number of

classes. In particular, Cn (iV,+l) throughputs are required for a net-
c=l

work with a (closed) population of N, class c customers (a throughput

158 General Analytic Techniques: Hierarchical Modelling

for each of the C classes, for each of the][;I (N, -l- 1) possible aggregate
C=l

populations). A network with five classes of ten customers each, for
instance, requires nearly one million distinct throughputs. Fortunately,
this problem can be dealt with in some cases by choosing an appropriate
method for calculating the necessary load dependent throughputs (see
Section 8.3).

It is important to keep in mind that while the hierarchical modelling
process appears to give an exact representation of the model, in general it
is only an approximation. The approximation arises in describing an
entire subsystem by a single service center. In doing so, information
regarding the placement of customers at the centers of the subsystem is
lost, and so the FESC does not have sufficient information to mimic the
subsystem exactly. In many situations, however, the resulting inaccuracy
is negligible.

8.3. Obtaining the Parameters

The parameters required to specify an FESC are the load dependent
service rates for each class as functions of the possible queue populations.
As indicated previously, the rates for level 1 models generally are
obtained from the solution of the corresponding level I+ 1 models. How-
ever, there are a number of different ways in which a level 1+1 model
can be evaluated:
l measurements - In some cases, it may be possible to observe the sub-

system that is to be aggregated, and to obtain measurements of its
throughput as a function of the number of customers present. For
instance, one might measure the throughput of a channel/string pair
as a function of the number of outstanding requests to that string.
These measured throughputs then could be used directly to set the
service rates of an FESC.

l queueirg network models - The level I FESC might be representable at
level I-l-1 as a queueing network consisting of load independent ser-
vice centers (and possibly some FESCs with service rates set by solu-
tions of lower-level models). This level I-t- 1 model can be evaluated
analytically, and the throughputs predicted from its solution used to
set the service rates of the level 1 FESC.

l simulation - If some aspects of the aggregate make it difficult to
evaluate analytically, a simulation of the aggregate can be performed
to obtain the required load dependent throughputs.

8.4. Solving the High-Level Models 159

l special purpose analytic methods - Models peculiar to a particular sub-
system, such as a complex I/O subsystem, might be developed and
solved analytically. The outputs of these models could be load depen-
dent throughputs, which then would be used to define the FESC
required in the next higher-level model.

In most cases we advocate the use of queueing network models for estab-
lishing the parameters of FESCs, for the same reasons that we advocate
their use in general: a combination of reasonable accuracy and ease of
use. Addition$ly, this approach has the overwhelming advantage of pro-

ducing all C’n (N,f 1) rates required to parameterize the FESC with a
c=l

single solution of the low-level model. (Remember that the exact MVA
solution algorithm produces solutions for all populations from 0 to w as a
by-product of obtaining the solution at population ??.>

Having obtained the parameters of the level I FESCs, we now must
evaluate the level I model. As this model is simply one of the low-level
models defining a level l-l FESC, it is clear that we can use any of the
preceding techniques to perform this analysis. However, for the reasons
outlined above, it generally is the case that the second method (queueing
network models) is used. In the next section we look in more detail at
the process of applying this technique.

8.4. Solving the High-Level Models

The most obvious approach to evaluating high-level models is to apply
the analytic techniques developed in previous chapters. In Chapter 20 we
present extensions to the MVA solution technique that allow the efficient
evaluation of networks containing load dependent service centers. Unfor-
tunately, this approach is applicable only to separable queueing network
models. Non-separable high-level models can arise when some non-
separable aspect of the original model (such as a priority scheduled ser-
vice center) is represented directly in the high-level model, or when the
load dependent service centers have arbitrary service rate functions.

For the moment, let us assume that the original network to be
analyzed is separable, so that the first of these two problems cannot arise.
In this case, if we wish to evaluate the higher-level model using efficient
analytic techniques, we require certain restrictions on the load dependent
service rates of each FESC. In particular, it must be possible to describe
the service rates of each FESC by a C dimensional matrix
g[O:N, , O:N2 , . . . , O:ycl, such-that the service rate of class c with popu-

lation 3, p-Lc (Xi), is equal to
glnl , . . . , n,-1 , . . . , ncl

g[ni , . . . , ncl
, with the initial

160 General Analytic Techniques: Hierarchical Modelling

condition that g[O , . . . , 01 = 1. A simple example of plausible throughput
rates for a two-class aggregate that violate this condition is:

/A4 (n/j =l) ns=O) = l/2
p&lA=O) ns=l) = l/3
/.L/q(n/$=l) t@=l) = 3/10
/Q&=1) nB=l) = 2/9

The first two rates require that g[l ,01=2 and g[O,11=3 (remembering
that g[O,Ol is equal to 1). The last two rates are incompatible, since the
rate for class A requires that g [l,ll be 10, while the rate for class B
requires that it be 9.

While general techniques for estimating the service rates of FESCs do
not lead to separable higher-level models, analyzing the lower-level
models as separable networks (the second approach of Section 8.3) is
guaranteed to do so. Based on this fact, an efficient strategy for use in
the hierarchical modelling of separable networks is summarized as Algo-
rithm 8.1. While the primary motivation for this strategy is its low com-
putational requirement, it happens that when the original model is separ-
able, this algorithm produces the exact solution.

In cases where the original model is not separable, Algorithm 8.1 must
be modified slightly. If the non-separable aspect of the model is included
in one of the lower-level models, then the step of the algorithm that
solves that submodel must be modified, as the MVA solution technique
is not applicable. Similarly, since the throughputs obtained from a non-
separable submodel do not result in a separable FESC, the step of the
algorithm dealing with the solution of the high-level model must be
modified. If the non-separable aspects of the original model do not
appear in any low-level models, but only in the higher-level model, only
the step dealing with the solution of this model must be altered. An
approach to solving non-separable models that can be used in place of
MVA in applying Algorithm 8.1 is given in Section 8.5. That approach
results in approximate solutions of the original model. However, experi-
ence has shown that such approximations usually are quite accurate.

8.5. An Application of Hierarchical Modelling

To this point we have been concerned with separable queueing net-
work models. The principal advantage of separable networks over more
general networks is that their solutions can be obtained very quickly.
However, the conditions required for separability impose some restric-
tions that at times can result in insufficiently accurate models. There are
three approaches that can be taken in such a case. One is to combine the
solutions of a number of separable networks (possibly with some iteration

8.5. An Application of Hierarchical kfodelling 161

given a closed, separable model with K centers and population
N, let centers 1 through A represent the aggregate, and centers
A -t- 1 through K the complement.

1. Create a low-level model by setting the service demands of
centers A+1 through K to zero for all classes. This is
equivalent to creating a model with centers 1 through A.

2. Evaluate this (separable) model with population H’, using the
exact MVA solution technique. Obtain system throughputs
X,(Z) for all classes c and all populations from no customers
to the full population 8.

3. Create a high-level model consisting of centers A f 1 through
K, an FESC_ representing centers 1 through A, and customer
population N. The service rate of the FESC for class c when
the customer population in its queue is Z should be X, (Zi).

4. Evaluate this high-level model using the extension to MVA
described in Chapter 20. The solution of this model is an ap-
proximation to the solution of the original K center network.
System performance measures for all customer classes, and
performance measures for centers A+ 1 through K, are ob-
tained as the results of this solution. Performance measures
for centers 1 through A can be computed by combining infor-
mation from the solutions of the high- and low-level models.
For instance, the average queue length at center K in a single
class model with population N can be estimated as:

Q,(N) = f P[Qmc=n] $j PCQK=~IQ.ESC=~I
n=l [,j= 1 I

where PIQFEsC= nl is the probability that the queue length at
the FESC is II (obtained from the high-level model), and
PIQK=jIQFEsC=nl is the probability that center K has
queue length j given that there are n customers in the aggre-
gate (obtained from the low-level model).

Algorithm 8.1 - A Hierarchical Decomposition Solution Technique
for Separable Models

to acquire necessary parameters) to obtain an estimate of the performance
of the system. The second is to create a non-separable model. A
modification of the MVA solution algorithm that reflects the non-
separable aspects of the model then is used to obtain approximate

162 General Analytic Techniques: Hierarchical Modelling

performance measures. (Thus, we have an “exact” model but an
approximate analysis technique.) Both of these approaches are used in
Part III of this book. The final approach is to use a non-separable queue-
ing network model and an analysis technique that yields the exact solu-
tion of the model. The price paid for this increased accuracy is that the
solution requires a massive amount of computation.

In this section, we discuss the use of hierarchical modelling to
decrease the cost of evaluating non-separable queueing network models.
Our point of view is that we have determined that a non-separable queue-
ing network model is required because of the need to represent a particu-
lar computer system characteristic, and are seeking a feasible means to
evaluate this model. By judicious choices of aggregates, a large non-
separable model can be replaced by a much smaller model, by substitut-
ing single FESCs for various subsystems of service centers. This (still
non-separable) reduced model can be evaluated feasibly using one of the
accurate but computationally expensive solution techniques for non-
separable models. Thus, we have an approximate solution technique that
allows explicit representation of very general features of computer sys-
tems and still is efficient enough to be practical.

In the next two subsections we examine two specific general solution
techniques, one analytic and the other simulation.

8.5.1. Global Balance

The general analytic technique used to evaluate closed, non-separable
networks is called global balance. The global balance solution technique
involves creating and solving the large sets of linear equations that
describe the behavior of these models. This technique is impractically
expensive in most cases because of the enormous number of equations
and unknowns involved. Global balance requires one equation per state
of the network, where a state is (roughly) a placement of customers at
the service centers. A model with K centers and C classes therefore has
at least:

equations and unknowns, where
I1
$ denotes the number of ways of

choosing p objects from n. Systems of equations of this size are
unmanageable even for apparently modest K, C, and @. For instance, a
network with 6 service centers, 5 classes, and 5 customers in each class
has more than 1012 states, and so cannot be solved directly using global
balance,

8.5. An Application of Hierarchical Modelling 163

The implication of the rapid growth in the size of the state space with
the size of the model is that global balance can be applied only to very
small models. Approximate solutions of large, general models can be
obtained, however, by a combination of global balance and hierarchical
decomposition. A large model is broken into pieces, each of which can
be analyzed independently. These individual solutions then are combined
into a single model using FESCs, and the solution of this much smaller
model is obtained via global balance.

As an example, Figure 8.4 shows a model with three service centers (a
CPU and two I/O devices) and two customer classes. Both I/O devices
are queueing devices, while the CPU is scheduled with priority given to
class A over class B. (An arriving class A customer goes into service
immediately if there are no class A customers at the center, and queues
behind those class A customers otherwise.) Because of the priority
scheduling, the model is not separable, and thus cannot be evaluated
using the MVA techniques of Chapter 7.

/
I3

Disk I 7

I--- w CPU

\

V A,CPiJ = 16 I/A,Diskl = 15 VA,Disk2 = 0
NA = 1 sA,CPU = l5 sA,Diskl = 20 sA,Disk2 = -

D A,CPU = 240 DA,Diskl = 300 DA,Diskz = 0

V B,CPU = l1 vB,Diskl = 4 vB,D&k2 = 6
NB = 2 SB,cpu = 13 sB,D,kl = 20 sB,Dixk2 = 50

D B,CPU = I43 DB,Diskl = 80 DB,Disk2 = 300

Figure 8.4 - Global Balance Model

Recall that the service demand of class c at center k, Dc,k, is the pro-
duct of the visit COUnt, V+, and the SeWiCe requirement per visit, SC,,.
In separable models, we speak only of the Dc,k because the performance
measures are identical for all combinations of v,,k and s,,k that have the

164 General Analytic Techniques: Hierarchical Modelling

same product Dc,k. In non-separable models, different combinations of
b,k and ‘%>k with the same product Dc,k will in general yield different
results. Thus, in order to specify the non-separable model in Figure 8.4,
we have had to provide the v,,k and Sc,k. We assume that each job
begins and ends service at the CPU, so for each class the CPU visit count
is one greater than the sum of the disk visit counts. This information will
be used only in obtaining the exact solution to the model; our hierarchi-
cal approximation will consider the model at the level of service demands.

This example is small enough that global balance could be applied
directly. In general, however, this will not be the case. Yet, since prior-
ity scheduling has an important influence on the performance of the sys-
tem, it is necessary to represent it in the model. We do so here by apply-
ing global balance to the smaller model created by replacing all centers
other than the CPU with an FESC. (Other techniques for modelling
priority scheduling are presented in Chapter 11.1 The resulting two
center model (the priority CPU and the FESC) then can be evaluated
using global balance, and this solution used as an estimate for the perfor-
mance measures of the system. The entire process is outlined below:
l isolate the I/O subsystem - A model consisting of only the I/O subsys-

tem is created (see Figure 8.5). Each class has a service demand at
the CPU of zero, and a service demand at each disk as indicated in
Figure 8.4.

Figure 8.5 - Isolated I/O Subsystem Model

8.5. An Application of Hierarchical Modelling 165

0 evaluate the low-level model - The low-level model just created is
evaluated for every population that it could contain in the full net-
work. Since this submodel is separable, the standard MVA technique
can be applied. The performance measures of interest are the popula-
tion dependent throughputs for each class:

z
A B x, (79 x, (a
0 1 0 .00263
0 2 0 .00316
1 0 .00333 0
1 1 .00275 .00217
1 2 .00255 .00293

These give the rate at which customers leave the aggregate and return
to the CPU for each customer population in the aggregate, and thus
are the parameters required to form an FESC.

l create the high-level model - The high-level model (Figure 8.6) con-
sists of the original CPU service center and an FESC representing the
I/O subsystem. At the CPU, each class has the service demand indi-
cated in Figure 8.4. The FESC has the population-dependent service
rates shown in the preceding table (e.g., .00275 for class A and .00217
for class B when one customer of each class is present). Remember
that the FESC is scheduled using composite queueing, so that ail cus-
tomer classes are in service simultaneously and independently. Thus,
service rates of .00275 for class A and .00217 for class B mean that a
class A customer will leave (on average) in 363.6 (= l/.00275 > time
units and a class B customer in 460.8 (= l/.00217 >.

Figure 8.6 - The High-Level Model

l evaluate the high-level model - Since the high-level model contains a
priority scheduled CPU service center, it cannot be solved using MVA
(which pertains only to separable networks). However, the high-level
model is small, and so can be solved by the global balance technique.
We obtain:

166 General Analytic Techniques: Hierarchical Modelling

A', = .0016 x, = .0020
Q A,CPU = ,396 QB.CPCJ = ~38

The exact solution of the model of Figure 8.4, obtained by an expen-
sive direct application of global balance, is:

z't-A = .0016 x, = .0020
Q A,CPU = .373 QB,CPU = .790

Note that the performance measures obtained using the hierarchical
approach are only approximations, although both the low- and high-level
models were solved exactly. This is because the behavior of the I/O sub-
system cannot be replicated exactly by the FESC, since information
regarding the location of customers in the I/O subsystem is discarded.

The motivation for using an FESC in this example is that global bal-
ance can be applied to the resulting small high-level model, but (in more
general cases> not to the original, large model. Use of the global balance
technique was required because of the non-separable aspect of priority
queueing in the model. In the following section we give a more detailed
description of the global balance solution technique. The technique is
described both in general terms, and more specifically as applied to the
problem above. One should keep in mind that the global balance tech-
nique can be applied in many more situations than those involving prior-
ity scheduling. However, in all cases, the network to be solved must be
quite small.

Details of Global Balance

The global balance solution technique can be used to compute the
solutions of fairly general networks of queues. The technique is based on
analyzing transitions of the system from one “state” to another.

We define a state of a service center in a queueing network model to be
an ordering of customers in its queue. For example, the feasible states of
a service center in a network with two class A customers and one class B
customer are

(Am) (ABA) (BAA) (AA) CABI CBA) (A) (B) (1

The state of a service center provides information about which customers
are in service and which are waiting. In some cases the state description
need not contain information about the ordering of customers in the
queue. For instance, if the queue above were scheduled with priority to
class A over class B, there would be no need to list the order of custo-
mers since it is certain that class A will be served first.

We define a state of a queueing network to be a composite of the states
of all of its service centers. Intuitively, the state of a queueing network

8.5. An Application of Hierarchical Modelling 167

contains all the information necessary to determine the behavior of the
model at the moment.

We define the state space of a queueing network to be the set of feasi-
ble states. For instance, the state space of a model with two service
centers and ,a single customer class of 3 customers is:

(3 ; 0) (2 ; 1) (1 ; 2) (0 ; 3)

Here, the first number in each pair represents the number of customers
at center one, and the second the number at center two. In general, the
set of feasible states of a queueing model is determined by the number of
customers of each class in the network, the service centers that each class
visits, and the scheduling disciplines of the various centers.

We define a state transition to be the movement of the model from
one of its states to another, caused by the movement of a customer
within the model. For instance, if the model above were in state (3 ; 01,
it would move to state (2 ; 1) when one of its customers completed ser-
vice at center one and proceeded to center two. A common assumption
made in analyzing queueing networks is that they exhibit one step
behavior: each state transition involves the movement of exactly one cus-
tomer. Thus, the network can move from state (3 ; 0) to state (2 ; 11,
but not (directly) to state (1 ; 2). One step behavior is a reasonable
assumption since it is very unlikely that any two jobs of the computer sys-
tem can change locations at precisely the same time.

We define the state transition rate associated with a particular state
transition to be the instantaneous rate at which that transition occurs,
given that the network is in the starting state. For instance, if center one
in the model above has a service time of 2 (a service rate of .5>, and cus-
tomers always alternate between centers 1 and 2, the rate associated with
the transition from (3 ; 0) to (2 ; 1) is .5. In general, state transition
rates depend on the service time of the moving customer at the center it
departs, and the likelihood that a customer leaving this center proceeds
immediately to another specific center. For single class models we have:

(nl ; . . . ; n,+l ; . . . ; n,-1 ; . . . ; nK> + (nl ; ni ; . . . ; flj ; . . . ; nK>

with rate pipi,j, where pi is the service rate of center i and pi,j is the
proportion of time that a customer leaving center i proceeds directly to
center j.

Given an arbitrary queueing network model, one can compute its state
space, associated state transitions, and state transition rates from the
model inputs. The solution of a model thus described can be obtained by
making the state space flow balance assumption that the rate of flow of the
network into any state must equal the rate of flow of the network out of
that state. (This assumption is much like the flow balance assumption of

168 General Analytic Techniques: Hierarchical Modelling

Chapter 3 applied to the network at the state space level.) The rate of
flow out of a state S is the proportion of time spent in S multiplied by
the sum of the state transition rates out of S. The rate of flow into a
state S is the sum over every state of the network of the proportion of
time spent in that state times the state transition rate from that state to S.

Finally, we define the JZOW balance equations to be the equations
obtained by setting the total rate of flow into a state equal to the total rate
of flow out of that state. The flow balance equations are a set of simul-
taneous linear equations in which the unknowns are the proportions of
time spent in each possible network state. The global balance solution
technique for queueing network models involves creating and solving
these flow balance equations. Note that there is a single equation per
state. Thus the complexity of global balance grows combinatorially with
the size of the network, since the size of the state space does so.

As a particular example of the global balance technique we consider
the solution of the high-level model of Figure 8.6.
l create the state space - Because the CPU uses priority scheduling,

there is no need to include the order of customers in the queue there
as part of the state description. Similarly, because the FESC uses
composite queueing, the two customer classes act largely indepen-
dently there and so queue ordering is not important. The model thus
has six states. Using the notation (x;y) to indicate the state of the
network with the CPU in state x and the FESC in state y, the state
space of the model is:

statel: (ABB ;) state2: CAB ; B) state3: (BB ; A)
state4: (A ; BB) state5: (B ; AB) state6: (; ABB)

l calculate the state transition rates - Each transition is caused by the
movement of a customer from the CPU to the FESC or from the
FESC to the CPU. The transition rate is equal to the rate at which
this customer receives service at the origin center when in the origin
state, multiplied by the proportion of time that this customer moves
directly to the other (destination) center upon completion at the origin
center.
Because of the simple nature of the high-level model that we are con-
sidering, customers always move to the CPU upon completion at the
FESC, and to the FESC upon completion at the CPU. Thus,
PA.CPU.FESC = PB,CPU,FESC = PA.FESC,CPU = PB,FESC.CPU = 1. As a

result, for example, the transition rate from state (B;AB) to state
(AB;B), which involves the movement of a class A customer from
the FESC to the CPU when one customer of each class is present at
the FESC, is .00275 X 1 = .00275. Figure 8.7 shows the state transi-
tion diagram for this model.

8.5. An Application of Hierarchical Modelling 169

0.00417

(;ABB) y U:BB)

0.00699 0.003 16

@;A@ 7 (AB;B)
0.00275

0.00699 Ii 1 0.00217 0.00263

0.00417
(BB;A) 7 (-4 BB ;)

0.00333

Figure 8.7 - The State Transition Diagram

l create the flow balance equations - The flow balance equations are
obtained by setting flow in equal to flow out. The resulting set of
equations do not determine a unique solution. Therefore, an arbitrary
equation is discarded and replaced by an equation that ensures that the
sum of the proportions of time spent in the states is one. In matrix
notation, the balance equations for this example are:

- .00417 .00263 .00333 0 0 0
0 -.00680. 0 .00316 .00275 0

.00417 0 -.01032 0 .00217 0
0 0 0 -.00733 0 .00255
0 .00417 .00699 0 -.01191 .00293
1 1 1 1 1 1

Pktate 1)
Pktate 2)
Phtate 3)
Pktate 4)
Pktate 5)
Pbtate 6)

=

0 solve the flow balance equations - There are standard algorithms for
solving sets of simultaneous linear equations. Gaussian elimination
can be used on small systems. More sophisticated, iterative tech-
niques may be require&for larger models. The solution of the system
of equations above gives the proportions of time spent in each state:

Pktate I> = .161 Pktate 4) = 110
Pktate 2) = .125 Pktate 5) = 183
P(state 3) = .104 P(state 6) = 317

l compute performance measures - Performance measures may be calcu-
lated from the proportions of time spent in the various states. For
instance, class A’s CPU utilization is given by:

uA,CPlJ = Pktate 1) + Pktate 2) f Pktate 4) = ,396

170 General Analytic Techniques: Hierarchical Modelling

8.5.2. Hybrid Modelling

Hybrid modelling is a joint simulation/analytic solution technique that
attempts to combine the best aspects of each. Simulation is used so that
aspects of the computer system leading to non-separable models can be
represented. Analytic techniques are used for efficiency.

To understand the relationship of hybrid modelling to the analytic
techniques that are the primary concern of this book, we first must
present a brief examination of the simulation approach to modelling. We
have chosen to describe a particular type of simulation, that of probabilis-
tic, event driven simulation. While other approaches are possible, event
driven simulation is the most useful in computer system performance
analysis.

Simulation techniques are experimental in nature. However, rather
than running a physical experiment with real hardware and workload
components (i.e., a benchmark experiment), the functional operation of
the physical system is represented in software. The software maintains a
simulation clock, which keeps track of the simulated elapsed time of the
experiment. The software also keeps track of the state of each simulated
physical device. States typically include information about which simu-
lated jobs are in service or queued at each device, and information about
the completion time of the operation in progress at each device. The
software drives the simulation by selecting the event that should occur
soonest, updating the simulation clock to the time of that event, and
changing the state of the simulation to correspond to the occurrence of
the event. This change of state might include the scheduling of new
events at future simulation times. For instance, suppose that at simula-
tion time 104.35 seconds, the next event that should occur is the comple-
tion of the job in service at the CPU at time 104.50 seconds. The simula-
tion would advance the clock to 104.50 seconds, remove the job from the
CPU queue, and enqueue that job at the device where it would next
require service. it would also place a new job in service at the CPU
(assuming that there were waiting’jobs), pick a service time for that job
according to some probability distribution that was an input parameter of
the model (say 0.23 seconds), and schedule the departure of that job for
some future simulation time (in this case at 104.73 seconds). The final
task of the simulation driver is to record performance statistics about the
simulation experiment. For instance, the driver might maintain a count
of the total number of simulated seconds during which the simulated
CPU was busy. At the end of the experiment, the ratio of that quantity
to the final value of the simulation clock would be the estimate for CPU
utilization.

It should be clear from this description that a simulation is capable of
representing nearly arbitrary amounts of detail of the operation of the real

8.5. An Application of Hierarchical Modelling 171

system. Of course, as more detail is incorporated, the size and expense
of the simulation increase. Thus, to be useful, some amount of abstrac-
tion is required in forming the simulation model. For instance, a simula-
tion model of a computer system might be identical to the queueing net-
work models we have been examining (meaning that the input parame-
ters of the simulation model and the queueing network model are the
same). Alternatively, the simulation model might include more detail,
such as a more accurate representation of a priority scheduling discipline
used at the CPU. Finally, models with a large amount of detail (and very
little abstraction) might include information about memory reference pat-
terns (for use in determining page fault rates) or instruction mix (for use
in determining effective CPU speed). Thus, simulation models are a
superset of the queueing models with which we are concerned. Their
advantage is their ability to incorporate detail. Their disadvantage is their
expense: the computation required to obtain reliable performance esti-
mates, the effort required to obtain the more detailed information needed
to parameterize the more detailed models, and the effort required to gain
insight into the critical parameters affecting performance in a model with
a large number of inter-dependent parameters.

With this characterization of simulation in mind, we can proceed with
the description of the basic hybrid modelling technique. Given a (non-
separable) model of a system to be analyzed, isolate a subsystem (an
aggregate of service centers) that can be solved conveniently in isolation.
Create a flow equivalent service center to represent the submodel (by
solving the submodel analytically to obtain the population dependent
throughputs), and replace the subsystem by its FESC in the original
model. Finally, solve this reduced model using simulation. Of course, it
is possible to reverse the roles of simulation and queueing network
modelling in this scheme (so that the low-level model is solved by simu-
lation, and the high-level model analytically). This might be done, for
instance, to model a complex I/O subsystem component of a large com-
puter system, the remainder of which can be represented adequately as a
separable queueing network.

In essence, this technique is identical to that of the previous subsec-
tion, with simulation substituted for global balance. Our motivation for
proposing it also is the same: we have a powerful model solution tech-
nique (simulation) that we would like to employ, but the technique is too
inefficient computationally for general use.

The inefficiency of simulation as a solution method is an effect of the
statistical nature of the technique. Since simulation depends on observa-
tions of essentially random behavior sequences, many such sequences
must be observed before we can have any confidence in the results (since
any small number of sequences might be atypical). Thus, simulation is
inherently expensive. This problem is compounded in cases where the

172 General Analytic Techniques: Hierarchical Modelling

events being simulated happen at significantly differing rates. For exam-
ple, consider a model in which the I/O subsystem is represented in detail,
and from which we would like to obtain system throughput. Suppose that
for each I/O request, we simulate individually the I/O path selection,
cylinder seek, rotational latency, path reconnect, and data transfer times.
Further, suppose that the effect of data transmission errors is represented
by simulating each transferred byte (so that errors can be inserted). In
this case we have events occurring at rates varying from relatively slow
(job completions in the system) to relatively fast (byte transfers). As
mentioned before, to obtain any statistical conhdence in the results for
system throughput, many job completions must be observed (say 1000, as
an example). Suppose each job performs 100 I/O operations on average.
This means 100,000 I/O operations must be simulated. Now suppose
each I/O operation transfers 4,000 bytes of information. This implies the
simulation of 400,000,000 byte transfers. Obviously such a simulation
will require immense machine resources.

Hybrid modelling can be used to best advantage in situations like the
above where there are large time scale differences in the rates at which
various events take place. Typically, the subsystem containing the events
occurring the most frequently is modelled analytically, and the load
dependent throughputs obtained from the solutions are used to create an
FESC. This FESC replaces the subsystem, and the resulting model is
simulated. Activity in the subsystem therefore is represented by the
arrival and departure of customers from the FESC, which must occur at
the same rate as events in the remainder of the model (since that is
where the customers come from). Thus, this model can be simulated
(relatively) efficiently.

Consider using a model to evaluate the performance of various long
term scheduling policies (memory admission policies). Let the model
consist of service centers representing the significant hardware resources
(CPU, disks, etc.), a memory queue, and three customer classes. One
class represents CPU bound jobs, one I/O bound jobs, and one balanced
jobs. The scheduling policies to be evaluated use information about the
current memory resident job mix to select a waiting job from one of the
three classes, in an attempt to maximize system throughput.

Because of the memory queue and complicated memory admission
policies to be considered, this model is not separable and so cannot be
solved analytically (although perhaps the technique of the previous sec-
tion could be applied successfully). A pure simulation approach would be
very expensive, if not infeasible, because of the time scale difference
between the rate at which long term scheduling decisions must be made
and the rate at which events occur within the central subsystem. Thus, a
hybrid approach is recommended. The central subsystem (CPU and I/O
subsystem) model is isolated, yielding a separable model. This model is

8.6. Summary 173

solved analytically for each feasible mix of customers of the three classes.
Finally, a simulation of the memory admission policies is performed, with
the time between job completions selected according to the rates of the
FESC formed from the solutions of the central subsystem model solved
previously. In essence, we use simulation to analyze a model consisting
simply of the memory queue and an FESC representing the remainder of
the computer system, with the parameters (service rates) of the FESC
obtained by an analytic solution of the submodel the FESC replaces.

In an actual experiment with this technique applied to this problem,
the maximum relative percentage difference between the hybrid tech-
nique and a simulation-only technique was 7%, while the simulation-only
model took 56 times longer to execute. Given this combination of accu-
racy and efficiency, the hybrid technique is the approach of choice.

8.6. Summary

The key concept of this chapter is hierarchical decomposition, the pro-
cess of splitting one model into a number of smaller submodels, each of
which then can be analyzed in isolation. The solution of the original
model is formed by combining the solutions of the submodels.

The submodels are combined using flow equivalent service centers.
FESCs mimic the behavior of the submodels they represent by modelling
the average output rates of these submodels as functions of their custo-
mer populations. Thus, FESCs are represented as load dependent service
centers in the model.

The output rates of FESCs can be obtained in a number of ways, but
by far the most important of these is the representation of the submodel
as a queueing network model, which is solved by a single application of
mean value analysis. Where this technique is applicable, it yields all the
output rates for all populations of interest, and ensures that the FESC
produced has analytically nice properties that allow efficient solutions of
models that incorporate it. In some cases, however, this approach to
solving the low-level model is not appropriate. (For instance, the param-
eter values of the low-level model might depend on the customer popula-
tion. In this case the required load dependent rates cannot be obtained
by a single application of MVA.) For these models, the load dependent
rates used to parameterize the FESC generally will not lead to an
efficiently analyzable higher-level model. We will deal with this problem
in Part III of this book, when we use FESCs as tools in analyzing increas-
ingly more sophisticated models of computer systems.

An important specific use of hierarchical modelling is the efficient
approximate solution of non-separable queueing networks. There are two

174 General Analytic Techniques: Hierarchical Modelling

important approaches to solving these models: global balance, and simu-
lation. Both techniques can require excessive computation for all but
very small models. Thus, to employ these techniques (and so to use the
modelling constructs they allow) one must restrict the model size.
Hierarchical modelling is useful in this respect because the large models
that naturally arise in modelling computer systems can be reduced using
flow equivalent service centers to models of manageable size.

In Part III of this book we examine a number of specific components
of computer systems that must be represented in a performance model.
In many cases we are confronted with characteristics of computer systems
that cannot be modelled directly using separable networks. Hierarchical
modelling and flow equivalent servers are the keys to successful models
in many of these cases.

8.7. References

Flow equivalent service centers were shown to yield exact solutions
for single class separable networks by Chandy et al. [19751. Sauer and
Chandy 119751 first presented their use as an approximation.

The global balance solution technique is a classical approach to the
solution of Markovian systems (see [Cox & Miller 19651, for example).
Sauer and Chandy 119811 present this material in the computer system
modelling context.

The utility of the hybrid modelling approach of Section 8.5.2 was
pointed out by Schwetman [19781 and Tolopka and Schwetman [19791.
For other case studies employing hybrid modelling, see [Browne et al.
19751 and [Lindzey & Browne 19791.

[Browne et al. 19751
J.C. Browne, K.M. Chandy, R.M. Brown, T.W. Keller, D.F. Towsley,
and C.W. Dissley. Hierarchical Techniques for Development of Real-
istic Models of Complex Computer Systems. Proc. IEEE 63,6 (June
19751, 966-975.

[Chandy et al. 19751
K.M. Chandy, U. Herzog, and L.S. Woo. Parametric Analysis of
Queueing Networks. IBM Journal of Research and Development 19,l
(January 1975), 50-57.

[Cox & Miller 19651
D.R. Cox and H.D. Miller. The Theory qf Stochastic Processes. Wiley,
1965.

8.8. Exercises 175

[Lindzey & Browne 19791
G.E. Lindzey, Jr. and J.C. Browne. Response Analysis of a Multi-
Function System. Proc. ACM SIGMETRICS Conference on Simulation,
Measurement and Modeling of Computer Systems (1979)) 19-26.

[Sauer & Chandy 19751
C.H. Sauer and KM. Chandy. Approximate Analysis of Central
Server Models. IBM Journal of Research and Development 19,3 (May
19751, 301-313. .

[Sauer & Chandy 19811
C.H. Sauer and K.M. Chandy. Computer Systems Performance Model-
ing. Prentice-Hall, 1981.

[Schwetman 19781
H.D. Schwetman. Hybrid Simulation Models of Computer Systems.
CACM 21,9 (September 19781, 71 S-723.

[Tolopka & Schwetman 19791
S.J. Tolopka and H.D. Schwetman. Mix-Dependent Job Scheduling -
An Application of Hybrid Simulation. I979 National Computer Confer-
ence Proceedings, AFIPS Volume 48 (19791, AFIPS Press, 45-49.

8.8. Exercises

1. Modify the Fortran program of Chapter 18 to accommodate flow
equivalent service centers. (The modifications required are described
in Chapter 20.)

2. Use Algorithm 8.1 to evaluate a (separable) single class model consist-
ing of a CPU center with service demand 10, and four disk centers
with service demands 4, 3, 3, and 2. The customer class should be
terminal type with 20 active users and 30 second think times. In
applying the algorithm, treat the four disk centers as the aggregate,
and the CPU center as the complementary network. Use the software
created in answering Exercise 1 (extended to accommodate terminal
classes) to analyze the high-level model that you construct. Compare
the solution you obtain by applying hierarchical decomposition to that
obtained by simply solving the full five-center network using MVA.

3. Use the global balance technique to solve the example model from
Section 6.4.2.1. This exercise should illustrate dramatically the com-
putational advantage of separable models (which can be solved using
MVA) over general networks of queues (which require a global bal-
ance analysis to obtain the exact solution).

176 General Analytic Techniques: Hierarchical Modelling

4. Figure 8.7 shows the state transition diagram for the model illustrated
in Figure 8.6. There are two centers: a preemptive-priority-scheduled
CPU, and an FESC representing the I/O subsystem. There are two
classes: A, the high-priority class, with one customer, and B, the
low-priority class, with two customers.
a. Why is there no state (BA;B)?

b. Why is there no transition from state (BB;A) to state (AB;B)?

c. Why is there no transition from state (ABB;) to state (AB;B)?

d. At what rate does class B depart the FESC when one class A and
one class B customer are present there?

