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1. INTRODUCTION

The appearance of 64-bit address space architectures, such as the DEC Alpha

[Digital Equipment 1992], HP PA-RISC [Lee 1989], and MIPS R4000 [MIPS

Computer Systems 199 1], signals a radical increase in the amount of address

space available to operating systems and applications. This shift provides the

opportunity to reexamine fundamental operating system structure—specifi-

cally, to change the way that operating systems use address space. Our goal

is to restructure operating systems in order to improve the organization of

both the system and its applications. In particular, we wish to enhance

sharing, to simplify integration, and to improve the reliability and perfor-

mance of complex, cooperating applications manipulating large persistent

data structures. For example, our target application domain includes inte-

grated software environments, such as engineering design (CAD or CASE),

composed of groups of data-centered tools that are inherently interdependent

and have rich interactions.

This article describes Opal, a single-address-space operating system in-

tended to support these complex applications on wide-address architectures.

Opal provides a single global virtual address space that is shared by all

procedures and all data. Crucial to the design is the full separation of

addressing and protection, which are intimately bound in the “process”

concept of systems such as Unix and Multics [Daley and Dennis 1968].

The fundamental principle of the Opal system is that addresses have a

unique interpretation, for all applications, for potentially all time. Virtual

addresses are context independent: they resolve to the same data, indepen-

dently of who uses them. While a thread can name all data in the system, it

will generally not have the right to access all of that data; the protection

don-zain in which that thread executes defines its access rights, limiting its

access to a specific set of pages at a specific instant.

Wide-address architectures facilitate the single-address-space approach by

eliminating the need to reuse addresses, which is required on 32-bit architec-

tures. We do not wish to debate whether a particular address size is enough

for what we propose here. A full 64-bit address space will last for 500 years if

allocated at the rate of one gigabyte per second. We believe that 64 bits is

enough “for all time” on a single computer, enough for a long time on a small

network, and not enough for very long at all on the global network. But in

any case, it is clear that address sizes have leaped past the 32-bit boundary

and will continue to grow. In the past, this growth has averaged one addi-

tional address bit—a doubling of address space—every year [Siewiorek et al.

1982].

The purpose of the Opal experiment is to explore the strengths and

weaknesses of the single-address-space approach, which is a significant

departure from the traditional model of private, virtual address spaces for

each executing program (e.g., Unix). The concepts in Opal are related to those

of many previous hardware and software systems spanning over 25 years, for

example, Multics [Daley and Dennis 1968], Hydra [Wulf et al. 1975], Pilot

[Redell et al. 1980], Monads [Rosenberg and Abramson 1985], Intel 432
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[Organick 1983], IBM System 38 [Houdek et al. 1981], Psyche [Scott et al.

1990], and the early work on capability systems [Dennis and Van Horn 1966].

A detailed discussion and comparison of these systems is provided in Section

7. Fundamentally, we hope to demonstrate that recent advances in hardware,

operating systems, and language technology enable us to achieve the goals of

many previous systems, but without the need for special-purpose hardware,

without loss of protection or performance, and without requiring the single

type-safe language that many of those systems demanded.

The following section introduces the basic premises of Opal’s single-

address-space structure and contrasts with the traditional private-address-

space approach. We concentrate in particular on Opal’s support for sharing

and on the use of protection structures. Section 3 gives an overview of the

basic Opal abstractions. Section 4 then describes our Mach-based prototype,

which demonstrates that the single-address-space structure can be supported

on existing microkernel platforms in a way that permits interaction with

traditional Unix environments. Section 5 discusses the use of Opal by appli-

cations in our target domain, describes a nnechanism we have implemented

on Opal to manage sharing and protection, and provides some performance

measurements of our prototype. Section 6 explores some objections to our

approach, and Section 7 describes the relationship to previous systems. We

summarize our experience and conclude in Section 8.

2. THE SINGLE-ADDRESS-SPACE APPROACH

Before examining the concepts of a single-address-space operating system, it

is useful to review the multiple-address-space approach that we now take for

granted. The major advantages of private address spaces are: (1) they in-

crease the amount of address space available to all programs, (2) they provide

hard memory protection boundaries, and (3) they permit easy cleanup when a

program exits. The disadvantage of this approach, however, is that the

mechanism for memory protection—isolating programs within private virtual

address spaces—presents obstacles to efficient cooperation between protected

application components. In particular, pointers have no meaning beyond the

boundary or lifetime of the process that creates them; therefore pointer-based

information is not easily shared, stored, or transmitted. The primary coopera-

tion mechanisms rely on copying data between private virtual memories,

typically converting it to and from a neutral intermediate representation.

This is inconvenient and expensive for large or sparsely used data structures.

Private-address-space systems force poor tradeoffs between protection, per-

formance, and integration. An application designer has two basic choices:

place application components in independent processes that exchange data

through pipes, files, or messages (Figure l(a)), thereby sacrificing perfor-

mance, or place all components in one process, sacrificing protection (Figure

l(b)). Neither choice is adequate for a growing and important class of applica-

tions that are composed of groups of programs cooperating through a shared
pointer-rich database. This results in software systems that are slow, unreli-

able, or poorly integrated. These applications need better control of protection
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Fig. 1. Three choices for structuring cooperation between application components.

and sharing than current systems can provide: protection is crucial because

the programs are independently developed and evolving, and yet there are

natural sharing relationships, e.g., the output of one program is often used as

the input of another.

We believe that this dilemma can be resolved with judicious sharing of

virtual memory between protected components. Sharing need not compromise

modularity, and can increase performance substantially without sacrificing

protection (e.g., through read-only sharing). While most modern systems

support shared memory in some form, there are pitfalls and limitations to its

use within the private-address-space model. Use of pointers typically requires

a priori coordination of address space for shared regions, thus sharing

patterns must be known statically. In a single-address-space model, the

system rather than the applications coordinates the address bindings, to

accommodate dynamic sharing patterns in a uniform way. Recent systems

have taken steps in this direction; examples include based sections In Mi-

crosoft Windows/NT [Custer 1993] and the remap facilities in recent Unix

systems. Even in these systems, however, the mix of’ shared and private

regions introduces several problems. Pointers may still be ambiguous: private

data pointers in shared regions are difficult to detect or handle, and private

code pointers (important for object-oriented languages) cannot be passed or
shared. Early decisions must be made about what can be shared and what is

private. Sharing is ad hoc, since any process that will ever use a shared

region must have the same virtual addresses available.

Single-address-space systems avoid these problems by treating all virtual

address space as a global resource controlled by the operating system, like

disk space or physical memory. This can be done without sacrificing the

major advantages of private address spaces. Specifically, (1) with wide-

address architectures, we can now provide sufficient addressing without

multiple address spaces, (2) there need be no loss of protection in the single
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address space, and (3) cleanup is no harder in a single address space for

“conventional” programs that do not share data. (Alternatively, cleanup is no

easier in private address spaces for programs that do share data.) In fact,

many problems with the use of sharing and protection, including reclamation,

can be simplified or eliminated by decoupling protection domains from other

concepts that are bundled in the notion of a “process” on conventional

systems. In addition to separating protection from addressing, Opal also

separates program execution, resource ownership, and resource naming from

protection domains. The purpose of this decoupling is to make memory

protection cheaper, easier to use, and easier to change.

The independence of protection and addressing in Opal substantially in-

creases flexibility. Programs can directly share procedures and complex

pointer-based data structures, without requiring a priori negotiation of ad-

dress space usage, as depicted in Figure 11(c). The common address space

allows dynamic imports and binding to data. structures and code. There is no

need to decide in advance what is shared and what is private: any memory

segment can be shared at any time without address conflicts, and memory

access rights are easily passed on-the-fly from domain to domain. Opal has no

conventional “programs”: all code exists as procedures residing in the shared

address space. Any procedure can be an entry point for a protection domain:

subprograms can execute with or without a private protection domain, de-

pending on the trust relationship between tlhe caller and callee.

Furthermore, the single-address-space structure has properties that can be

exploited by the memory system implementation. Specifically, address over-

loading is eliminated. This removes ambiguity in virtual tags in processor

caches, as well as the need to maintain separate tables of virtual-physical

translations for each process [Koldinger et al. 1992]. On processors equipped

with software-loaded TLBs, it permits the use of alternative translation table

structures (e.g., Huck and Hays [19%3]) that better accommodate large,

sparse virtual memories. (On the negative side, this property prohibits pro-

grams from mapping different data at the same virtual addresses. The effect

of this restriction is discussed in Section 6.4.)

2.1 Sharing and Trust

Today’s dominant protection model promotes protection domains (e.g., pro-

cesses) encapsulating fully isolated software components and their data,

interacting only through messages. This strict model of fully disjoint protec-

tion accommodates distribution, is tempting in its simplicity, and is central to

both “server-structured” [Young et al. 1987; Rozier et al. 1988; Mullender and

Tanenbaum 1986; Custer 1993] and “object-oriented” [Allchin and McKendry

1983; Almes et al. 1985] systems. However, we believe it is too simplistic and

confining for several reasons:

— Asymmetric trust relationships are common and can be exploited: A might

accept inputs (or memory segments) from B even when B does not trust
A. For example, a name server could provide read-only access to it database,

requiring protected messages only for updates.
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— Direct sharing is useful even between mutually suspicious threads. Mem-

ory can be shared read-only, used in restricted ways, or passed sequen-

tially from domain to domain.

— Protection domains can be used to coordinate data access among mutually

trusting threads. For example, multiple instances of a database program

may prefer to execute in separate domains to enforce different access

privileges, or to use protection faults to drive implicit locking [Chang and

Mergen 1988].

— Tradeoffs between protection and performance are unavoidable. Complete

isolation can never be achieved: even if protection is fully disjoint, granu-

larity tradeoffs still must be made. Also, programs may have naturally

overlapping access to stored data, and this may not be known in advance.

Fundamentally, we believe (as do others [Druschel et al. 1992 b]) that operat-

ing system protection structures are not the right level to impose modularity.

In fact, protection structures do not impose modularity; they only enforce

selected module boundaries. In any case, shared data should be accessed

through procedural interfaces, and protection structures should be flexible

enough to permit application-specific choice of how modularity is enforced.

2.2 Persistence and Distribution

The single-address-space structure can accommodate address spaces of differ-

ent temporal or geographical scopes; that is, a single-address-space system on

one node can be extended to include network-wide data and persistent data

not in active use. This is attractive for applications manipulating pointer-rich

data structures, which often need to store structures or share them across the

network. In a distributed, persistent, single-address-space system, network

nodes can exchange addresses directly through messages, and data struc-

tures can be directly saved on long-term storage and later accessed by other

programs without the need to translate internal pointers. One of our goals is

to extend the addressing domain across a small workstation cluster; this is

discussed in more detail in Section 4.6.

We note that the purpose of including inactive and distributed data in the

virtual address space is not to eliminate entirely the mechanisms for data

conversion (i.e., swizzling, marshaling, and translation), but rather to reduce

the frequency with which those mechanisms must be applied. A distributed

persistent address space can be used to eliminate translation for the most

common cases of transfers: between programs on a single node, between

memory and long-term storage, and between nodes within a small LAIN

cluster. This amounts to caching a precomputed machine-dependent repre-

sentation of the data, while retaining the ability to convert back to a

machine-independent representation in exceptional cases, e.g., transmission

outside of the local addressing domain. Programming-in-the-large of pointer-

based applications demands some language-level knowledge (e.g., compiler-

generated templates) of the structure of the data, in order to support garbage

collection and integrity checks. Such structures have been used (e.g., Wilson

[ 1991])—and can continue to be used—transparently to convert the format of
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data as needed when crossing boundaries outside of’ the single address space,

whatever its scope.

This article focuses on the implications of the single-address-space struc-

ture on sharing and protection on a single node, and thus we will not discuss

persistence and distribution in much detail. We simply note that the choice of

a single address space for a node does not strictly require that persistent and

distributed data be included within the local address space; however, the

ability to accommodate these extensions naturally and uniformly is one of the

model’s strengths.

2.3 Summary

We believe that the familiar model of programs as independent short-lived

processes that transform a stream of input to a stream of output is needlessly

restrictive and forces poor structuring and performance tradeoffs for a broad

and increasingly important class of applications. We believe that these appli-

cations are better served by the single-address-space structure, which is

enabled by the appearance of 64-bit addressing on modern RISC processors.

The objective of the single-address-space operating system is to expand the

choices in the structuring of computations, the use of protection, and the

sharing, storage, and communication of data.

3. OPAL ABSTRACTIONS AND MECHANISMS

This section defines the fundamental Opal mechanisms used for the manage-

ment of the single address space and provides insight into our design choices.

We limit our focus to aspects of the system that are essential to the single-

address-space structure, or to our goal of supporting modular sharing and

protection. The basic concepts should seem familiar to many and have

appeared previously in various contexts, The key is the simple application of

these concepts once you accept the separation of protection and addressing on

wide-address architectures.

The system facilities described in this section need not be exposed directly

to applications; they are intended as a substrate for building language and

runtime environments, such as the mediators framework described in Sec-

tion 5.2. Our Opal prototype includes a standard runtime package that

defines a simple C++ programming interface. This package is used through-

out our prototype, but alternative languages and application environments

could be implemented within our framework. The runtime package and other

aspects of the prototype are described in more detail in Section 4.

3.1 Storage and Protection

The Opal units of storage allocation and protection are segments, which are

contiguous extents of virtual pages. The virtual address of a segment is a
permanent attribute, fixed by the system at allocation time. The smallest

possible segment is one page, but in general we expect segments to be large to

allow growth of the structures they contain. Segments can be marked as
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persistent and managed through explicit reference counting as described in

Section 3.6.

The Opal units of execution are threads. A protection domain is an

execution context for threads, restricting their access to a specific set of

segments at a particular instant in time. Each thread executes in exactly one

protection domain, but many threads may execute in the same domain,

Domains are the subjects of memory access control. An Opal domain is the

analogue of a Unix process, except that domains are not private virtual

address spaces, but rather are passive protection contexts within a global

virtual address space. Alternatively, the “protection domain” could be viewed

as the collection of segments accessible to such a protection context.

Our philosophy in Opal is that storage allocation, protection, and reclama-

tion should be coarse grained at the operating system level. F’ine-grained

control is best provided at the language level by compilers and runtime

systems. For example, our standard runtime package allocates large seg-

ments in which it provides heap storage for dynamic memory allocation.

Programs can allocate objects from multiple heaps to control how data

structures are partitioned across segments. We believe that burdening the

operating system (or worse, the hardware) with fine-grained protection is an

error, particularly given the safety that can be guaranteed by strongly typed

languages. However, even with safe languages, the operating system must

still support hard protection boundaries in order to separate nontrusting

parties and different safe or unsafe language environments. Such hard

boundaries, provided in Opal as protection domains, can easily be supported

through standard page-based protection mechanisms on modern processors.

3.2 Access Control

All Opal kernel resources, such as protection domains and segments, are

named by capabilities; a capability is a 256-bit reference that confers permis-

sion to operate on the named object in specific ways. A name service supports

symbolic names for capabilities, with access control lists (ACLS) for protec-

tion. Opal uses password capabilities [Anderson et al. 1986], similar to those

in Amoeba [Mullender and Tanenbaum 1986] and Chorus [Rozier et al. 1988],

rather than Mach-style capabilities (also called port rights) that are main-

tained by the kernel [Young et al, 1987]. The advantage is that password

capabilities can be passed directly in shared memory and used to name global

resources; capabilities in Mach are meaningful only within a Mach protection
context (task ), preventing this sharing.

Given a segment capability, an executing thread can explicitly attach that

segment to its protection domain, permitting threads executing within that

domain to access the segment directly. Conversely, a thread can explicitly

detach a segment to deny access. An Attach request can specify particular

access rights to the segment (e.g., read-only or read-write), but cannot specify

more rights than are permitted by the capability. Attach is the Opal ana-

Iogue of the Unix remap primitive for mapping files into a process, except

that in Opal the system, rather than the application, always chooses the
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mapped address. Also, all data in Opal resides in segments that are poten-

tially attachable, given the proper capability; there is no data that is inher-

ently private to a particular executing program.

Segments can also be attached transparently on address faults, if the

application chooses. The holder of a segment capability may publish that

capability, along with an ACL.1 When an address fault occurs, a runtime

fault handler in the domain requests the published capability, specifying the

faulting address. If access is granted (based on the ACL) then the handler

attaches the segment before returning from the address exception.

3.3 Interdomain Communication

In Opal, shared memory is the primary form of sharing and communication

between threads in different protection domains. Additionally, the system

must permit control transfers from one domain to another. To support this,

an Opal domain can create one or more portals that permit other domains to

call it in a protected and controlled manner. Portals can be used to implement

servers or protected objects.

A portal is an entry point to a domain, uniquely identified by a 64-bit

value (the portalID). Any thread that knows the value of a portalID can

make a system call that transfers control into the domain associated with the

portal. Threads entering through a portal begin executing at a global virtual

address that is a fixed attribute of the portal, specified by its creator. In this

way the creator of a protection domain can control what code is executed

within it.2

The global name space for portals in Opal allows the exchange of cross-

domain call bindings through shared memory; password capabilities can then

be implemented as a simple bind-time extension to a general-purpose RPC

facility. An Opal capability is simply a 256-bit value containing a portalID, an

object address, and a randomized check field that verifies authority to

operate on the named object. The check field permits revocation, and a server

may deny access even when called through a valid capability. The portal

name allows a client to make RPC calls to a server given a capability for any

of the server’s resources. Servers can multiplex management of multiple

objects through the single portal. For example, a segment capability contains

the portalID of the segment server and identifies a segment managed by that

server; a domain capability contains the portalID of the domain server and

identifies a domain managed by that server.

Opal capabilities are implemented in the runtime package, hidden from

users behind a C ++ interface based on proxies [Shapiro 1986]. On the client

side, the capability is hidden in an ordinary C ++ object called a proxy; on the

1We assume the existence of an authentication service that supports some protected notion of

identity as a basis for these ACLS, ACLS are not implemented in our current prototype; access is

always granted to any published or symbolically named capability.

2Portals were designed as a kernel primitive for implementing protected procedure call (e.g.,

LRPC [Bershad et al. 1990]), particularly in a system with user-level threads based on scheduler

activations [Anderson et al. 1992].
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server side, the check field is stored in a corresponding object called a guard

that holds a pointer to the actual object named by the capability. The

methods of the proxies and guards are messaging stubs with embedded

validation checks. Procedure calls to the proxy result in an RPC call to the

guard, passing the capability as an argument. The protection boundary and

the use of capabilities are transparent to the application. The proxy package

is mentioned here for completeness and as an example of the support that can

be built above raw portals. The details are beyond the scope of this article.

3.4 Using Protection Domains

A thread running in one protection domain (the parent domain) can create a

new (more restricted) domain (a child), typically to protect the parent’s data

from an untrusted subprogram. Parents can attach arbitrary segments to

their children and cause arbitrary code to execute in their children. Thus, the

child fully trusts the parent, but not vice versa. (A child domain could be used

also to amplify the parent’s rights in a protected way, but in this case a

privileged server must create the child on behalf of the nominal parent.)

Protected procedure call is the only means of causing code to execute in a

child domain; in particular, there is no notion of “executing a program.” To

execute code in the child, the parent registers a portal for the child domain,

specifies a procedure as the entry point, and then calls through that portal.

Ordinarily, a portal is created for a collection of procedures (e.g., the methods

of a guard type), and the code executed on entrance to the portal is a

server-side dispatcher stub for those procedures. This is the policy supported

by our standard runtime package, which allows the parent to create C++

objects in segments shared with the child, generate capabilities for those

objects, and to invoke them through the portal, so the calls execute in the

child domain. Also, parents may pass those capabilities to other children,

effectively setting up RPC connections between siblings.

These facilities make it easy to structure user software as a group of

cooperating domains, with arbitrary sharing patterns and cross-domain RPC

bindings between them. An application can simply create one or more do-

mains, attach code and data to them, and make one or more protected calls,

possibly causing the domains to call each other or the parent.

3.5 Linking and Executing Code

The handling of executable code modules in systems such as Opal differs in
several respects from that of conventional systems. (This topic is the focus of

related work by Garrett et al. [ 1993].) We wish to make three points in this

section: (1) the essentials of linking and execution are the same in both

classes of systems, (2) sharing and dynamic use of code modules is easy in the

shared address space, and (3) support of private data in shared modules is

trickier in some respects.

A module is a group of compiled procedures together with (1) a table of

symbols for code and static data items (e.g., global variables) defined in the

module, (2) initial values for these static data items, and (3) a table of

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994



Sharing and Protection in a Single Address Space . 281

external symbols imported from other modules. The module’s code contains

memory reference instructions (loads, stores, and branches) using addressing

techniques selected by the compiler (e.g., PC-relative, absolute, or register-

relative modes). A linker utility processes the module to resolve these

references; once linked, executing threads can call the module directly at the

virtual addresses assigned to it.

Opal differs from conventional systems in the way that read-only symbols

(code and constant data) are bound to virtual addresses, and in the way that
references to those symbols are resolved. On conventional systems, each

module is typically a complete self-contained program, linked to execute in a

private virtual address space. The linker statically binds virtual addresses to

symbols in the module, ordinarily assigning the same starting address to

every program. In contrast, different Opal modules run at different addresses

in the shared address space, although a given module continues to reside at

the same address every time it runs.

Opal modules are statically linked into persistent segments of the global

address space. The runtime addresses of a module are globally fixed when the

module’s segment is allocated. There are three distinct benefits from global

linking of code modules:

—Threads executing in a module can easily share a single physical copy,

even if the threads are running in different protection domains. Shared

libraries make the most. efficient use of physical storage and can reduce

program startup time.

—Procedure pointers can be freely passed and shared at the system level.

Procedure pointers are used by some programming languages to imple-

ment polymorphic abstract types.

—Any thread can dynamically attach and call any accessible procedure,

simply by knowing its address, with no possibility of address conflicts with

other modules attached to the thread’s domain. This contrasts with conven-

tional systems, in which “programs” cannot generally be called directly

because they are linked to execute in a private address space; early

protection-structuring choices are “locked in” at static link time in these

systems.

Opal also differs from conventional systems in the way that private static

data is addressed. Multiple instances of a module may exist concurrently,

each sharing the module’s code, but using a private version of its writable

static data. Private data references in the shared code must compute the

correct target address for each instance. On conventional systems, each

instance of a given module runs in a separate virtual address space; the

private copies of its static data typically reside at the same virtual addresses

within those separate address spaces, although they map to different under-

lying physical pages. In Opal, different instances of the private static data
must exist at different virtual addresses. The links- cannot statically deter-

mine those addresses or even their PC offsets; therefore, code must use

register-relative addressing for private stat,ic data, with base register values
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assigned dynamically. (This issue is discussed in more detail in Section 4.5.)

Note that this leads to a flexible protection relationship between instances of

an Opal module, since the base register value of an executing thread com-

pletely determines the instance it addresses. Threads in multiple domains

can share an instance, or multiple instances can execute in the same domain,

as determined by the language environment.

3.6 Resource Management and Reclamation

Opal provides coarse-~ ained reclamation, similar to that used in conven-

tional systems. The basic storage management mechanism is explicit refer-

ence counting, which applications and support facilities (runtime libraries,

language implementations, and garbage collectors) use to allocate and release

untyped storage in coarse units. Reference counting of segments is automatic

in simple cases: Opal implicitly updates reference counts on Attach and

Detach, deleting segments by default after the last detach. User software can

register a persistent reference to a segment, causing it to persist even after

the last detach.

Our general philosophy is not to dictate data management to languages. In

particular, Opal does not attempt to track or control the placement of

capabilities and addresses, which can be freely copied and shared in memory.

Opal reference counts need not reflect the number of capabilities for a

resource. Instead, a reference count indicates the number of entities that

have registered an interest in a resource; later, those entities or others must

make calls to decrement the reference count. Because erroneous or malicious

software can prematurely (or never) release resources, the system must

isolate nontrusting entities from reclamation errors. To this end resource

groups support accounting and bulk deletes of unreclaimed resources, while

reference objects prevent untrusting entities from releasing each other’s

resource references. These mechanisms are described next.

3.6.1 Resource Groups. Every call to create an Opal resource or to incre-

ment a reference count must pass a capability for a resource group as an

argument. Opal tracks the resource references created on behalf of each

resource group and releases those references if the resource group is de-

stroyed. The Opal runtime package retains a current resource group for each

thread and passes a capability for that group as a hidden argument on server

calls; a thread can change its current resource group with a call to the

runtime system.
Resource groups are intended as the basis for a resource control policy, e.g.,

quotas or billing, to encourage or require users and their applications to limit

resource consumption. Additionally, they support bulk deletion of a group of

related resources. This is useful as a backup should other reclamation

mechanisms fail or be untrustworthy. For example, resource groups can be

used to free up resources and reference counts held by a particular software

entity that no longer exists.

Resource groups are nested to allow a finer grain of control over accounting

and resource management. Any holder of a resource group capability can

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994



Sharing and Protection in a Single Address Space . 283

create and delete subordinate resource groups, or subgroups. Thus the set of

resource groups is a collection of trees. Accounting charges flow up the tree:

resources allocated by a subgroup are charged to the parent and ultimately to

users represented by the root. Deletion privileges extend down the tree: the

holder of a resource group capability can delete any descendent resource

group, thus releasing all resources held by that resource group, and so on. For

example, a new subgroup can be created to run an untrusted procedure and

be deleted when the procedure returns. In this way the traditional policy of

releasing resources held by a terminating process is easily emulated, yet

resource ownership is decoupled from protection domains.

3.6.2 Reference Objects. Reference objects separate the counts to a shared

resource emanating from different entities. This prevents an untrusted thread

from releasing more counts than it requested, triggering early deletion of a

shared resource. Reference objects are internal to the implementation of a

resource, but their use is reflected in the interface to the resource.

For example, Opal uses reference objects to provide protected reference

counts for shared segments. A segment capability names segments indirectly

through a reference object (called a SegRef ). There maybe many SegRefs for

a given segment, each with a private reference count, and each named by a

separate capability. Any thread with a capability for a SegRef may access the

underlying segment, but it can manipulate the reference counts for only the

SegRef named by its capability. SegRefs serve other purposes as well: they

support restricted accesses (e.g., a SegRef can be cloned conferring read-only

permission), and they support selective revocation (i.e., one SegRef can be

invalidated independently of others for the same segment).

3.6.3 Dangling References. Despite the use of reference counts, software

can still delete objects prematurely, causing dangling references of various

forms. Dangling capabilities are detectable because they contain a random-

ized 64-bit check field. At the system level, dangling virtual addresses are

viewed as an access control problem. Programs granted access to a shared

segment are trusted to use it correctly; erroneous pointer references always

result from incorrect use either by the thread that stored the pointer, the

thread that followed the pointer, or the thread that deleted the pointer’s

target. User code is responsible for using the available mechanisms (includ-

ing protection domains and segment access control) to protect itself from

damage caused by failures of untrusted threads.

3.7 Summary

This section described the basic Opal abstractions: protection domains, seg-

ments, portals, and resource groups. These mechanisms support applications

structured as groups of threads in overlapping protection domains, communi-

cating through shared virtual storage and protected procedure call. Virtual
address pointers and resource capabilities are freely shared. Resource recla-

mation is handled with explicit reference counts, backed by bulk delete using

resource groups, and enforced by accounting: this reflects our view that
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reclamation should continue to be based on language-level knowledge of

pointer structures, application-level knowledge of usage patterns, and dele-

tion of data by explicit user command.

A key point of this section is that memory protection in Opal (using

protection domains) has been separated from other issues that are combined

with protection (based on processes) in conventional systems. Protection is

decoupled from: (1) program execution, through use of RPC as the basic

mechanism for animating passive protection domains, (2) resource naming,

through the use of context-independent capabilities based on portals, (3)

resource ownership, through the use of resource groups, and (4) virtual

storage, through the use of named segments in a global address space.

Additionally proxies can be used to make protection boundary crossings

(RPC) syntactically transparent to applications. The intent of these choices is
to make memory protection cheaper, easier to use, and easier to change.

4. IMPLEMENTING AN OPAL PROTOTYPE

We have implemented an Opal prototype on top of the Mach 3.0 microkernel

operating system. The prototype has three major components:

—The Opal kernel supports the basic system abstractions (segments, protec-

tion domains, portals, and resource groups) and coordinates the usage of

address space.

—The standard runtime package supports an application interface tailored to

the C++ language, including user-mode threads, capability-based RPC,

proxies, and heap management.

—A set of custom linking utilities statically links code modules to execute at

their permanently assigned addresses in the persistent virtual address

space,

We have chosen to implement the “kernel” for our prototype as a server

(the Opal server) built above Mach, as shown in Figure 2. Although programs
in the Opal environment share a single address space, other address spaces

can exist on the same host. We chose this path for expediency and to allow

Opal to coexist with the Unix implementation also hosted by Mach. We can

thus use Unix utilities to bootstrap, monitor, and debug the Opal environ-

ment. Unix utilities linked with our runtime package can bind to the Opal

server and use a subset of its facilities, e.g., create Opal protection domains

and make RPC calls to them, or create and\or attach segments that do not

conflict with addresses already used by the Unix process. The prototype was
initially implemented on a 32-bit system, the DECstation 5000 (MIPS R3000),

and has now been ported to a 64-bit DEC Alpha-based system.

4.1 Use of the Mach Microkernel

Building an Opal prototype was a straightforward process, given existing

Mach primitives. Within the single address space, an Opal protection domain

is implemented as a task, the Mach execution context for threads. An Opal

segment is implemented as a memory obj”ect, the Mach abstraction for a
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Fig. 2. Organization of the Mach-based Opal prototype.

virtual memory region whose backing storage is managed by a user-mode

paging server.

Opal applications do not use Mach primitives directly; while they cannot

cause damage if they do, this may inhibit their ability to use Opal resources

at a later time. Instead, Opal programs make calls to the runtime package

and to the Opal server. The Opal server maintains the assignment of virtual

address ranges to segments and manages all tasks and memory objects and

their relationships.

Opal segments are backed by a modified version of the standard Mach

paging server, the inode pager. The Mach kernel handles paging operations

in Opal segments by making RPC calls to this server. The paging server

represents backing storage for each segment as an inode, the same structure

used to implement files in Unix. We modified the inode pager to allow the

Opal server to use backing files directly as Mach memory objects, bypassing

Unix remap, and to exploit the fact that they are never accessed through

ordinary Unix systems calls. Also, we have added enhancements for Opal

backing-file support: e.g., backing files grow physically through zero-fill page

faults, and they are recycled with a combined purge/truncate operation when

the associated segments are reclaimed.

We have not modified the Mach kernel to support native portals. Naming

and resolving of portals is handled by the Opal server, but the runtime

system simulates control transfers through portals using the Mach message-

passing facility. The Opal server creates a Mach message port for every

domain; all portals for the domain are multiplexed by sending messages to

this single port. This is transparent to Opal applications, which see only a

standard interface for RPC through uniformly named portals.

4.2 Standard Runtime Package

The standard Opal runtime package includes support for user-mode threads,

with synchronization using locks and condition variables. We use user-mode
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threads for the traditional reasons—lightweight concurrency and synchro-

nization—and also because their state (when idle) can be passed or shared

between domains. Our thread package has several Opal-specific features.

First, synchronization objects (e.g., locks) can be shared: the same lock object

can be uniformly used for both local and cross-domain synchronization,

without sacrificing the performance of the local case. Second, the thread

scheduler adjusts processor usage within each domain as processors move

between domains for RPC calls and returns. The thread package is discussed

in more detail in Feeley et al. [ 1993].

Thread descriptors and thread stacks are allocated from ordinary heap

segments. The thread descriptors hold pointers to some additional thread-

specific state. Each thread has a current resource group, which is passed as a

hidden argument to the server on all calls, and a current memory pool, which

is used for all heap allocations by that thread. Both items can be retrieved or

changed with a runtime system call. Applications use this feature to partition

their data structures across multiple segments and to separate their allo-

cated resources into groups, according to their needs for access control and

resource control.

The runtime system also caches mappings from portalIDs to Mach ports. If

a thread attempts to transfer control to domain S through portal x in S, the

runtime system makes a ResolvePortal call to the Opal server, passing

portalID Y, which returns a Mach send right for the port in domain S.

Runtime code then caches this association, so it ordinarily resolves each

portal at most once. The send right for the domain port for a child protection

domain is returned as a hidden result from the domain create operation, so

there is no need to look up the mapping for freshly created portals in a child

domain.

4.3 The Opal Server

The Opal server creates every protection domain with an initial data seg-

ment, which the server attaches to itself and preloads with runtime system

data structures, including a user-mode thread scheduler and structures to

manage RPC connections to other domains. All fresh domains returned by the

server have the same initial state: the standard runtime package attached

and loaded, one initial data segment, one initial portal, one Mach port to

receive messages, and one Mach thread listening for incoming calls on that

port. This allows protection domains to be preallocated and cached to reduce

the latency of new domain creation calls.
The Opal server keeps a record containing status information for every

segment and domain, e.g., indicating the address range allocated to each

segment, and the Mach references (port send rights) for the underlying Mach

resources. Each domain record has a doubly-linked list of pointers to records

for its attached segments. Attach and detach operations simply modify the

list appropriately and map or unmap the segment’s memory object from the

domain’s task at its assigned address. Segment records are indexed by a

global structure, used to retrieve a segment record given any virtual address;
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this is used for resolving faults on “published segments. In our prototype

this structure is a linear list, but we intend to use splay trees in later

implementations.

The server maintains a record for each resource group, organized into a

tree that reflects the resource group hierarchy. Each resource group record

holds a list of resources charged to it (at present, just domains and SegRefs).

Deleting a resource group causes the subtree rooted in that resource group to

be released.

4.4 Persistence and Recoverability

Segments managed by the Opal server may persist across system restarts.

For example, linked code modules are stored in persistent segments. Backing

files for persistent segments are stored under synthesized names in a pro-

tected directory of the Unix file system, so they can be recovered. Opal

capabilities for segments and other resources continue to be valid across

restarts. However, our current prototype does not support crash recovery. The

server retains address bindings and backing files for persistent address

ranges, but it does not propagate updates to backing files to guarantee that

they will be in a consistent state after a crash. This support could be provided

on a segment basis in a runtime package or paging server.

To support persistent memory and persistent capabilities, the server’s

address space management structures are themselves retained in persistent

segments, rooted in a special segment at a statically determined virtual

address. These structures are reattached and recovered if the server is

restarted. One problem is that these structures may contain Mach port

names for transient resources (tasks, threads, memory objects). These Mach

resources and ports are invalidated by a shutdown, so the server must

rebuild Mach kernel state and rebind the ports on recovery. To support this,

each instantiation of the server is a distinct epoch., represented by a value

supplied at boot time. As one example of how epochs are used, the current

epoch is stored in all segment records and is checked on Attach; segment

records from a previous epoch have their memory object ports refreshed from

the segment’s symbolic name.

4.5 Linking

As described in Section 3.5, Opal code modules are statically linked into the

global address space and can be shared and called dynamically. A collection of

Unix utilities, including standard compilers and build tools, prepares code for

execution on the Opal prototype. A shell script calls the Opal server to

allocate a segment for the module being linked, then invokes the standard

Unix linker, telling it to link the compiled code to run at the virtual addresses

assigned to the newly created segment. Custom linking utilities called Re-

fine and Resolve then postprocess the linker’s output. The result is a Unix

file that is executable in the Opal environment; this file is then installed

directly as the backing file for the module’s segment.
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The Refine utility examines the instructions generated by the compiler,

possibly modifying some instructions or addressing modes. Compilers on the

MIPS and Alpha generally represent all private static references as offsets

from a designated base register, the global pointer (GP) register. Any private

references based on different addressing styles are modified to use GP-rela-

tive addressing; this may cause GP offset space (limited to 64K on these

architectures) to be consumed faster. On the Alpha, Refine also removes or

modifies any instructions that change the value of the GP register. Resolve

then patches cross-module references (e.g., calls to the standard runtime

package), resolving symbols imported from a list of modules passed as an

argument. At present, all cross-module text and read-only data references are

represented using statically determined absolute addresses. This is simple

and efficient, but the resolved references do not automatically bind to new

versions of imported modules as they are produced. Language environments

desiring automatic rebinding could provide it in the traditional manner,

using indirect addressing through dynamic jump tables.

The refined and resolved module can now be attached to protection do-

mains and called directly by threads in those domains. Our prototype treats

each attachment as a separate instance of the module, with a private copy of

any writable static data. A runtime loader allocates a block from the domain’s

initial data segment, copies initial values for the module’s private static data

into the block, relocates any value initialized to the address of another static

data element, and initializes the module’s global pointer to point to the

newly allocated static data block. It is worth noting that a private address

space system can defer the copy using copy-on-write and avoid the relocation

step altogether. We revisit this issue in Section 6.4.

Our prototype is limited in its ability to address private static data of

multiple modules attached simultaneously. Since each module has its own

global pointer value, these values must be swapped into the GP register on

cross-module calls and returns. The Alpha compilers generate instructions to

maintain GP values, but the code computes those values as static linker-

determined offsets from the PC. In Opal these values are determined dynami-

cally and must be saved and restored from memory (i. e., the private static

data of the calling module). We have not modified Refine to do this. Instead,

our prototype uses one GP value for each domain; all threads entering the

domain through portals have their GP register initialized to this value.

Refine coordinates GP offsets between application modules and “standard”

modules, e.g., the standard runtime package. Linked application modules

that define private static data are assigned conflicting GP offsets, so domains

are restricted to attach only one such module at a time.

4.6 Summary

We have described our Mach-based Opal prototype, which demonstrates that

a single-address-space environment can be implemented in a straightforward

way on a microkernel operating system. This implementation strategy sup-

ports the coexistence of Opal with other operating system environments, such
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as Unix, thus permitting bidirectional interaction between Opal and existing

applications.

We are currently extending our prototype in various ways, for example, to

support distribution across a small cluster of workstations. Our basic ap-

proach is to use a trusted server that preallocates coarse address ranges to

cluster nodes on request (as in Amber [Chase et al. 1989]); the server also

provides stable backing storage for the global virtual memory. Cluster work-

station and server memories are viewed as a global cache of the server’s

backing storage, with the goal of satisfying most paging operations with

memory-to-memory network transfers, rather than from disk.

Distributing the single address space raises the issue of the coherency of

shared segments. We believe that solutions to problems such as coherency

and recoverability should be applied at the application level, through a mix of

language support, runtime support, and customized external paging servers.

That is, many solutions exist (e.g., Carter et al. [1991] and Bershad et al.

[ 1993]), and the operating system should not dictate a single model for

coherency and recoverability to all applications. For example, collaborative

work applications need different models than do parallel programs. One

alternative that we are exploring uses coarse synchronization between nodes

and fine -grained synchronization among threads within a node, with updates

made by propagating local transaction logs to stable storage and to other

caching sites across the network.

5. APPLICATIONS AND PERFORMANCE

This section discusses the use of Opal by applications and presents some

performance results. Opal’s features—flexible protection, simple shared

memory, and mapped persistent storage—are useful in a range of contexts,

but we believe they are particularly well suited to the needs of the important

and growing class of integrated software environments. An “integrated envi-

ronment” is a collection of software tools that work together to support users

in complex tasks: CAD, CASE, image processing, physical modeling, etc.

Integrated application systems may be large and evolving; protection is

crucial because the “tools” are separately authored programs, possibly run-

ning on behalf of different users, and yet these tools must work together and

share information efficiently.

We are using the Opal prototype to experiment with integrated environ-

ments developed by industry (the Boeing Company) and by software engi-

neering researchers. Our hypothesis is that private-address-space systems

encourage poor structuring tradeoffs for these integrated applications, caus-

ing loss of protection and\or performance. These applications can be restruc-

tured under Opal to improve safety (using additional protection domains),

performance (using shared memory), or both. This can enhance their ability

to scale, both in the range of functions they provide and in the volume of data

they manipulate.
We begin by describing Boeing’s aircraft CAD system in order to illustrate

the target application domain and its importance. We then present the
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results of an experiment using an Opal-based implementation of mediators, a

structuring paradigm for integrated environments [Sullivan and Notkin 1992].

This experiment confirms that shared memory can significantly improve

performance and scalability of integrated applications and demonstrates that

its use is compatible with sound software engineering principles. Finally, we

discuss the performance of the underlying Opal primitives and describe our

experience with layering Opal on the Mach microkernel.

5.1 The Boeing CAD System

Our Opal prototype is being studied by Boeing’s High Performance Design

Systems group, which is experimenting with new database and operating

system technologies for next-generation CAD systems. It is useful to consider

why the Opal model matches Boeing’s needs.

Boeing’s current CAD environment uses a centralized relational database;

the database describes aircraft parts and indexes tens of thousands of geome-

try files. Boeing faces three major problems with their CAD system. First, its

performance problems add to precious design time and cost; verifying part

fits and spatial relationships can take overnight, because it demands a scan

of the parts database. Second, the system cannot support anticipated order-

of-magnitude growth in the size of the data and in the number of engineers

for future projects. Third, it is difficult and expensive to extend functionally.

These problems are all caused by fundamental weaknesses in the structure of

the current CAD system.

The Boeing group, whose charter is to prototype future CAD software, is

taking a three-pronged approach to meeting Boeing’s scale and performance

needs. Their objectives are:

(1) Directly store design information as pointer-based structures in the
database and permit CAD tools to read these structures in bulk, cache

them in local memory, and navigate them directly. The current relational

system represents links as key fields traversed by associative lookups,

requiring repeated queries to the database server. Opal represents links

as ordinary virtual addresses that can be processed directly by programs

and interpreted directly by the hardware.

(2) Explicitly represent commonly needed parts relationships (e.g., spatial

and functional) in the database. CAD tools added to the current system

must rebuild their internal structures from parts records each time they

run, because these structures do not match the predeflned database

schema. Opal permits storage and sharing of arbitrary program-gener-
ated data structures, making it easier to cache and reuse intermediate

results computed by these tools.

(3) Share cached information among CAD tools on each workstation, to
reduce copying and communication overhead. Current tools communicate

through reads and writes to the shared database, unnecessarily loading

the network and server. Sharing is difficult because tools convert data

into process-private pointer structures. Opal allows these structures to be

shared, while preserving the meaning of embedded pointers.
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Boeing’s CAD system is an example of a large integrated application with

pointer-rich data structures, We believe that the support afforded by existing

operating systems is inadequate for these kinds of database applications.

Efforts to support such applications have focused on extensible and object-ori-

ented database systems (OODBS), with a number of commercial products now

on the market. In general, OODBS must convert between object IDs and

virtual addresses as data moves to and from the database. Under Opal, they

can use virtual addresses instead; database format object IDs are not neces-

sary, although they are of course not prohibited. In either case, the key point

is that whether or not virtual addresses are directly stored in the database,

Opal facilitates the sharing of a single copy of active data on the same node,

resulting in a more efficient use of memory and database bandwidth than is

possible in current OODBS built above private-address-space systems. This is

similar in many respects to the Cricket database system [ Shekita and

Zwilling 1990], which allows CAD tools to dlirectly map a shared database at

fixed virtual addresses. In essence, Opal generalizes the Cricket model

throughout the entire operating system; there is no distinction between the

database and transient virtual memory, and protection domains can be used

to prevent tools from viewing or modifying specific parts of the database. This

isolation of nontrusting tools is essential if mapped databases are to be used

safely.

5.2 Structuring Integrated Tools

Boeing’s CAD system shares a key problem with other integrated design

environments: given a shared database containing source objects being modi-

fied, how do we propagate source changes efficiently to other tools that

maintain local structures derived from those sources? In the Boeing environ-

ment, the source objects are aircraft part records, and the derived objects

belong to tools doing simulation, spatial analysis, and so on. Today, tools

must repeatedly copy database records for source objects through messages or

pipes, scanning those records and reconstructing local objects derived from

those records. With Opal, we wish to access source parts in shared memory,

updating the derived objects incrementally rather than rebuilding, due to

their large size.

This approach can significantly improve performance and scalability. How-

ever, integrating independent tools in this way can be quite complex. Tools

must make assumptions about the format of their input and adhere to

standards for the format of their output. These standards are necessary

regardless of how the tools communicate, but the richness and fragility of

shared pointer structures would seem to force compromises in the indepen-

dence of the tools. In contrast, stream-oriented Unix programs (e.g., awk,

grep, etc,) can be combined in unanticipated ways, because they exchange
only unstructured streams of bytes. Independence of these tools is achieved at

a cost: data is copied by each tool; format conversion is necessary; and

incremental change is not supported. We wish to support similar interactions
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Fig. 3. Two configurations of a tree-indexing program built using mediators.

for tools with larger and richer information structures, without this cost of

converting and copying “lowest-common-denominator” interchange formats.

5.2.1 Mediators. We have implemented a framework to facilitate these

kinds of tool relationships based on a variant of mediators [Sullivan and

Notkin 1992]. Mediators do not solve the integration problem, but they do

reduce its complexity. The idea behind mediators is that knowledge of inter-

tool dependencies is factored out of the tools themselves and into separate

components—mediators—that coordinate the behaviors of the tools. This

integrates the tools while allowing them to evolve independently. Tools

communicate implicitly by announcing euents when updates occur. Events

announced by data-producing tools are received by mediators acting on behalf

of data-consuming tools; these mediators then make a series of calls to both

tools to propagate the updates. Tools and mediators should be thought of as

modules with private data, executing in a variety of different protection

configurations. The calls to announce and propagate updates may be either

ordinary procedure calls or protected procedure calls, depending on the

protection relationship between the components involved. This structure is

depicted in Figure 3.

Our Opal mediator package includes runtime support and a protected

event manager. Tools register with the event manager, specifying the events
they announce, along with capabilities for segments containing procedures

and data related to those events. Mediators register with the event manager,

specifying events they wish to receive. The event manager sets up the

appropriate connections and attachments among tools and mediators. Our
mediator implementation is a test system built for demonstration purposes;

however, the mediator paradigm has been used to implement interesting

systems for program restructuring [Griswold and Notkin 1990], computer-

aided geometric design [McCabe 1991], and radiotherapy planning [Kalet et

al. 1991], among others.
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Fig. 4. Execution time for three configurations of a tree-indexing program built using

mediators.

5.2.2 An Example of Structuring Using Opal Mediators. Opal applica-

tions built using mediators can be configured transparently to use different

protection arrangements, including overlapping protection domains and

shared memory, To illustrate the structuring options and their performance,

we implemented a simple mediator-based application. A source tool (the

producer) repeatedly creates and deletes fixed-size records, maintaining a

tree index on those records and announcing events after inserts or deletes. A

derived tool (the consumer) maintains and uses its own index structure on

the same data, while a mediator keeps the derived index up to date in

response to changes by the producer. An asymmetric trust relationship exists

between the tools; the producer can be isolated from both the mediator and

the consumer, but both of them trust the producer to supply well-formed

input data. Figure 4 shows the performance of this applications, as a function

of the number of records processed, for three protection configurations.

(1)

(2)

(3)

Monolithic. All tools and the mediator share a protection domain, simu-

lating a single Unix process (sacrificing safety).

Decomposed. There are two nonoverlapping domains: the producer in one,

the consumer and mediator in the other, using RPC between domains to

simulate separate Unix processes (sacrificing performance).

Overlapping. There are three Opal domains. The mediator domain has

the producer data and code segments attached read-only, and the con-

sumer data segments attached read-write. On an event, the source do-

main calls the mediator domain with an RPC, passing the address of the

changed elements in the shared segment.

Figure 4 confirms the performance benefits of sharing for this environment.

The overlapping organization, while as safe as the fully decomposed configu-

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.



294 . Jeffrey S. Chase et al

ration, is nearly as fast as the monolithic configuration. Furthermore, the

performance advantage relative to the decomposed configuration increases as

the amount of shared data increases.

The key points of this example are that: (1) read-only shared memory is a

natural and efficient alternative to pipes, files, or RPC, (2) read-only shared

memory preserves the one-way isolation provided by pipes and scratch files,

and (3) programs structured using mediators are easily adapted to run in

overlapping protection domains. In fact, all three configurations of our tree-

indexing program are built from the same source code; the shared memory is

completely invisible to the program. Additionally there is a complete separa-

tion of modularity and protection; all interactions are through procedure calls

and clean modular interfaces. Overlapping protection domains exist “over top

of’ these interfaces, representing different trust relationships. For example,

an event signal (from producer to mediator) crosses both module and protec-

tion boundaries; an update call (from mediator to consumer) crosses module

and possibly protection boundaries; a source object read call (from mediator

or consumer to producer) crosses module but not protection boundaries.

5.3 Prototype Performance

The previous section used measurements of an Opal application to demon-

strate the performance advantages that arise from the sharing and protection

supported by Opal. Here, we take a look at the performance of some specific

Opal primitives, based on our Opal prototype running above Mach

(MK83/UX42) on a Digital Alpha processor (DEC 3000/400 AXP, 133.3 Mhz,

74 SPECints). The purpose is to demonstrate that we can build a single-

address-space operating system on top of a conventional microkernel (Mach

in this case) with performance competitive with other environments sup-

ported by that kernel, such as Unix. We have not put much effort into tuning

at this point; our objective in building the prototype was to implement an

Opal environment rapidly, so that we could investigate experimentally the

match between Opal’s abstractions and design applications such as those just

described.

The cost of certain Opal primitives varies widely because the Opal server

preallocates and caches segments and protection domains to meet future

needs. Creating a new segment from scratch takes 3.6 ms on the current

prototype. Much of that time goes to creating a segment backing file (inode)

for the segment. To reduce this cost, Opal recycles inodes; assuming that the

recycle list is nonempty, segment creation time is 315 ~s, which is the time

we expect applications to typically see. Performing an attach/detach of an

Opal segment takes 478 ~s in the best case. About one fifth of this is the cost

of the underlying Mach urn _map/vu _deallocate operations; the remainder

is the cost of two RPC calls to the Opal server, with a small amount of

internal processing to allocate address space and record the attachment.

We now present the performance of Opal operations. As previously stated,

Opal domains are preinitialized and cached by the server; a cached domain
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can be allocated, called, and destroyed in 3.0 ms. The majority of this time is

spent destroying the domain; that is, a domain create/call takes about 650

WS and the destroy a little over 2.3 ms. The high destroy penalty results from

purging and recycling the domain’s data segment, which again requires Unix

file system activity.

If no cached domains are available, creatilng a domain from scratch, calling

it, and destroying it is substantially more work, requiring 12.1 ms. This

compares favorably with the time for the fork/exec/exit/wait of a null

Unix/CThreads program of Mach/Unix (12 ins). The underlying Mach/Unix

fork/exec/exit\ wait (without CThreads) is 8.75 ms, yet the same operation on

DEC’S OSF/ 1, a monolithic Unix kernel, takes only 1.9 ms on the same

hardware. This gives some indication of the cost of building any system

environment above Mach, but it is not a good measure of overall performance.

More importantly, the cost for an Opal cross-domain call is 133 KS, which

compares favorably with cross-address space calls on Mach (88 ~s) and other

systems [Bershad et al. 1990]. This includes a small cost incurred by our

runtime support for password capabilities built above Mach RPC.

5.4 Mach’s Support for Opal

Implementing the Opal kernel as a Mach server clearly entails some perfor-

mance loss compared to a kernel-level implementation (as it does for Unix as

well), and we can identify some of the major costs. First, the Mach virtual

memory system was designed for private address spaces, with a separate

translation map for each domain; a global hashed page directory (as in the

HP PA-RISC [Huck and Hays 1993] system and others) would be better

suited to Opal’s single address space, Second, our prototype does not support

native portals, so it must start a Mach kernel thread in each new domain and

block it on a port, which represents roughly 25% of the cost of preparing a

domain. Third, all Opal memory segments are potentially sharable and

persistent; this requires that they be backed by an external paging server,

which makes zero-fill page faults (336 KS each) and segment deletes (900 ~s),

somewhat more expensive than the “temporary” virtual memory used by

Unix on Mach. Finally, the Mach thread interface is used as the basis for our

user-mode thread package, rather than scheduler activations [Anderson et al.

1992].

Overall, the two points to be gleaned from our Mach experience and

performance data are: (1) Opal primitives have performance that is reason-

able in an absolute sense and (2) they do not add significantly to the cost of

the underlying Mach abstractions on which they are implemented. There are

no significant hidden costs to the single-address-space model. Of course, we

could achieve substantial performance improvements over our Mach-based

prototype by building a native Opal kernel implementation; or, we could
reduce existing overheads in the current implementation using straightfor-

ward and well-understood optimization techniques at various system levels.

In any case, we expect applications to ultimately perform better in our
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environment due to the ease of’ direct memory sharing and the simplified use

of persistent storage.

6. ISSUES FOR THE SINGLE-ADDRESS-SPACE APPROACH

The previous sections have shown how Opal’s structure expands the choices

for use of protection and sharing, and how applications can exploit this

flexibility. These benefits arise, in part, because virtual addresses have an

unambiguous global interpretation in the single address space. In this section

we discuss several tradeoffs that are inherent in the pure single-address-space

approach. In general, these tradeoffs are related to the inability to use

context-dependent addressing in single-address-space systems. That is, pri-

vate-address-space systems often benefit from the assignment of different

meanings to the same address.

6.1 Virtual Contiguity

In a single address space, programs are not free to select addresses for the

segments they create. In particular, segments cannot grow, and segments

allocated at different times will not be contiguous in the address space. This

loss of contiguity is not generally a problem for programs written in high-level

languages, but it could limit the use of data structures that assume contigu-

ity. Programs with indexed memory structures (e.g., arrays) must request

segments that are large enough to store these structures contiguously—yet

the system must impose limits on the amount of address space that can be

preallocated to allow these structures to grow.

While this scheme indeed limits the maximum segment size, the truth is

that the maximum segment size is limited on current 32-bit systems as well;

in fact most current operating systems limit the maximum virtual space to a

fraction of their four-gigabyte architectural limit, which itself is less than one

billionth of a full 64-bit address space. A single-address-space system can

thus easily provide larger segments than today’s private address spaces.

6.2 Conserving Address Space

Opal manages virtual address space as a global system resource. As with

other physical resources (e.g., disk space), the system must ensure that

address space is used fairly and that the needs of all users are met. This

requires accounting and quotas (based on resource groups), and the system

must deny any request that cannot be satisfied from the available address

space. These restrictions are not visible in practice if the hardware address

space is large enough to meet legitimate needs. We have not answered the

question of how much address space is “enough”; our goal is to define and

evaluate the single-address-space structure on the assumption that wide-

address processors will soon provide sufficient virtual address space for this

approach, without constraining applications.

If address space is limited, however, then the system must conserve it by

recycling address ranges that have been used and released. Address recycling

can occur at several levels. For example, heap managers recycle heap slots
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within a segment to conserve physical memory as well as virtual address

space. In this case, dangling references cannot affect other entities that are

not using that heap segment. Should the operating system reclaim the

segment and later reassign it, however, an entity with retained references

into the original segment might then erroneously attempt to use a pointer to

the reassigned segment. This class of dangling references—like all erroneous

address references—must be handled by the access control mechanism. That

is, neither dangling nor erroneously generated references will permit access

to memory, unless that memory lies within a segment attached to the current

protection domain.

Recycling is necessary at present given the terabyte-range virtual spaces

implemented on current wide-address processors. Opal avoids recycling as

long as it can; if the address space is “large enough” then addresses will
never be recycled. Kotz and Crow [1994] compare several address space

allocation and recycling policies for single-address-space systems.

6.3 Unix-Style Fork

The Unix fork operation copies a parent process’ context, including its

private address space, into a child process. The address space cloning seman-

tics of fork cannot be emulated in a single address space: while a Unix

implementation can coexist with Opal above a general-purpose microkernel,

Unix could not be built above a native Opal kernel.

In the past, there were two reasons for fork to clone the parent’s address

space: (1) to create multiple concurrent processes executing the same pro-

gram and (2) to allow code from the parent to initialize state (e.g., file

descriptors) in the child. In the first case, lightweight threads are a better

primitive for concurrency; in the second case, the system can provide a means

to initialize a child without executing code in the child’s context. In fact, fork

is a source of complexity and inefficiency in Unix systems: the majority of the

state copied by a fork is not typically needed by the child, inspiring efforts to

improve performance by deferring the copy (e.g., with copy-on-write) or avoid

it entirely (e.g., the vfork primitive in 4.2 BSD). The copying semantics of

fork also interfere with support for threads [McJones and Swart 1987].

Opal replaces fork with primitives to create protection domains and initial-

ize them by attaching segments and installing RPC endpoints. Threads in the

parent domain can then make cross-domain calls to enter the child domain.

This model is suited to an environment of software components that cooper-

ate over a period of time; in contrast, fork was designed for independently

executing programs that compute a result and terminate. Finally, we note

that most Unix programs do not use fork directly and are thus capable of

running in the single-address-space environment.

6.4 Data Copying and Copy-on-Write

An objective of the single-address-space approach is to replace data copying

with in-memory sharing wherever possible. Obviously, not all instances of

copying can be eliminated. In particular, data may be copied to create a new
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version that can be modified independently of the original, either for protec-

tion reasons or to preserve the original.

When data is copied within an address space, internal pointers within the

copied data must be translated, Conventional systems can sometimes avoid

this translation if the data is copied from one address space to another, by

placing the copied data into the same virtual address range in the receiver

process as it occupied in the sender. (Of course, it is then impossible for either

process to name both versions.) This is not possible in single-address-space

systems, because there is only one naming context; the copy must occupy

different virtual addresses than the original, and pointers must be handled

specially. Furthermore, a conventional system can lazily evaluate such a copy

using copy-on-write, while a single-address-space system cannot. In the sin-

gle-address-space system, pointers in the data must be relocated before the

receiver can even read the data (otherwise, the receiver might point to the

wrong version when the copy is made); copy-on-reference can be used, but not

copy-on-write.

As mentioned in Section 4.5, this absence of remapped copying causes

several problems for the handling of code modules in our Opal prototype.

Opal must copy initial values of writable static data when a module is loaded

(instantiated), and internal pointers must be relocated at load time. The

protection domain create time reported in Section 5 reflects the higher cost of

initializing code segments that contain writable static data.

It might appear that copy-on-write is completely incompatible with single-

address-space systems, because assigning a new address range to the copy

introduces aliasing in the form of multiple virtual mappings to the same

physical page. Copy-on-write introduces only a benign form of aliasing called

read-only aliasing [Chao et al. 1990]. Read-only aliasing is a hidden optimiza-

tion that neither violates the consistent interpretation of pointers nor inter-

feres with the use of a virtually addressed cache. General aliasing can cause a

synonym problem, because the aliases will have separate entries in a virtu-

ally addressed cache, and these entries may be modified independently. This

problem does not occur with read-only aliasing: on a write to either virtual

address, a new physical address is assigned to one of them, destroying the

alias and restoring a unique mapping. Thus the value of a cache line is never

modified in a way that affects the value of another cache line. Because

read-only aliasing is harmless, a single-address-space system can use copy-

on-write in every instance that a conventional system can use it, except when

pointers in the copied data must be translated.

6.5 Summary

We conclude that the tradeoffs of the single-address-space model are reason-

able, given sufficient hardware address space. While context-dependent ad-

dressing is sometimes useful, an acceptable or better alternative often exists.
Furthermore while context-dependent naming may be useful in some situa-

tions, virtual addresses may be the wrong level to apply the context depen-

dence; context dependence can appear at higher levels of naming interpreted
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by software (e.g., relative to the registers of a particular thread) and mapped

into a single context-independent virtual address space interpreted by the

machine.

7. RELATION TO PREVIOUS WORK

Opal is closely related in style and objectives to a number of other systems,

both commercial and experimental, dating back over the last 25 years. An

early description of a software system with protection domains, capabilities,

and dynamic sharing appeared in the late 1960s [Dermis and Van Horn

1966], and many systems tried to implement that approach.

We believe that Opal is significant because it exploits modern 64-bit

processors to meet the goals of previous systems in a way that is simple,

general, and efficient. In particular, Opal requires no special hardware,

supports uniform context-independent naming at the memory address level,

includes persistent storage, and can be implemented efficiently in a compati-

ble way alongside current operating systems on current wide-address proces-

sors. Opal also embodies a modern division of responsibilities between the

hardware, operating system kernel, system services, and language environ-

ment. It accommodates alternative language and data models and relies on

language-based facilities for fine-grained protection and storage manage-

ment.

7.1 Multics and Other Segmented Systems

Opal is similar to Multics [Daley and Dennis 1968] and other segmented

systems [Chang and Mergen 1988; Groves and Oehler 1990] in (1) its use of

medium-grained virtual memory segments as the units of memory protection

and access control and (2) its emphasis on dynamic sharing and memory-

mapped persistent storage.

Opal differs from Multics and other segmented systems in one critical

respect: program addresses in segmented systems do not have a uniform

meaning, which complicates sharing. That is, while a Multics segment has a

“global virtual address,” programs do not use those global addresses directly.

Each process sharing a segment maps the segment into a private address

space, perhaps at a different virtual location (e.g., using a different segment

register). The result is that processes cannot share or exchange addresses

easily, and procedures must include indirect addressing structures to manage

the multiple-address assignments of shared data segments on which they

operate. In general, all traditional mapped file systems operate in this way.

In contrast, all Opal segments, including persistent segments, are simulta-

neously and directly visible (given proper protection) in virtual memory by all

applications. Linked data structures in Opal can easily span segments,

perhaps with different access controls. In this respect Opal is closer to the HP
PA-RISC [Lee 1989], which supports traditional segmented addressing, but

also allows applications to use global virtual addresses directly. However,

most software on the PA-RISC uses short-form addresses, because they are
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more compact and efficient, and because they permit backward compatibility

with private-address-space operating systems.

7.2 Cedar and Pilot

The Xerox Pilot [Redell et al. 1980] and Cedar [Swinehart et al. 1986]

systems support a single virtual address space in which all applications

execute. Pilot includes a mapped file system as well. Protection is based on

the use of a single safe programming language, therefore no protection is

provided or necessary at the hardware level.

We agree that safe languages permit a relaxation of hardware protection,

and we wish to exploit that fact in Opal, However, we also want to support

multiple safe and unsafe languages, as well as stronger isolation for those

who want or need it.

7.3 Capability-Based Architectures

Opal’s goals are similar in some ways to capability-based hardware systems

[Fabry 1974; Levy 1984]. For example, the Intel 432 [Organick 1983] empha-

sized uniform addressing as a basis for supporting sharing and cooperation.

In fact, the addressing on the 432 was not fully uniform, due in part to the

way the processor address space was managed: capabilities contained only 24

address bits, which were translated to and from 80-bit UIDS [Pollack et al.

1981] as objects moved between memory and persistent storage. Second, the

432 used very complex hardware-based protection structures and mecha-

nisms to restrict access to fine-grained objects. Opal does not require special

hardware support for object-based addressing and protection, and Opal’s

protection is on a coarser granularity than the 432 and similar architectures.

We believe that most capability systems suffered from (among other things)

an insufficient underlying hardware base. Because the underlying virtual

address space on the physical hardware was too small, the result has always

been an emulation, at one level or another, of a large address space system

on a small-address-space machine.
The IBM System/38 [Houdek et al. 1981; Soltis 1981] and IBM AS/400

[International Business Machines 1988] are coarser-grained and very similar

to Opal in their protection model and granularity. Access to uniformly

addressed medium-grained segments is shared by multiple protection do-

mains. (This is different from the 432 in that access to shared user objects

generally occurs with unprotected procedure calls, rather than cross-domain

calls.) The System/38 provides memory-level hardware support (e.g., tag bits
for each word) for capabilities. The key difference again is that Opal uses

stock 64-bit processors to gain most of the benefits of these capability-based

systems without their costs. Our performance and generality are comparable

to standard page-based systems, but with improved support for sharing.

7.4 Object-Based Operating Systems and Languages

Early object-based operating systems, such as Hydra [Wulf et al. 1975], Eden

[Almes et al. 1985], and Clouds [Allchin and McKendry 1983], support
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operating system objects addressed via capabilities. Objects in Eden and

Clouds are coarse grained, meaning that they are implemented as separate

virtual address spaces; object encapsulation is enforced by hard protection

boundaries. While these systems conceptually support a single global address

space of objects (based on capabilities), this address space exists at a higher

level than virtual addresses, prohibiting fine-grained low-cost data sharing

and communication between objects. (In fact, this prohibition is a goal of

these systems.)

We believe that coarse-grained object-oriented systems confuse modularity

and protection in a way that excludes useful structuring choices. Specifically,

objects are seen as equivalent to protection domains in these systems. In

Opal, objects are lightweight data items that are independent of protection

domains; an Opal domain may contain many objects, and objects can be

passed or shared between domains. Furthermore, programmers can move the

protection boundaries between objects to achieve the desired balance between

protection and performance, without affecting the modular structure of the

program.

Object-based distributed languages, such as Emerald [Jul et al. 1988] and

Guide-1 [Krakowiak et al. 1990], provide lightweight support for fine-grained

objects in a distributed global address space. Again, the global address space

exists at the object ID level, and translation of addresses is required for

communication and storage. Furthermore, these systems require that all

applications be written in a single safe language. These languages could run

above Opal—and benefit from its flexible protection—but Opal can support

sharing of pointer-based data structures without them.

7.5 Monads

Monads [Rosenberg 1992; Rosenberg and Abramson 1985] uses a large

(60-bit) shared virtual address space that includes persistent data and spans
a local network. A common goal of Monads and Opal is to remove the

distinction between persistent data and transient data. Monads partitions

the global address space among the network. nodes and can locate distributed

pages and keep them coherent. Monads demonstrates that a large, sparse,

distributed address space is manageable.

Above its paged address space, Monads provides an object-based address-

ing and protection model supported by custom hardware, including capability

registers. In Monads, the purpose of the single address space is to streamline

the implementation of capabilities and to extend the capability space across a

network. Monads differs from Opal in several key respects: (1) Opal programs

use flat virtual addresses directly, with access determined by the protection

domain, (2) memory protection in Opal is segment grained rather than object

grained, (3) Opal uses stock 64-bit processors, and (4) the data model in Opal

is defined by languages and applications rather than by the system.

7.6 Psyche and Hemlock

The Psyche system [Scott et al. 1990] uses related concepts to explore parallel

programming within a protected global address space on shared-memory
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multiprocessors. The focus of Psyche is to build applications out of cooperat-

ing components based on different parallel programming models; these com-

ponents are partially isolated in separate protection domains. Psyche’s realms

enforce object-style access to data shared between models, in part to ensure

that model-dependent operations (e.g., acquiring a lock) are handled correctly

regardless of which component invokes them. In contrast, Opal focuses on

using domains to protect shared information in a multiuser operating system.

We generally assume that cooperating components use the same program-

ming model.

Hemlock [Garrett et al. 1993] extends the Psyche work to a Unix context,

adding memory-mapped persistent storage and dynamic linking to shared

code modules that encapsulate shared data. Hemlock is a hybrid

global/private-address-space system: addresses at the low end of the proces-

sor address space have separate mappings in each process, with a large

globally addressed region at the upper end. The goal is to preserve backward

compatibility with Unix (i.e., fork) while supporting uniform addressing of

shared memory.

Opal differs from Psyche and Hemlock in that it views segments rather

than modules (or realms) as the basic unit of sharing. In part this reflects our

emphasis on heap-based programming languages, in which a given code

module could be used to operate on data in many different segments. For

example, in Hemlock, shared code modules are shared abstractions; all data

used by a shared module is also shared, and that data is generally referenced

with language symbols (e.g., as shared global static data), rather than with

pointers. The Hemlock approach simplifies many aspects of linking, but it

complicates the use of a given code module to operate on both private and

shared data.

7.7 Swizzling

Swizzling [Cockshot et al. 1984] is a method of simulating a large address

space on smaller-address hardware by translating pointers (from short “in-

form” to long “outform,” or vice versa) when they are moved in and out of

memory. Swizzling has recently gained new popularity as a means of support-

ing a persistent store [Wilson 1991; Lamb et al. 1991].

As described in Section 2.2, we believe that swizzling should be reserved for

exceptional cases, such as relocating groups of objects from one network

address space to another. The crucial point, however, is that whether or not

data is swizzled on its way into memory, a shared virtual address space is
required ultimately to allow applications to share a single copy of that data in

memory. The single address space greatly simplifies that sharing.

7.8 Alternative Usage of Large Address Spaces

Several other researchers have proposed using a single wide virtual address

space to support uniform addressing and/or reduce the cost of protection

[Murray et al. 1993; Vochtello et al. 1993]. Okamoto et al, [ 1992] suggests

MMU hardware that uses the current value of the PC to determine memory
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access permissions. Druschel and PetersC)IIl [ 1992a] point out that shared

segments can be protected from accidental error and even malicious use by

“hiding” them in the large address space. This idea is generalized in Yarvin

et al. [ 1993] to allow an untrusted thread to operate on protected data with

intradomain “anonymous” protected calls (ARPC) at lower cost than RPC

calls across a hardware-enforced protection boundary. ARPC and the Opal

model are complementary, if Opal’s implementation assigns segment ad-

dresses randomly (our current prototype does not). That is, ARPC could be

used by Opal applications to gain protection of a different strength and cost

than hardware protection domains.

8. CONCLUSIONS

We have described the Opal system, a single-address-space operating system

targeted for 64-bit address space architectures. The key notions of Opal are

the uniform interpretation of addresses and the orthogonality of addressing

and protection. Context-independent addressing removes impediments to

sharing. Procedures and data can be shared at any time without requiring a

priori address space coordination. Protection domains, which are independent

of addressing, determine the context in which a thread executes and its

access rights to memory segments. Segments are dynamically created and

dynamically shared through capabilities, which can be passed directly (along

with virtual addresses) through memory or message channels. Once created,

a segment can persist over system restarts and will be available simply by

accessing its data through virtual addresses.

The objective of Opal is to support a growing and important class of

applications that consist of highly interacting tools manipulating a shared

persistent database. We have studied the needs of one industrial application

(with the Boeing Company), as well as other environments that require

dynamic sharing between tools, and have prototype a mechanism to manage

sharing and protection relationships. For such applications, the Opal system

simplifies sharing, communication, and persistence, and broadens the choices

available for structuring computations and data.

Opal’s concepts have much in common with previous systems, in particular,

capability hardware systems and object-oriented operating systems. Those

systems tended to be overly complex and slow. We believe that the problem

was caused by applying (heavyweight) hardware or operating system protec-

tion mechanisms to fine-grained user and language objects. Opal provides

segment-grained protection and leaves fine-grained storage management to

languages and runtime systems. Protection domains can be used in flexible

ways to provide added protection, depending on the trust relationships and

needs of cooperating parties.

A second problem faced by previous systems was the insufficient address-

ing capacity of the underlying hardware base, which resulted in an additional

level of software to translate from long-term global addresses to short-term
virtual addresses. In the final analysis, these systems were all emulating a
large address space on small-address hardware. With the appearance of RISC
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microprocessors with 64-bit addressing, we believe that this level of transla-

tion is no longer necessary. Moreover, by continuing to use traditional

operating system structures, modern operating systems are adding unneces-

sary complexity; in a sense, they are emulating small-address-space struc-

tures on top of large-address architectures, causing extra work at several

system layers.

We have demonstrated that a single-address-space system such as Opal

can be implemented alongside of other environments on a microkernel oper-

ating system, using modern wide-address architectures. This permits experi-

mentation with the single-address-space environment while we continue to

use and communicate with existing tools. Our initial experiments with Opal

demonstrate how the system can be used to provide added performance,

added safety, or both relative to current implementation choices on conven-

tional operating systems.
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