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ABSTRACT
Imprecise, sequential data, such as location sequences inferred
from RFID/GPS, are often represented as Markovian (probabilis-
tic, temporally-correlated) streams. Event queries, which detect
instances of specific patterns in these streams, have become the
standard tool for analysis of these streams; however, many data
mining applications require richer information such as how a pat-
tern is matched, how long the match is, or what stream elements
matched specific pattern predicates. Such queries can dramatically
increase the power of applications, but they cannot be answered by
existing tools.

In this paper, we present novel techniques for processing the
above queries on Markovian streams. Central to our approach
are algorithms for computing and manipulating the lineage of
Markovian stream event queries. We provide formal definitions
and linear-time algorithms for computing lineage, which may be
exponentially-sized in the length of the input stream. We addition-
ally demonstrate the importance of flexible lineage projections, and
provide definitions of, and two efficient algorithms for, these pro-
jections. We evaluate all algorithms on two real-world data sets (lo-
cation from RFID and words from spoken audio), and demonstrate
that lineage can greatly increase the analytical power of applica-
tions while incurring small processing overhead.

1. INTRODUCTION
Much of the digital information recorded daily by businesses,

scientists, and individuals takes the form of sequences. Mobile
sensors such as RFID 1 and GPS 2 are common sources of this
data. Such sequence data also extends beyond location data to in-
clude smart home or environmental sensor readings, audio, video,
etc. This data is recorded for its value to applications, from activ-
ity recognition and monitoring in smart homes [15], to RFID-based
business operation optimization in factories [1], retail [3] or hospi-
tals [17], to online multimedia search/retrieval [22].

To perform effective analysis, applications cannot query raw sen-
sor data directly. Instead, they require access to higher-level infor-
1Radio Frequency IDentification
2Global Positioning System
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mation exposed through post-processing: location sequences in-
ferred from GPS or RFID, activity sequences inferred from smart
home readings, sentence-level transcripts inferred from raw au-
dio, etc. Due to noise and/or ambiguity, this information is often
imprecise—a person’s location at a given time, or the phrase spo-
ken at a given instant, may be represented as one of several pos-
sibilities [6, 20, 22]. An increasingly-common approach to expos-
ing such imprecise sequences to applications is to model them as
Markovian streams [8,13,16]. Markovian streams are probabilistic,
temporally-correlated data streams. Each instant in a Markovian
stream represents a distribution over possible values (e.g. which
locations a person may have been in) and correlations between the
values at the current and next instant (e.g. constraints relating a
person’s location at times t and t + 1, which reflect limitations on
speed, physical constraints imposed by building layouts, etc.).

A key tool for Markovian stream processing is the event query,
which detects instances of query patterns in a stream. An exam-
ple event query is, [Q1]: “Find all times Dr. Bob moved from his
office to an exam room.” The output of an event query is a set of
probabilities, one for each instant of the input stream, identifying
the probability with which the query pattern is satisfied at each in-
stant. The output is imprecise because of uncertainty in the input
Markovian stream.

Although event queries are powerful, they identify only the in-
stants at which a query pattern is matched. Many applications
require additional information about how a pattern was matched,
when the match began, or which sequence elements matched the
pattern. For example, which exam room did Dr. Bob visit? How
long did he take to get there? What path did he take through the
hallways? We call such how/when/which queries lineage queries.
They are vastly more powerful than standard event queries but they
are not supported by existing systems. In this paper, we introduce
the first techniques for processing lineage queries.

To process lineage queries on Markovian streams, we propose
techniques for computing and manipulating event query lineage.
In relational systems, lineage is an expression that maps each re-
sult tuple to the set of input tuples responsible for its existence; it
may also include an explanation of the operators used to create the
mapping [2]. Event query lineage, the stream equivalent of rela-
tional lineage, has been recently shown by Kimelfeld & Ré to be
intractable to compute in general on Markovian streams [10]. In
this paper, however, we identify a class of event queries that are
common in practice and lend themselves to efficient lineage pro-
cessing. We call these unambiguous, DFA event queries. Even for
these queries, however, lineage is challenging to compute because
its size is potentially exponential in the length of an input stream.

We define the lineage of an event query on a Markovian stream
as (1) all subsequences in the stream that yield a pattern match



with non-zero probability and (2) a mapping of each subsequence
element to the part of the pattern that it matches. For example, the
lineage for query Q1 would include both Dr. Bob’s location at each
moment from the time just before he left his office to the time he
entered an exam room, and also a mapping from each location to
the part of the query expression (introduced in Section 2.2) satis-
fied by the location. The answers to lineage queries can be read
from this lineage. For example, the exam rooms that Dr. Bob vis-
ited appear directly in this lineage. We address the challenge of
potentially-exponential lineage sizes by developing a compact en-
coding for lineage which we call a lineage graph, and a linear-time
algorithm for constructing the graph. Enumerating the potentially-
exponential number of lineage explanations is an additional chal-
lenge that we address using a standard top-k approach [4].

In addition to enumerating lineage explanations, most applica-
tions are also interested in projecting these explanations. For ex-
ample, the result of a “which” query such as, “Which room did Bob
start in?” comprises only a small piece of lineage—the identity
of a particular room—with the rest of the lineage projected away.
Similarly, the query “How long did Bob take to move between lo-
cations X and Y?” requires that all locations be projected out of the
answer, leaving only a single number (duration) as output.

Importantly, projection must be applied before enumeration of
the top-k answers because, as we demonstrate in Section 4, projec-
tion on only the top-k lineage explanations can yield dramatically
incorrect results. Thus, projection must be a part of query process-
ing (it cannot be left to applications), and it must be performed
on all lineage explanations, which as we have already noted can
number exponentially in the length of the input stream. In this pa-
per we formally define projection and present two algorithms for
performing projection efficiently by directly manipulating our com-
pact lineage encoding, reducing the complexity from exponential to
quadratic in the stream length. These algorithms extend the recent
work of Kimelfeld & Ré by supporting projections on arbitrarily-
placed lineage elements (prior work is limited to projections of pre-
fixes and suffixes of lineage expressions), and by providing algo-
rithms and evaluation for all constructs.

We demonstrate the utility and efficiency of our algorithms on
real data from two domains: location (from RFID) and English
sentences (from spoken audio podcasts). We show that, empiri-
cally, lineage processing adds an overhead of 25-280% percent (but
usually less than 100%) to standard event query processing time—
a small price to pay for the huge increase in the expressive power
of lineage queries over standard event queries. We further demon-
strate that judiciously choosing the correct projection algorithm can
reduce projection overhead by a factor of 3.5.

Summary of Contributions
This paper is the first to demonstrate query processing techniques
for lineage queries on Markovian streams. We present formal defi-
nitions, algorithms, and empirical evaluations of Markovian stream
lineage computations, including flexible projections, to support
these queries. Concretely, we provide:

1. A formal definition of lineage for event queries on Marko-
vian streams, and a compact lineage graph representation
(Sections 3.1 and 3.2).

2. Algorithms for constructing lineage graphs and enumerating
the top-k lineage sequences for a query match, in time linear
in the stream length (Sections 3.3 and 3.4).

3. A definition of lineage projection, and two algorithms (one
basic, one optimized) for performing projection (Section 4).

4. An experimental evaluation of all algorithms on real-world
streams inferred from RFID and audio data (Section 5).

2. PRELIMINARIES
In this section we review the definition of Markovian streams

and event queries, and we define a new subclass of unambiguous,
DFA event queries for which our lineage algorithms are designed
(in this context, DFAs are deterministic finite automata).

2.1 Data Model: Markovian Streams
Here we present a brief overview of Markovian streams; more

detailed descriptions can be found in existing work [13, 16]. A
Markovian stream is an imprecise, temporally-correlated sequence.
For simplicity, we consider in this paper only streams with a sin-
gle dimension D (e.g. location), although generalization to multi-
dimensional streams is straightforward. Each instant i in a Marko-
vian stream defines a probability distribution pi over the true (but
unknown) value of the stream at instant i, as well as correlations
(conditional probability distributions) ci relating the stream values
at instants i and i + 1. Consider as an example Figure 1(c), which
shows a Markovian stream over a location domain (i.e. derived
from Bob’s RFID readings). The marginal probability distribution
over Bob’s location at each instant is shown in boxes: for example,
at instant i0 Bob was in the Office with 100% certainty. The corre-
lations between Bob’s location at consecutive timesteps are drawn
as edges: for example, if Bob was in the Office at i1, then he moved
to HallA at instant i2 with 100% certainty; however, if Bob was in-
stead in HallA at time i1, then he moved to either HallA or HallB,
with probability 0.8 and 0.2, respectively. Correlations are impor-
tant for representing physical constraints (i.e. to avoid representing
paths that involve teleporting or walking through walls).

Markovian streams are compact representations of probabil-
ity distributions over an exponential number of deterministic se-
quences. They implement a standard possible worlds seman-
tics in which each stream-length sequence x ∈ DN is a possible
world [8,16]. The probability of a particular deterministic sequence
is computed as p0c1 . . . cn, where p0 is the probability of the first el-
ement in the sequence and ci is the conditional probability of the ith

sequence element, given the value of the previous element. For ex-
ample, in Figure 1(c), the probability of the sequence Office-Office-
HallA-HallB-Lab2 is 1.0 ∗ 0.45 ∗ 1.0 ∗ 1.0 ∗ 0.7 = 0.315.

2.2 Query Model
A common tool used in Markovian stream analysis is the event

query [16, 24], a sequence query expressed as a regular expres-
sion (equivalently, an NFA—nondeterministic finite automaton)
in which alphabet symbols are replaced with predicates over the
domain of an input stream. An example event query over a lo-
cation domain is shown in Figure 1(b). The output of an event
query Q executed on a single Markovian stream M of length n is
a sequence of pairs ((i0, pi0 ), . . . , (in, pin )) indicating the probabil-
ity pi that one or more instances of the query pattern are detected
in the stream, terminating at instant i. We define the probability
pi =

∑
x∈Dn

(x|Q@i = True) as the sum of the probabilities of all de-

terministic sequences x encoded in the input stream, in which the
query pattern is satisfied at instant i. In this paper, we consider only
event queries executed on a single Markovian stream.

Kimelfeld and Ré demonstrate in recent work that computing
Markovian stream lineage is intractable for arbitrary event query
NFAs [10]. Here, we identify a subclass of unambiguous, DFA
event queries that are common in practice. The key property of
these queries is that, on a deterministic input stream, they produce
at most one lineage sequence ending at each instant. We exploit
this property to construct the compact lineage representation and
manipulations described in Sections 3 and 4.
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Figure 1: (a) Sample RFID deployment. (b) Unambiguous DFA query Q. (c) Markovian stream M. (d) The set of lineage sequences
describing the lineage of Q on M. for instant i4. (e) The lineage graph describing the lineage of Q on M, for all instants.

DFA queries are those whose automaton representations are de-
terministic. We define a DFA query to be unambiguous in conjunc-
tion with a deterministic input stream as follows: a query is un-
ambiguous on a particular deterministic input stream if the longest
and shortest substrings that match the query at any given instant
are the same. A query is universally unambiguous if is unambigu-
ous on all possible deterministic input sequences. As an example,
the query pattern Q:(RoomA, (¬RoomB)*, RoomB) is unambigu-
ous on the input ‘ab’, but is ambiguous on the input stream ‘aaab’,
in which the longest and shortest matching substrings ending at
instant 3 are ‘aaab’ and ‘ab’, respectively. The ambiguity of a par-
ticular query/input pair can be detected straightforwardly at query
time.

In its most simple form, a lineage query is simply an unambigu-
ous, DFA event query. While the event query returns a single prob-
ability value for each instant in the input stream, the lineage query
result contains, for each instant, a set of lineage sequences, which
we define formally in Section 3.1 and which contain the segments
of the input stream that correspond to each query match. Together,
the unambiguous and DFA properties guarantee that multiple lin-
eage sequences matching a given instant are disjoint: that is, they
each correspond to a different deterministic sequence encoded in
the input Markovian stream We leverage the disjointness of lineage
sequences in later sections to develop a compact, Markovian struc-
ture for representing lineage.

A lineage query can optionally include a set of projections to
be applied to the lineage query results (e.g. to identify only the
identity of a particular room without regard to the hallways used to
reach it). We define projection formally in Section 4. Figures 2(a-
d) shows a set of unambiguous, DFA lineage queries used here as
running examples, and which we also execute on real-world data as
part of our experimental evaluation. We discuss the lineage shown
in these diagrams, as well as Figures 2(e-h), in Sections 3 and 4,
respectively. We note from experience that many real-world event
queries are naturally expressed as unambiguous DFAs [23]; fur-
thermore, most queries that do not have both properties can be
easily rewritten into DFA queries with similar semantics and no
ambiguity by removing repeated sequences at the beginning of the
query. The ambiguous query Q, for example, can be rewritten into
a similar, universally-unambiguous query Q’:(RoomA, (¬(RoomA
∨ RoomB))*, RoomB) that yields the unambiguous match ‘ab’ on
the input ‘aaab’.

3. EVENT QUERY LINEAGE
In this section, we introduce Markovian stream event query lin-

eage, which is a critical tool for answering lineage queries on
Markovian streams. Current state-of-the art techniques require

that these queries be answered without accessing lineage, which
requires writing a separate, grounded event query to represent
each possible sequence of elements—of every length, using every
possible combination of predicate groundings to concrete domain
elements—that can match the original event query. This approach
is clearly intractable, requiring a number of queries exponential in
both the input stream length and the size of the stream domain.
By contrast, the lineage we define in this section admits tractable
algorithms for lineage query processing.

Intuitively, we define the lineage of an event query on a Marko-
vian stream as a set of lineage sequences. Each lineage sequence
indicates a unique subsequence of elements in the input Marko-
vian stream that satisfy the query, along with the path of transitions
through the query DFA that are triggered by this sequence. The set
of lineage sequences ending at a particular instant i together indi-
cate the set of all possible ways in which the event query is satisfied
on the input stream at instant i. For example, Figure 1(d) shows the
set of lineage sequences that comprise the lineage for instant i4 on
the query and input stream shown in Figures 1(b) and (c), respec-
tively. We revisit this Figure throughout this section.

The lineage definition we propose here is analogous to “how”
lineage in a relational setting [2] because it identifies not only the
set of input stream subsequences that match a query, but also the
operations (DFA edge transitions) used to create a query result from
each subsequence. This definition of lineage is equivalent to the
output of an “indexed s-projector” as defined in recent work by
Kimelfeld and Ré [10], who identify this lineage format as the only
tractable type of the many alternatives they explore.

3.1 Formal Lineage Definition
We first define Markovian stream lineage formally in a deter-

ministic setting, and then broaden the definition to cover impre-
cise (specifically, Markovian) streams. In both settings, we define
lineage in terms of a single stream instant i. In a deterministic
setting, the input stream is a single sequence of domain elements
(d0, . . . dN). The lineage LM

Q (i) for input stream M, unambiguous
DFA event query Q, and instant i is either empty, or is a single,
contiguous sequence l = (is, ei−n+1, . . . , ei) comprising a list of n 〈
instant, domain-element, DFA-state 〉 triples e preceded by a sin-
gle element is indicating the instant at which the sequence begins.
The instant is is redundant with the instant contained in the ele-
ment ei−n+1, but is required for performing projection (Section 4).
The number n is the number of stream instants contributing to the
lineage sequence, which has length n + 1 due to the inclusion of is.

In a Markovian stream setting, the lineage LM
Q (i) for instant i

has two parts: a set of j lineage sequences {l0 . . . l j}, and a set of
probability assignments {p(l0), . . . p(l j)} defining a probability p(l)



for each sequence l in the set. Each probability p(l) is the sum of
the probabilities of all deterministic sequences in the input Marko-
vian stream that generate lineage sequence l (by definition, each de-
terministic input sequence can yield at most one lineage sequence
ending at each instant; however, multiple deterministic input se-
quences can yield the same lineage sequence, derived from a shared
subsequence with length shorter than the full input stream). Each
individual lineage sequence l is defined as in the deterministic case.
Figure 1(d) shows the set of lineage sequences that represent the
lineage of the query and stream in Figures 1(b) and (c).

The lineage sequences in a set have three important properties:
First, the sum of their probabilities equals the probability that the
query is satisfied at instant i in the input stream. Second, they are
disjoint (mutually exclusive). Finally, the lineage sequences in a
set are also Markovian—that is, they can be compactly represented
in a Markovian structure, which we discuss next.

3.2 Lineage Graphs
The lineage for instant i may contain an exponential number of

sequences, which prohibits efficient enumeration. In this section
we introduce a structure called the lineage graph, which compactly
encodes the potentially-exponential set of lineage sequences—not
just for a single instant i, but for all instants i simultaneously.
The lineage graph provides a foundation for the development of
tractable algorithms for computing and manipulating lineage.

Formally, the lineage graph of query Q on input stream M is a di-
rected acyclic graph (DAG) 〈V M

Q , E
M
Q 〉, comprising vertices v ∈ V M

Q

and edges e ∈ EM
Q . There exists a vertex vs

d(i) ∈ V M
Q for each

element e = 〈i, d, s〉 appearing anywhere in the set of lineage se-
quences for any instant. The lineage graph additionally contains an
edge (vs

d(i) ← vs′
d′ (i + 1)) for each pair of elements e = 〈i, d, s〉 and

e′ = 〈i+1, d′, s′〉 that appear consecutively in any lineage sequence
in a set. Each edge is assigned the probability of the correspond-
ing edge in the input Markovian stream. Finally, the lineage graph
contains additional “start” nodes vstart(i) and “final” nodes v f inal(i)
for each instant i at which any lineage sequence begins or ends.
The final node at instant i is connected to any nodes at instant i as-
sociated with an accepting (final) DFA state, with probability 1.0.
The start node at instant i is connected to all nodes at instant i that
are associated with DFA states reachable from the start state (e.g.
state s1 for the DFA in Figure 1(b)). The probability assigned to
edge (vstart(i) ← vs

d(i) is the marginal probability that domain ele-
ment d is true at instant i. A given input stream and query uniquely
determine a single lineage graph representation–thus, two different
query/data pairs yield the same lineage graph if and only if they
yield exactly the same lineage sequences.

Figure 1(e) shows the lineage graph for the query and input
stream shown in Figures 1(b) and (c), respectively. Dashed vertices
and edges in this figure are not a part of the lineage and will be ad-
dressed in Section 3.3. To illustrate lineage graph nodes, consider
the node vs1

O f f ice(0). This node corresponds to the shared first ele-
ment e = 〈i0,Office, s1〉 which begins both lineage sequences start-
ing at instant i0 in Figure 1(d). To illustrate lineage graph edges,
consider the edge from node vs2

HallA(1) to vs1
O f f ice(0) in the example

graph. This edge corresponds to the last two lineage sequences in
Figure 1(d). It has probability 0.55 because 0.55 is the probability
of the edge connecting the Office element at instant i0 to the HallA
element at instant i1 in the input stream (Figure 1(c)). Edges in the
lineage graph point backwards in time for convenience in enumer-
ating lineage; their directionality is not fundamental to the graph
definition.

More globally, each path in the lineage graph of Figure 1(e) that
starts at a final (black) node and ends at a start (white) node rep-

resents a unique lineage sequence: thus, the lineage graph in Fig-
ure 1(e) contains non-empty lineage for instants i3 and i4 of the
input stream. The lineage LM

Q (3) is the set of all paths/sequences
that begin at the final node at instant 3. In this case there is only
one such path, which spans instants 0 through 4, and has proba-
bility (1.0*0.4*0.2*0.4*1.0) = 0.032. The lineage LM

Q (4) includes
three sequences, two of which end at instant 0 and one of which
ends at instant 1.

For simplicity, all examples in this paper yield lineage graphs
that are subsets of the input stream; however, lineage graphs are of-
ten not simple subsets—more sophisticated examples can be found
in Letchner’s doctoral thesis on Markovian stream processing [12].

Through our work with real-world lineage, we have identified
and define here several characteristics of lineage graphs that have
a significant impact on query performance and quality. We demon-
strate the effects of these characteristics in Section 5.

Size: We define the size of a lineage graph as the number of
nodes it contains. Larger lineage graphs are produced by queries
that are more frequently satisfied, and/or are matched by longer
subsequences of the input stream; these graphs incur higher total
I/O and CPU costs during construction.

Connectivity: We define the connectivity of a lineage graph as
the average degree of each of its nodes. Here, degree is the total
number of edges—either incoming or outgoing—associated with a
node. Highly-connected lineage graphs are generally produced by
sequences or loops of unselective predicates.

Skew: We define skew in terms of a lineage graph together with
a top-k value (an integer k). Skew measures the (weighted) fraction
of lineage sequences that are captured in the top-k set for a given
query match; thus, skew is defined relative to the probability of a
given query match, and can be high even when the probability of
the query match is low. A skew of 1.0 indicates that all lineage
paths are contained in the top-k set (for each instant), while de-
creasing values indicate that smaller fractions of the lineage mass
are captured. Skew is a measure of the utility of a particular value
of k for a given stream and query.

3.3 Lineage Graph Construction
Construction of the lineage graph 〈V M

Q , E
M
Q 〉 occurs in two

phases. In the first phase, the input Markovian stream M is scanned
from beginning to end. As instant i of the input stream is read, a su-
perset of the lineage nodes v(i) and lineage edges (v(i− 1), v(i)) are
added to the lineage graph, according to the set of DFA transitions
activated by the Markovian stream instant being processed. We
call the resulting graph the pre-lineage graph, denoted 〈pV M

Q , pEM
Q 〉.

The pre-lineage graph contains the lineage graph in its entirety, but
may also contain additional nodes and/or edges that are not part of
the final lineage graph. These additional nodes and edges are the
result of partial query matches that produce lineage histories for
only part of a DFA, but never reach an accepting (final) state. They
are drawn as dashed elements in Figure 1(e).

The second phase of lineage graph construction is a backward
pass over the pre-lineage graph constructed in the first phase, in
which the “dead-end” branches of the lineage graph, created from
partial query matches, are identified and removed. These dead-end
elements are identifiable as branches not reachable from any “fi-
nal” graph node. A straightforward, single-pass marking algorithm
is sufficient for identifying and removing these elements. Note that
this backward pass requires only the pre-lineage graph as input; it
does not read or write the input Markovian stream. Furthermore,
both passes of lineage graph construction are memory-efficient be-
cause they must keep only two instants’ worth of the pre-lineage
graph (and input Markovian stream) in memory at any given time.
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Figure 2: (a-d) Example DFA event queries, English translations, and sample lineage of these queries on a location-based (RFID)
input stream (not pictured). (e-h) Lineage queries corresponding to the DFA event queries in (a-d), respectively, but now including
projection. Each box in the lower portion of the figure contains two different, projected variants of the query in the corresponding
box in the upper portion. Projected lineage is shown along with the English translation of the projection query.

3.4 Top-K Lineage
Our strategy for answering lineage queries is a basic top-k lin-

eage sequence enumeration approach, analogous to the top-k ap-
proaches supported in other database systems [4]. In this case, ap-
plications specify a value for k. For each instant in which lineage is
requested, we return only the k lineage paths with the highest prob-
abilities, thereby avoiding enumeration of a potentially-exponential
number of lineage sequences.

In order to support top-k lineage queries, we convert the lineage
graph into a top-k lineage graph, from which the top k paths for
each query match can be easily enumerated. Our top-k conver-
sion algorithm is a single-pass dynamic programming algorithm,
and is equivalent to a known variant of the Viterbi algorithm which
computes the k most likely paths (the standard Viterbi algorithm
is defined for k=1) [7]. This algorithm begins at the first (earli-
est/lowest) instant in the lineage graph and moves to the last, iden-
tifying the k most likely paths out of each node at the given instant,
in turn. This information can then be used to traverse/enumerate
the k most likely paths out of any node; for a “final” node v f inal(i),
these k paths are precisely the top-k lineage sequences for instant i.
Additional details of this well-established algorithm can be found
in Letchner’s doctoral thesis [12].

4. LINEAGE PROJECTION
Although some queries can be answered by enumerating ranked

lineage sequences directly, many queries require that parts of these
sequences be projected, and the resulting sequences deduplicated,
before such enumeration is useful. Figures 2(e-h) list examples of
projection-based variations of the lineage queries in Figures 2(a-d),
respectively, along with lineage graphs projected accordingly. Con-
sider query QA1 (Figure 2(e)), in which an application is interested
in knowing the identities of the rooms visited by Bob. The appli-
cation is not interested in the path Bob took through the hallways,
so lineage graph elements corresponding to hallways can be pro-
jected away. In this example, lineage elements are projected based
on their association with particular domain elements–in this case,
hallways. In other cases, projection of lineage elements may be

based on their association with particular DFA states or edges (e.g.
when an application is interested in knowing only the last room
Bob visited, but is uninterested in the identities of other rooms that
appear earlier in the lineage sequences). We define these projec-
tions formally in Section 4.1.

To demonstrate the importance of projection, we executed query
QA1 on a real-world Markovian stream derived from RFID data,
and compared the quality of the top k results obtained before ver-
sus after projection (the former is equivalent to allowing an appli-
cation to perform projection as a post-processing step on the k most
likely paths returned by the lineage algorithms). The top ten paths
computed after projection covered 79% of the lineage (i.e. skew
was 0.79 for k=10). The top ten paths computed before projection,
however, covered only 1.17E-6% of the lineage (i.e. the unpro-
jected lineage graph has poor skew), which is not enough coverage
to produce meaningful query results even if an application chooses
to perform its own projection on these top ten paths. To underscore
this point, we note that all ten of the most likely paths enumerated
from the unprojected lineage indicated that Bob began his journey
in room A; by contrast, the top ten paths computed on the projected
graph, which together cover 79% of the lineage, indicate that Bob
started in room B with probability 0.57, beginning in room A with
a probability of only 0.43.

We informally distinguish three types of projection queries: (1)
which-style queries (e.g. QA1, QB1, QD1, QB2 and QC2) whose an-
swers identify individual domain elements (here, locations); (2)
when-style queries (e.g. QC1) whose answers are a time interval;
and (3) how-style queries (e.g. QA2 and QD2) whose answers are
paths or subsets of paths through the lineage graph. In this section,
we present an approach to projection that enables processing of all
three types of projection query by supporting projection at the level
of pairs of consecutive lineage elements in a sequence.

4.1 Formal Definition
We formally capture the examples of projection introduced in

the previous section with the following definition: Projection on
lineage LM

Q is a transformation that removes a given element e′
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Figure 3: (a) and (b) represent the lineage sequences and graph
from Figures 1(d) and (e), respectively, in which Hall elements
have been projected away.

from all lineage sequences in which e′ is directly preceded by a
given element e: that is, projection on the pair (e, e′) transforms all
sequences (. . . , s, e, e′, f . . . ) into (. . . , s, e, f , . . . ) by removing the
element e′. The sequence suffix ( f , . . . ) and prefix (. . . , s) may be
empty, but element e cannot (consequently, the start element is of
each lineage sequence can not be projected away; we revisit this
point shortly). The probability of each lineage sequence is unal-
tered by this transformation; however, when projection transforma-
tions yield multiple identical sequences, the sum of their probabil-
ities is assigned to a single, deduplicated result.

The definition of projection presented here is independent of
any particular representation of lineage sequences. Importantly,
though, such projection can be efficiently implemented directly on
a lineage graph representation, because the projection is Marko-
vian: the decision about whether to project out an element e′ can
be made using only information about e′ and its immediate pre-
decessor, e. Markovian projections can be applied directly on a
lineage graph using a quadratic-time algorithm (Section 4.2). Non-
Markovian projections (e.g. projecting elements based on preced-
ing sequences of more than one element, or based on arbitrary reg-
ular expressions) cannot be applied directly on the lineage graph.

4.2 Applying Projection
Markovian projections can be applied directly to a lineage graph

because each projection transform specified by a pair of lineage el-
ements (e, e′) identifies a unique edge (e← e′) in the lineage graph,
to be projected out. As each projected edge is removed, connectiv-
ity of the graph is maintained using a simple, quadratic-time closure
algorithm that adds edges to the graph to link together any nodes
whose connectivity is disrupted by removal of a projected edge.
The algorithm is thus a simple graph closure procedure.

Conceptually, lineage graph edges can be projected away in any
order. However, in practice, projecting away edges starting at the
beginning (i = 0) of the graph and moving toward the end (i = N)
can improve performance by increasing memory locality. Because
the projection process only adds edges that start at the instant af-
ter the edge being projected, projection in this scheme can be per-
formed keeping only two instants of the lineage graph in memory
at a time: instant i from which edges are being projected away in
step one, and instant i + 1 to/from which edges are added/removed.
All experiments in Section 5 use this sliding-window, single-pass
approach to projection.

4.2.1 Optimizing Projection
Recall from Section 3.3 that construction of a lineage graph oc-

curs in two phases: the first phase constructs a superset of the graph
(the pre-lineage graph), while the second phase prunes away dead-
end graph branches corresponding to partial query matches. As an
alternative to applying projection to the completed lineage graph,
projection can also be applied before the pruning phase, simultane-
ously with graph construction. In this approach, two instants’ worth
of newly-constructed graph elements are held in memory and pro-

jection is applied to them before they are written to disk (and be-
fore pruning is applied in a separate, later pass over the resulting
graph). For queries where many elements are projected away, this
approach can improve performance significantly by avoiding ma-
nipulation of elements that are eventually removed. Of course, the
combined construction-plus-projection approach is not always su-
perior; when significant pruning occurs, the two-phase approach is
preferable since time is otherwise wasted projecting elements that
will eventually be pruned away. We explore the tradeoffs of these
two approaches to projection in Section 5.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our algorithms

on Lahar, a prototype Markovian stream warehouse written in Java
and running on a 2.0GHz Linux machine with 16GB of RAM.

5.1 Experimental Setup
We evaluate the performance of Markovian stream lineage

queries on two real-world data sets, both of which are publicly re-
leased and described in additional detail on the Lahar project web-
site [21]. The first data set comprises five 12-minute RFID traces.
We show performance results for queries on one of these traces,
which includes 714 instants of an individual’s location, is 8.2MB
in size, reflects an average of 10.6 possible locations per instant,
and reflects an individual walking through an office building visit-
ing several different offices for approximately one minute each. We
test performance on this data using the queries in Figure 2.

The second data set comprises four 5-minute NPR newscasts,
converted into Markovian streams over spoken words. The news-
cast that we use to demonstrate performance here comprises 915
instants, 1.3MB, and lists, on average, 4.9 words per instant with
non-zero probability. The three audio queries we use to evaluate
performance are each three-word phrases: “overhaul health care”,
“overhaul * *”, and “* * care”, where the symbol “*” represents a
wildcard predicate satisfied by any word. We selected these partic-
ular phrases for this evaluation because we knew them to be satis-
fied at least three times each in our real-world audio stream.

We selected these queries to demonstrate a range of performance
costs and lineage characteristics. Although we performed our ex-
periments on a wider range of queries and input streams, we show
only a limited number of representative results here.

5.2 Performance: Enumerating Lineage
We begin by studying the performance of lineage generation and

enumeration without projection. Recall that, in this case, three se-
quential passes over the lineage graph are required: one to gen-
erate the pre-lineage graph, one to prune dead-ends, and a final
pass to compute the top k sequences. The total time required for
each of these passes is shown in Figure 4 for four real-world RFID
queries (left cluster) and three real-world audio queries (right clus-
ter). Here, top-k computation was performed for k=10. For com-
parison, the time required to process these queries as Boolean event
detection queries, without any lineage, is also shown.

Total Cost of Lineage Is Moderate: In both domains, each
lineage-related pass takes less than twice the time of the single-pass
Boolean processing algorithm, and in many cases each lineage-
related pass requires only a fraction of the Boolean processing time.
All queries completed in under two seconds. The total overhead
of lineage processing can be as low as 10%, but is 4X in the worst
case. This is true even when the lineage has size nearly equal to that
of the input stream, as is the case for QA, or when the pre-lineage
graph is larger than the input stream but is then pruned down to a
small final lineage, as is the case for QC (lineage and input stream
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Figure 4: (a) Performance of lineage processing for real-world
queries on a location domain (left), and an audio domain
(right). (b) Skew values computed using k=10, and (c) lineage
graph sizes for these queries.

sizes are shown in Figure 4(c)). Nearly every instant of the in-
put stream contributes one or more pre-lineage graph nodes during
processing of queries QA and QC , creating maximum lineage pro-
cessing overhead: these two queries are in the range of worst-case
scenarios for lineage performance on queries of this length (DFAs
with more states can of course incur additional overhead).

Lineage Construction Time Is Proportional To Size: The time
required for the forward and backward lineage passes are approxi-
mately proportional to the size of the pre-lineage graph, generated
by the forward pass and pruned in the backward pass. This cost can
be (relatively) large even when the size of the final lineage is small,
as can be seen in Figure 4 for queries QC and the “* * care” audio
query, on which many nodes are generated in the forward pass only
to be pruned later (actual graph sizes are shown in Figure 4(c)).

Top-K Time Is Small: The cost of the top-k computation is pro-
portional to both the value of k and the size of the final lineage, with
the size of the lineage dominating performance. Figure 4 clearly
shows the correlation between lineage size and cost of top-k con-
version costs: QA, with the largest lineage, incurs the highest cost;
the mid-sized lineages of QB and QC incur moderate top-k costs;
and the remaining queries with small lineage incur negligible top-k
overhead. Indeed, even when k is increased to 100 (not shown),
the top-k costs for queries generating mid-sized and small lineage
remain similar because frequently there are fewer than 100 paths to
examine per node. The only query in Figure 4(a) for which top-k
costs more than double when k is increased to 100 is QA, whose
top-k costs are 560 milliseconds for k=10 and 2833 milliseconds
for k=100. This worst-case scaling of cost still increases only five-
fold for a ten-fold increase in k; the scaling is sub-linear because
some nodes do not have k outgoing paths and thus incur additional
costs that scale less than linearly with k. We do not expect applica-
tions to use values of k near to or greater than 100.

Skew Varies By Query & Domain: Skew values for each query
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Figure 5: (a) Performance of lineage queries including projec-
tion on RFID data. (b) Performance of queries QA1 and QC2

broken down into I/O and CPU components.

(for k=10) are shown above the performance bars in Figure 4, and
skew values for varying k are shown in Figure 4(b). In the audio
domain, skew is nearly always 1.0 on our sample queries because
the lineage of these queries is small and contains a minimal number
(1-3) of unique paths. In the RFID domain, the queries with high
skew (QB and QD) have lineage that contains more than k (=10)
paths, but only a few of the paths have high probability due to skew
in the input Markovian stream. By contrast, queries such as QA

and QC , which include loop predicates, display poor skew. In the
case of QA, this low skew is due to the sheer number and length of
paths in the lineage. The low skew of QC , on the other hand, is due
almost entirely to uncertainty about the starting time of each match.

Projection must be performed before top-k enumeration:
Consider the skew of query QA in Figure 4(b): even for k=10, the
skew of this query is very poor. Accurate evaluation of projection-
based versions of this query (e.g. queries QA1 or QA2) require that
projection be performed before top-k enumeration, and not as a
post-processing step on the top k sequences enumerated before pro-
jection. In the next Section, we demonstrate that by performing
projection as part of query processing (and thus before top-k enu-
meration), the skew of query QA1 rises to 0.79 for k=10.

5.3 Performance: Projecting Lineage
Figure 5(a) shows the performance of eight representative lin-

eage queries that include projection (these are the queries from
Figures 2(e-h)). The left bar of each pair shows query performance
when separate passes are used to construct, then project, the lineage
graph. The right bar of each pair shows performance when the lin-
eage graph is constructed and projected in a single pass. We use
this plot to highlight the following key points regarding projection:

Projection is practical: Figure 5(a) shows that the overhead
of performing projection is manageable in practice, ranging from
negligible (less than one millisecond) in the best case to a worst
case of 8 seconds (without appropriate optimizations). Of the
eight representative projection queries, all completed in under 8
seconds—a time which includes standard event query costs and lin-
eage construction—and all finished in under 4 seconds using the
faster of the two projection algorithms (the better choice of algo-
rithm varies by query; we discuss this choice shortly). In theory, the
quadratic complexity of projection could add a significant overhead
to lineage processing. In practice, there is virtually no overhead for
projected variants of queries QB and QD because their lineage is
very small even before projection, and we see a significant over-



head for projection on only one query, QA1. However, the benefit
applications gain from incurring this overhead is a set of top-10
lineage paths that cover 79% of the lineage results, instead of the
1.2E-7% of results that can be obtained by performing projection
after top-k enumeration.

Combined lineage construction+projection usually improves
performance (due to I/O cost reduction): On seven out of eight
of the queries in Figure 5(a), the combined construction+projection
algorithm yields better performance than the multi-pass algorithm.
In the case of query QA1 the difference is dramatic, reducing query
completion time from 8 seconds to 2.5. The performance of query
QA1 is also shown in the first pair of bars in Figure 5(b), where it
is clear that the cost savings stems from an order-of-magnitude re-
duction in I/O time. A key feature of query QA1 is that its lineage
graph is very large before projection and very small afterward. Per-
forming projection as the graph is constructed, in memory, avoids
the necessity of writing most lineage nodes to disk (and also the
cost of reading them back into memory later).

Combined lineage construction+projection can decrease per-
formance: As the performance of query QC2 shows, the combined
construction+projection algorithm does not always outperform the
multi-pass algorithm. The primary reason for its poor performance
on query QC2 is visible in Figure 5(a): a dramatic increase in the
cost of the backward pass (blue bar), which is performed after pro-
jection in the optimized algorithm, but before projection in the stan-
dard algorithm. The optimized costs grow so much here for the
combined algorithm because the projected lineage graph is very
highly connected. The backward pruning pass scans a graph of
approximately the same size in both algorithms (9168 vs. 9059
nodes), but the average degree of each node is 55 in the graph con-
structed using combined construction+projection, and only 2.15 in
the unprojected graph. This 25x increase in connectivity greatly
increases the CPU costs associated with pruning (Figure 5(b)).

Top-k costs are unaffected by choice of projection algorithm:
This is no surprise, since top-k construction and enumeration algo-
rithms are applied to the projected lineage graph, which is the same
regardless of the algorithm used to obtain it.

6. RELATED WORK
Relational Lineage Support: Much existing work, such as the

WHIPS warehouse [5] and the ProQL language [9] focuses on de-
terministic, relational lineage manipulation. Such work is not di-
rectly applicable to Markovian streams, although ProQL concep-
tualizes lineage as a graph, in a spirit similar to that of this paper.
Probabilistic databases that support lineage include Trio [18] and
MayBMS [11], but these systems do not support sequential data.

Sequence Processing: Many approaches have recently emerged
for processing imprecise sequences, including those with Marko-
vian correlations [8, 20, 22]. However, none of these systems track
event lineage. Separately, lineage-like concepts have been explored
in a number of deterministic stream processing systems, including
SASE [24] and ZStream [14], but of course these systems are inad-
equate for processing Markovian or other imprecise streams.

Lineage for Imprecise Stream Processing: The work most
closely related to this paper is that of Shen et al. [19] and Kimelfeld
& Ré [10], who define subsequence matches of event queries on
imprecise streams but do not provide algorithms or support pro-
jections beyond removal of prefixes/suffixes. Shen et al. consider
only independent sequences, however, and Kimelfeld & Ré pro-
pose a theoretical Markov sequence transducer whose output under
specific conditions (those of an “indexed s-projector”) is equiva-
lent to the lineage graph of Section 3.2, but they do not propose or
evaluate algorithms for constructing or manipulating the graph to

answer lineage queries. The prDB system proposed by Kanagal &
Deshpande [8] generates lineage for conjunctive queries on Markov
sequences, but does not consider lineage of event queries.

7. CONCLUSION
We introduced a set of Markovian stream lineage queries that

provide information about how a query is matched in an input
stream. We formally defined a lineage graph to capture this infor-
mation, and provided single-pass algorithms for constructing and
projecting the graph and for enumerating the top-k matching se-
quences. Our experiments demonstrate the practicality of this ap-
proach, which is an important step in building more powerful mo-
bile applications and also extends to other domains.
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