
From Theory to Practice: Efficient Join Query Evaluation
in a Parallel Database System

Shumo Chu, Magdalena Balazinska, Dan Suciu
Computer Science and Engineering, University of Washington

Seattle, Washington, USA
{chushumo, magda, suciu}@cs.washington.edu

ABSTRACT
Big data analytics often requires processing complex queries us-
ing massive parallelism, where the main performance metrics is
the communication cost incurred during data reshuffling. In this
paper, we describe a system that can compute efficiently complex
join queries, including queries with cyclic joins, on a massively par-
allel architecture. We build on two independent lines of work for
multi-join query evaluation: a communication-optimal algorithm
for distributed evaluation, and a worst-case optimal algorithm for
sequential evaluation. We evaluate these algorithms together, then
describe novel, practical optimizations for both algorithms.

1. INTRODUCTION
Novel large-scale data analytics engines such as Shark-

Spark [35], Dremel [19], F1 [30], Myria [15] and others [3, 32]
use massive parallelism in order to support complex queries on
large data sets. These engines are designed to evaluate queries in
main memory, because they use sufficiently many servers to ensure
that their data fits in main memory. For these engines, the tradi-
tional performance metrics consisting of the number of disk I/Os
is replaced by a new bottleneck, which is the communication cost
for reshuffling data during query execution. Each reshuffling step
requires a repartition of the entire dataset or intermediate result,
which can be expensive. Data shuffling can also create load imbal-
ance (a.k.a skew) between operator partitions.

The workloads on traditional OLAP engines usually consist of
star-joins with aggregates, where the fact table is significantly
larger than the dimension tables. These queries are often optimized
by partitioning the fact table and replicating the dimension tables
on all workers. But new data analytics engines face new kinds of
workloads, where multiple large tables are joined, or where the
query graph has cycles. For example, Yaveroǧlu et al. [37] have
recently discovered that the structure of a complex network can be
characterized by counting various patterns in the graph. Each pat-
tern, called a graphlet, represents a small graph. It could be, for
example, a triangle, or the complete graph K5. The frequencies of
graphlets in the network represent an important statistics for ana-
lyzing the network’s structure. However, computing these patterns
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is computationally expensive. Most graphlets have cycles, and in-
volve 5-10 self-joins on the network data.

In this paper, we describe a system that can compute efficiently
complex join queries, including queries with cyclic joins, on a mas-
sively parallel architecture. We build on two lines of work that in-
troduce a novel parallel [5, 8, 9], and a novel sequential [23, 33]
algorithm respectively. While the former has been studied only
theoretically, the latter is in use in the LogicBlox DBMS. Our first
contribution is to empirically evaluate these two recent algorithms
together, compared to the traditional ones, explaining when and
why they are better. Then we describe two new key contributions
that allow the parallel and the sequential algorithm to be deployed
efficiently in parallel systems.

All traditional engines1 compute conjunctive queries using a tree
of join operators. It is well known that, if a query is cyclic, then
query plans can be highly suboptimal, no matter what join order
one chooses. If one computes the query R(x, y) 1 S(y, z) 1

T (z, x), which lists all triangles, as a sequence of two join opera-
tors, then the size of the intermediate join is much larger than that
of the final answer, because there are typically many more paths
of length two than triangles. This was not considered to be a ma-
jor issue in traditional engines, because cyclic queries were rare.
But modern data analytics engines must support such queries fre-
quently, and they require new approaches.

Recently, Ngo et al. [23] and Veldhuizen [33] have described
novel sequential algorithms that compute a query with multiple
joins in one shot, avoiding the computation of intermediate results.
These are sequential algorithms, and their runtime has been proven
to be worst-case optimal, meaning that it is bounded by the largest
possible output that the query can produce for inputs of a given
size. Both algorithms require the data to be preprocessed. For par-
allel computation, Afrati and Ullman [5] have described an algo-
rithm that computes any multi-join query in a single communica-
tion round. Beame at al [8, 9] refined this algorithm, calling it
HyperCube, and performed a theoretical analysis proving that it is
optimal. However, the optimality criterion described by Beame et.
al. is not practical, because it assumes that the available servers can
be partitioned into sets with fractional number of servers.

We start by performing an empirical evaluation of the above new
sequential and parallel algorithms and compare them to standard
reshuffling and join computation methods. In experiments on the
Twitter and Freebase datasets, we find that conjunctive queries with
large intermediate results can execute up to 8x faster when using a
HyperCube shuffle than a traditional one dimensional shuffle. They
also transmit up to 98 percent less data. Furthermore, Tributary
join, our implementation of LFTJ based on sorted relations, further
cuts runtimes by up to 80 percent and CPU times by up to 71 per-

1With the exception of Eddies [7].



cent, when used in conjunction with a HyperCube shuffle. We then
consider practical aspects of both algorithms. For the HyperCube
algorithm, we design a new approach to optimize the number of
server shares per variable, which always results in an integral num-
ber of shares, thus overcoming a key limitation of prior work [8,
9]. We demonstrate empirically its performance; for example we
show that it cuts the maximum amount of data per worker in half
compared with a naïve application of existing theoretical methods
(Figure 11), and that its workload per server is never larger than
1.06 times the theoretically optimal load. For the sequential multi-
join, we describe Tributary join, our implementation of the LFTJ’s
API [33]. LogicBlox’ implementation of LFTJ stores each database
relation in a B-tree. In our setting, data preprocessing is not possi-
ble, because the multi-join is performed after the reshuffling step;
instead, Tributary join simply sorts the relations and operates on
arrays instead of B-trees. We then describe a novel optimization
method for choosing the variable order, and validate it empirically;
for example, we show that our Tributary join optimization algo-
rithm can cut runtimes by an order of magnitude compared with an
unoptimized execution of the operator (Table 2).

To summarize, we make the following contributions:

1. We perform an empirical evaluation of the HyperCube shuf-
fle and the Tributary join together (Sec. 3).

2. We present a practical algorithm to compute an optimal con-
figuration for the HyperCube algorithm (Sec. 4).

3. We describe a new optimization algorithm for choosing the
variable order of the Tributary join (Sec. 5).

2. BACKGROUND
In this section, we present the two theoretical building blocks be-

hind our efficient join query evaluation approach: hypercube shuf-
fle [5] and a new sequential multiway join operator that we call
Tributary join, our implementation of the API in LFTJ [33].

2.1 HyperCube Shuffle
We consider conjunctive queries, denoted with the following

Datalog rule, where each xi represents a set of variables.

q(x1, . . . , xk) = S1(x1), . . . , Sl(xl) (1)

Our goal is to compute the query on a distributed architecture,
using p servers connected by a network. We assume that the data is
initially partitioned uniformly on the p servers, for example using
a hash function, or round robin, and we aim to balance the compu-
tation evenly among the servers. The traditional way to compute
the query is to first construct a query plan, consisting of several
joins, then evaluate the query by computing one join at a time, us-
ing a partitioned hash-based algorithm. This requires a number of
communication rounds at least equal to the depth of the query tree
(joins on different branches can be evaluated in parallel).

Afrati and Ullman [5] have described an algorithm to compute
any full conjunctive query in a single communication round. While
their description is for MapReduce, it applies equally well to our
setting where we know the number of servers (simply identify one
server with one reducer). Write p as a product of k factors, p =
p1 · p2 · · · pk, then organize the p servers in a hypercube with k
dimensions, where the size of dimension i is pi. In other words,
each server can be uniquely identified by a point in the hypercube
[p1] × . . . × [pk]. The algorithm works as follows. During the
first (and only) communication round, each server holding some
fragment of Sj will send every tuple Sj(xj), 1 ≤ j ≤ l as follows:
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Figure 1: Traditional and HyperCube shuffle-based
parallel query plan for query T (x1, x2, x3) =
S1(x1, x2), S2(x2, x3), S3(x3, x1)

1. For every xi ∈ V ar(Sj), set the ith coordinate of the target
server as hi(xi) (hi is a hash function chosen independently
for xi). V ar(Sj) represents the variables in xj .

2. If the coordinate in a dimension, let’s say, mth, is undefined,
then we do not set any constraints on the coordinate of mth
dimension of target server.

In other words, the algorithm “knows” the coordinate hi(xi) of the
destination server, for all i such that Sj(xj) contains the variable
xi; for all the other coordinates, it will simply replicate the data.

We use an example to show how this algorithm works. For
query T (x1, x2, x3) = S1(x1, x2), S2(x2, x3), S3(x3, x1), con-
sider organizing the servers into a 3-D cube with dimension sizes
p1 = p2 = p3 = p

1
3 . Each server is uniquely identified

by three coordinates (i, j, k), where 1 ≤ i, j, k ≤ p
1
3 . Then

a tuple S1(x1a , x2a) from S1 is sent to servers with coordinate
(h1(x1a), h2(x2a), ⋆). Similarly, a tuple S2(x2b , x3b) from S2 is
sent to (⋆, h2(x2b), h3(x3b)) and a tuple S3(x3c , x1c) from S3 is
sent to (h1(x1c), ⋆, h3(x3c)). The load per server is (|S1|+ |S2|+
|S3|)/p2/3. Figure 1b shows the parallel query plan for this query
using HyperCube shuffle.

The difficult question is how to determine the numbers
p1, p2, . . . , pk, called shares, in order to optimize the load per
server. Afrati and Ullman model this as a non-convex optimiza-
tion problem, which is difficult to solve. Beame et al. [8, 9] model
it as a linear optimization problem, and establish a tight connec-
tion between the optimal shares and a fractional edge packing of
the query hypergraph. This problem is easily solvable but leads
to a fractional solution for the shares. However, in practice, we
want p1, . . . , pk to be integers. If we use the method presented in
[9], and simply round the fractional share to integer, the workload
may become sub-optimal. For example, for the previously men-
tioned query T (x1, x2, x3) = S1(x1, x2), S2(x2, x3), S3(x3, x1),



if |S1| = |S2| = |S3| = m, the optimal sizes of dimensions will
be p1 = p2 = p3 = p

1
3 . If p = 63, theoretically, the work-

load of each server is 3m/p2/3 ≈ 0.19m. But we cannot let to
p1 = p2 = p3 = 631/3 in real world. Rounding down to nearest
integer (let p1 = p2 = p3 = 3 ) will increase the workload of each
server to 3m/9 ≈ 0.33m. The cost of rounding is non-negligible.
On the other hand, the theoretical optimum does provide some in-
teresting insights. For example, if |S1| ≪ |S2| = |S3| = m,
then the optimal shares in [9] are p1 = p2 = 1, p3 = p, which
corresponds to hash-partitioning S2, S3 on the variable x3 using p
servers, and broadcasting S1 to all servers.

One advantage of the HyperCube algorithm is that it is more
resilient to data skew than a binary join. To see this, consider a
standard, hash-partitioned join computing S1(x, y), S2(y, z) on p
servers. To avoid skew, all nodes y must have degree ≤ m/p in
both S1 and S2: otherwise, if a node y has a larger degree2, then
all tuples having value y will be hashed to the same server, and its
load will exceed m/p. In contrast, the HyperCube algorithm can
tolerate degrees up to m/p1/3, because every value x, y, or z is
hashed into only p1/3 buckets [9].

2.2 Tributary Join
The HyperCube algorithm only delivers the data to the right

servers in one communication round; after that, the servers still
need to compute the entire query locally, on a fragment of the
database. To take advantage of the HyperCube communication
method we need to couple it with an evaluation algorithm that can
compute the entire query more efficiently than one join at a time;
such algorithms have been discussed recently in the literature.

The first worst case optimal, multiway join algorithms for se-
quential query computation were the NPRR algorithm [24] and the
Leapfrog Triejoin (LFTJ) [33]; a concise, unified presentation is
given in [25, (Algorithm 3)]. We implemented our own version of
this family of algorithms, by following the API of LFTJ; we call
our algorithm Tributary Join (TJ).

LFTJ was introduced by LogicBlox, and their implementation
assumes that each relation is preprocessed and stored as a B-tree.
In our setting preprocessing is not possible, because the relation
fragments are available only after reshuffling. Instead, in TJ, we
sort the relations, then implement the API over the sorted relations;
notice that sorting on the fly is cheaper than computing a B-tree on
the fly. We explain TJ next.

We present the Tributary join algorithm through the example
shown in Figure 2, illustrating the query Q(x,y,z):-R(x,y),
S(y,z), T(z,x). Just as LFTJ, the Tributary join is based on
sort-merge join. Both algorithms fix a global ordering on all join
variables: A1 ≺ A2 ≺ . . . ≺ Ak, and assume each relation is
sorted lexicographically according to this attribute order. In the ex-
ample, the global variable order is x ≺ y ≺ z. Thus, R is sorted
on x, y, S on y, z and T on x, z.

Given the sorted input, Tributary join starts by scanning all rela-
tions on the first join variable, x in the example. Here, the algorithm
proceeds just as merge join. It scans the input until it finds match-
ing values in all relations that contain the variable. In the example,
the first such value is x = 2.

Once such a value x = v is found, the algorithm simply com-
putes, recursively, the residual query Q′ = Q[v/x]. To see the
recursion in our example, notice that the two relations that con-
tain x are R and T , hence the “residual” relations are Rx=2 and
Tx=2. The algorithm computes the residual query Q′(y, z) =

2Some parallel hash join algorithms detect the heavy hitters and
treat them specially, to avoid skew.
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Figure 2: Tributary join example

Rx=2(y), S(y, z), Tx=2(z). Notice that the residual relations are
continuous sub-arrays of the larger arrays, so, for the recursive call
the algorithm simply adjusts the start and endpoints in these arrays.
During the recursive call it scans the next join variable, y, until it
finds the first common value in Rx=2(y) and S(y), which is y = 3,
then proceeds recursively again, by scanning over z, to find a com-
mon value in Sy=3(z) and Tx=2(z); upon finding the value 4, it
outputs (2, 3, 4), and advances z, etc.

We briefly compare a B-tree v.s. array-based implementation of
the LFTJ API. The main API function is seek(v), which fetches
the next value v’ of the current attribute Ai s.t. v’ > v: in a
B-tree this can be computed in amortized time O(1), while our
implementation uses a binary search on the remaining part of the
array at a cost per operation of O(logn). Thus, TJ is at most a
factor logn slower than LFTJ, and, in particular, it is also worst
case optimal (up to logn). In practice, the dominating cost of TJ
is given by the sorting phase (which, as explained, is unavoidable),
hence our choice to use a sorted array instead of a B-tree, because
sorting is cheaper than computing a B-tree.

Both NPRR and LFTJ fix a variable order. While worst case
optimality holds for any variable order, in practice the runtime
can be improved significantly by optimizing this order. This op-
timization problem may sound superficially related to join or-
dering, but it is in fact quite different; for example all vari-
able orders are linear, while join trees may be bushy. Some
variable orders correspond to join trees, for example, consid-
ering the query A(x,y,z,p):-R(x,y),S(y,z),T(z,u),
K(u,v), the variable order y ≺ z ≺ u corresponds to ((R ▷◁
S) ▷◁ T ) ▷◁ K, while u ≺ z ≺ y corresponds to ((K ▷◁ T ) ▷◁
S) ▷◁ R, but the variable orders z ≺ y ≺ u and y ≺ u ≺ z do
not correspond naturally to a join plan. We discuss choosing the
variable order in Section 5.

3. HYPERCUBE SHUFFLE AND TRIBU-
TARY JOIN IN PRACTICE

In this section, we empirically study the combination of Hy-
perCube and Tributary join algorithms. We ask three questions:
When is HyperCube Shuffle beneficial compared to traditional one-
dimensional hash-based data shuffling? When is the Tributary
multiway-join algorithm preferable to a left-deep tree of binary
joins? When the HyperCube shuffle and Tributary join are used
together, how much does each one impact performance?

We run all experiments on Myria [15], an open-source, state-of-
the-art parallel data management system. All experiments are in
a shared-nothing cluster with 16 physical machines, each machine
has 4 Intel Xeon CPU E5-2430L 2.00GHz processors (6 cores per
processor), 64GB DDR3 RAM and 4 7200rpm hard drives. These
machines are connected by 10Gbps ethernet. We deploy 4 workers



on each machine. Each worker has its own data storage (a Post-
gres database on a separate disk) and runs in a JVM. In the experi-
ments, all the input relations are horizontally partitioned across the
64 workers using round-robin partitioning.

We compare empirically the following three shuffle algorithms.
(1) Regular shuffle hash partitions a relation on a single attribute.

We use it to hash partition relations on their join attributes. The
regular shuffle thus requires the use of binary joins, except in the
special case of queries where all joins use the same join attributes.
In the latter case, a multiway join operator can be used.

(2) HyperCube shuffle, as described in Section 2.1, organizes all
relations following a conceptual hypercube formed by the workers.
It shuffles all relations in one step with replication.

(3) Broadcast, keeps the largest relation in place and broadcasts
all the other relations to all workers.

We compare two join algorithms.
(1) Binary symmetric hash join, which creates a hash table for

each of its two inputs. When data arrives on an input, the join in-
serts it into a hash table and probes the other hash table for matches.
Our implementation pulls data from the inputs in a round-robin
fashion. If one input does not have any data, the join pulls the
other input.

(2) Tributary join, described in Section 2.2.
We compare the performance of each type of shuffle with each

type of join for a total of six configurations. Tributary join with
regular shuffle becomes a binary Tributary join, which is a merge-
join. This is not what Tributary join is designed for, but we include
the result for completeness.

We study the impact of the shuffle and join algorithms on the
query wall-clock time but also on the overall resource utilization,
which includes the CPU time and network I/O, and overall load
balance between workers.

We evaluate four queries on two different datasets. Q1 and Q2
is on a subset of Twitter social network data. The relation is 2
column table, each tuple of which represents a follower-followee
relationship. This relation has 1, 114, 289 tuples in total. Q3 and
Q4 is on Freebase knowledge base, which is originally represented
in <subject, predicate, object> triples. We partition the Freebase
knowledge base to multiple relations according to the predicate.
Table 1 3 shows the relations that we use in Q3 and Q4.

Relation schema number of tuples
ObjectName (object_id, name) 59,324,337
ActorPerform (actor_id, perform_id) 1,100,844
PerformFilm (perform_id, film_id) 1,094,294

Table 1: Relations from Freebase

3.1 Query 1 (Q1) on Twitter
The first query lists all directed triangles in the Twitter dataset.

Because the query joins three copies of the Twitter dataset, we use
subscripts to distinguish them in the text. We use datalog notation
for queries.

Twitter(x,y,z) :-
Twitter_R(x,y), Twitter_S(y,z), Twitter_T(z,x)

This query performs two joins. It first joins the Twitter dataset
with itself to find all follower-followee pairs that are two hops away

3We pushed selection down, thus selections like Object-
Name(actor_id, “Joe Pesci”) etc. can be considered as only con-
taining very few tuples.

shuffle tuples sent producer skew consumer skew
R(x, y) ->h(y) 1,114,289 1 1.35
S(y, z) ->h(y) 1,114,289 1 1.72
RS(x, y, z) ->h(z) 50,862,578 20.8 1
T(z, x) ->h(z) 1,114,289 1 1.01
Total 54,205,445 N.A. N.A.

Table 2: Load balance with regular shuffles in query Q1

shuffles tuples sent producer skew consumer skew
HCS R(x, y) 4,457,156 1 1.05
HCS S(y, z) 4,457,156 1 1.05
HCS T(z, x) 4,457,156 1 1.05
Total 13,371,468 N.A. N.A.

Table 3: Load balance with HyperCube shuffles in query Q1

from each other. The second join narrows down which of these sets
of vertices also forms a triangle. Observe that the output from the
first join is much larger than either the input or output of this query.
A query with a large intermediate result is precisely the type of
query that should benefit from the HyperCube shuffle and Tributary
join combination. Figures 3 shows the performance of this query
in all six configurations of shuffles and joins. Figure 3a shows that,
as expected, the runtime for this query is lowest for the HyperCube
shuffle and Tributary join configuration. Three factors contribute to
this low runtime. Compared to the other configurations, less data
is shuffled during query processing (lower total network IO), the
data is distributed more evenly (less skew), and fewer intermediate
tuples are produced during query processing (lower CPU cost). We
consider each of these factors in turn.

Data shuffling network IO: A key benefit of the HyperCube
shuffle is that intermediate join results need not be shuffled at the
expense of replicating the input data. Overall, when the size of in-
termediate join results is large, the HyperCube shuffle reduces the
amount of data shuffled. Figure 3c shows the total amount of data
shuffled. While regular shuffle sends 54 million tuples over the
network, HyperCube shuffle sends only approximately 13 million
tuples, four times less. The regular shuffle does a hash partition
of TwitterR and TwitterS on y first. The total amount of tuples
that is sent in this step is only the number of tuples in TwiterR and
TwitterS . However, after the first join, the intermediate result be-
comes large (more than 50 million tuples). This intermediate result
needs to be re-shuffled. Using HyperCube shuffle, since we are us-
ing a 64 workers configuration, we let the workers form a 4×4×4
cube. Each relation (TwitterR, TwitterS and TwitterT ) is repli-
cated 4 times. Broadcast is the least efficient for this query. It
shuffles 143 million tuples because it replicates the Twitter dataset
twice (TwitterS and TwitterT ) on all workers. Since this query
is a self-join, a further optimization could be only broadcast Twitter
data once. But this will not affect the overall performance result,
according to Table 5, the cost of the join dominates the overall run-
time.

Data shuffling load balance: Interestingly, even though broad-
cast shuffle has the highest network IO cost (Figure 3c) and total
CPU cost (Figure 3b), the query runtime (Figure 3a) is much lower
than with a regular shuffle. The reason is a better overall load bal-
ance or conversely much less skew in data distribution. There is
no skew in broadcast since it keeps TwitterR partitioned across
workers and replicates the entire TwitterS and TwitterT to each
worker. As we explained, the HyperCube shuffle is more tolerant to
data skew, because it partitions every value into 4 buckets instead
of 64. The skew in regular shuffle becomes a serious bottleneck.
As shown in Table 2, when shuffling TwitterR and TwitterS , we
need to send a tuple to a consumer worker based on the hash value
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Figure 3: Triangle query (Q1)

shuffle tuples sent producer skew consumer skew
Broadcast S(y, z) 71,314,496 1 1
Broadcast T(z, x) 71,314,496 1 1
Total 142,628,992 N.A. N.A.

Table 4: Load balance with broadcast shuffles in query Q1

operator(s) total time contribution of local join
BR_TJ: TJ(R, S, T) 1m 22s 19%
BR_TJ: all sorts 5m 11s 73%
BR_HJ: Join R and S 1m 52s 39%
BR_HJ: Join RS and T 2m 38s 54%

Table 5: Operator time in local join in query Q1

of y. As a social network, the degrees of twitter nodes follows a
Power-Law distribution [12], since we are only hashing on a single
column, the skew factor (ratio between the maximum load and the
average load) computed at the consumer are 1.35 and 1.72 respec-
tively. When we join the shuffled TwitterR and TwitterS locally,
the skew becomes much worse and reaches 20.8 because the skew
factors are “multiplied”. Skew affects the wall clock time signifi-
cantly when using the regular shuffle. Figures 3a and 3b show that
regular shuffle (with either type of join) takes more wall clock time
but less CPU time compared with broadcast (using the same join
algorithm). This shows the impact of skew.

CPU cost of data joining: Comparing HyperCube shuffle with
pipelined hash join (HC_HJ) and HyperCube shuffle with Tribu-
tary join (HC_TJ), we can observe that HC_TJ is more efficient
both in wall clock time and CPU time. The reason is twofold:
With HC_HJ, although the shuffle cost of the intermediate result
(TwitterR joins TwitterS) is avoided, the system still needs to
generate the intermediate results in the pipeline and join it with
TwitterT . So for the query, using Tributary join also improves
the efficiency significantly by reducing the CPU cost of the join
operation.

Comparing broadcast shuffle with pipelined hash join (BR_HJ)
and broadcast shuffle with Tributary join (BR_TJ), we observe that,
interestingly, BR_HJ performs better than BR_TJ. To know why
this happens, we take a closer look at the time spent on the local
join phase in Table 5. We observe that with BR_TJ, the join itself
only takes 19% of the time, the bottleneck is sorting. In BR_TJ,
we need to sort TwitterR/64, the entire TwitterS and the entire
TwitterT , which is expensive. Recall that with HC_TJ, we only
need to sort TwitterR/16, TwitterS/16 and TwitterT /16.

Summary: Experiments with Q1, a query that has a large inter-
mediate join result, show that the HyperCube shuffle outperforms
the two other types of shuffling because it yields the lowest commu-
nication cost while also achieving a good load balance. Tributary

join outperforms a tree of binary joins because it avoids generat-
ing a huge number of intermediate tuples. However, Tributary join
needs to be coupled with HyperCube shuffle since it requires all the
input relations shuffled and naive broadcast causes large relations
to be sorted in this join.

3.2 Query 2 (Q2) on Twitter
The second query lists all cliques with 4 vertices in the Twitter

dataset:

Twitter(x,y,z,p):-
Twitter_R(x,y), Twitter_S(y,z), Twitter_T(z,p),
Twitter_P(p,x), Twitter_K(x,z), Twitter_L(y,p)

This query is a 6-way self-join of the Twitter dataset. Intuitively,
this query can be seen as first computing triangles xyz just as Q1
and then finding a vertex p that connects to all three vertices of
the triangle to create the clique. This query has thus the same key
property as Q1: A left deep tree of joins will have large intermedi-
ate results but a small final result. In Q2, two joins produce more
data than they consume. The other joins, reduce the amount of
data. This query demonstrates the performance of various shuffle
and join configurations on a more complex query.

Figures 4 shows the performance of this query in all six config-
urations of shuffles and joins. Figure 4a shows that the HyperCube
shuffle and Tributary join configuration with 2×4×2×4 dimension
sizes has, again, the lowest runtime. The same three factors impact
performance: amount of data shuffled, load balancing of shuffles
and the CPU cost.

Data shuffling network IO: The total amount of data shuffled,
shown in Figure 4c, follows the same trends as in Q1. The Hy-
perCube shuffle is most efficient because it does not shuffle any
intermediate results. Broadcast is most expensive because it repli-
cates the large input relations multiple times. In this experiment,
we also observe the same load balance trends as in Q1 but omit the
results due to space constraints.

CPU cost of data joining: Figure 4b shows that although the
CPU time in different shuffle and join configurations follows the
same trend as in Q1, the CPU time of broadcast shuffle with hash
join (BR_HJ) is as high as 30x that of the regular shuffle with
hash join (RS_HJ). In Q1, the CPU time of broadcast shuffle with
hash join is less than 2x that of RS_HJ configuration’s. In Q2, the
join operators in BR_HJ contribute 2, 084 seconds total CPU time,
while the join operators in RS_HJ contribute only 156 seconds. The
reason is that every join in the BR_HJ plan has at least one input
relation that is at least 64x larger than the same relation in RS_HJ,
since the latter partitions all relations across the 64 workers used
in the experiments. This large difference in CPU time causes the
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Figure 4: Clique query (Q2)

Figure 5: Query plan for Freebase query 1 (Q3) using regular shuf-
fle, with numbers of tuples shuffled.
runtime of BR_HJ to be larger than the runtime of RS_HJ (Fig-
ure 4a). This trend is different than in Q1, although BR_HJ still
has the advantage of better load balance between workers.

When comparing the same shuffle algorithm but different joins
(HC_HJ v.s. HC_TJ and BR_HJ v.s. BR_TJ), we observe that
the configurations with Tributary Join have both lower runtime and
lower CPU time. Comparing with the result of Q1, we can see
BR_TJ is better than BR_HJ in Q2 while it was the opposite in Q1.
The reason is that the size of intermediate result in the local hash
join pipe line of Q2 is much larger than Q1, the cost saving on TJ
dominates the disadvantage of sorting broadcasted relations.

Summary: Experiments with Q2 show that in a 6-ways join
query plan with large intermediate results, HC_TJ is the best shuf-
fle and join configuration in terms of query runtime, total CPU time
across all workers, and total data shuffled. One interesting obser-
vation is, in both Q1 and Q2, RS_HJ and BR_HJ is trading off data
load balance in shuffled data for total CPU time. In Q1, BR_HJ
configuration has lower runtime compared with RS_HJ because the
load balancing factor dominates. In Q2, the gap in CPU time in-
creases dramatically, thus RS_HJ configuration has a lower total
runtime.

3.3 Query 3 (Q3) on Freebase
This query is an example knowledge extraction query in the

Freebase knowledge base. It asks for the set of all cast members
from films starring both Joe Pesci and Robert de Niro. This is the
first example query (query 1) provided with the Freebase database.

CastMember(cast):-
ObjectName(a1, "Joe Pesci"), ActorPerform(a1, p1),
PerformFilm(p1, film), ObjectName(a2, "Robert De Niro"),
ActorPerform(a2, p2), PerformFilm(p2, film),
PerformFilm(p, film), ActorPerform(p, cast)

This query is an acyclic query with 7 joins. Figure 5 shows a left
deep query plan for the query.

The edges show the cardinality of each input and intermediate
relation. The query selects “Joe Pesci” and “Robert De Niro” from
the ObjectName relation and joins their actor ids through the
ActorPerform and PerformFilm relations to find the films
where both actors played. The query then finds the cast members
in these films using two more joins.

Figures 6 shows the performance of this query in different con-
figurations of shuffles and joins. Interestingly, as Figure 6a shows,
for this query the regular shuffle and Tributary join configuration
has the lowest runtime followed closely by the regular shuffle with
hash join. We observe that these two configurations both shuffle
less data and have lower total CPU times than the other configura-
tions.

Data shuffling network IO: We examine the sizes of the shuf-
fled relations for the three types of shuffle algorithms. Figure 6c
shows that the regular shuffle transmits the least amount of data
across the network (7.18 million tuples) among all shuffle algo-
rithms. This is different from Q1 and Q2. The query plan for the
regular shuffle and hash join configuration is shown in Figure 5.
As the figure shows, the first join reduces the amount of data in the
pipeline dramatically. For subsequent joins, the amount of data in
the pipeline remains much smaller than the large input relations.
HyperCube shuffle needs to shuffle more data since it replicates the
base data when populating the hypercube. We see this result even
though we use a hypercube optimizer (described in Section 4) to
find the configuration that shuffles the least amount of data among
all possible hypercube configurations. HyperCube shuffle forms
a hypercube that has 6 dimensions using 64 servers. HyperCube
shuffle transmits 105.4 million tuples. The broadcast shuffle trans-
mits 7 input relations to all 64 workers (it partitions the largest 8th
relation across the workers), thus it needs to shuffle 351.01 million
tuples.

Data shuffling load balance: The data shuffling skew is not a
factor that influences the query runtime in this query. Although we
still can observe data shuffling skew with the regular shuffle, this
skew only happens when shuffling relatively small intermediate re-
sults as shown in Figure 5. Considering that these small imbalanced
relations are then joined locally with large, balanced relations, the
effects of skew on runtime are negligible. The data shuffling in
HyperCube shuffle and broadcast are well balanced.

CPU cost of data joining: The CPU cost of this query is mostly
affected by the choice of shuffling strategy. The total CPU time
with the regular shuffle is lowest, which is not surprising, as we
have analyzed before, the amount of data that is joined using regu-
lar shuffle is much less than with HyperCube shuffle. For the same
reason, the configurations using HyperCube shuffle have lower
CPU times than those using broadcast.

Comparing the join algorithms, we observe that RS_TJ uses less
CPU time than RS_HJ. In contrast, HC_HJ uses less CPU time than
HC_TJ. Finally, BR_HJ uses less CPU time than BR_TJ. The key
factor that determines which of the two join algorithms is most ef-
ficient (TJ or HJ) is the amount of data that is being sorted. With
RS, when using TJ, only 1/64 of the base data needs to be sorted.
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Figure 6: Freebase query 1 (Q3)

Figure 7: Query plan for Freebase query 2 (Q4) using regular shuf-
fles, with numbers of tuples shuffled.

(a) HC_TJ

(b) BR_TJ

Figure 8: Worker utilization

With HC, when using TJ and our HC configuration algorithm, 1/4
of the original data needs to be sorted. In BR, the entire original
data needs to be sorted. Sorting a large amount of data is less effi-
cient than executing a tree of hash-join operators, but when a small
amount of data is sorted, a single TJ outperforms a tree of HJ oper-
ators.

Summary: Experiments with Q3 show that, in an acyclic query
with small intermediate results, regular shuffle outperforms the
other two shuffle strategies. It saves both network IO and CPU
costs.

3.4 Query 4 (Q4) on Freebase
The next query finds all pairs of actors or actresses who have co-

starred in at least two different movies. This is the second example
query provided with the Freebase database:

ActorPairs(a1, a2):-
ActorPerform(a1, p1), PerformFilm(p1, f1),
PerformFilm(p2, f1), ActorPerform(a2, p2),
ActorPerform(a2, p3), PerformFilm(p3, f2),
PerformFilm(f2, p4), ActorPerform(p4, a1), f1>f2.

This query is cyclic and contains eight joins. Figure 7 shows the
query plan for Q4 when using a regular shuffle. As the query plan
shows, in contrast to Q3 and similar to Q1 and Q2, this query has
large intermediate relations.

Figures 9 shows the performance of this query in different con-
figurations of shuffles and joins. Figure 9a shows that HC_TJ and
BR_TJ outperform other configurations. Due to the large amount
of intermediate result, RS_HJ is the least efficient configuration in
terms of runtime and RS_TJ fails because it runs out of memory.

Data shuffling network IO: Figure 6c shows the total amount
of data shuffled in this query. The regular shuffle transmits signif-
icantly larger amounts of data (13,893 million tuples), compared
with broadcast (491 million tuples) and HyperCube shuffle (210
million tuples). If we examine the regular shuffle in detail (Fig-
ure 7), the sizes of intermediate results keep increasing with each
additional join. Before the last join, the intermediate result con-
tains 13,100 million tuples. HyperCube shuffle shows its advan-
tage in keeping a much lower communication cost. However, we
need to construct an 8-D cube out of 64 workers, the replication
factor is high. As a result, the total amount of data shuffled is only
a little less than half that of the broadcast shuffle. The savings that
come from using HyperCube shuffle compared with broadcast are
less significant than for queries with a smaller number of joins (e.g.
Q1).

Data shuffling skew: The regular shuffle algorithm has the
worst data shuffling skew among all shuffle algorithms. The heav-
iest skew (skew factor = 9.31) happens when shuffling the inter-
mediate result to the last join, which is also the largest relations
shuffled. Skew contributes to the slow runtimes of configurations
using regular shuffle. The skew of HyperCube shuffle and broad-
cast are both negligible.

CPU cost of data joining: Comparing configurations using the
same join operator but different shuffle algorithms, clearly regular
shuffle is the worst shuffle algorithm for this join in terms of CPU
time because of the large volume of intermediate results. Com-
paring HC_HJ and BR_HJ, BR_HJ uses less total CPU time and
leads to a lower total runtime. A very interesting comparison is
between HC_TJ and BR_TJ. Although HC_TJ uses less CPU time
than BR_TJ, HC_TJ has a large runtime. We profile the worker uti-
lization during the query execution (Figure 8), we can see there are
long tail workers in HC_TJ. Although hypercube shuffle shuffles
the input relations without much skew, the differences in computa-
tion time is still visible.

Comparing configurations using the same shuffle algorithm but
different join operators (HC_HJ v.s. HC_TJ and BR_HJ v.s.
BR_TJ), due to the large amount of intermediate result generated
by pipelined hash join, Tributary join is much more efficient in both
total CPU time and runtime.

Summary: Experiments with Q4 show that, when there is large
intermediate results, Tributary join is the choice of join operator.
HyperCube shuffle will have the advantage of cheaper communi-
cation cost. Although if the replication factor is high, broadcast
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Figure 9: Freebase query 2 (Q4)
Query # Tables # Join Variables Cyclic Input size RS size HC size RS Skew Time(RS_HJ)/Time(HC_TJ) Config. with

(millions) (millions) (millions) (max) lowest runtime
Q1 3 3 Y 3.3 54 13 20 12 HC_TJ
Q7 4 2 N 0.31 0.24 0.24 2.6 1.3 HC_TJ
Q5 4 4 Y 4.4 1841 36 29 12 HC_TJ
Q6 5 4 Y 5.5 74 17 29 13 HC_TJ
Q2 6 4 Y 6.6 75 25 16 9.2 HC_TJ
Q8 6 6 Y 2.4 54 60 3.5 0.44 RS_HJ
Q3 8 7 N 6.6 7 106 2.8 0.21 RS_TJ
Q4 8 8 Y 8.8 13893 210 9.3 45 BR_TJ

Table 6: Summary of extended evaluation. Queries grouped by the best query plan and listed by increasing number of joined tables. RS size
is the total number of tuples shuffled when using a regular shuffle. HC size is the same measurement for the HyperCube shuffle.

may have a comparable or even better runtime by having less skew
in computation cost among each worker.

3.5 Additional Queries
We evaluate four additional queries using the Twitter and Free-

base datasets to better cover the space of plans with different num-
bers of joins, input sizes, and intermediate result sizes. We present
the detailed queries and associated graphs in Appendix A. Table 6
summarizes the experimental results across all eight queries. The
table lists the queries by increasing number of tables joined.

As the table shows, all six cyclic queries have large intermedi-
ate result sizes (shown by a large number of tuples shuffled by the
regular shuffle). Except for Q8, the regular shuffle has high skew
(9.3 or higher) and, therefore, for all queries (except Q8), HC_TJ
outperforms the regular shuffle. Query Q4 is interesting because
here the Broadcast plan outperforms HC_TJ.4 The reason is that the
query has 8 join variables, requiring an 8-dimensional hypercube,
leading to significant data replication. The broadcast plan shuffles
more than twice as much data, but it has a somewhat lower skew,
as we showed earlier in Figure 8, and is thus the fastest plan for this
query. The only cyclic query where regular shuffle has little skew
is Q8; here HC_TJ uses a 6-dimensional hypercube, and therefore
reshuffles a relatively large amount of data (60M tuples, for an in-
put of 2.4M), which is comparable with the amount of intermediate
results of the regular shuffle (54M). All this causes regular shuffle
to be twice as fast as HC_TJ.

The regular shuffle plans for acyclic queries Q3 and Q7 pro-
duce intermediate relations of size comparable to that of the input.
The behavior of HC on the two queries differs. For Q3, it uses a
6-dimensional hypercube, resulting in significant data reshuffling
overhead, and the traditional, regular shuffle plan is faster. Q7
requires only a 2-dimensional hypercube (a square). In fact, this
query joins three large relations on a single join attribute and a
small relation on a different attribute. The optimal configuration
of shares is 1× 64, which causes the small relation to be broadcast

4Broadcast was not the best plan for any other query, and for that
reason we omit it from the table.

and the three large relations to be hash-partitioned on their join
attribute. This plan enables the HyperCube shuffle to avoid any
overhead and outperform the traditional plan thanks to a more even
load distribution. We present more details in the Appendix.

Summary: Our evaluation comparing the new combination of
HyperCube and Tributary join (HC_TJ) with traditional hash join
(RS_HJ) and broadcast join shows that there is no overall best
query plan. Large intermediate results or significant data skew
lead HC_TJ to outperform the others, sometimes by large amounts.
Moreover, HC_TJ can automatically detect when to use broadcast.
However, for complex queries HC_TJ uses a high-dimensional
cube, which increases the amount of data shuffled, canceling the
advantage gained by not having to compute intermediate results.
Similarly, when the intermediate results are small, and there is no
significant skew, the traditional hash join leads to fastest query run-
times.

We observe that the HC_TJ outperforms BR_TJ in almost every
query with the exception of Q4. As we discussed in Section 3.1
(Q1), since HC reduces the size of data shuffled to workers, it
improves the sorting time of TJ, which is the bottleneck in many
queries.

3.6 Comparison with Semijoin Plans
The purpose of a semijoin reduction is to remove from input

tables the “dangling” tuples, which do not contribute to any an-
swer in the output. Only acyclic queries admit full semijoin reduc-
tions [36], meaning that with a fixed number of semijoins one can
completely remove all dangling tuples from all tables; for a cyclic
query, there is no bound on the number of semijoin reductions. We
implement the distributed semijoin reduction from recent work [4]
(details in the Appendix) and evaluate it on the acyclic queries in
our workload, which are Q3 and Q7.

For Q3, the semijoin plan shuffles 2.29 million tuples from the
projected tables and 6.57 million tuples from the input tables com-
pared with 7.18 million tuples for the regular shuffle. In this query,
the use of the semijoin thus provides little benefit, which is reflected
in the runtime. This plan takes 4.127 seconds, which is slower than
RS_HJ (the best plan for this query). The semijoin is slower than



the regular shuffle because the plan has a longer pipeline: 2.5x more
operators than RS_HJ . Similar to the regular shuffle, the semijoin
plan outperforms the HyperCube shuffle on this query.

For Q7, the semijoin plan shuffles 0.14 million tuples from the
projected input tables (containing only the distinct values from the
joined columns) and 0.24 million tuples from the input tables. The
HyperCube shuffle transmits 0.24 million tuples over the network.
For this query, the semijoin thus only adds overhead. As a result,
the runtime is 1.427sec, the second slowest among all configura-
tions.

Thus, in our workload, the standard semijoin reduction did not
improve the runtime: the extra cost of additional rounds of com-
munication canceled all savings from removing the dangling tu-
ples. We note that, unlike traditional distributed join processing
R ▷◁A=B S, where R is stored in one server and S on a second
server and the semijoin reduction sends only the attribute S.B to
the first server, in our setting every relation is distributed, and to
perform the semijoin one needs to re-shuffle R in addition to re-
shuffling S.B: the cost of the semijoin is higher, and it requires
more complex queries, or more dangling tuples to be beneficial.

The exact values reported in the above experiments are tied to the
DBMS that we used in the evaluation. Other engines may differ in
their efficiency to shuffle data or execute operators. The relative
differences in the values across algorithms, however, are likely to
remain similar. Other engines could include yet another set of par-
allel join evaluation algorithms. The conclusions that we draw are
limited to the algorithms that we tested.

3.7 Scalability
The analysis in the previous section shows that, for queries with

large intermediate results but a small final result (Q1, Q2, and Q4)
the combination of HyperCube Shuffle and Tributary Join outper-
forms traditional plans that use either a Regular Shuffle or a Broad-
cast together with a tree of binary join operators. For Q4, Hyper-
Cube shuffle and broadcast achieve comparable performance.

However, there is a second critical aspect of performance in
shared-nothing parallel systems: scalability. How well does the
HyperCube Shuffle and Tributary Join combination scale compared
with traditional plans?

In this section, we study the scalability of the HyperCube Shuf-
fle and Tributary Join combination compared with a traditional plan
that uses a left-deep tree of binary join operators and a regular shuf-
fle. We use Query 1 (triangle query), a 3-way cyclic join to show
the scalability of combining HyperCube Shuffle and Tributary Join.

In this experiment, we vary the number of workers that process
the query from two to 64. We run the query using either HyperCube
Shuffle with a Tributary join or a traditional plan using regular shuf-
fles and hash-based joins. Figure 10 shows the results.

Figure 10a shows the wall clock time of Query 1 using hash join
with regular shuffle and using Tributary join with HyperCube shuf-
fle. Tributary join with HyperCube shuffle scales well while hash
join with regular shuffle scales poorly beyond four workers for this
query. The main reason for the improved scalability is better load
balance. As discussed in Section 3.1, the regular shuffle experi-
ences a significant degree of skew.

It is not obvious that the HyperCube shuffle should scale well be-
cause of the way it replicates data: the larger the cluster, the larger
the replication factor the more data must be shuffled and processed
by the Tributary Join. Figure 10b and Figure 10c show the detailed
resource utilization for the query. We plot the ratio of the total
number of tuples shuffled compared with a 2-worker configuration.
Indeed, the total amount of shuffled data grows almost linearly with
the cluster size. In spite of this growth, however, the total runtime

decreases as shown in Figure 10. To see why, Figure 10c shows the
total wall clock time per worker for both the data sorting time and
the actual join time. As the figure shows, the time per worker drops
significantly with cluster size because each worker processes less
data, even though the workers as a whole process more data.

4. HYPERCUBE OPTIMIZATION
In this section we present practical optimizations of the Hyper-

Cube Shuffle. Recall that the algorithm factorizes the number of
servers into a product of shares, p = p1p2p3 · · · , and the theoret-
ically optimal solutions lead to fractional shares and, as we have
seen, rounding down leads to significant performance loss, because
it leaves many servers unused. For example, consider the 4-clique
query in Sec. 3.2, and suppose we have p = 15 servers: the theo-
retically optimal shares are p1 = p2 = p3 = p4 = 151/4 ≈ 1.96:
rounding down leads to p1 = p2 = p3 = p4 = 1, which means
that we use only one server, and have no parallelism at all.

Problem statement: The HyperCube shuffle distributes the in-
put data for a join query across the machines in the cluster. We
choose the optimization objective to be minimizing the maximum
amount of data (measured as the number of tuples) assigned to a
single worker. Since the HyperCube shuffle enables a single round
of communication during query evaluation, the runtime of a query
is determined by the runtime of the slowest worker, which can be
approximated by the amount of data processed by that worker.

We discuss here four approaches. The first is simply based on
rounding down:

Naïve Algorithm 1: Rounding down: We use the linear pro-
gramming problem described by Beame et al. [9], which give the
optimal, fractional shares; then round down each share. As we
have discussed, this rounding down approach may be highly non-
optimal, especially when p is small or the number of joins is large.

The next two approaches are based on virtual servers, which we
call cells. We will use N to denote the number of physical ma-
chines, and M ≥ N the number of cells; when they are the same,
then we denote p = M = N . The HyperCube algorithm will
be designed for M cells (virtual servers), i.e. the shares satisfy
M = M1M2M3 · · · However, there are only N physical servers,
so we have to define a many-to-one mapping from M to N . Two
important problems arise: (1) how do we choose the number of
cells M? Intuitively, a larger value for M will reduce the effect of
rounding error. But increasing M leads to more data reshuffling:
for example, the data reshuffled by the triangle query with shares
M1/3 ·M1/3 ·M1/3 is (|S1|+ |S2|+ |S3|)M1/3 (Sec. 3), hence
more data is reshuffled as we increase M . (2) How do we map cells
to physical servers? Some data items are sent to multiple cells, and
therefore we should aim to place those cells in the same physical
server. For example, in the triangle query S1(x, y) is sent to all
cells (i, j, 1), (i, j, 2), . . ., where i, j are the hash values of x and
y. We want to map these cells to a set of physical servers of small-
est possible size: if they were mapped to the same physical server
then we avoid data replication.

Naïve Algorithm 2: Many cells per worker with random al-
location: To increase the degree of parallelism and to improve load
balance, an alternate approach is to have M (M ≫ N ) virtual Hy-
perCube cells; by increasing the number of cells, we reduce the loss
due to rounding down. Then we assign these cells randomly to N
workers. This approach contains two steps:

1. Compute a (possibly) non-integer solution using the LP-
based approach [8] using M and Q as inputs. Then round
the solution down. This will generate a HyperCube configu-
ration with M1 cells and M1 ≤M but M1 ≫ N .
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Figure 10: Scalability of HyperCube Shuffle and Tributary Join combined

2. Assign M1 cells randomly to the N physical servers.

This approach will use all N workers. However, a serious prob-
lem is that the data replication grows significantly, which conflicts
with the goal of using HyperCube shuffle to minimize the amount
of communicated data. We present an example in Appendix B to
illustrate why random allocation increases data replication dramat-
ically.

Naïve Algorithm 3: Many cells per worker with an optimal
allocation: This approach improves the problem of random cell al-
location above. As above, the approach starts by solving the linear
program on a large number of virtual cells and rounding down the
solution to integer hypercube dimension sizes. As second step, this
approach computes an optimal cell allocation to minimize work-
load assigned to each server.

To compute the allocation, we formulate the HyperCube cell al-
location problem as a combinatorial optimization problem. We use
the state of the art answer set solver [1] with symmetric breaking
optimization. However, for the set of queries and parallel database
configurations in our experiments (N = 64, M ≫ N ), the time to
compute the optimal allocation is much beyond the query running
time. For example, for N = 64 and M = 100, the optimal cell
allocation for Q1 takes longer than 24 hours to compute on a laptop
using Intel I5 CPU.

Finally, our fourth approach is the following.
A Practical and Efficient Solution. Our fourth approach is a

simple yet efficient solution to the hypercube configuration prob-
lem. Algorithm 1 shows the details. The key idea is to keep one
cell per worker as in prior work [8], but identify the hypercube
configuration that uses as many physical workers as possible. The
approach is simple: the algorithm performs a breadth-first-search to
enumerate all the integral HyperCube configurations with a num-
ber of workers (nw(c)) less than the number of physical machines
N . For each configuration c, we compute its maximum work-
load, workload(c) (i.e., total amount of allocated data) for a single
worker. The algorithm chooses the HyperCube configuration with
the minimal workload. Note that the optimal configuration may not
necessarily use all N physical machines. For example, considering
the 4-clique query in Sec. 3.2 on N = 15 physical machines, the
algorithms searches configurations p1× p2× p3× p4 ≤ 15: it will
consider 1×1×5×3 and 5×1×3×1, etc, but also 2×2×3×1
which uses only 12 machines, etc.

In this algorithm, if more than one configuration yields the mini-
mal workload, we choose the configuration with more even dimen-
sion sizes (e.g. 2 × 2 × 2 × 2 is better than 1 × 4 × 1 × 4). That
is to reduce possible skew during HyperCube shuffle. For example,
assuming both x and y in relation A(x,y) are join attributes, the

algorithm selects dx = 2, dy = 2 rather than dx = 1, dy = 4 (let
dx be the dimension size which corresponds x). Although A will
be partitioned into 4 partitions in both configurations, in configura-
tion dx = 1, dy = 4, A is shuffled based on only hash valued of
x. While in configuration dx = 2, dy = 2, A is partitioned based
on both x and y, which is more resilient to possible skew in either
attribute value.

Algorithm 1 HyperCube Configuration Algorithm

Input: N ▷ Number of workers
1: wl←∞ ▷ best workload
2: C ← null ▷ configuration of best workload
3: for all integral HC configuration c s.t. nw(c) ≤ N do
4: if workload(c) < wl then
5: wl← workload(c)
6: C ← c
7: else if workload(c) == wl and max(dimc) <

max(dimC) then then
8: wl← workload(c)
9: C ← c

10: end if
11: end for

Evaluation: We evaluate the effectiveness of all the above hy-
percube configuration algorithms using the queries from Section 3.
For each query, we first compute the optimal workload using the
linear programming solver GLPK [2] and the problem formula-
tion proposed in prior work [8]. Then we compare this opti-
mal workload to that produced by each of the above algorithms
(workload/opt.). We compare our algorithm to the single cell per
worker algorithm with rounding down (Round Down) and the many
cells per worker algorithm with random allocation.

Figure 11 shows the workload to optimality ratio of the three
hypercube configuration algorithms for N = 64, 63, and 65. We
observe that for all three cluster sizes, our algorithm performs bet-
ter than the other two approaches. For Q2, when N = 63 and
N = 65, our algorithm achieves a workload ratio below 1. Our
solution thus outperforms even the non-integer solution from prior
work [8]. The reason for this performance result is that the non-
integer solution computed by the LP solver is only optimal within
a constant factor. In contrast, our approach does not have this lim-
itation. The round down approach performs well only if the LP
solver outputs an integer solution (e.g. Q1, N = 64). The random
allocation approach has the worst performance due to the high data
replication rate.
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Figure 11: Compare hypercube configuration algorithms

Interestingly, even though our approach performs an exhaustive
search over all possible hypercube configurations, the algorithm
runtime is low. For a cluster with 64 workers and queries with
even large numbers of joins (Q1 through Q4), the algorithm com-
putes the hypercube configuration in under 100msec, which makes
it practical.

5. ATTRIBUTES ORDER OPTIMIZATION
Tributary join, like the Leapfrog Triejoin whose API it imple-

ments, requires the optimizer to chose a global order of all attributes
that participate in the join. Prior work on Leapfrog Triejoin [33] did
not address this optimization problem.

We introduce a cost model for the Tributary join algorithm to
estimate the cost of that operator for a given variable order. We
validate experimentally the effectiveness of this cost model in se-
lecting good variable orders.

Optimizing the variable order is important because, although
Tributary join is worse case optimal given any variable ordering,
in practice, this “worse case” can be far from optimal.

5.1 Tributary Join Cost Model
We want to estimate the cost of Tributary join using different

variable orderings, so that the optimizer can choose an optimal vari-
able order for a given query plan. Consider the following query:

Q(x) : −R1(x1), . . . , Rk(xk)

In Tributary join, a attribute global order is defined as a function
ϕ, J → Z+, where J is the set of joined attributes. For example
ϕ(Ai) = 1 means Ai is the first attribute in the global variable
order.

We assume that the following commonly used statistics are avail-
able: the cardinality of each relation that participates in each join
(|R1|, . . . ,|Rk|), the number of unique values of each variable in
each relation (V (Ri, xi)) and the number of unique “prefix” val-
ues (V (Ri, (p)) in each relation. The prefix values for relation
Ri are the values of the prefix of join attributes that appear in
Ri as per the global variable order. For example, assuming that
(x)i = (Ai,1, Ai,2, . . . , Ai,j) is following the global variable or-
der, the prefixes are (Ai,1), (Ai,1, Ai,2) until (Ai,1, . . . , Ai,j−1).

In the Tributary join algorithm, the most expensive step is the
binary search to find the matching value for the next join variable
at the beginning of each recursive merge join. In Example 2, the
algorithm performs a binary search to find S(y) = 3, then T (z) =
4, then S(y) = 5, etc. Each binary search takes O(log(N)) time.
We want to estimate the cost of Tributary join by estimating the
number of binary searches during the multiway join operation.

We observe that Tributary join works on one joined variable in
each step. If there is a value appearing in this variable in the rela-
tions involved in this step, then the join will move on to the next

variable. The size of the set intersection of the active domains of
the variables involved in each step decides on how many times the
binary search will be performed in that step and how many times
the join will move to the next variable. For example, in Figure 2,
|R(2, y) ∩ S(y)| = 2.

Sstep=1 = min
φ(1)∈Rj

(V (Rj , (φ(1)))

φ is the reverse function of ϕ. φ(1) represents the first variable in
global variable order. Hence, for step one, the cost model computes
the minimum number of distinct values in the first variable across
all relations that have the variable.

As the Tributary join moves to the next variable, it only searches
intersection within the scope defined by a certain prefix. For exam-
ple, in query:

Q(x1, x2, x3) : −R1(x1, x2), R2(x2, x3), R3(x3, x4) (2)

Assuming the global variable order is x2 ≺ x3, the Tributary join
tries to find the first value of x2 that appears in both R1 and R2.
Upon finding that value, for example, v0, the Tributary join will
move on to the next variable, x3, in R2(x2 = v0) and R3. We
estimate the number of unique values in the “residual” relation as:

Vstep=i(Rj) =
V (Rj , pi,j)

V (Rj , pi−1,j)

pi,j is the prefix variable vector of Rj at ith joined variable.
For example, when Tributary join is joining the 2nd variable x3

of query showed in Equation 2, we have p2,2 = (x2, x3) and
p1,2 = (x2). Thus, the number of unique value in residual rela-
tion size of R2 can be estimated as V (R2, (x2, x3))/V (R2, (x2)).

We still estimate the size of the intersection as the size of the
smallest number of unique values in all involved (residual) rela-
tions.

Sstep=i,i>1 = min
φ(i)∈Rj

(
V (Rj , pi,j)

V (Rj , (pi−1,j)
) (3)

Combining the estimate of the set intersection and the estimate
of the residual relation size, we can estimate the cost of Tributary
join using the estimate of the number of binary searches performed.
We obtain the following recursive cost function.

Coststep≥i(Q) = Sstep=i + Sstep=i × Sstep=i+1 (4)

5.2 Evaluating the cost model
In general, accurate estimation of the cost of query plans

with multiple joins is a hard problem. Ioannidis and
Christodoulakis [16] show that the error in the estimation of result
sizes grows exponentially with the arity of the join. In this section,
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Figure 12: Estimated cost and actual query runtime

query average runtime runtime in seconds
in seconds (random) (best order from cost model)

Q3 155.22 12.62
Q4 864.75 129.35
Q7 0.072 0.060
Q8 26.39 0.23

Table 7: Query runtime with random attribute order and best order
from cost model
we evaluate whether our simple cost model suffices to identify good
variable orders.

We evaluate the effectiveness of the cost model by executing a
query using different variable orders. Since an n-way multiway
join can have n! different variable orders, we randomly select 20
variable orders from Q3, Q4, Q7 and Q8 5 separately. We termi-
nate the query if the query takes more than 1, 000 seconds. Fig-
ure 12 shows the scatter plot of the real query runtimes against
the estimated runtimes for all queries. Although the estimates are
not perfect, the estimated cost and the actual runtime are positively
correlated (The correlation coefficients are 0.658 for Q3, 0.216 for
Q4, 1 for Q7, and 0.932 for Q8). Table 7 shows the Tributary join
runtime (on a single machine, using pre-shuffled data) when using
either the variable order with the lowest estimated cost or a ran-
dom variable order. Choosing a good variable order using our cost
model improves the query runtime by a factor of up to 10x in this
experiment.

6. RELATED WORK
Sequential multiway join algorithms The sequential evaluation

of multiway joins has extensively been studied in the database com-
munity. Most prior work focused on the optimization of query trees
consisting of two-way joins. Schneider and DeWitt [29] studied
the tradeoffs between using left-deep, right-deep and bushy query
trees to organizing the joins. They also discussed the strategies to
decluster a query tree given memory limitations. Some recent de-
velopments, mostly from the theoretical community, have lead to
an entirely new approach to processing multi-join queries, initiated
by Aterias, Grohe and Marx (hence AGM) [6] who proved a tight
bound on the maximum result size of a full conjunctive query. Ngo
et al. [23, 22] described a worst-case optimal algorithm (called
NPRR) whose runtime is guaranteed to be bounded by the AGM
bound. Veldhuizen [33] described another worst-case optimal (up
to a log factor) algorithm called Leapfrog Triejoin (LFTJ), which
had been developed and deployed by LogicBlox. A good, unified

5We only examine 2 attribute orders in Q7 since it only has two
join attributes.

overview of these two algorithms can be found in [25]. We used
an implementation of LFTJ in our evaluation and developed a cost
model to optimize its join attribute order.

Efficient join algorithms in parallel systems Lu et al. [18] stud-
ied the parallel execution of multiway joins in a shared-memory,
multi-processor system. Recently, more work has focused on
shared-nothing parallel systems. Zhang et al. [38] studied how to
efficiently decompose multiway Theta-join into multiple MapRe-
duce jobs. Elsedy et al. [11] proposed an adaptive repartition al-
gorithm to automatically balance workload among shared-nothing
computing nodes when evaluating binary joins. Bruno et al. [10]
evaluated different join algorithms with skew handling techniques
in the Microsoft SCOPE system. Vemuri et al. [34] studied efficient
join and aggregation algorithms in MapReduce under the assump-
tion that the data is partitioned into user defined data units. Poly-
chroniou et al. [27] proposed track join, which tries to make the
best tradeoff between CPU cost and network cost. Zhou et al. [39]
proposed a cache-conscious MapReduce star join algorithm, which
utilizes local memory more efficiently. Phan et al. [26] proposed
a filtering optimization using Bloom filter to avoid communicating
unnecessary data for joins in MapReduce.

Parallel multiway join algorithms and data partitioning.
Ganguli, Silberschatz, and Tsur described a parallel datalog query
engine that pioneered the idea of using redundancy in order to re-
duce the communication cost [13, Sec.7]. and was generalized by
Afrati and Ullman [5] to an algorithm for computing any conjunc-
tive query in a single MapReduce step. Beame, Koutris, and Su-
ciu [17, 8, 9] introduced a new formal model for parallel computa-
tion where the number of servers is given explicitly, and analyzed
the communication cost for single-round, and multi-round query
evaluation algorithms. Afrati et al. [4] developed parallel semi-join
algorithms to explore tradeoffs between the number of rounds of
communication and the communication/computation cost, which
are generalizations of Yannakais semijoins [36]. In this paper, we
address the HyperCube size-rounding problem to use it in practice
and evaluate its effectiveness in a wider range of queries, which are
not necessarily full conjunctive queries, and in conjunction with the
Tributary join algorithm.

Communication cost is usually affected by the data partition lay-
out. Stöhr et al. [31] studied the allocation of data warehousing
data based on the star schema and assumed that bitmap indices
were used. Rao et al. [28] and Nehme et al. [21] studied the opti-
mal partitioning design for expected workloads in parallel database
systems.

7. CONCLUSION
In this paper, we showed how to convert recent theoretical al-

gorithms for conjunctive query into a practical query evaluation
approach on a shared-nothing execution engines. We made three
contributions: We studied when HyperCube shuffle [5, 14, 8] to-
gether with Tributary multiway join algorithm (an implementation
of the Leapfrog Triejoin API [33]) outperform traditional query
plans. Second, we developed an algorithm to compute the optimal
hypercube configuration for a given query and a cluster of arbitrary
size. Finally, we developed a cost model for the new Tributary join
algorithm that enables the optimization of that operator.
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APPENDIX
A. ADDITONAL QUERIES EVALUATED

Query 5: Twitter Rectangle
The fifth query lists all directed rectangles in the Twitter data that
we used in Section 3.1.

Rectangle(x, y, z, p):-
Twitter_R(x, y), Twitter_S(y, z),
Twitter_T(z, p), Twitter_K(p, x)

This query is a 4-way self-join of the Twitter dataset; it can be
thought of as an intermediate between Query 1 and Query 2. Fig-
ures 13 shows the performance of this query in all six configura-
tions. Figure 13a shows that the configuration using HyperCube
shuffle and Tributary join leads to lowest runtime.

Data shuffling network IO: The total amount of data shuffled,
shown in Figure 13c does not follow exact the trend in Q1 and Q2.
HyperCube shuffle is the most efficient since it does not shuffle
any intermediate results. Regular shuffle becomes the most expen-
sive shuffle algorithm since the intermediate result is huge. All the
2-hops (the intermediate result of the first join) and 3-hops (the in-
termediate result of the second join) need to be shuffled.

CPU cost of data joining: The CPU cost of this query is af-
fected by both shuffle algorithm and local join algorithm. Com-
paring shuffle algorithms while fixing join algorithm, the configu-
rations using HyperCube shuffle have better CPU cost than these
using regular shuffle and broadcast. Comparing join algorithms

while fixing shuffle algorithm, we observe that Tributary join is al-
ways better than hash join since the hash join still suffers from the
large intermediate result, even pipelined in memory.

Summary: In this 4-way self join on Twitter data, HC_TJ is
still the most efficient configuration both in wall clock time and
CPU cost. An interesting fact observed here is that, as the size
of the intermediate result goes to even larger (compared with Q1),
broadcast is shown to be better than regular shuffle.

Query 6: Twitter Two Rings
The sixth query lists 4-vertice subgraph patterns which consist of
two back to back triangles.

Two_Rings(x,y,z,p):-
Twitter_R(x,y),Twitter_S(y,z),Twitter_T(z,p),
Twitter_P(p,x),Twitter_K(x,z)

This query is a 5-way twitter self join. It can be thought as Q5
with an extra join to constrain the size of the final output. However,
a better join order for Q6 would be firstly constructing a triangle
and do the other two joins afterward. Since we assume there is
a state of the art optimizer, we use the later join order in all the
pipelined configurations.

Figures 14 shows the performance of this query in different con-
figurations of shuffles and joins. The configuration using Hyper-
Cube shuffle and Tributary join has lowest wall clock time, as shown
in Figure 14a.

Summary The wall clock time, CPU cost and shuffle size of this
query exhibit a similar trend as in Q2. Interestingly, comparing Q1,
Q2, Q5 and Q6, which are 3 to 6 way self joins on Twitter, we can
observe:

• HC_TJ shows best performance over all these queries.

• As size of the intermediate result of pipelined join differs, the
relative advantage of regular shuffle and broadcast changes.
If the size of the intermediate result of pipelined join is ex-
tremely large (e.g. Q5), broadcast could be better than regular
shuffle.

• Using HyperCube shuffle, Tributary join is always better than
pipelined join in these queries. However, using Broadcast,
Tributary join can be slightly worse than hash join due to the
sorting cost on relatively large input relations.

Query 7: Freebase Query
The seventh query is an example of Freebase knowledge explo-
ration query. It finds all actors who win Oscar Award in 90s. Ta-
ble 8 shows the sizes of relations joined in Q7.

OscarWinners(a):-
ObjectName(aw, "The Academy Awards"),
HonorAward(h, aw),
HonorActor(h, a),
HonorYear(h, y),
y>=1990 AND y<2000

Relation Cardinality
σn=“TheAcademyAwards′′ (ObjectName) (R1) 1
HonorAward (R2) 93,468
HonorActor (R3) 126,238
σ1990≤year<2000(HonorY ear) (R4) 17,681

Table 8: Relations joined in Q7

This query is an acyclic 4-way join. It can be viewed as a star
join using three relations and another join on one branch of the
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Figure 13: Twitter Rectangle (Q5)

RS_HJ RS_TJ BR_HJ BR_TJ HC_HJ HC_TJ
0

10

20

30

40

50

60

T
im

e
 (

se
c)

13

24

56

7.8
3.5

1.0

(a) Wall clock time

RS_HJ RS_TJ BR_HJ BR_TJ HC_HJ HC_TJ
0

500

1000

1500

2000

2500

3000

3500

T
im

e
 (

se
c)

97 209

3083

241
59 14

(b) Total CPU time

RS_HJ RS_TJ BR_HJ BR_TJ HC_HJ HC_TJ
0

20

40

60

80

100

120

140

160

T
u

p
le

s 
sh

u
ff

le
d

 (
m

il
li

o
n

)

73 73

129 129

17 17

(c) Number of tuples shuffled

Figure 14: Twitter Two Rings (Q6)
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Figure 16: A generalized hypertree decomposition (GHD) of Q7

star. Figures 15 shows the performance of this query in different
configurations of shuffles and joins. HC_TJ configuration has the
lowest runtime.

Data shuffling network IO & load balance Broadcast shuffles
significant larger amount of data than regular shuffle and Hyper-
Cube shuffle. Regular shuffle and HyperCube shuffle both shuf-
fle slightly more tuples than the input data. The size of the in-
termediate result is very small in regular shuffle. In HyperCube
shuffle, since the the sizes of input relations are unbalanced, the
HyperCube size is 1 × 64, which means the very small relation
ObjectName(aw, “The Academy Awards”) is broadcasted
and the other tree relatively large relations is shuffled without du-
plication. This shows how HyperCube shuffle adapts to skewed
input sizes.

Although the amount of data being shuffled (thus being joined in
workers) is close for HyperCube shuffle and regular shuffle. The
maximum destination skew (defined by max/average number of tu-
ples received) of regular shuffle is 1.7. The same metric of Hy-
perCube shuffle is 1.15. This explains why HC_TJ has the best
runtime.

Query 8: Freebase Query
The eighth query is another Freebase knowledge exploration query,
which finds the pairs of actor and director appearing in two films.
As reported in Section 3.3, ActorPerform and PerformFilm
have 1.1 million and 1.09 million tuples respectively. DirectorFilm
has 0.19 million tuples.

ActorDirector(a, d):-
ActorPerform(a, p1), ActorPerform(a, p2),
PerformFilm(p1, f1), PerformFilm(p2, f2),
DirectorFilm(d, f1), DirectorFilm(d, f2)

This query is a 6-way cyclic join query. Figures 17 shows the
performance of this query in different configurations. RS_HJ has
lowest runtime among all the configurations. In general, this query
shows a similar trend in runtime, data shuffling and CPU cost with
Q3.

Semijoin Reduction Algorithm Implementation
For the semijoin experiments, we implement the distributed version
of Yannakakis’ semijoin reduction algorithm [36] as described in
the GYM paper by Afrati et al. [4]. The algorithm has three steps.
The first two steps reduce the dangling tuples using semijoins. The
last step joins the reduced tables. Taking Query 7 as an example,
we construct a generalized hypertree decomposition (GHD) of the
query as shown in Figure 16. The semijoin can be done in the
following steps (using shorter names R1, R2, . . . for the relations,
see Figure 16):

1. Bottom-up semijoins. Repace R2 with R′
2 = ((R2 ⋉R1)⋉

R3)⋉R4.

2. Top-down semijoins. Repace R1, R3 and R4 with R′
i =

Ri ⋉R′
2(i = 1, 3, 4).
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Figure 15: Freebase Query 3 (Q7)
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Figure 17: Freebase Query 4 (Q8)

3. Final joins. Join the reduced relations R′
1, . . . R

′
4, R′

1 ▷◁
R′

2 ▷◁ R′
3 ▷◁ R′

4.

Since we do not assume that any relation is partitioned on the
join attribute, we evalute R ⋉ S in parallel as follows:

1. Local preprocessing. Get SA by projecting S on joined keys
and perform duplicate elimination.

2. Shuffle. Shuffle R and SA on their join attributes.6

3. Local join. Join shuffled R and SA.

B. AN EXAMPLE OF RANDOM
HYPERCUBE CELL ALLOCATION

Example 1. Consider query A(x, y, z, p) :- R(x, y),
S(y, z), T(z, p). Each tuple from S will be sent to the
server responsible for cell (h(y), h(z)). However, each tuple from
R will be sent to all servers assigned any of the cells in the column
(h(y), ∗). Tuples from T will be sent to all servers assigned cells
in the row (∗, h(z)). Figure 18 shows a random HyperCube cell
allocation with 16 HyperCube cells and 4 physical servers. As the
figure shows, each physical server covers a large portion of both
h(y) and h(z). For example, server 1 covers 7 out of 8 parts of
h(y) and 7 out of 8 parts of h(z). Thus, although 1/4 of S needs
to be shuffled to server 1, 7/8 of R and 7/8 of T need to be shuf-
fled to server 1. Similarly, 7/8 of R, 1/4 of S, 7/8 of T need to be
shuffled to server 2 and server 3. Entire R, 1/4 of S and entire T
need to be shuffled to server 4.

6If one relation is much smaller than the other (< 1/P , P is the
number of workers), broadcasting the smaller relation is cheaper.
However, for semijoins on intermediate results, it is difficult to au-
tomatically decide whether to broadcast or hash partition.
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Figure 18: Example: random HyperCube cell allocation


