
Isolating and Understanding Concurrency Errors
Using Reconstructed Execution Fragments

Brandon Lucia Benjamin P. Wood Luis Ceze
University of Washington, Department of Computer Science and Engineering

{blucia0a,bpw,luisceze}@cs.washington.edu
http://sampa.cs.washington.edu

Abstract
In this paper we propose Recon, a new general approach to concur-
rency debugging. Recon goes beyond just detecting bugs, it also
presents to the programmer short fragments of buggy execution
schedules that illustrate how and why bugs happened. These frag-
ments, called reconstructions, are inferred from inter-thread com-
munication surrounding the root cause of a bug and significantly
simplify the process of understanding bugs.

The key idea in Recon is to monitor executions and build graphs
that encode inter-thread communication with enough context infor-
mation to build reconstructions. Recon leverages reconstructions
built from multiple application executions and uses machine learn-
ing to identify which ones illustrate the root cause of a bug. Recon’s
approach is general because it does not rely on heuristics specific to
any type of bug, application, or programming-model. Therefore, it
is able to deal with single- and multiple-variable concurrency bugs
regardless of their type (e.g., atomicity violation, ordering, etc). To
make graph collection efficient, Recon employs selective monitor-
ing and allows metadata information to be imprecise without com-
promising accuracy. With these optimizations, Recon’s graph col-
lection imposes overheads typically between 5x and 20x for both
C/C++ and Java programs, with overheads as low as 13% in our ex-
periments. We evaluate Recon with buggy applications, and show
it produces reconstructions that include all code points involved in
bugs’ causes, and presents them in an accurate order. We include a
case study of understanding and fixing a previously unresolved bug
to showcase Recon’s effectiveness.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; D.2.5 [Software Engineering]:
Debugging Aids

General Terms Algorithms, Reliability

Keywords concurrency, debugging, atomicity violation, order vi-
olation, multi-variable, data race, concurrency bug, communication
graph

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

1. Introduction
Concurrency bugs are a major stumbling block to writing multi-
threaded programs. Even expert programmers puzzle over compli-
cated behaviors resulting from the unexpected interaction of opera-
tions in different threads. Developers face errors such as data races,
atomicity violations, deadlocks, and ordering errors.

Concurrency bugs are particularly difficult to diagnose and fix
for two main reasons. First, developers must reason about the in-
teractions of many pieces of code executing in multiple threads.
Observing one thread’s buggy behavior is often insufficient for un-
derstanding the cause of the bug, which may lie in another thread.
Second, non-determinism in multi-threaded execution complicates
the process of interpreting buggy executions. The exact behavior
of the application may vary, even from one buggy run to the next,
making it very difficult to pin-point the root cause of the bug. Prior
work [16] showed that the challenges of concurrency have led de-
velopers to give up on some bugs entirely, or to apply incorrect
or incomplete stop-gap solutions. As a result, errors remain in the
wild, potentially leading to surprising software failures.

There is a large body of work addressing concurrency bugs. A
significant fraction of prior work focuses on dynamically detecting
data races [6, 25], atomicity violations [8, 17], and locking or shar-
ing discipline violations [1, 26, 33]. Some recent work on testing in-
vestigated new ways of systematically exploring executions [5, 21]
and replaying buggy executions [24, 31]. Prior work has had con-
siderable success, but there still remains much to be addressed.

First, many prior approaches to detect bugs report too little in-
formation to understand bugs: a single communication event [18,
27, 32] or the thread preemptions from buggy runs [5, 21]. How-
ever, concurrency bugs are complex and involve code points dis-
tributed over a code base and in multiple threads, requiring more
information to be fully understood. To understand such bugs, de-
velopers benefit from seeing a portion of the execution illustrat-
ing the actual code interleaving that led to buggy behavior. Second,
replay-based approaches [24, 31] often report too much information
— effectively, the entire execution schedule. Replay makes bugs re-
producible, but programmers must sift through an entire execution
trace to comprehend bugs. Finally, many techniques are tailored to
a specific class of concurrency errors [17, 23], limiting their appli-
cability. It is infeasible to anticipate every possible error scenario,
and design a tool targeting each. Hence, generality is crucial.

We propose Recon, a new approach to concurrency debugging
based on reconstructions of buggy executions. Reconstructions are
short, focused fragments of the interleaving schedule surrounding
a program event, such as shared-memory communication. Figure 1
illustrates what a reconstruction is and how a reconstruction relates
to an execution. Observe that not all program events are included
in the reconstruction. Instead, a reconstruction contains a concise

summary of program behavior surrounding an event that is likely
to be related to a concurrency error. Reconstructions are based on
communication graphs that encode information about the ordering
of communication events. Based on this ordering, reconstructions
show the interleaving that caused buggy behavior, rather than just
some of the code points involved. Reconstructions are general, as
they make no assumptions about the nature of bugs — i.e., Recon
does not look for specific patterns.

Figure 2 shows an overview of Recon’s basic operation. The
process begins when a programmer observes a bug or receives
a bug report. The programmer then derives a test case designed
to trigger the bug, and runs the test multiple times under Recon.
Recon collects a communication graph from each execution, and
the programmer or test environment labels each graph as buggy or
nonbuggy, depending on the outcome of the test. Recon then builds
reconstructions from edges in buggy graphs; for each one, Recon
computes statistical features to quantify the likelihood that they are
related to the bug. Recon uses the features to compute a rank for
each reconstruction, and presents them to the user in rank order.

With Recon, we make several contributions:

• We propose the concept of reconstructing fragments of multi-
threaded executions and develop an algorithm that builds recon-
structions from communication graphs.

• We propose a set of features to describe reconstructions and use
statistical techniques to identify reconstructions that illustrate
the root cause of bugs.

• We develop optimization techniques to build communication
graphs efficiently.

• We implement Recon for both C/C++ and Java. Our evaluation
uses bugs from the literature, including several large applica-
tions, and shows that Recon precisely identifies bugs and their
corresponding reconstructions. We include a case study of using
Recon to understand and fix an unresolved bug.

The rest of this paper is organized as follows. Section 2 dis-
cusses concurrency bugs in general and provides an overview of the
role of communication graphs for debugging. Section 3 discusses
our approach to reconstructing execution fragments. Section 4 de-
scribes how we use machine learning techniques to identify bugs.
Section 5 describes our implementation of Recon for C/C++ and
Java, and several enabling optimizations. Section 6 describes our
experiments, which show that Recon reconstructs buggy executions
precisely and efficiently. Section 7 discusses related work and Sec-
tion 8 concludes.

2. Background
2.1 Concurrency Bugs
Data races occur when two different threads access the same mem-
ory location, at least one access is a write, and the accesses are
not ordered by synchronization. Ordering violations involve two

A

B

C

D

E

A

E
B

D

C

Thread 1 Thread 2
...

...

RAReconBuggy
Communication

Correct
Communication

Memory
Operation

Reconstruction

Figure 1. Recon reconstructs fragments of program execution.

Observe Bug
and Create Test

Find Bug Using
Reconstructions

Programmer

Collect Graphs
From Many
Executions

Generate
Reconstructions

and Rank
Recon

Figure 2. Overview of Recon’s operation.

or more memory accesses from multiple threads that happen in an
unexpected order, due to absent or incorrect synchronization.

Atomicity violations result from a lack of constraints on the
interleaving of operations in a program. Figure 3(a) illustrates an
atomicity violation bug that was found in weblech, a multi-
threaded web crawler. The program uses a shared queue that was
implemented incorrectly. The check of the queue’s size on line 168
should be atomic with the dequeue operation performed on line
189 to ensure that there is always an item to dequeue, but the
programmer has not implemented this atomicity constraint.

Figure 3(b) shows an execution trace manifesting the bug. In
this trace, the size() and dequeue() calls in Thread 2 inter-
leave between the size() and dequeue() calls in Thread 1.
Since the queue is emptied by Thread 2, Thread 1’s call to
dequeue() returns null, which is stored in the local variable
item. Thread 1 later crashes with a NullPointerException
when trying to invoke the getD() method on this null item.

2.2 Communication Graph Debugging
Prior work [18, 27, 32] has observed that communication graphs
are useful for detecting concurrency errors. A communication
graph is a representation of a program execution that captures inter-
thread data-flow. A node in a communication graph represents a
memory instruction at some program point. An edge between two
nodes, the source and sink, indicates that the sink instruction read
or overwrote data written by the source instruction. Furthermore,
the source and sink instructions executed in different threads.

The main idea behind concurrency debugging with communi-
cation graphs is that a problematic communication event charac-
terizes the error’s behavior, and is represented by an edge in the
graph. Identifying the problematic communication event illustrates
the bug’s behavior to a developer, aiding in debugging. An ap-
proach used in prior work for identifying problematic communi-
cation is to focus on communication events that tend to occur often
in buggy program runs, and infrequently or never in correct pro-
gram runs [17, 32]. This technique is often useful, but insufficient
in general.

To understand why, refer back to the example in Figure 3(b).
The problematic communication event is Thread 1’s read of the
queue’s qsize field on line 115; it reads a value written by
Thread 2 at line 117 rather than the same value Thread 1 read
from qsize, at line 133. Looking at this communication alone is
insufficient to find the bug; the involved instructions communicate
in both buggy and nonbuggy executions. This difficulty in iden-
tifying the problematic edge in a communication graph was the
motivation for developing context-aware communication graphs in
Bugaboo [18].

Context-Aware Communication Graphs. Bugaboo first demon-
strated that communication graphs are insufficient for general con-
currency bug detection. Bugaboo addresses this inadequacy by
adding communication context to communcation graphs. Commu-
nication context is a short (e.g., 5 entries) history of context events
that is maintained by each thread in an execution. Context events
are Local Reads, Local Writes, Remote Reads, and Remote Writes.
A thread records a “Local” event in its context for sharing read

 class Queue { ...
 Queue(){
 46: items = ...;
 47: qsize = 0;
 }
 synchronized dequeue(){
115: if (qsize == 0) return null;
117: qsize--;
118: return items[...];
 }
 synchronized size(){
133: return qsize;
 } }

 class Spider { ...
 public void run(){
167: while (...) {
168: if (q.size() == 0) {
170: continue; }
 ...
189: item = q.dequeue();
 ...
195: x = item.getD();
 } }

133: return qsize;

...

115: if (qsize == 0)
115: return null;
...
195: item.getD();
NullPointerException!

133: return qsize;
...
117: qsize--;

Tim
e

47: qsize = 0;
LocWr

133: return qsize;
RemWr, RemWr

Thread 0
 46: items = ...;
 47: qsize = 0;

133: return qsize;
RemRd, RemWr, RemWr

117: qsize--;
LocRd, RemRd, RemWr, RemWr

115: if (qsize == 0)
RemWr, RemRd, LocRd, RemWr, RemWr

(c) Context-Aware Communication Graph

1

2

3
4

1

3

4

Communication Context

Implicit assumption:
q.size() != 0

Bug: another thread dequeues last queue
entry here; this thread dequeues null;
NullPtrException at line 195.

(a) Program

(b) Execution Trace

<uninitialized> 46: items = ...;

Node

Sh
ou

ld
 b

e
at

om
ic

Thread 1 Thread 2

2

Figure 3. Example showing (a) a buggy program, (b) a bug-triggering execution trace, and (c) the context-aware communication graph
produced by the trace. Nodes represent the execution of operations in a specific context. Edges represent communication between nodes.
Note that we only include events in nodes’ contexts that appear in our abbreviated trace for presentation purposes.

and write operations that it executes. A thread records a “Remote”
event in its context when another thread performs a read or a write
to a memory location that it has accessed recently. Context events
represent memory operations performed by any instruction, to any
address, and only events’ types (e.g.,“Remote Read”) are added to
a thread’s context.

Communication context is the basis for context-aware commu-
nication graphs. In a context-aware graph a node is a pair (I, C)
representing the execution of a static instruction, I , in communica-
tion context, C, instead of just an instruction. Edges in a context-
aware graph represent communication between dynamic instruc-
tion instances. In a context-aware graph, there may be more than
one node per static instruction, but the size of the graph is bounded
by a function of the context size, as described in prior work [18].

Figure 3(c) shows a context-aware communication graph pro-
duced by the execution trace in Figure 3(b). The numbered cir-
cles map events in the trace to their corresponding edge in the
graph. In the context-aware graph, the sink node of edge 4 occurs
only in buggy executions. The most recent (left-most) two events
in this node’s context are the Remote Write that corresponds to
Thread 2’s write at line 117, and the Remote Read that corresponds
to Thread 2’s read at line 133. This context reflects the buggy in-
terleaving of Thread 1’s read of qsize at line 133, and its read
of qsize at line 115. Hence, edge 4, which includes this unique
context-aware node, occurs in buggy executions’ graphs, and not
correct executions’ graphs. Context-aware graphs provide a way to
identify buggy communication in such complex bugs.

Debugging with communication graphs is one of the key mo-
tivating ideas behind Recon. However, rather than just isolating
graph edges likely to represent problematic communication, as
most prior work has done, Recon reconstructs temporal sequences
of communication events and, using machine learning, infers which
sequences most likely illustrate a bug’s cause.

3. Reconstructing Execution Fragments
The goal of Recon is to simplify debugging by presenting the pro-
grammer with a short, focused, temporally ordered reconstruction
of the events that were responsible for buggy behavior. Our tech-
nique for reconstructing execution fragments is based on a special-
ized version of context-aware communication graphs [18].

3.1 Timestamped Communication Graphs
We specialize the context-aware communication graph abstraction
to encode ordering between non-communicating nodes. We do so
by adding a timestamp to each node, indicating when the node’s
instruction executed in the node’s context. We call this new graph
abstraction the timestamped communication graph; referring to
them as just “graphs” hereafter. To summarize the structure of the
graphs used by Recon:

• A node is a pair (I, C) representing the execution of static in-
struction I in communication context C. Each node is labeled
with a timestamp, T , representing the global time when instruc-
tion I last executed in context C.

• An edge is a pair of nodes (u, v) representing communication
from the instruction instance represented by u to the instruction
instance represented by v.

Graph Construction. We collect graphs by keeping a last-writer
record for each memory location, storing: (1) the thread that last
wrote the location; (2) the instruction address and context of that
write; and (3) a timestamp for the access. When a memory location
is accessed by a different thread than the thread that last wrote the
location, an edge is added to the graph. The edge’s source node
is populated with the instruction address, context, and timestamp
from the location’s last-writer record. The edge’s sink node is
populated with the instruction address, context, and timestamp of
the operation being performed.

To limit the size of the graph, we record only the most recent
pair of timestamps for an edge, i.e., the timestamp is not used to
identify a node, only the instruction and context are. When adding
a communication edge to the graph, if the edge already exists, only
the timestamps are updated. By overwriting timestamps, we lose
some ordering information, so we call our extension a lossy times-
tamp. Figure 4(a) shows an example of a timestamped communica-
tion graph. The graph is similar to the one in Figure 3, except that
each node now has a timestamp indicating when it last occurred.

3.2 Reconstructions
A reconstruction is a schedule of communicating memory opera-
tions that occurred during a short fragment of an execution. In this
section, we describe the process of building a reconstruction around
a single, arbitrary communication event (i.e., graph edge). Section 4
describes how we identify the reconstructions most likely related to
bugs, and Section 5.3 details the entire debugging process.

3.2.1 Building Reconstructions from Graphs
Recon builds reconstructions starting from an edge in a graph.
In addition to the instructions represented by the source and sink
nodes of the edge, a reconstruction should include the memory
operations that executed in a short window prior to the source
node, in the time between the source and the sink nodes, and in a
short window following the sink. These regions of the execution are
called the prefix, body, and suffix of the reconstruction, respectively,
and are selected from the graph for a single execution according to
nodes’ timestamps.

The size of the window of nodes considered in computing the
prefix and suffix is arbitrary. With a larger window, there is a greater
chance that unrelated nodes are included in a reconstruction. With
a smaller window, fewer unrelated nodes are likely to end up in
a reconstruction, but we risk excluding events related to the bug
that occur far away from the communication event. A reasonable
window size heuristic is to use the length of the communication
context of a node. Using the context length, we include nodes that
were influenced by, or influenced the context of the sink or source.

Formal Definition of Reconstruction A reconstruction is a tu-
ple (e, p, b, s). The reconstruction is built around an edge, e, with
source node, esrc and sink node, esink. The prefix, p, is a set of
consecutive nodes immediately preceding esrc in timestamp order.
The body, b, is the set of all nodes between esrc and esink in times-
tamp order. The suffix s is a set of consecutive nodes immediately
following esink in timestamp order. The cardinalities of the prefix
and suffix are bounded by fixed constants. The cardinality of the
body is bounded by a threshold function that we describe in Sec-
tion 5.3.

3.2.2 Simpler Debugging Using Reconstructions
Figure 4(b) shows the reconstruction Recon produces from one of
the edges in the graph in Figure 4(a). This reconstruction illustrates
the buggy interleaving of queue operations shown in Figure 3(b).
It includes all the code points involved in the bug, and presents
them in the order that leads to buggy behavior. In buggy runs, the
read of the queue’s size on line 133 and the dequeue on line 115
are interleaved by the dequeueing decrement of qsize at line 117.
This buggy interleaving is clear in the reconstruction: line 133’s
node is in the body and line 115’s node is in the suffix. The
interleaving dequeue operation at line 117 is the sink node, ordered
between the body and the suffix.

This example illustrates a key contribution of reconstructions.
Looking at the buggy edge between line 117’s node and line 115’s
node does not explicitly indicate the bug — it suggests the in-
volvement of the queue, but not the atomicity violation involving

line 133. Instead, the reconstruction built around the nonbuggy edge
from line 47’s node and line 117’s node illustrates the bug, showing
all three involved code points and the buggy execution order.

3.3 Aggregate Reconstructions
We have described how to build a reconstruction for a single edge
from a single execution. We can aggregate reconstructions from a
set of runs to see how frequently code points occur in a region of
a reconstruction across executions. This information allows us to
define our confidence that a code point belongs in a region.

Starting from a set of graphs, we compute a reconstruction
for each edge in each execution’s graph individually. We then
aggregate the reconstructions of each edge across the executions
by computing the union of each of their prefixes, the union of each
of their bodies, and the union of each of their suffixes, producing
the aggregate prefix, body, and suffix. A node may occur in multiple
different regions in an aggregate reconstruction, if, for instance, in
half of executions it appeared in the prefix, and in half it appeared in
the body. Nodes in the same region in an aggregate reconstruction
are unordered with one another, but are ordered with the source and
the sink of the edge in the reconstruction, and with nodes in other
regions. Nodes within a region are unordered because timestamps
are not comparable across executions.

When aggregating reconstructions, we associate a confidence
value with each node in a region. The confidence value is equal
to the fraction of executions in which that node appeared in that
region. The confidence value of a node in a region represents the
likelihood that a node occurs in that region. In Section 4, we discuss
using confidence values to identify reconstructions likely related to
buggy behavior.

F

G

(a)Reconstructions From Multiple Runs

A

B

C

D

F

G

B

A

C

D

F

G

A

B

C

E

F

G

B

A

C

D

F

G

B

BA

D

(b)Aggregate Reconstruction

A

E

C

50% 50%

50% 50% 100%

75% 25%

Run 1 Run 2 Run 3 Run 4 Prefix
B

ody
Suffix

A
ggregate
Prefix

A
ggregate
B

ody
A

ggregate
Suffix

Confidence Values

Figure 5. (a) Reconstructions of many runs and (b) the resulting
aggregate reconstruction with confidence values.

Figure 5 shows an example of the aggregation process. Part (a)
shows reconstructions produced from 4 different executions, and
part (b) shows the aggregate reconstruction produced from these 4
reconstructions. In this example, node A appears in the prefix of
half of the reconstructions, and appears in the body in half of the
reconstructions. The prefix and body of the aggregate reconstruc-
tion therefore both include node A, and assign it a confidence value
of 50%. Node C appears in the body of all of the individual recon-
structions, so it appears in the body of the aggregate reconstruction
with a confidence value of 100%.

4. Debugging with Reconstructions
There are four steps to debugging a program with Recon:

1. The program is run under Recon several times, yielding a set
of timestamped communication graphs labeled buggy or non-
buggy (Section 2.1).

 G
ra

ph
 E

dg
e

(a)Timestamped Communication Graph

Lossy Timestamps

133: return qsize;
RemWr,RemWr 25

 133: return qsize;
RemRd,RemWr,RemWr 38

117: qsize--;
LocRd,RemRd,RemWr,RemWr 50

115: if(qsize == 0)
RemWr,RemRd,LocRd,RemWr,RemWr 59

DownloadQueue.Java:47

DownloadQueue.Java:133

DownloadQueue.Java:133

DownloadQueue.Java:117

DownloadQueue.Java:115

47: qsize = 0;
LocWr 19

Suffix

Body

PrefixDownloadQueue.Java:46
 <uninitialized>

11
46: items = ...;

14

(b)Reconstruction

Figure 4. A timestamped communication graph (a) and reconstruction (b). The graph corresponds to Figure 3(c).

2. Next, Recon must decide which edges are worth using as the ba-
sis for a reconstruction. Recon selects edges from each buggy
graph based on how strongly correlated they are with the oc-
currence of buggy behavior. Section 4.1.1 describes this corre-
lation.

3. For each selected edge, Recon builds and aggregates recon-
structions (Sections 3.2 and 3.3).

4. Finally, Recon ranks the reconstructions by how likely they are
to illustrate the bug, as determined by a set of features computed
from the aggregated reconstructions and the nonbuggy graphs.

We now discuss the features we developed, and how we use
them to produce a reconstruction’s rank.

4.1 Features of Reconstructions
A key design concern is that features are general. A feature that
targets one bug type or pattern is not as useful. If we choose
features that are not general, we bias our search toward some bugs
and miss others entirely. For example, serializability analysis of
memory access interleavings has been used to detect atomicity
violations [17, 23]. However, it does not detect ordering bugs or
any multi-variable bugs.

Our features should capture as much information as necessary
to discriminate between reconstructions of buggy fragments of an
execution and reconstructions of nonbuggy fragments. We use three
features: Buggy Frequency Ratio focuses on the correlation be-
tween communication events and buggy behavior; Context Vari-
ation Ratio focuses on variations in communication context that
correlate with buggy behavior; and Reconstruction Consistency fo-
cuses on the consistency with which sequences of code points occur
in reconstructions from buggy executions. The rest of this section
describes these features in detail and verifies their efficacy empiri-
cally using a feature importance metric from machine learning [14].

4.1.1 Buggy Frequency Ratio (B)
Intuition. A reconstruction’s Buggy Frequency Ratio, or B
value, describes the correlation between the frequency of the com-
munication event from which the reconstruction was built, and the
occurrence of buggy behavior. The motivation for this feature is
that we are interested in events in an execution that occur often in
buggy program runs, but rarely, or never, in nonbuggy runs.

Definition. For each aggregate reconstruction, assume #Runsb
buggy runs and #Runsn nonbuggy runs. Assume the reconstruc-

tion’s edge occurred in EdgeFreqb buggy runs and in EdgeFreqn
nonbuggy runs. The fraction of buggy runs in which the edge oc-
curred is:

Fracb =
EdgeFreqb
#Runsb

The fraction of nonbuggy runs in which the edge occurred is:

Fracn =
EdgeFreqn
#Runsn

We define B as follows:

B =
Fracb
Fracn

If a reconstruction’s edge occurs in many buggy runs and few
nonbuggy runs, B is large. Conversely, if the edge occurs often in
nonbuggy runs and rarely in buggy runs, B is small.

If the edge never occurs in a nonbuggy run, but occurs in buggy
runs, then it is very likely related to the bug. However, in such
a case, Fracn is 0, and unless we handle this case specially, B
is undefined. In this corner case, we give Fracn a value that is
smaller than the value produced if the edge occurs in one nonbuggy
run (by assigning Fracn = 1

#Runsn+1
). This yields large B

values for these important edges.

4.1.2 Context Variation Ratio (C)
Intuition. The Context Variation Ratio (C) quantifies how vari-
ation of contexts of communicating code points correlates with
buggy execution. We can determine the pair of communicating
code points in the edge around which a reconstruction is built, since
a node is identified by an instruction and context. From that, we can
determine all edges involving that pair of code points, regardless of
context; we then compute the set of all contexts in which the pair
communicated. In a program that has frequent, varied communica-
tion, there are many contexts in this set; in a program with little —
or less-varied — communication, the set is small. We consider a re-
construction suspicious if the pair of code points forming the edge
around which the reconstruction was built execute in a substantially
different number of contexts in buggy runs than in correct runs.

Definition. For a reconstruction built around an edge between
two code points, we define #Ctxb to be the number of contexts in
which the code points communicated in buggy runs, and #Ctxn

to be the number in nonbuggy runs. C is the ratio of the absolute
difference of #Ctxb and #Ctxn to the total number of contexts

for the pair of code points in nonbuggy and buggy runs. We define
C as follows:

C =
|#Ctxb −#Ctxn|
#Ctxb +#Ctxn

Large C values indicate a disparity in communication behavior
between buggy and nonbuggy runs. Hence, a reconstruction with
a large C value more likely illustrates the communication pattern
that led to buggy behavior.

4.1.3 Reconstruction Consistency (R)
Intuition. Reconstruction Consistency (R) is the average confi-
dence value over all code points in an aggregate reconstruction.
R is useful because code points that consistently occur in recon-
structions of buggy executions are likely related to the cause of the
bug. As described in Section 3.2, each node in an aggregate re-
construction has an associated confidence value that represents the
frequency with which it occurs at a certain point in that reconstruc-
tion. In an aggregate reconstruction produced from a set of buggy
runs, a node with a high confidence value occurs consistently in
the same region of reconstructions from those buggy runs. Such
nodes’ operations are therefore likely to be related to the buggy
behavior in those runs. Reconstructions containing many high con-
fidence nodes reflect a correlation between the co-occurrence of
those nodes’ code points in the order shown by the reconstruction,
and the occurrence of buggy behavior.

Definition. We compute R for a reconstruction as the average
confidence value over all its nodes. Formally, for a reconstruction
with prefix region P , body B, and suffix S and where V (n, r) is
the confidence value of node n in region r, we define R as follows:

R =

∑
p∈P

V (p, P) +
∑
b∈B

V (b,B) +
∑
s∈S

V (s, S)

|P |+ |B|+ |S|
Nodes in a reconstruction with a large R value tend to occur in

the reconstructed order when buggy behavior occurs. Such recon-
structions are therefore more likely to represent problematic inter-
leavings, and to be useful for debugging.

4.2 Using Features to Find Bugs
By construction, large values for B, C, or R indicate that a recon-
struction is likely to be buggy. Therefore, we give each reconstruc-
tion a score equal to the product of all non-zero features’ values.
We rank reconstructions, with highest scoring reconstruction first.

Empirical validation of B, C, and R. We now quantitatively jus-
tify our features using real buggy code (we describe our experimen-
tal setup in Section 6). We assessed the discriminatory power of our
features using Weka’s [9] ReliefF [14] feature selection function.
The magnitude of a feature’s ReliefF value is greater if the dis-
tance between points of different classes (e.g.buggy or non-buggy)
is greater along that feature’s dimension, on average. The magni-
tude of a feature’s ReliefF value corresponds to how well it dis-
criminates between classes.

Table 1 shows ReliefF values for bugs in several C/C++ appli-
cations. All features’ ReliefF values are non-zero, meaning they are
useful for classification, and many have ReliefF values close to 1.0.
The relative importance of features varies by program.

For apache, B and R are the most useful. C is less important,
indicating there is a similar amount of context variation in buggy
and nonbuggy runs. Figure 6 illustrates the relative importance of
the features graphically, with pair-wise feature plots. Figure 6(a)
shows that when viewed along the axes of highest ReliefF, there
is clear segregation of buggy and nonbuggy reconstructions. In the

ReliefF Rank
Program B R C
apache 0.99 0.91 0.16
mysql 0.20 0.59 0.76
pbzip2 0.26 0.28 0.28
aget 0.84 0.91 0.16

Table 1. ReliefF rank of features for C/C++ programs.

plot, buggy points tend to the upper right, meaning they have larger
feature values than nonbuggy points. Figures 6(b) and (c) reiterate
the class segregation along the B and R axes, and illustrate the less
clear division along the C axis.

pbzip2’s ReliefF values are smaller than other applications’
values. The disparity indicates that in each dimension, pbzip2’s
buggy and nonbuggy points tend to be nearer to one another than
in other applications. Hence, ranking by a single feature is inade-
quate to isolate bugs precisely. However, in the three-dimensional
space of all features, buggy and nonbuggy reconstructions are far
apart. As our results in Section 6.2 confirm, ranking using all three
features isolates the reconstruction of the bug in pbzip2.

Our ReliefF feature analysis emphasizes two properties of our
technique: (1) our features precisely classify buggy reconstructions
to identify bugs; and (2) considered together, our features are more
powerful than each individually.

5. Implementation
We implemented two versions of Recon: one for C/C++, using
Pin [19], and one for Java, using RoadRunner [7]. The implemen-
tation has three parts: (1) tracking communication; (2) collecting
graphs; and (3) generating and ranking reconstructions.

5.1 Tracking Communication
To track communication we maintain a metadata table. This table
maps each memory location to an entry containing its last-writer
record, and a list of threads that have read from the location since
its last write that we call the sharers list. Each thread has a commu-
nication context. A thread’s context is a shift register of events, as
described in Section 3. We use a 5-entry context.

When a thread writes to a memory location, it updates the loca-
tion’s last-writer record with its thread ID, the instruction address
of the write, its current context, and the current timestamp. If the
writing thread is different from the last writer, it does three things:
(1) update its context with a local write event; (2) update the con-
text of each thread in the sharers list with a remote write event; and
(3) clear the sharers list.

When a thread reads a location, it looks up the last writer thread
in the last-writer record. If the reading thread is different from the
last writer, it does three things: (1) update its context with a local
read; (2) update the last writer thread’s context with a remote read;
and (3) add the reading thread to the memory location’s sharers list.

For C/C++, we implement the metadata table as a fixed size hash
table of 32 million entries. To find a memory location’s metadata,
we index with the address modulo the table size. We use a lossy
collision resolution policy: on a hash collision, an access may read
or overwrite another colliding location’s metadata. We ignore stack
accesses, as they are rarely involved in communication. For Java,
we use RoadRunner’s shadow memory to implement a distributed
metadata table. Its size scales with allocated memory and it does
not suffer from collisions. Unique identifiers of memory access
instructions in the bytecode replace instruction addresses. Contexts
are stored as integers, using bit fields. We instrument accesses to
fields and arrays, but not local variables.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

R
ec

on
st

ru
ct

io
n

C
on

si
st

en
cy

Buggy Run Frequency Ratio

(a) B vs. R

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
on

te
xt

 V
ar

ia
tio

n
R

at
io

Buggy Run Frequency Ratio

(b) B vs. C

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
on

te
xt

 V
ar

ia
tio

n
R

at
io

Reconstruction Consistency

Nonbuggy
Buggy

(c) R vs. C

Figure 6. Pair-wise plots of features for apache showing the top 2000 ranked reconstructions. Buggy reconstructions’ points are circled.

5.2 Timestamped Communication Graphs
Each thread maintains its own partial communication graph. Par-
titioning the communication graph over all threads makes adding
an edge a thread-local operation, which is critical for performance.
When a thread tries to add an edge, it first searches the graph for the
edge. If the edge is already in the graph, the thread overwrites the
existing timestamps with the timestamps of the edge being added.
If not, a new edge is created. When a thread ends, it merges its par-
tial graph into a global graph. Once all partial graphs are merged
into the global graph, it is written to a file.

For C/C++, we use the RDTSC x86 instruction to track times-
tamps. We maintain communication graphs as a chaining hash ta-
ble. Separately for the source and sink node, the hash function sums
the entries in each node’s context. Each node’s sum is then XORed
with the node’s instruction address. The result of the computation
for the source node is then XORed with the result of the compu-
tation for the sink, producing the hash key. For Java, we generate
timestamps from the system time and implement communication
graphs as adjacency lists.

5.3 Generating and Ranking Reconstructions
We generate and rank reconstructions with the following process.
We separately load sets of buggy and nonbuggy graphs into mem-
ory and create a list of nodes ordered by timestamp for each buggy
run. At this point, we compute C and B for each edge in the set of
buggy graphs. We then rank these edges by their B values. Next,
we generate reconstructions for the top 2000 edges ranked by B,
using the algorithm described in Section 3.2. To limit the size of
the reconstructions produced, we limit the number of code points
in each region. To do so, we threshold by confidence value, exclud-
ing from a reconstruction any node that has a confidence value less
than half the region’s maximum confidence value. After computing
reconstructions, we compute their R values and their ranks, and
output them in rank order.

5.4 Optimizing Graph Collection
We use two optimizations to reduce overheads: (1) we reduce the
number of instructions for which analysis is required and (2) we
permit an instrumentation data race to avoid locking overheads.

5.4.1 Selectively Tracking Memory Operations
The simplest way of reducing graph collection overhead is mon-
itoring fewer memory operations. We develop two optimizations
to do so. They can lead to lost or spurious edges, but our results
(Section 6) show that Recon’s accuracy is unaffected.

First Read Only. Repeated reads to a memory location by the
same thread are likely redundant. We therefore develop the first-

read optimization: threads perform analysis only on their first read
to each location after a remote write to that location. Skipping
updates on subsequent reads is analogous to performing analysis
only on cache read misses. Due to the frequency and temporal
locality of reads, this optimization eliminates many updates.

This optimization is lossy. If a thread repeatedly reads the result
of a write, only its first read is reported. If subsequent reads are per-
formed by different code or in different contexts they will not cause
edges to be added to the graph. Additionally, context events corre-
sponding to ignored reads are not published to threads’ contexts,
which may result in fewer distinct contexts and edges.

First Write Only. Repeated writes by the same thread are often
redundant or non-communicating. Under the first-write optimiza-
tion, a thread only updates the last-writer table and sharers list on a
write to a memory location x when it is not the last thread to write
x. This optimization is noisy. If a thread that is not the last writer
of x writes to x and does not update x’s metadata on subsequent
writes, another thread’s read of x may see outdated metadata and
add a spurious edge with incorrect context information to the graph.

5.4.2 Intentional Instrumentation Races
On every memory access, threads check the last writer of the
location they are accessing to determine what analysis operations
must be performed, as described in Section 5.1. To ensure threads
observe consistent metadata, they acquire a lock on each access.

We observe, however, that due to temporal locality these checks
are often performed by the location’s last writer. In such situations,
reading all metadata is unnecessary. The cost of acquiring the lock
just to check the last writer outweighs the cost of the check itself.
To mitigate this cost, we can perform the check without holding
the lock, which we call the racy-lookups optimization. If, based
on the check, a thread determines it must perform further analysis
or update the metadata, it acquires the lock. Only the check to
determine the location’s last writer races.

In principle, data races can lead to undefined behavior [4] or
memory inconsistency [20]. In practice, there are only two incon-
sistent outcomes of this optimization. The first is that the last writer
performs a check that indicates it is not the last writer. In this case,
the checking thread last wrote the metadata. On x86 the thread
will correctly read its own write, making this situation impossi-
ble. In Java, our metadata writes are well ordered, and the read
involved in the check is ordered with its metadata update. As a re-
sult, the checking thread can only ever correctly read that it was the
last writer. The other inconsistency is when a check indicates to a
thread that it is the last writer when it is not. This situation is pos-
sible in x86 and Java. On x86, the check reports that the checking
thread is the last writer, so it does no analysis. Because the check

Category Program Version Bug Type

C
/C

++

Bug Kernel

logandswp n/a Atomicity Violation
circlist n/a Atomicity Violation
textreflow Mozilla 0.9 Multi-Variable Atomicity Violation
jsstrlen Mozilla 0.9 Multi-Variable Atomicity Violation

Full App.

apache httpd 2.0.48 Atomicity Violation
mysql mysqld 4.0.12 Atomicity Violation
pbzip2 pbzip2 0.9.1 Ordering Violation
aget aget 0.4 Multi-Variable Atomicity Violation

Ja
va Bug Kernel stringbuffer JDK 1.6 Multi-Variable Atomicity Violation

vector JDK 1.4 Multi-Variable Atomicity Violation
Full App. weblech weblech 0.0.3 Atomicity Violation

Table 2. The buggy programs we used to evaluate Recon

was not synchronized, however, another thread’s update to the last-
writer field may have been performed, but not yet made visible to
all threads. In this case, the checking thread should have seen the
update, and added an edge, but did not. This situation can also arise
because our instrumentation is not atomic with program accesses.
In practice, it has little impact on our analysis. Furthermore, the
statistical nature of Recon is robust to noise, so such omissions do
not impact Recon’s bug detection capability.

6. Evaluation
There are several components to our evaluation. We show that our
ranking technique is effective at finding bugs and that the recon-
structions Recon produces are useful and precise. We show that
Recon requires few program runs in order to be effective. We de-
scribe a case study of our experience fixing a previously unresolved
bug. Finally, we show that with our optimizations Recon’s over-
heads are similar to other analysis tools, and overall data collection
time is short.

6.1 Experimental Setup
We evaluated Recon’s ability to detect concurrency bugs us-
ing the buggy programs described in Table 2. We used a set of
full applications, as well as several bug kernels. Our bug ker-
nels are shorter programs with bugs extracted from the litera-
ture (stringbuffer, vector, circlist, logandswp), and
buggy sections of code extracted from full versions of the Mozilla
project (textreflow, jsstrlen). Our benchmarks encompass
many bug types observed in the wild [16] including ordering bugs
and single- and multiple-variable atomicity bugs. We ran each ap-
plication in Recon with all optimizations. Our test script used ex-
ternal symptoms such as crashes or corrupt output to label graphs.

We evaluated Recon’s runtime and memory overhead, com-
pared to uninstrumented execution. We used the PARSEC bench-
mark suite [2] with its simlarge input for our C/C++ implemen-
tation, and for Java we used 6 applications from the DaCapo bench-
mark suite [3], with default inputs, and all the Java Grande bench-
marks [28], with size A inputs. We ran PARSEC and Java Grande
with 8 threads; we let the DaCapo benchmarks self-configure based
on the number of processors and did not instrument the DaCapo
harness. We also ran 4 additional full applications, each with 8
threads: mysql, a database server, tested using the sysbench OLTP
benchmark with the default table size (10,000) for the performance
measurements and table size 100 for debugging; apache, a web
server, tested using ApacheBench; aget, a download accelerator,
tested fetching a large web file; and pbzip2, a compression tool,
tested compressing a 100MB text file. For performance measure-
ments, we ran the uninstrumented version and Recon, with the first-
read, first-write, and racy-lookups optimizations. We also ran three
less-optimized configurations to understand the impact of each op-

timization: “Base” analyzes all memory accesses; “FR” uses just
the first-read optimization; “FR/W” adds the first-write optimiza-
tion. We ran all experiments on an 8-core 2.8GHz Intel Xeon with
16GB of memory and Linux 2.6.24. The Java tool used the Open-
JDK 64-bit Server VM 1.6.0 with a 16GB max heap. We report
results averaged over 10 runs of each experiment.

6.2 How Effectively Does Recon Find Bugs?
We produced reconstructions using graphs collected from 25 buggy
runs and 25 non-buggy runs. We ranked the reconstructions as de-
scribed in Section 4.2. We examined the highest-ranked reconstruc-
tion that illustrated the bug and analyzed the key properties of that
reconstruction. Table 3 summarizes our findings.

False Positives. The most important result in Table 3 is that for
all applications, the top-ranked reconstruction revealed the bug,
as shown in Column 2. This result demonstrates that our ranking
technique effectively directs programmer attention to buggy code
with no distracting false positives. This result also corroborates the
results from Section 4.2, showing that our features precisely isolate
buggy reconstructions.

Unrelated Code in Reconstructions. Columns 3 and 4 in Table 3
show the number of relevant and irrelevant code points that were
included in the bug’s reconstruction. We consider a code point
related if it performs a memory access that reads or writes a corrupt
or inconsistent value, or if it is control- or data-dependent on the
buggy code. In most cases, virtually all code in the reconstruction
is relevant to the bug. However, some reconstructions include code
points unrelated to their bug. In aget, the two irrelevant code
points are in straight-line code sequences with related code points,
at a distance of less than five lines. Such nearby but irrelevant code
is not likely to confuse a programmer.

In mysql’s case, five out of seven unrelated code points are in
straight-line sequences with relevant code. The remaining two in
mysql’s reconstruction, and all five in apache’s reconstruction,
were not in straight-line code with relevant points. Instead, they
were in another function that was the caller or a callee of a func-
tion containing relevant code. Developers debugging programs are
likely to understand such caller-callee relationships, suggesting that
these code points will not be too problematic.

weblech had several irrelevant code points in its reconstruc-
tion (28). The reason for their inclusion is that the bug usually oc-
curs at the start of the execution. At this point, constructors have
only just initialized data at a variety of code points in the program,
resulting in many edges being added between initialization code
and other code. The initialization code is easy to identify, especially
with program knowledge. These code points clutter the reconstruc-
tion, but the bug is reported accurately.

Sensitivity Collect
Rank # Code Pts. In Code Pts To # Buggy Time

Program of Bug Rel. Irr. Order? Missing w/ 5 w/ 15 (h:m:s)
logandswp 1 6 1 Yes 0 1 1 —
circlist 1 3 3 Yes 0 1 1 —
textreflow 1 8 0 Yes 0 1 1 —
jsstrlen 1 7 0 Yes 0 1 1 —
apache 1 5 5 Yes 0 1 1 0:27:32
mysql 1 8 7 Yes 0 34 9 0:07:08
pbzip2 1 11 0 Yes 1 2 1 1:51:56
aget 1 4 2 Yes 0 8 1 0:59:41
stringbuffer 1 6 0 Yes 0 1 1 —
vector 1 6 0 Yes 0 1 1 —
weblech 1 6 28 Yes 0 4 1 0:13:36

Table 3. Properties of reconstructions. Column 1 is the rank of the bug’s reconstruction. Columns 2 and 3 show the number of relevant
and irrelevant code points in the bug’s reconstruction. Column 4 shows whether the bug’s reconstruction was in order. Column 5 shows the
number of relevant code points missing from the reconstruction. Columns 6 and 7 show the rank of the bug’s reconstructions using only 5
and 15 buggy graphs. Column 8 shows the graph collection time.

Reconstruction Order Accuracy. Column 5 shows whether or
not the code points in the reconstruction were shown in the order
leading to buggy behavior. Code points appear in an order that leads
to buggy behavior in all cases. In logandswp, the last code point
in the buggy execution order appears in both the prefix and suffix
of the reconstruction, because the code point is in a loop, however,
the buggy interleaving is clear.

Missing Code Points. Column 6 shows the number of code points
directly involved in the bug that were omitted from the reconstruc-
tion. Only one case lacked any involved code points: the code
points in pbzip2’s reconstruction all relate to establishing the
corrupted state condition required for a crash to occur. The actual
crashing access is not included.

Sensitivity to Number of Buggy Runs. Columns 7 and 8 illustrate
Recon’s sensitivity to the number of buggy runs used. Column 7
shows the rank of the bug’s reconstruction using 25 nonbuggy runs
and 5 buggy runs. Column 8 shows the rank using 25 nonbuggy and
15 buggy runs. Even with very few buggy runs, Recon gives a high
rank to reconstructions of the bug. Using fewer buggy runs does
not impact precision substantially, except for mysql. Excluding
mysql, Recon ranked the bug’s reconstruction 8th or better with
just 5 buggy runs, and first with 15 buggy runs. For mysql, using
fewer runs caused Recon to rank some nonbuggy reconstructions
above the bug’s — 33 with 5 buggy runs, and 8 with 15 buggy
runs. As shown in Column 2, Recon always ranked the bug’s
reconstruction first with 25 buggy runs. These results show that
with very few buggy runs, Recon can find bugs with high precision.
In cases where a small number of buggy runs is insufficient, adding
more runs increases Recon’s precision.

Graph Collection Time. Column 9 shows that the total time re-
quired to collect 25 buggy and 25 nonbuggy graphs is not pro-
hibitively long. In our experiments, all applications took under two
hours; apache, mysql, and weblech all took under 30 min-
utes. These data show that Recon is not only effective at detecting
real bugs in these full applications, but also reasonably fast. In Sec-
tion 6.4 we characterize the overheads our technique imposes over
uninstrumented execution.

6.3 Case Study: Debugging an Unresolved Bug
The weblech bug is open and unresolved in the program’s bug
repository. While the bug has been discussed previously [12], we
were unaware of any details of the bug prior to this case study. We

used Recon to find the problem, and we were able to write a fix
using Recon’s output and our limited program knowledge.

We began with a bug report describing intermittent non-termi-
nation. Using the input from the report, we were able to reproduce
the bug in about 1 in 15 runs. We then ran the application repeat-
edly and watched the output to identify the hang. We noticed that,
consistently, at least one thread crashed on a null pointer derefer-
ence during hanging runs. We collected 25 buggy and 25 nonbuggy
runs, identifying bugginess by watching for unhandled exceptions.
We then produced reconstructions from these runs.

The first reconstruction reported was related mostly to object
constructors, but also included evidence of several accesses to a
shared queue data structure, as well as a suspicious while loop
termination condition involving the queue’s size. The body of the
reconstruction contained the initialization of and accesses to the
size of the queue. The sink of the reconstruction’s edge was an
access to the queue data structure in the dequeue method. In the
suffix of the reconstruction was another call to the queue’s dequeue
method. As we described in Section 2.1, such an interleaving of a
dequeue call between an access to the queue’s size and a subsequent
dequeue call violates the atomicity of the pair of operations. The
atomicity violation leads to a thread crashing early due to the
NullPointerException we observed. Crashing prevents the
thread from correctly updating the variable for the while loop to
read. The crash is therefore also responsible for the program’s non-
termination, as described in the bug report. We fixed the bug by
extending a synchronized block including the queue size check
and the dequeue. With our fix, we didn’t see the buggy behavior in
several hundred runs — we conclude that we fixed the bug based
on the information provided by Recon.

6.4 Performance
In Table 4, we report runtimes relative to uninstrumented execu-
tion for Recon and the three less-optimized configurations. In the
best case, Recon imposes slowdowns as low as 34% for C/C++
(pbzip2) and 13% for Java (weblech).

Slowdown for full applications never exceeds 24x, even during
an industrial strength test of a commercial database (mysql). For
PARSEC, we saw slowdowns ranging from 5.5x to 28x, showing
that Recon performs well on applications with a variety of sharing
patterns. We saw comparable results for DaCapo: overheads of
Recon ranged from 5.6x to 17.3x.

Interestingly, overheads tended to be more severe for applica-
tions that perform infrequent sharing, than those that share often.

Slowdown (x) Slowdown (x)
Name Recon FR/W FR Base Name Recon FR/W FR Base

A
pp

s.
weblech 1.1 1.2 1.2 1.1

PA
R

SE
C

dedup 5.5 5.8 5.8 13.8
pbzip2 1.3 1.3 1.3 1.5 canneal 6.8 6.8 6.5 14.9
aget 1.9 1.9 1.9 1.9 freqmine 8.8 52.6 56.6 223.8
apache 5.4 31.7 31.7 177.1 fluidanimate 9.8 9.9 10.1 9.8
mysql 23.9 102.1 127.2 129.9 streamcluster 10.1 10.1 10.3 10.1

D
aC

ap
o

pmd 5.6 5.8 6.0 6.3 blackscholes 14.4 17.8 18.0 40.9
avrora 5.6 7.9 10.3 27.8 ferret 14.6 70.9 73.1 537.3
tomcat 6.9 6.2 6.7 9.1 bodytrack 14.9 116.2 120.8 595.5
xalan 7.1 7.0 7.5 10.8 facesim 15.8 18.8 19.2 29.2
luindex 8.2 9.1 14.3 20.6 swaption 17.9 96.0 100.6 383.7
lusearch 17.3 18.1 22.7 22.6 x264 18.9 218.4 236.8 697.4

Java Grande 74.9 85.1 88.4 563.7 vips 28.8 230.6 257.6 996.8

Table 4. Performance of Recon and less-optimized configurations relative to uninstrumented execution.

For example, dedup, which uses shared queues, and avrora,
which exhibits a high-degree of fine-grained sharing [3], both had
fairly low overheads, around 6x. In contrast, swaptions has in-
frequent synchronization [2] and threads in lusearch interact
very little [3] — both suffered higher overheads, around 18x. This
trend is further illuminated by the Java Grande benchmarks; these
are primarily data-parallel scientific computations that perform lit-
tle sharing [28]; their average overhead is 75x. Nonetheless, Recon
is efficient in applications with high-frequency sharing and for all
the mainstream applications we tested.

Effectiveness of Optimizations. Comparing “FR” with “Base”
and “Recon” with “FR/W” in Table 4, we see that the first-read
and racy-lookup optimizations, respectively, significantly improve
performance. Comparing “FR/W” and “FR”, we see that the first-
write optimization has less significant effect in general — likely
because writes are less common than reads — but for mysql and
lusearch, the first-write optimization is clearly important.

The data show that our optimizations are essential to Recon’s ef-
ficiency. For many applications, our optimizations reduce Recon’s
slowdown by orders of magnitude. apache is one such applica-
tion: without optimizations, apache’s slowdown is 177x, making
full-scale tests nearly impossible due to timeouts and unhandled de-
lay conditions in the code. Optimizations reduce this to just 5.4x,
enabling Recon to be used with real bug-triggering inputs.

In our experiments, we used PARSEC’s simlarge inputs to
make experimenting with unoptimized configurations feasible, but
there is no need to scale inputs for use with Recon. We also exper-
imented with PARSEC’s native input, using Recon with all op-
timizations. Experiments finished quickly, and we saw slowdowns
nearly identical to the simlarge input.

The optimizations have less impact on our Java implemen-
tation, but still account for significant speedups (e.g., avrora,
luindex). For most Java benchmarks, the racy-lookup optimiza-
tion had little effect. Java uses several techniques that significantly
reduce the cost of acquiring locks [13]. It is likely that the racy-
lookup optimization is less beneficial than in C/C++ because the
cost of locking is lower in Java to begin with.

Memory Overhead. The C/C++ Recon implementation uses a
fixed-size 4GB metadata table, dominating memory overheads in
our experiments. Graphs are small in comparison. The table is
large enough that the impact of hash collisions was negligible. In
a memory-constrained setting, a smaller table could be used at the
expense of decreased precision due to hash collisions. In Java, each
field and array element is shadowed by a metadata location: mem-
ory overhead scales roughly linearly with the program’s footprint.
Peak overheads in the optimized version ranged from 2.5x to 16x.

7. Related Work
Prior work has explored a variety of atomicity violation detection
approaches. AVIO [17] is an invariant-based approach that infers
from a set of training runs which unserializable interleavings are
allowed in correct executions. In subsequent runs, AVIO reports
any unserializable interleavings not present in the invariant set
as possible atomicity violations. AVIO focuses on single-variable
atomicity violations. SVD [30] attempts to infer atomic sections
based on data and control dependences and determines whether an
execution is serializable with respect to those sections. Velodrome
[8] is a sound, precise dynamic atomicity checker that reports an
error if an execution of a program with explicit atomic blocks is
not conflict-serializable.

Recent work introduced general approaches to detecting con-
currency errors. Bugaboo [18] first proposed the use of context-
aware communication graphs for debugging general concurrency
errors. DefUse [27] employs a similar communication-based strat-
egy, by finding communication invariant violations related to er-
rors. Neither approach provides programmers with information
about the actual interleaving schedule at the root cause of the bug.
Context-aware graphs, and DefUse invariants only isolate a sin-
gle communication event related to a bug. One of Recon’s main
contributions is that it provides information about the execution
schedule encoded in a reconstruction. Additionally, Bugaboo and
DefUse rank anomalies along a single axis of suspiciousness. In
contrast, Recon ranks reconstructions along several axes, using
the features described in Section 4. Finally, Recon’s performance
is orders of magnitude better than the performance of Bugaboo’s
software implementation. DefUse does not show overheads for a
standard benchmark suite, so direct comparison is impossible, but
Recon’s performance on reactive applications is comparable.

Interleaving Constrained MultiProcessor [32] (PSets) proposes
architecture support for dynamic bug avoidance. PSets uses test
runs to determine happens-before invariants on memory operations
and tries to enforce them by manipulating the schedule. This tech-
nique handles several types of single-variable bugs. Falcon [23],
uses a library of bug patterns to identify potential concurrency
bugs; it watches a stream of memory operations to single addresses
and searches for a matching pattern. Falcon’s technique is mostly
applicable to single-variable concurrency bugs. Hammer, et al. pro-
pose pattern-based dynamic analysis for detecting bugs related to
atomicity properties of accesses to sets of variables [10].

Recon is set apart from prior work by the fact that reconstruc-
tions are general, handling a variety of single- and multi-variable
errors without relying on characteristics of specific bug types. Fur-
thermore, reconstructions illustrate bugs more clearly, showing a
focused portion of the interleaving schedule near the bug’s cause.

Inter-thread communication invariants have also been exploited
to specify correct communication behavior at the function or
method level and check that a program execution conforms to this
specification [29]. In contrast, Recon focuses on communication
at the instruction granularity and helps programmers determine the
cause of unexpected behavior rather than helping them enforce
expected invariants.

Another way of dealing with concurrency bugs is explorative
testing to expose buggy executions. CHESS [21] explores exe-
cutions by interposing on synchronization operations; its goal is
to expose buggy executions during testing. Burckhardt et al. pro-
pose a scheduling technique that probabilistically exposes bugs [5].
CTrigger [22] is a heuristic to expose atomicity bugs. The goal of
these techniques is not to detect or explain bugs but to expose buggy
executions. In contrast, Recon helps programmers understand bugs
by reconstructing the interleavings that likely led to bugs’ symp-
toms. Explorative testing is complementary to our approach.

Liblit et al.’s Cooperative Bug Isolation (CBI) [15] uses sam-
pling techniques to collect information from deployed applications.
Based on sets of labeled passing or failing runs, CBI finds code
points related to failures. CCI [11] extends these sampling tech-
niques to concurrency bug patterns. In contrast, Recon does not
require deployment-scale data to efficiently detect bugs. It provides
more information about buggy interleavings, and doesn’t rely on
bug-specific patterns.

8. Conclusion
In this paper we introduced Recon, a novel and general approach
to isolating and understanding all types of concurrency bugs. Re-
con works by reconstructing fragments of buggy executions that
are likely the result of a bug, providing sufficient yet succint infor-
mation to help programmers understand the cause of concurrency
bugs, rather than just showing the code involved or reproducing an
entire buggy execution.

Reconstructions show the schedule of execution that led to the
bug, clearly exposing its root cause. Reconstructions are built by
observing multiple executions of a program and collecting times-
tamped communication graphs that encode information about the
ordering of inter-thread communication events. We developed a
simple machine-learning approach to identify buggy reconstruc-
tions. We proposed three bug-independent features of reconstruc-
tions that together precisely isolate reconstructions of buggy ex-
ecutions. In order to provide efficient collection of timestamped
graphs, we used several techniques that significantly reduce run-
time overheads. We implemented Recon for C/C++ and Java and
evaluated it using large software. Our results show Recon recon-
structs buggy executions with virtually no false positives, and that
collecting the data comprising reconstructions takes just minutes.

Acknowledgments
We thank the anonymous reviewers and the Sampa group for their
helpful feedback. Thanks to Joseph Devietti, Laura Effinger-Dean,
Colin Gordon, Dan Grossman, and Karin Strauss for their invalu-
able feedback on the manuscript. Special thanks go to Zachary Rait
and Julian Knutsen for early work on the Recon infrastructure. This
work was supported in part by an IBM PhD fellowship, an ARCS
Foundation Fellowship, a Microsoft Research Faculty Fellowship,
NSF grant CCF-0811405, and gifts from Intel.

References
[1] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC: Checking Data

Sharing Strategies for Multithreaded C. In PLDI, 2008.

[2] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. Technical re-
port, Princeton University, January 2008.

[3] S. M. Blackburn et al. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In OOPSLA, 2006.

[4] H.-J. Boehm and S. V. Adve. Foundations of the C++ Concurrency
Memory Model. In PLDI, 2008.

[5] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte. A Ran-
domized Scheduler with Probabilistic Guarantees of Finding Bugs. In
ASPLOS, 2010.

[6] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dy-
namic Race Detection. In PLDI, 2009.

[7] C. Flanagan and S. N. Freund. The RoadRunner Dynamic Analysis
Framework for Concurrent Programs. In PASTE, 2010.

[8] C. Flanagan, S. N. Freund, and J. Yi. Velodrome: A Sound and
Complete Dynamic Atomicity Checker for Multithreaded Programs.
In PLDI, 2008.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The WEKA Data Mining Software: An Update. SIGKDD
Explorations, 2009.

[10] C. Hammer, J. Dolby, M. Vaziri, and F. Tip. Dynamic Detection of
Atomic-Set-Serializability Violations. In ICSE, 2008.

[11] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumentation and Sampling
Strategies for Cooperative Concurrency Bug Isolation. In OOPSLA,
2010.

[12] P. Joshi and K. Sen. Predictive Typestate Checking of Multithreaded
Java Programs. In ASE, 2008.

[13] K. Kawachiya, A. Koseki, and T. Onodera. Lock Reservation: Java
Locks Can Mostly Do Without Atomic Operations. In OOPSLA, 2002.

[14] I. Kononenko. Estimating Attributes: Analysis and Extensions of
RELIEF. In European Conference on Machine Learning, 1994.

[15] B. Liblit. Cooperative Bug Isolation, volume 4440 of Lecture Notes
in Computer Science. Springer, 2007.

[16] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes - A Com-
prehensive Study on Real World Concurrency Bug Characteristics. In
ASPLOS, 2008.

[17] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity
Violations via Access Interleaving Invariants. In ASPLOS, 2006.

[18] B. Lucia and L. Ceze. Finding Concurrency Bugs with Context-Aware
Communication Graphs. In MICRO, 2009.

[19] C.-K. Luk et al. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In PLDI, 2005.

[20] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In
POPL, 2005.

[21] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and Reproducing Heisenbugs in Concurrent Pro-
grams. In OSDI, 2008.

[22] S. Park, S. Lu, and Y. Zhou. CTrigger: Exposing Atomicity Violation
Bugs from Their Hiding Places. In ASPLOS, 2009.

[23] S. Park, R. W. Vuduc, and M. J. Harrold. Falcon: Fault Localization
in Concurrent Programs. In ICSE, 2010.

[24] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: Probabilistic Replay with Execution Sketching on
Multiprocessors. In SOSP, 2009.

[25] M. Ronsee and K. D. Bosschere. RecPlay: A Fully Integrated Practical
Record/Replay System. ToCS, 1999.

[26] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs.
ToCS, 1997.

[27] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W. Zheng. Do
I Use the Wrong Definition?: DeFuse: Definition-Use Invariants for
Detecting Concurrency and Sequential Bugs. In OOPSLA, 2010.

[28] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel Java Grande
benchmark suite. In Supercomputing, 2001.

[29] B. P. Wood, A. Sampson, L. Ceze, and D. Grossman. Composable
Specifications for Structured Shared-Memory Communication. In
OOPSLA, 2010.

[30] M. Xu, R. Bodı́k, and M. D. Hill. A Serializability Violation Detector
for Shared-Memory Server Programs. In PLDI, June 2005.

[31] M. Xu, M. D. Hill, and R. Bodik. A Regulated Transitive Reduction
(RTR) for Longer Memory Race Recording. In ASPLOS, 2006.

[32] J. Yu and S. Narayanasamy. A Case for an Interleaving Constrained
Shared-Memory Multi-Processor. In ISCA, 2009.

[33] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-Assisted
Lockset-based Race Detection. In HPCA, 2007.

